JPH10259096A - Growing of lithium tetraborate single crystal for optics - Google Patents

Growing of lithium tetraborate single crystal for optics

Info

Publication number
JPH10259096A
JPH10259096A JP6259997A JP6259997A JPH10259096A JP H10259096 A JPH10259096 A JP H10259096A JP 6259997 A JP6259997 A JP 6259997A JP 6259997 A JP6259997 A JP 6259997A JP H10259096 A JPH10259096 A JP H10259096A
Authority
JP
Japan
Prior art keywords
single crystal
lithium tetraborate
tetraborate single
growing
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6259997A
Other languages
Japanese (ja)
Other versions
JP3261649B2 (en
Inventor
Tamotsu Sugawara
保 菅原
Ryuichi Komatsu
▲隆▼一 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP06259997A priority Critical patent/JP3261649B2/en
Publication of JPH10259096A publication Critical patent/JPH10259096A/en
Application granted granted Critical
Publication of JP3261649B2 publication Critical patent/JP3261649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a single crystal ingot used without waste part when cutting out an optical substance such as a wavelength conversion element by growing lithium tetraborate single crystal for optics by Czochralski method or Bridgman method by using a seed crystal obtained by cutting out the seed crystal in the phase matching direction tilted at a specific angle θm to the c-axis of the lithium tetraborate single crystal. SOLUTION: A seed crystal is cut out in the direction tilted at 32±3 deg. to the c-axis of a single crystal. A growing device 20 has a platinum crucible 21 storing molten liquid 21a of polycrystal of lithium tetraborate. A heater 24 such as a resistance-heating heater for melting the polycrystal of the lithium tetraborate in the crucible 21 through insulators 22 and 23. The temperature of the molten liquid 21a in the crucible 21 is measured by a thermocouple 29. Insulating walls 25 and 26 are doubly installed in the upper part of the crucible, and a rotating and pulling up structure 27 is formed so as to penetrate the insulating walls 25 and 26. The seed crystal is arranged at the tip of the structure 27, and the objective single crystal 28 grows therefrom.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、四ほう酸リチウム
単結晶の育成方法に関する。更に詳しくは、位相整合方
位に切出した種結晶を用いた光学用四ほう酸リチウム単
結晶の育成方法に関するものである。
[0001] The present invention relates to a method for growing a lithium tetraborate single crystal. More specifically, the present invention relates to a method for growing an optical lithium tetraborate single crystal using a seed crystal cut in a phase matching orientation.

【0002】[0002]

【従来の技術】四ほう酸リチウム(Li247)単結
晶は1981年にワットモアにより発見され、新しい表
面弾性波(SAW)デバイス用の基板材料として注目さ
れている。一方、この四ほう酸リチウム単結晶を波長変
換素子のような光学材料に用いようとする試みがなされ
ていたが、その変換効率の低さから実用化するまでには
至らなかった。従来、これらの四ほう酸リチウム単結晶
は、四ほう酸リチウム単結晶の<110>方位に切出し
た種結晶を四ほう酸リチウム融液にチョクラルスキー法
(CZ法)により上方より接触させた後、この種結晶を
引上げるか、或はブリッジマン法により上記種結晶を四
ほう酸リチウム融液に下方より接触させた後、融液を下
降させることにより育成されていた。
2. Description of the Related Art Lithium tetraborate (Li 2 B 4 O 7 ) single crystal was discovered by Wattmore in 1981 and has attracted attention as a substrate material for new surface acoustic wave (SAW) devices. On the other hand, attempts have been made to use this lithium tetraborate single crystal as an optical material such as a wavelength conversion element, but the conversion efficiency was low, so that it could not be put to practical use. Conventionally, these lithium tetraborate single crystals are prepared by bringing a seed crystal cut in the <110> direction of a lithium tetraborate single crystal into contact with a lithium tetraborate melt from above by the Czochralski method (CZ method). The seed crystal is grown by pulling up the seed crystal or bringing the seed crystal into contact with the lithium tetraborate melt from below by the Bridgman method and then lowering the melt.

【0003】[0003]

【発明が解決しようとする課題】本発明者らが四ほう酸
リチウム単結晶の光学特性について鋭意検討した結果、
この単結晶の光軸(c軸)に対して所定の角度で所定波
長のレーザ光を照射すると、高い変換効率で波長変換す
ることを見い出した。しかしながら、上記従来の方法で
育成した単結晶インゴットから波長変換素子を所定のサ
イズに切出す場合には、有効に使えない単結晶部分が多
く発生し無駄を生じていた。本発明の目的は、育成した
単結晶インゴットから波長変換素子のような光学材料を
切出すときに単結晶インゴットを無駄なく使える光学用
四ほう酸リチウム単結晶を育成する方法を提供すること
にある。
The inventors of the present invention have made intensive studies on the optical characteristics of lithium tetraborate single crystal, and have found that
It has been found that when a laser beam having a predetermined wavelength is irradiated at a predetermined angle with respect to the optical axis (c-axis) of the single crystal, the wavelength is converted with high conversion efficiency. However, when a wavelength conversion element is cut into a predetermined size from a single crystal ingot grown by the above-described conventional method, a large number of single crystal portions that cannot be used effectively occur, resulting in waste. An object of the present invention is to provide a method for growing a lithium tetraborate single crystal for optics that can use a single crystal ingot without waste when cutting an optical material such as a wavelength conversion element from the grown single crystal ingot.

【0004】[0004]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、四ほう酸リチウム単結晶のc軸から
所定の角度θmだけ傾いた位相整合方位に切出した種結
晶10を用いて、チョクラルスキー法により光学用四ほ
う酸リチウム単結晶28を育成する方法である。この育
成により種結晶の引上げ方向を長手方向とする四ほう酸
リチウム単結晶28が得られるため、この単結晶28か
らこの単結晶の長手方向を位相整合角度θmとする波長
変換素子を切出し、この波長変換素子に対して切出し方
向に平行又は垂直にレーザ光を照射するようにすれば、
効率良く波長変換できるとともに、単結晶28を歩留り
良く使うことができる。
The invention according to claim 1 is
As shown in FIG. 1, a lithium tetraborate single crystal for optics 28 was formed by a Czochralski method using a seed crystal 10 cut out from a c-axis of a lithium tetraborate single crystal into a phase matching direction inclined by a predetermined angle θm. It is a method of nurturing. By this growing, a lithium tetraborate single crystal 28 whose longitudinal direction is the pulling direction of the seed crystal is obtained. Therefore, a wavelength conversion element having a phase matching angle θm in the longitudinal direction of this single crystal is cut out from this single crystal 28, By irradiating the conversion element with laser light parallel or perpendicular to the cutting direction,
The wavelength can be efficiently converted, and the single crystal 28 can be used with good yield.

【0005】請求項6に係る発明は、図2に示すよう
に、四ほう酸リチウム単結晶のc軸から所定の角度θm
だけ傾いた位相整合方位に切出した種結晶30を用い
て、ブリッジマン法により光学用四ほう酸リチウム単結
晶33を育成する方法である。この育成により融液の移
動方向を長手方向とする四ほう酸リチウム単結晶33が
得られるため、この単結晶33からこの単結晶の長手方
向を位相整合角度θmとする波長変換素子を切出し、こ
の波長変換素子に対して切出し方向に平行又は垂直にレ
ーザ光を照射するようにすれば、効率良く波長変換でき
るとともに、単結晶33を歩留り良く使うことができ
る。
According to a sixth aspect of the present invention, as shown in FIG. 2, a predetermined angle θm from the c-axis of a lithium tetraborate single crystal.
In this method, an optical lithium tetraborate single crystal 33 is grown by a Bridgman method using a seed crystal 30 cut out at a phase matching orientation that is only inclined. By this growth, a lithium tetraborate single crystal 33 whose longitudinal direction is the moving direction of the melt is obtained. Therefore, a wavelength conversion element having a phase matching angle θm in the longitudinal direction of this single crystal is cut out from this single crystal 33, By irradiating the conversion element with laser light parallel or perpendicular to the cutting direction, wavelength conversion can be performed efficiently and the single crystal 33 can be used with good yield.

【0006】請求項2に係る発明は、図示しないが、四
ほう酸リチウム単結晶のc軸から32±3度だけ傾いた
方位に切出した種結晶を用いて、チョクラルスキー法に
より光学用四ほう酸リチウム単結晶を育成する方法であ
る。また請求項7に係る発明は、図示しないが、四ほう
酸リチウム単結晶のc軸から32±3度だけ傾いた方位
に切出した種結晶を用いて、ブリッジマン法により光学
用四ほう酸リチウム単結晶を育成する方法である。θm
を32±3度にして育成して得られた四ほう酸リチウム
単結晶から上記と同様に波長変換素子を切出し、この波
長変換素子に対して切出し方向に平行又は垂直にNd:
YAGレーザから基本波のレーザ光を照射すれば、コヒ
ーレンスの高い2倍波の波長の光を作り出すことができ
る。
According to a second aspect of the present invention, an optical tetraborate is formed by a Czochralski method using a seed crystal cut at an angle of 32 ± 3 degrees from the c-axis of a lithium tetraborate single crystal, not shown. This is a method of growing a lithium single crystal. Although not shown, the invention according to claim 7 uses a lithium tetraborate single crystal for optics by the Bridgman method using a seed crystal cut at an angle of 32 ± 3 degrees from the c-axis of the lithium tetraborate single crystal. It is a method of nurturing. θm
From the lithium tetraborate single crystal obtained by growing at a temperature of 32 ± 3 degrees in the same manner as described above, and Nd: parallel or perpendicular to the cutting direction with respect to this wavelength conversion element.
By irradiating the laser beam of the fundamental wave from the YAG laser, it is possible to generate light of the wavelength of the second harmonic having high coherence.

【0007】請求項3に係る発明は、図示しないが、四
ほう酸リチウム単結晶のc軸から40±3度だけ傾いた
方位に切出した種結晶を用いて、チョクラルスキー法に
より光学用四ほう酸リチウム単結晶を育成する方法であ
る。また請求項8に係る発明は、図示しないが、四ほう
酸リチウム単結晶のc軸から40±3度だけ傾いた方位
に切出した種結晶を用いて、ブリッジマン法により光学
用四ほう酸リチウム単結晶を育成する方法である。θm
を40±3度にして育成して得られた四ほう酸リチウム
単結晶から上記と同様に波長変換素子を切出し、この波
長変換素子に対して切出し方向に平行又は垂直にNd:
YAGレーザから基本波とその2倍波のレーザ光を照射
すれば、コヒーレンスの高い3倍波の波長の光を作り出
すことができる。
According to a third aspect of the present invention, there is provided an optical tetraborate for optical lithography using a Czochralski method using a seed crystal cut at an angle of 40 ± 3 degrees from the c-axis of a lithium tetraborate single crystal, not shown. This is a method of growing a lithium single crystal. Although not shown, the invention according to claim 8 uses a lithium tetraborate single crystal for optics by the Bridgman method using a seed crystal cut at an angle of 40 ± 3 degrees from the c-axis of the lithium tetraborate single crystal. It is a method of nurturing. θm
Is cut out from the lithium tetraborate single crystal obtained by growing at a temperature of 40 ± 3 degrees in the same manner as described above, and Nd is parallel or perpendicular to the cutting direction with respect to this wavelength conversion element.
By irradiating a laser beam of a fundamental wave and its second harmonic from a YAG laser, light of a third harmonic wavelength with high coherence can be produced.

【0008】請求項4に係る発明は、図示しないが、四
ほう酸リチウム単結晶のc軸から66±3度だけ傾いた
方位に切出した種結晶を用いて、チョクラルスキー法に
より光学用四ほう酸リチウム単結晶を育成する方法であ
る。また請求項9に係る発明は、図示しないが、四ほう
酸リチウム単結晶のc軸から66±3度だけ傾いた方位
に切出した種結晶を用いて、ブリッジマン法により光学
用四ほう酸リチウム単結晶を育成する方法である。θm
を66±3度にして育成して得られた四ほう酸リチウム
単結晶から上記と同様に波長変換素子を切出し、この波
長変換素子に対して切出し方向に平行又は垂直にNd:
YAGレーザから基本波の2倍波のレーザ光を照射すれ
ば、コヒーレンスの高い4倍波の波長の光を作り出すこ
とができる。
According to a fourth aspect of the present invention, an optical tetraborate is formed by a Czochralski method using a seed crystal, which is not illustrated, cut in an orientation inclined by 66 ± 3 degrees from the c-axis of a lithium tetraborate single crystal. This is a method of growing a lithium single crystal. Although not shown, the invention according to claim 9 uses a lithium tetraborate single crystal for optics by the Bridgman method using a seed crystal cut at an angle of 66 ± 3 degrees from the c-axis of the lithium tetraborate single crystal. It is a method of nurturing. θm
From a single crystal of lithium tetraborate obtained by growing at a temperature of 66 ± 3 ° in the same manner as described above, and Nd is parallel or perpendicular to the cutting direction with respect to this wavelength conversion element.
When a laser beam of a second harmonic of the fundamental wave is irradiated from the YAG laser, light of a fourth harmonic wavelength having high coherence can be generated.

【0009】請求項5に係る発明は、図示しないが、四
ほう酸リチウム単結晶のc軸から74±3度だけ傾いた
方位に切出した種結晶を用いて、チョクラルスキー法に
より光学用四ほう酸リチウム単結晶を育成する方法であ
る。また請求項10に係る発明は、図示しないが、四ほ
う酸リチウム単結晶のc軸から74±3度だけ傾いた方
位に切出した種結晶を用いて、ブリッジマン法により光
学用四ほう酸リチウム単結晶を育成する方法である。θ
mを74±3度にして育成して得られた四ほう酸リチウ
ム単結晶から上記と同様に波長変換素子を切出し、この
波長変換素子に対して切出し方向に平行又は垂直にN
d:YAGレーザから基本波とその4倍波のレーザ光を
照射すれば、コヒーレンスの高い5倍波の波長の光を作
り出すことができる。
According to a fifth aspect of the present invention, there is provided an optical tetraborate for optical lithography using a Czochralski method using a seed crystal, which is not shown, but which is cut at an angle of 74 ± 3 degrees from the c-axis of lithium tetraborate single crystal. This is a method of growing a lithium single crystal. Further, although not shown, the invention according to claim 10 uses a lithium tetraborate single crystal for optics by the Bridgman method using a seed crystal cut in an orientation inclined by 74 ± 3 degrees from the c-axis of the lithium tetraborate single crystal. It is a method of nurturing. θ
A wavelength conversion element is cut out from the lithium tetraborate single crystal obtained by growing at a m of 74 ± 3 degrees in the same manner as described above, and N
By irradiating the fundamental wave and its fourth harmonic laser light from the d: YAG laser, it is possible to produce light of the fifth harmonic having high coherence.

【0010】[0010]

【発明の実施の形態】本発明の四ほう酸リチウム単結晶
は、チョクラルスキー法か、或いはブリッジマン法によ
り製造される。即ち、図1に示すように、チョクラルス
キー法では、四ほう酸リチウム単結晶の育成装置20は
四ほう酸リチウム多結晶の融液21aが貯えられている
白金るつぼ21を有する。四ほう酸リチウムは酸化物の
中では低融点であるため、白金るつぼで育成することが
できる。白金るつぼ21の周囲には断熱材22,23を
介してるつぼ21内の四ほう酸リチウム多結晶を融解さ
せるための抵抗加熱ヒータ29のような加熱装置24が
設けられる。るつぼ21内の融液21aの温度は熱電対
29により検出される。るつぼ21の上部には断熱壁2
5,26が二重に設けられており、これらの断熱壁2
5,26を貫通して回転・引上げ機構27が設けられ
る。この機構27の先端には種結晶10が配置される。
この方法では、加熱装置24によりるつぼ21内の四ほ
う酸リチウム多結晶が融解した後、この融液21aに種
結晶10を接触させ、回転・引上げ機構27により、種
結晶10を回転させながら引上げることにより、図示す
るような四ほう酸リチウム単結晶28が育成される。
BEST MODE FOR CARRYING OUT THE INVENTION The lithium tetraborate single crystal of the present invention is produced by the Czochralski method or the Bridgman method. That is, as shown in FIG. 1, in the Czochralski method, the lithium tetraborate single crystal growing apparatus 20 has a platinum crucible 21 in which a melt 21a of lithium tetraborate polycrystal is stored. Since lithium tetraborate has a low melting point among oxides, it can be grown in a platinum crucible. A heating device 24 such as a resistance heater 29 for melting the lithium tetraborate polycrystal in the crucible 21 is provided around the platinum crucible 21 through heat insulating materials 22 and 23. The temperature of the melt 21 a in the crucible 21 is detected by a thermocouple 29. Insulation wall 2 on top of crucible 21
5, 26 are provided in duplicate, and these insulating walls 2
A rotation / pulling-up mechanism 27 is provided to penetrate through 5 and 26. The seed crystal 10 is disposed at the tip of the mechanism 27.
In this method, after the lithium tetraborate polycrystal in the crucible 21 is melted by the heating device 24, the seed crystal 10 is brought into contact with the melt 21 a, and the seed crystal 10 is pulled up while rotating by the rotation / pulling mechanism 27. As a result, a lithium tetraborate single crystal 28 as shown is grown.

【0011】また、図2に示すように、ブリッジマン法
では、ブリッジマン炉32の内部に白金又はグラファイ
ト製のるつぼ31が図示しない吊り下げ装置により上方
から吊り下げられる。このるつぼ31は下端が錐状をな
す。この下端には種結晶30が配置される。ブリッジマ
ン炉32は内部のるつぼ31を四ほう酸リチウムの融点
以上に加熱するための電気ヒータ32aを有する。この
方法では、るつぼ31内に四ほう酸リチウム多結晶を入
れ、るつぼ31を図示しない吊り下げ装置を駆動して電
気ヒータ32aにより加熱した炉内に下降させる。温度
分布の最高点付近で四ほう酸リチウム多結晶が融解す
る。この融解により融液31aが種結晶30の上端に接
触する。この状態でヒータ32aの配置されていない位
置まで更にるつぼ31を下降させると、るつぼ下端より
融液31aが結晶化し、下降につれて最終的に融液が全
て結晶化し、四ほう酸リチウム単結晶33が育成され
る。
As shown in FIG. 2, in the Bridgman method, a crucible 31 made of platinum or graphite is suspended from above by a suspending device (not shown) inside a Bridgman furnace 32. The crucible 31 has a conical bottom end. A seed crystal 30 is arranged at this lower end. The Bridgman furnace 32 has an electric heater 32a for heating the internal crucible 31 to a temperature equal to or higher than the melting point of lithium tetraborate. In this method, a polycrystal of lithium tetraborate is put in a crucible 31, and a crucible 31 is driven into a furnace heated by an electric heater 32a by driving a hanging device (not shown). Near the highest point of the temperature distribution, the lithium tetraborate polycrystal melts. This melting brings the melt 31 a into contact with the upper end of the seed crystal 30. When the crucible 31 is further lowered to a position where the heater 32a is not disposed in this state, the melt 31a crystallizes from the lower end of the crucible, and as the descent lowers, all of the melt finally crystallizes, and the lithium tetraborate single crystal 33 grows. Is done.

【0012】本発明の特徴ある構成は、この種結晶10
又は30の切出し方位が四ほう酸リチウム単結晶のc軸
から所定の角度θmだけ傾いた位相整合方位であること
にある。ここで位相整合方位θmは波長変換素子が二次
高調波を発生するときのレーザ光と光軸(c軸)との角
度である。四ほう酸リチウム単結晶は、負の一軸結晶で
あるため位相整合条件はタイプIの結晶である。従っ
て、図3に示すように位相整合条件としては、位相整合
角度θmのみを考慮すれば良く、c面上の回転角Φは考
慮する必要がない。図4は横軸に四ほう酸リチウム単結
晶に入射するレーザ光の波長と、縦軸にその位相整合角
度を示す特性図である。この図4に基づいて四ほう酸リ
チウム単結晶に入射するレーザ光の波長から、その波長
の位相整合角度を容易に求めることができる。例えばN
d:YAGレーザを光源とした場合、この波長は1.0
6μm(1064nm)であるので、補助線aを引き、
特性曲線に当った点pから補助線bを引けば、波長10
64nmのときの位相整合角度θmは32度と求められ
る。Nd:YAGレーザ以外の他のレーザ光源を用いた
場合にも同様に図4に基づいてその波長から位相整合角
度θmを求めることができる。代表的なレーザであるN
d:YAGレーザの第二高調波、第三高調波、第四高調
波及び第五高調波の各位相整合角度θmは、それぞれ3
2度、40度、66度及び74度と求められる。ただし
第三高調波及び第五高調波は和周波(SFG)により得
られる。
The feature of the present invention is that the seed crystal 10
Alternatively, the 30 cutout directions are phase matching directions inclined at a predetermined angle θm from the c-axis of the lithium tetraborate single crystal. Here, the phase matching direction θm is the angle between the laser beam and the optical axis (c-axis) when the wavelength conversion element generates the second harmonic. Since the lithium tetraborate single crystal is a negative uniaxial crystal, the phase matching condition is a type I crystal. Therefore, as shown in FIG. 3, only the phase matching angle θm needs to be considered as the phase matching condition, and there is no need to consider the rotation angle Φ on the c-plane. FIG. 4 is a characteristic diagram showing the wavelength of the laser beam incident on the lithium tetraborate single crystal on the horizontal axis and the phase matching angle on the vertical axis. From FIG. 4, the phase matching angle of the wavelength can be easily obtained from the wavelength of the laser beam incident on the lithium tetraborate single crystal. For example, N
This wavelength is 1.0 when a d: YAG laser is used as a light source.
Since it is 6 μm (1064 nm), an auxiliary line a is drawn,
If an auxiliary line b is drawn from a point p on the characteristic curve, a wavelength of 10
The phase matching angle θm at 64 nm is determined to be 32 degrees. Similarly, when a laser light source other than the Nd: YAG laser is used, the phase matching angle θm can be obtained from the wavelength based on FIG. N which is a typical laser
d: Each phase matching angle θm of the second harmonic, the third harmonic, the fourth harmonic, and the fifth harmonic of the YAG laser is 3
2, 40, 66, and 74 degrees. However, the third harmonic and the fifth harmonic are obtained by sum frequency (SFG).

【0013】[0013]

【実施例】次に本発明の実施例を比較例とともに説明す
る。 <実施例1>所定のモル比の純度99.99%の四ほう
酸リチウム多結晶原料粉末1300gを、図1に示す直
径90mm、高さ100mmの白金るつぼ21に充填
し、加熱装置24で原料粉末を融解した後、CZ法で所
定の引上げ方位に引上げた。即ち、この例では、種結晶
10はc軸から32度でカットしたものを用いた。融液
表面と融液直上10mmの温度勾配(降温勾配)を90
℃/cmにし、それより上部の降温勾配を30℃/cm
にした。更に単結晶28の直胴部育成時には0.4mm
/時間の速度で単結晶を引上げ、直径2インチ、直胴部
の長さ65mmの四ほう酸リチウム単結晶28を育成し
た。 <実施例2>種結晶としてc軸から40度でカットした
ものを用いた以外、実施例1と同様にして、直径2イン
チ、直胴部の長さ65mmの四ほう酸リチウム単結晶を
育成した。
Next, examples of the present invention will be described together with comparative examples. <Example 1> 1300 g of lithium tetraborate polycrystalline raw material powder having a predetermined molar ratio and a purity of 99.99% was charged into a platinum crucible 21 having a diameter of 90 mm and a height of 100 mm shown in FIG. Was melted and then pulled up to a predetermined pulling direction by the CZ method. That is, in this example, the seed crystal 10 cut at 32 degrees from the c-axis was used. A temperature gradient (temperature drop gradient) of 10 mm directly above the melt surface and the melt is 90
° C / cm, and the temperature gradient above it is 30 ° C / cm
I made it. Furthermore, when growing the straight body of the single crystal 28, 0.4 mm
The single crystal was pulled up at a rate of / hour, and a lithium tetraborate single crystal 28 having a diameter of 2 inches and a length of a straight body of 65 mm was grown. Example 2 A lithium tetraborate single crystal having a diameter of 2 inches and a length of a straight body of 65 mm was grown in the same manner as in Example 1, except that a seed crystal cut at 40 degrees from the c-axis was used. .

【0014】<実施例3>実施例1と同じ四ほう酸リチ
ウム多結晶原料粉末1300gを、図2に示す直径2イ
ンチ、高さ100mmの白金るつぼ31に充填した後、
このるつぼ31を電気ヒータ32aに通電したブリッジ
マン炉32内に下降させた。炉内の温度分布の最高点で
原料粉末を融解した。種結晶30はc軸から66度でカ
ットしたものを用いた。図2に示す界面Aから2cmま
での降温勾配を40℃/cmにし、それより下部の降温
勾配を20℃/cmにした。更に結晶の直胴部育成時に
は5mm/日の速度でるつぼ31を下降して直径2イン
チ、直胴部の長さ65mmの四ほう酸リチウム単結晶を
育成した。 <実施例4>種結晶としてc軸から74度でカットした
ものを用いた以外、実施例3と同様にして、直径2イン
チ、直胴部の長さ65mmの四ほう酸リチウム単結晶を
育成した。
Example 3 1300 g of the same lithium tetraborate polycrystalline raw material powder as in Example 1 was charged into a platinum crucible 31 having a diameter of 2 inches and a height of 100 mm shown in FIG.
The crucible 31 was lowered into the Bridgman furnace 32 in which the electric heater 32a was energized. The raw material powder was melted at the highest point of the temperature distribution in the furnace. The seed crystal 30 was cut at 66 degrees from the c-axis. The temperature gradient from interface A to 2 cm in FIG. 2 was set at 40 ° C./cm, and the temperature gradient below it was set at 20 ° C./cm. Further, at the time of growing the straight body of the crystal, the crucible 31 was lowered at a speed of 5 mm / day to grow a lithium tetraborate single crystal having a diameter of 2 inches and a length of the straight body of 65 mm. <Example 4> A lithium tetraborate single crystal having a diameter of 2 inches and a length of a straight body of 65 mm was grown in the same manner as in Example 3 except that a seed crystal cut at 74 degrees from the c-axis was used. .

【0015】<比較評価・その1>実施例1〜実施例4
の四ほう酸リチウム単結晶の第二次高調波の特性を評価
するために、これら4つの単結晶を引上げ方向又は融液
の下降方向にそれぞれ10mm×10mm×30mm
(直方体)の同形同大に切出した後、切出し方向に直角
の互いに対向する端面を光学研磨して4つのサンプルを
得た。これらの研磨面をレーザ光の入射面及び出射面と
し、Nd:YAGレーザ又はこのレーザと四ほう酸リチ
ウム単結晶の組合せによって、表1に示す波長をサンプ
ル毎にサンプルに照射した。その結果、得られた波長の
レーザ光を表1に示す。
<Comparative Evaluation 1> Examples 1 to 4
In order to evaluate the characteristics of the second harmonic of the lithium tetraborate single crystal, these four single crystals were pulled 10 mm × 10 mm × 30 mm in the descending direction of the melt, respectively.
After cutting into a rectangular parallelepiped of the same shape and size, opposing end surfaces perpendicular to the cutting direction were optically polished to obtain four samples. These polished surfaces were used as an incident surface and an outgoing surface of the laser beam, and the samples were irradiated with the wavelengths shown in Table 1 for each sample using a Nd: YAG laser or a combination of this laser and a lithium tetraborate single crystal. As a result, the laser light of the obtained wavelength is shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】表1から明らかなように、実施例1からは
2倍波である波長532nmの緑色光が、実施例2から
は3倍波である波長355nmの紫外光が、実施例3か
らは4倍波である波長266nmの紫外光が、また実施
例4からは5倍波である波長213nmの紫外光がそれ
ぞれ確認された。
As is clear from Table 1, green light having a wavelength of 532 nm, which is a second harmonic, is emitted from the first embodiment, ultraviolet light having a wavelength of 355 nm, which is a third harmonic, is emitted from the second embodiment, and green light having a wavelength of 355 nm is emitted from the third embodiment. Ultraviolet light having a wavelength of 266 nm, which is a fourth harmonic, and ultraviolet light having a wavelength of 213 nm, which is a fifth harmonic, were confirmed from Example 4.

【0018】<比較例1>種結晶としてc軸でカットし
たものを用いた以外、実施例1と同様にして、直径2イ
ンチ、直胴部の長さ65mmの四ほう酸リチウム単結晶
を育成した。 <比較例2>種結晶として<110>方位に切出したも
のをを用いた以外、実施例1と同様にして、直径2イン
チ、直胴部の長さ65mmの四ほう酸リチウム単結晶を
育成した。 <比較例3>種結晶としてx軸でカットしたものを用い
た以外、実施例1と同様にして、直径2インチ、直胴部
の長さ65mmの四ほう酸リチウム単結晶を育成した。
Comparative Example 1 A lithium tetraborate single crystal having a diameter of 2 inches and a length of a straight body of 65 mm was grown in the same manner as in Example 1 except that a seed crystal cut along the c-axis was used. . <Comparative Example 2> A lithium tetraborate single crystal having a diameter of 2 inches and a length of a straight body of 65 mm was grown in the same manner as in Example 1 except that a seed crystal cut in the <110> direction was used as a seed crystal. . <Comparative Example 3> A lithium tetraborate single crystal having a diameter of 2 inches and a length of a straight body of 65 mm was grown in the same manner as in Example 1 except that a seed crystal cut along the x-axis was used.

【0019】<比較評価・その2>比較例1〜比較例3
で得られた単結晶からそれぞれ位相整合角度θm=40
度、66度及び74度に合せたサンプルを切出した。こ
れらのサンプルのサイズはそれぞれ実施例1〜実施例4
のサンプルと同形同大の10mm×10mm×30mm
の直方体に切出した。実施例1〜実施例4の単結晶から
得られたサンプル数と、比較例1〜比較例3の単結晶か
ら得られたサンプル数を表2に示す。
<Comparative Evaluation 2> Comparative Examples 1 to 3
Phase matching angle θm = 40 from the single crystal obtained in
, 66 ° and 74 ° were cut out. The sizes of these samples were as in Examples 1 to 4, respectively.
10mm x 10mm x 30mm of the same shape and size as the sample
Cut into rectangular parallelepiped. Table 2 shows the number of samples obtained from the single crystals of Examples 1 to 4 and the number of samples obtained from the single crystals of Comparative Examples 1 to 3.

【0020】[0020]

【表2】 [Table 2]

【0021】表2から明らかなように、実施例1〜実施
例4の単結晶から得られたサンプル数は、比較例1〜比
較例3の単結晶から得られたサンプル数より約1.3倍
〜約2.4倍多かった。これにより、位相整合方位で四
ほう酸リチウム単結晶を育成すると、育成した単結晶を
無駄なく使えることが判った。
As is apparent from Table 2, the number of samples obtained from the single crystals of Examples 1 to 4 is about 1.3 times the number of samples obtained from the single crystals of Comparative Examples 1 to 3. Double to about 2.4 times more. Thus, it was found that when growing a lithium tetraborate single crystal in the phase matching orientation, the grown single crystal can be used without waste.

【0022】[0022]

【発明の効果】以上述べたように、本発明によれば、四
ほう酸リチウム単結晶のc軸から所定の角度θmだけ傾
いた位相整合方位に切出した種結晶を用いて、チョクラ
ルスキー法又はブリッジマン法により光学用四ほう酸リ
チウム単結晶を育成することにより、育成した単結晶イ
ンゴットから波長変換素子のような光学材料を切出すと
きに単結晶インゴットを無駄なく、高い歩留りで使用す
ることができる。
As described above, according to the present invention, the Czochralski method or the Czochralski method is used by using a seed crystal cut out from a c-axis of a lithium tetraborate single crystal into a phase matching direction inclined by a predetermined angle θm. By growing a lithium tetraborate single crystal for optics by the Bridgman method, a single crystal ingot can be used at a high yield without wasting when cutting an optical material such as a wavelength conversion element from the grown single crystal ingot. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のチョクラルスキー法による四ほう酸リ
チウム単結晶の育成装置の構成図。
FIG. 1 is a configuration diagram of an apparatus for growing a lithium tetraborate single crystal by the Czochralski method of the present invention.

【図2】本発明のブリッジマン法による四ほう酸リチウ
ム単結晶の育成装置の構成図。
FIG. 2 is a configuration diagram of an apparatus for growing a lithium tetraborate single crystal by the Bridgman method of the present invention.

【図3】結晶中の位相整合角度の定義を示す概略図。FIG. 3 is a schematic diagram showing a definition of a phase matching angle in a crystal.

【図4】四ほう酸リチウム単結晶へのレーザ光の入射波
長と位相整合角度との関係を示す図。
FIG. 4 is a diagram showing a relationship between an incident wavelength of a laser beam on a lithium tetraborate single crystal and a phase matching angle.

【符号の説明】[Explanation of symbols]

10,30 種結晶 21a,31a 四ほう酸リチウム融液 28,33 四ほう酸リチウム単結晶 10,30 Seed crystal 21a, 31a Lithium tetraborate melt 28,33 Lithium tetraborate single crystal

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 四ほう酸リチウム単結晶のc軸から所定
の角度(θm)だけ傾いた位相整合方位に切出した種結晶
(10)を用いて、チョクラルスキー法により光学用四ほう
酸リチウム単結晶を育成する方法。
1. A seed crystal cut out from a c-axis of a lithium tetraborate single crystal in a phase matching direction inclined by a predetermined angle (θm).
A method of growing an optical lithium tetraborate single crystal by the Czochralski method using (10).
【請求項2】 四ほう酸リチウム単結晶のc軸から32
±3度だけ傾いた方位に切出した種結晶を用いて、チョ
クラルスキー法により光学用四ほう酸リチウム単結晶を
育成する方法。
2. From the c-axis of the lithium tetraborate single crystal, 32
A method of growing an optical lithium tetraborate single crystal by the Czochralski method using a seed crystal cut in an orientation inclined by ± 3 degrees.
【請求項3】 四ほう酸リチウム単結晶のc軸から40
±3度だけ傾いた方位に切出した種結晶を用いて、チョ
クラルスキー法により光学用四ほう酸リチウム単結晶を
育成する方法。
3. From the c-axis of lithium tetraborate single crystal, 40
A method of growing an optical lithium tetraborate single crystal by the Czochralski method using a seed crystal cut in an orientation inclined by ± 3 degrees.
【請求項4】 四ほう酸リチウム単結晶のc軸から66
±3度だけ傾いた方位に切出した種結晶を用いて、チョ
クラルスキー法により光学用四ほう酸リチウム単結晶を
育成する方法。
4. From the c-axis of the lithium tetraborate single crystal, 66
A method of growing an optical lithium tetraborate single crystal by the Czochralski method using a seed crystal cut in an orientation inclined by ± 3 degrees.
【請求項5】 四ほう酸リチウム単結晶のc軸から74
±3度だけ傾いた方位に切出した種結晶を用いて、チョ
クラルスキー法により光学用四ほう酸リチウム単結晶を
育成する方法。
5. The lithium tetraborate single crystal has a value of 74 from the c-axis.
A method of growing an optical lithium tetraborate single crystal by the Czochralski method using a seed crystal cut in an orientation inclined by ± 3 degrees.
【請求項6】 四ほう酸リチウム単結晶のc軸から所定
の角度(θm)だけ傾いた位相整合方位に切出した種結晶
(30)を用いて、ブリッジマン法により光学用四ほう酸リ
チウム単結晶を育成する方法。
6. A seed crystal cut out from a c-axis of a lithium tetraborate single crystal in a phase matching direction inclined by a predetermined angle (θm).
A method for growing a lithium tetraborate single crystal for optics by the Bridgman method using (30).
【請求項7】 四ほう酸リチウム単結晶のc軸から32
±3度だけ傾いた方位に切出した種結晶を用いて、ブリ
ッジマン法により光学用四ほう酸リチウム単結晶を育成
する方法。
7. From the c-axis of the lithium tetraborate single crystal, 32
A method for growing a lithium tetraborate single crystal for optics by the Bridgman method using a seed crystal cut in an orientation inclined by ± 3 degrees.
【請求項8】 四ほう酸リチウム単結晶のc軸から40
±3度だけ傾いた方位に切出した種結晶を用いて、ブリ
ッジマン法により光学用四ほう酸リチウム単結晶を育成
する方法。
8. The c-axis of the lithium tetraborate single crystal is 40
A method for growing a lithium tetraborate single crystal for optics by the Bridgman method using a seed crystal cut in an orientation inclined by ± 3 degrees.
【請求項9】 四ほう酸リチウム単結晶のc軸から66
±3度だけ傾いた方位に切出した種結晶を用いて、ブリ
ッジマン法により光学用四ほう酸リチウム単結晶を育成
する方法。
9. From the c-axis of the lithium tetraborate single crystal, 66
A method for growing a lithium tetraborate single crystal for optics by the Bridgman method using a seed crystal cut in an orientation inclined by ± 3 degrees.
【請求項10】 四ほう酸リチウム単結晶のc軸から7
4±3度だけ傾いた方位に切出した種結晶を用いて、ブ
リッジマン法により光学用四ほう酸リチウム単結晶を育
成する方法。
10. From the c-axis of the lithium tetraborate single crystal, 7
A method of growing a lithium tetraborate single crystal for optics by the Bridgman method using a seed crystal cut in an orientation inclined by 4 ± 3 degrees.
JP06259997A 1997-03-17 1997-03-17 Growth method of lithium tetraborate single crystal for optics Expired - Fee Related JP3261649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06259997A JP3261649B2 (en) 1997-03-17 1997-03-17 Growth method of lithium tetraborate single crystal for optics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06259997A JP3261649B2 (en) 1997-03-17 1997-03-17 Growth method of lithium tetraborate single crystal for optics

Publications (2)

Publication Number Publication Date
JPH10259096A true JPH10259096A (en) 1998-09-29
JP3261649B2 JP3261649B2 (en) 2002-03-04

Family

ID=13204966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06259997A Expired - Fee Related JP3261649B2 (en) 1997-03-17 1997-03-17 Growth method of lithium tetraborate single crystal for optics

Country Status (1)

Country Link
JP (1) JP3261649B2 (en)

Also Published As

Publication number Publication date
JP3261649B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
Aidong et al. Flux growth of large single crystals of low temperature phase barium metaborate
Fukuda et al. Fiber crystal growth from the melt
EP0252537B1 (en) Process for crystal growth of ktiopo4 from solution
Kouta et al. β-BaB2O4 single crystal growth by Czochralski method. II
RU2209860C1 (en) Method and device for growing high-quality monocrystal
US5343827A (en) Method for crystal growth of beta barium boratean
Prokofiev et al. Growth of single-crystal photorefractive fibers of Bi12SiO20 and Bi12TiO20 by the laser-heated pedestal growth method
Kozuki et al. Metastable crystal growth of the low temperature phase of barium metaborate from the melt
JP2001039791A (en) Method and device for growing high quality single crystal
JPH10259096A (en) Growing of lithium tetraborate single crystal for optics
JPH11228293A (en) Growth of single crystal and growing apparatus
JP2003131278A (en) Method for converting wavelength by using optical grade lithium tetraborate single crystal
Oka et al. Crystal growth of InBO3
JP4334773B2 (en) Method for producing oxide single crystal plate
US6451110B2 (en) Process for producing a planar body of an oxide single crystal
JP2832107B2 (en) Method for producing lithium tetraborate single crystal
JP3317338B2 (en) Wavelength conversion crystal, method of manufacturing the same, and laser device using the same
JP2000264787A (en) Production of nonlinear optical crystal
JPH11352533A (en) Wavelength conversion crystal and its production as well as laser apparatus using the same
Ismom et al. A study of the LiNbO3 crystal growth process by the Czochralski method
Kim et al. Growth and characterization of Li3VO4 single crystals by the Czochralski method
JP3001069B2 (en) Barium titanate single crystal
JPH10101487A (en) Growing of lithium tetraborate single crystal for optics
Bordui et al. Process for crystal growth of KTiOPO 4 from solution
JPH02279583A (en) Method for growing single crystal

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees