JPH10258406A - Concrete having property changeable by magnetism - Google Patents

Concrete having property changeable by magnetism

Info

Publication number
JPH10258406A
JPH10258406A JP9105085A JP10508597A JPH10258406A JP H10258406 A JPH10258406 A JP H10258406A JP 9105085 A JP9105085 A JP 9105085A JP 10508597 A JP10508597 A JP 10508597A JP H10258406 A JPH10258406 A JP H10258406A
Authority
JP
Japan
Prior art keywords
concrete
magnetic
magnet
aggregate
aggregates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9105085A
Other languages
Japanese (ja)
Inventor
Satoru Fukai
哲 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9105085A priority Critical patent/JPH10258406A/en
Publication of JPH10258406A publication Critical patent/JPH10258406A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0003Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability making use of electric or wave energy or particle radiation
    • C04B40/001Electromagnetic waves
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Building Environments (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the strength and durability of a reinforced concrete by a method wherein a magnet, which can magnetize magnetic bodies, is mounted inside and outside a concrete, in at least some part of aggregates of which the magnetic bodies are included and which is not yet solidified, and fixed or moved. SOLUTION: A magnetic material-added concrete, some part of the fine or coarse aggregates of which consists of ores including slugs and iron sand, metals, artificial magnetic materials and their composite materials, is put in a container. When a magnet 5 is externally contactedly fixed to the container, the magnetic aggregates are magnetized and applied with a force attracting to the magnet 5, resulting in compressing a viscous concrete 1 between the magnetic aggregates and the container, consequently enheightening the viscosity of the concrete and densely collecting some part near the magnet 5 of the magnetic aggregates around the magnet 5. On the other hand, t through the movement and stoppage of the magnet 5, a flowing force, the direction of which is varied, is given to a magnetized concrete. When the magnet 5 is vibrated, the concrete, which is not yet solidified, vibrates together with the magnetic aggregates, resulting in dispersing the air within the concrete and acting so as to prevent accumulated bubbles from generating between the inner surface of the container and the concrete.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、土木工事現場等に
おいて使用する、施工性にすぐれ、強度、耐久性、磁気
遮蔽性の高いコンクリートに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to concrete having excellent workability, high strength, durability, and high magnetic shielding properties, which is used in civil engineering work sites and the like.

【0002】[0002]

【従来の技術】コンクリート工事は型枠工法、吹付工
法、プレパックド工法などが知られている。コンクリー
トは硬化の過程で強度、水密性及び耐久性をを改善する
ため、振動機等を利用した締め固めが行われている。又
岩盤注入工法としてボアホールに注入管を用いたコンク
リートモルタル注入法がある。一方、最近、建築分野で
は構造物を磁気から遮蔽する研究が行なわれている。従
来重量コンクリート材料として鉄鉱石を用いたり、繊維
強化材としてスチール繊維が使われることがあるがこれ
らの材料本来の目的は硬化した後の、材料自体によるコ
ンクリートの重量増加及び強度増加にある。本発明は、
主要手段が骨材が持つ磁性の利用である事、及びまだ固
まらないコンクリートを作用の対象にした事を特徴とし
ている。また、磁性体を取り扱う技術では、有機溶剤中
に強磁性体超微粒子を界面活性剤と共に加えて分散した
コロイド粒子から成る磁性流体が知られている。本発明
は、磁性体が比較的形状の大きい材料で、コンシステン
シー、プラシチスチーなどが問題になるまだ固まらない
コンクリート中の挙動を対象にするする事、硬化後磁性
体自体が骨材として重要である事等など磁性流体とは異
なった目的で使われる。
2. Description of the Related Art Forming, spraying, and prepacked concrete methods are known as concrete works. Concrete is compacted using a vibrator or the like in order to improve strength, water tightness and durability in the course of hardening. There is also a concrete mortar injection method using an injection pipe in a borehole as a rock injection method. On the other hand, recently, in the field of architecture, research has been conducted to shield structures from magnetism. Conventionally, iron ore is used as a heavy concrete material and steel fiber is used as a fiber reinforcing material. However, the original purpose of these materials is to increase the weight and strength of concrete by the material itself after hardening. The present invention
It is characterized by the fact that the main means is to use the magnetism of the aggregate, and that the concrete that has not yet set is targeted for action. In addition, in the technology for handling a magnetic material, a magnetic fluid including colloid particles in which ultrafine ferromagnetic particles are added to an organic solvent together with a surfactant is dispersed. In the present invention, the magnetic material is a material having a relatively large shape, and the behavior in the concrete that is not yet solidified in which consistency, plasticity, etc. becomes a problem, and the magnetic material itself after curing is important as an aggregate. It is used for a different purpose such as a magnetic fluid.

【0003】[0003]

【発明が解決しようとする課題】従来、コンクリートは
調合の後で人為的に必要な性状に変化せしめることは困
難である。特に、複雑な型枠形状や過密な配筋等による
狭隘箇所の型枠コンクリート打設においては、振動機に
よる十分な締め固めは困難である。この結果、コンクリ
ート内の気泡集積空隙や未充填空隙の発生、鉄筋とコン
クリートの非付着性の問題がある。又、施工において
は、流し込み工事のシュート詰まり、型枠間の隙間から
のコンクリート漏洩、及びコンクリート打ち込みの時の
コンクリート流動性制御の問題が残されている。更に、
吹付工法ではコンクリートの大量のリバウンド発生問
題、上向き岩盤注入法では接着モルタル漏洩によるアン
カ非接着問題がある。一方建築分野では磁気シールド問
題解決のための研究が行なわれている。また舗装工事で
は舗装表面及び舗装マーキング表面の磨耗問題がある。
本発明はこれらの問題を解決出来るコンクリートの提供
を目的としている。
Heretofore, it has been difficult to artificially change the properties of concrete after blending into artificially required properties. In particular, in the case of placing concrete in a narrow place due to a complicated form shape or dense arrangement of reinforcing bars, it is difficult to sufficiently compact the concrete by a vibrator. As a result, there are problems such as generation of air bubble accumulation voids and unfilled voids in the concrete, and non-adhesion between the reinforcing steel and the concrete. In the construction, there are still problems such as clogging of a chute in casting work, leakage of concrete from a gap between formwork, and control of concrete fluidity at the time of concrete pouring. Furthermore,
The spraying method has a problem of rebounding a large amount of concrete, and the upward rock injection method has a problem of anchor non-adhesion due to adhesive mortar leakage. On the other hand, in the field of construction, research is being conducted to solve the problem of magnetic shielding. Also, in pavement work, there is a problem of wear of the pavement surface and the pavement marking surface.
An object of the present invention is to provide concrete capable of solving these problems.

【0004】[0004]

【課題を解決するための手段】本発明は磁性骨材を含む
まだ固まらないコンクリートに磁力を作用させる事を上
記課題解決の手段とした。ここでコンクリートとは骨材
を結合剤で凝結させたものであり、更に結合剤とはセメ
ントペースト、アスファルト、合成樹脂、塗料、及びこ
れらの類似品とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem by applying a magnetic force to unconsolidated concrete containing magnetic aggregate. Here, the concrete is obtained by coagulating aggregate with a binder, and the binder is cement paste, asphalt, synthetic resin, paint, and the like.

【0005】コンクリート磁性骨材は磁化され得る、ス
ラグ、砂鉄を含む鉱石、金属、人工磁性材料、又はこれ
らの複合材料を細骨材、粗骨材として使用する。
[0005] Concrete magnetic aggregates use magnetizable slag, ores containing iron sand, metal, artificial magnetic materials, or composite materials thereof as fine aggregates and coarse aggregates.

【0006】磁石は、コイル電流の方向及び強さの変化
により磁力を変えることが可能な電磁石、永久磁石又は
その両者により磁気誘導された材料とする。
The magnet is made of a material which is magnetically induced by an electromagnet, a permanent magnet, or both, which can change the magnetic force by changing the direction and strength of the coil current.

【0007】永久磁石はコンクリートの内外に固定又は
移動させ、電磁石は固定、移動又はコイル電流を変化さ
せて使用する。
The permanent magnet is fixed or moved inside and outside the concrete, and the electromagnet is used by fixing, moving or changing the coil current.

【0008】[0008]

【発明の実施の形態】磁性体添加コンクリートを容器に
入れ、前記容器外接してに磁石を固定するとき、磁性骨
材は磁化されて磁石の方に吸引される力を受けるので、
磁性材料を介して粘性状のコンクリートは容器との間で
圧縮力を受け、かつ粘性が高まる。更に、磁石近くの磁
性骨材の一部は磁石のまわりに密集する。一方、磁石の
移動、停止により、磁化された磁性材料混入コンクリー
トには方向を変えた流動力が付与される。磁石の振動に
より、まだ固まらないコンクリートは磁性骨材と共に振
動し、コンクリート内部の空気は分散され、容器内面と
コンクリートとの間の集積気泡発生を防止するように働
く。
DESCRIPTION OF THE PREFERRED EMBODIMENTS When a magnetic substance-added concrete is placed in a container and a magnet is fixed to the container, the magnetic aggregate is magnetized and receives a force attracted to the magnet.
The viscous concrete receives a compressive force between the concrete and the container via the magnetic material, and the viscosity increases. In addition, some of the magnetic aggregate near the magnet will cluster around the magnet. On the other hand, the movement and stoppage of the magnet imparts a changed flow force to the magnetized concrete mixed with magnetic material. Due to the vibration of the magnet, the concrete that has not yet set vibrates together with the magnetic aggregate, and the air inside the concrete is dispersed, which serves to prevent the formation of accumulated air bubbles between the inner surface of the container and the concrete.

【0009】硬化が進行中の磁性骨材混入コンクリート
の入った型枠外に接して磁石を置いた場合、磁力により
磁性骨材が磁石を取り付けた型枠の方に吸引されるの
で、磁性骨材と型枠との間のコンクリートは圧縮され、
緻密で初期強度が高くなり、電磁遮蔽性が高くなる等の
作用が与えられる。
[0009] When a magnet is placed in contact with the outside of the mold containing the hardened magnetic aggregate-mixed concrete, the magnetic aggregate attracts the magnetic aggregate toward the form to which the magnet is attached. The concrete between the and the formwork is compressed,
Actions such as high density and high initial strength and high electromagnetic shielding properties are provided.

【0010】補強筋を使用した磁性骨材含有コンクリー
トの打設では、補強筋の磁化により補強材表面近傍の骨
材密度が増加するので、補強筋まわりのコンクリート強
度の向上、コンクリートと補強筋との接着強度増加及び
補強筋の腐食性保護により鉄筋コンクリート強度及び耐
久性を上昇させるように働く。
[0010] When the concrete containing magnetic aggregate is poured using the reinforcing bar, the density of the aggregate near the surface of the reinforcing bar increases due to the magnetization of the reinforcing bar. Works to increase the strength and durability of reinforced concrete by increasing the adhesive strength of the steel and protecting the corrosive corrosive bars.

【0011】型枠の隙間等から磁性骨材コンクリートの
漏洩が発見される時は、漏洩箇所近傍に磁石を取付け、
磁力を与える事により、磁力作用部分のコンクリートの
粘性増加または一時凝結のためコンクリートの漏洩が停
止するように作用する。又、打設中に使用するのコンク
リート流送管、または型枠の内外に磁石を設置すれば流
れるコンクリートを磁石の位置を境界としてその先に流
れないように働く。
When leakage of the magnetic aggregate concrete is found from the gap of the formwork or the like, a magnet is attached near the leakage point,
The application of the magnetic force acts to stop the leakage of the concrete due to an increase in the viscosity of the concrete or a temporary setting of the magnetic force acting portion. Also, if a magnet is installed inside or outside the concrete flow pipe used during casting or inside or outside the formwork, the flowing concrete works so as not to flow beyond the position of the magnet as a boundary.

【0012】吹き付けコンクリートでは、吹き付け面に
磁化した吹き付け用網を張り付ける事により、磁性骨材
を含むコンクリートは衝突によって発生する跳ねかえる
粒子が吹き付け網に吸引されるのでリバウンドの少ない
コンクリートを得るだけでなく、吹き付けられたコンク
リートは磁性骨材とともに磁気誘導された吹付用網に吸
引圧縮され、緻密で高強度なコンクリートとなるように
働く。
In the case of the sprayed concrete, the magnet containing the magnetic aggregate is adhered to the sprayed surface by magnetizing the sprayed net, so that the rebounding particles generated by the collision are sucked into the sprayed net, so that only the concrete with less rebound can be obtained. Instead, the sprayed concrete is sucked and compressed by a magnetically induced spraying net together with the magnetic aggregate, and works to produce dense and high-strength concrete.

【0013】コンクリート流込シュートの詰まり易い箇
所に磁石を設置し、磁石の移動で押し流す力を作用させ
ることにより、磁性骨材添加コンクリートに流動力が発
生し、シュートが詰まらないように働く。
[0013] A magnet is installed at a place where the concrete pouring chute is likely to be clogged, and a force is exerted by the movement of the magnet so that a flow force is generated in the magnetic aggregate-added concrete, thereby preventing the chute from being clogged.

【0014】プレパックドコンクリートでは、粗骨材を
充填してモルタル注入後にコンクリート型枠外側又はコ
ンクリート内部から磁力を作用させ振動させると、コン
クリートは振動により充填密度が高くなるように働く。
In the case of prepacked concrete, when a coarse aggregate is filled and mortar is injected and then a magnetic force is applied from the outside of the concrete form or the inside of the concrete to vibrate, the concrete acts to increase the packing density by the vibration.

【0015】岩盤上向孔の磁性材料混入コンクリートモ
ルタル注入では、孔出口に磁石を取り付けることにより
モルタルの凝縮が起こり、流失防止作用が与えられる。
In pouring concrete mortar mixed with a magnetic material into a rock upward hole, the mortar is condensed by attaching a magnet to the hole outlet, and a flow-out preventing action is provided.

【0016】[0016]

【実施例】実施例について図面を参照して説明する。電
気炉製鋼過程で副産物として得られる酸化鉄成分を含む
スラグ(以下HGと呼ぶ)を骨材とし、配合を、水15
9、セメント265、砂500、HG細骨材465、砕
石粗骨材657、HG粗骨材588、混和材1.59
(単位kg/m)とした磁性骨材コンクリート(1)
を、図1のような容器に入れた。容器は、4側面(2
a)、(2b)、(2c)、(2d)、上面(3a)、
底面(3b)からなる直方体容器の2a面をガラスと
し、他の側面を厚さ2mmの合板とし、ガラス面(2
a)及び側面(2c)に接して鉄製の直方体(4)を取
り付け、上面に注入孔を備えている。側面(2c)の外
面に1000ガウスの磁石(5)を接触させ、矢印方向
に振動させたとき,側面(2c)の内側(6)及び直方
体(4)端面の外側(4a)のコンクリート中の磁性骨
材HGの分布を調べた。調査はガラス面の目視及び硬化
後容器からコンクリートを取り出して表面粗さ及びコン
クリート断面成分検査によった。更に、この分布を磁石
と反対側面(2d)の内側近接コンクリート(7)と比
較した。この結果、コンクリート(6)及び(4a部)
は、コングリート(7)部に比べてHG材料成分の密集
がみられた。硬度比較の目安としてのナイフによる引き
掻き深さは、コンクリート(6)部及びコンクリート
(4a)部はコンクリート(7)に比べて浅かった。
又、側面(2d)のコンクリート面には径1mm程度の
気泡跡が見られたが、側面(2c)には認められなかっ
た。
An embodiment will be described with reference to the drawings. Slag (hereinafter referred to as HG) containing an iron oxide component obtained as a by-product in the electric furnace steelmaking process is used as an aggregate, and is mixed with water 15
9, cement 265, sand 500, HG fine aggregate 465, crushed coarse aggregate 657, HG coarse aggregate 588, admixture 1.59
Magnetic aggregate concrete (unit: kg / m 3 ) (1)
Was placed in a container as shown in FIG. The container has four sides (2
a), (2b), (2c), (2d), upper surface (3a),
The 2a surface of the rectangular parallelepiped container having the bottom surface (3b) is made of glass, and the other side surface is made of plywood having a thickness of 2 mm.
An iron rectangular parallelepiped (4) is attached in contact with a) and the side surface (2c), and an injection hole is provided on the upper surface. When a magnet (5) of 1000 gauss is brought into contact with the outer surface of the side surface (2c) and vibrated in the direction of the arrow, the inside (6) of the side surface (2c) and the outer surface (4a) of the rectangular parallelepiped (4) in the concrete (4a). The distribution of the magnetic aggregate HG was examined. The investigation was carried out by visually inspecting the glass surface and taking out the concrete from the container after curing, and examining the surface roughness and the concrete cross-sectional composition. In addition, this distribution was compared to the inner adjacent concrete (7) on the opposite side (2d) to the magnet. As a result, concrete (6) and (4a part)
In the sample, the density of the HG material component was higher than that in the conglomerate (7). The depth of scratching by the knife as a measure of hardness comparison was shallower in the concrete (6) portion and the concrete (4a) portion than in the concrete (7).
Also, traces of bubbles having a diameter of about 1 mm were found on the concrete surface on the side surface (2d), but were not found on the side surface (2c).

【0017】図2(平面図)の実施例は、電磁石による
外力を与えたときのコンクリートと鉄筋との接着実験を
示す。内径8mm、外径13.8mm,長さ120mm
の2本のガラス管(8)を間隔を5mmとし、両者を、
一面がガラスの箱(9)のガラス面(10)に側面を接
して立て、配合を、水159、セメント265、砂50
0、HG細骨材465、砕石粗骨材657、HG粗骨材
588、混和材1.59(単位kg/m)とした磁性
骨材コンクリート(11)をパイプが隠れる迄入れ、管
とガラスとに囲まれた空洞(12)を作り、10000
ガウスの磁石(13)をガラス面(10)にそっ沿って
上下左右に往復させてコンクリートの空洞(12)への
侵入の可能性を調べた。この結果空洞(12)は完全に
充填された。
The embodiment shown in FIG. 2 (plan view) shows an adhesion test between concrete and a reinforcing steel bar when an external force is applied by an electromagnet. Inner diameter 8mm, outer diameter 13.8mm, length 120mm
The distance between the two glass tubes (8) is set to 5 mm,
One side of the glass box (9) stands upright with the glass surface (10) in contact with the glass surface (10), and is mixed with water 159, cement 265, sand 50
0, HG fine aggregate 465, crushed coarse aggregate 657, HG coarse aggregate 588, and magnetic aggregate concrete (11) made of admixture 1.59 (kg / m 3 ) are put into the pipe until the pipe is hidden. Create a cavity (12) surrounded by glass and 10,000
A Gaussian magnet (13) was reciprocated up, down, left and right along the glass surface (10) to investigate the possibility of intrusion into the concrete cavity (12). As a result, the cavity (12) was completely filled.

【0018】図3の実施例は、溝形鋼板(14)にセメ
ントを混合しない粒径2〜2.5mmの乾燥HG骨材
(15)をホッパ(16)から受箱(17)に流し込む
実験を示す。溝形鋼板(14)の材料自然流動角度は3
7゜となった。この後、溝形鋼板(14)の裏面にプレ
ート磁石付きベルト(18)を接触して取り付け、矢印
のように、骨材(15)の流れる方向に連続移動させる
と、乾燥HG骨材(15)は溝型鋼板(14)傾斜が3
0゜になっても流動が停止することがなく、磁力により
流れ易くなることを確認した。
The embodiment shown in FIG. 3 is an experiment in which a dry HG aggregate (15) having a particle size of 2 to 2.5 mm without mixing cement into a channel steel plate (14) is poured from a hopper (16) into a receiving box (17). Is shown. The material natural flow angle of the channel steel plate (14) is 3
It was 7 ゜. Thereafter, a belt (18) with a plate magnet is attached in contact with the back surface of the grooved steel plate (14), and is continuously moved in the flowing direction of the aggregate (15) as shown by the arrow, whereby the dry HG aggregate (15) is obtained. ) Indicates a grooved steel plate (14) with a slope of 3
It was confirmed that the flow did not stop even when the temperature reached 0 °, and the flow became easy due to the magnetic force.

【0019】図4の実施例は、平均粒径20mmのHG
骨材を含むプレパックド方式でコンクリートの密充填実
験を示す。垂直のガラス管(19)に磁性粗骨材(2
0)を口元迄充填した。更に磁性細骨材40重量%のモ
ルタル注入の後、この管(19)に電磁巻線(21)、
(22)、(23)を3箇所に分けて取り付け、巻線
(23)、巻線(22)、巻線(21)の順序で磁力が
断続スルように電源(24C)、(24B)、(24
A)の電流をつぎつぎに断続させ、骨材の容積の変化を
調べた。ガラス管(19)内のHG骨材の上面は点線
(25)位置迄沈降し、骨材容積は初めの測定より約6
%小さく、充填密度の増加が認められた。
FIG. 4 shows an HG having an average particle size of 20 mm.
The experiment of dense packing of concrete by prepacked method including aggregate is shown. Magnetic coarse aggregate (2) is placed in a vertical glass tube (19).
0) was filled up to the mouth. After the mortar injection of 40% by weight of the magnetic fine aggregate, an electromagnetic winding (21) was added to the tube (19).
(22) and (23) are attached in three places, and the power supplies (24C), (24B), and (24B) are arranged so that the magnetic force is interrupted in the order of the winding (23), the winding (22), and the winding (21). (24
The current of A) was interrupted one after another, and the change in the volume of the aggregate was examined. The upper surface of the HG aggregate in the glass tube (19) has settled to the position of the dotted line (25), and the aggregate volume has been reduced by about 6 from the initial measurement.
% And the packing density was increased.

【0020】図5の実施例は、コンクリート吹付実験を
示す。梁(26)にステイ(27)に合板(28)を湾
曲させて取り付けトンネル天盤を模擬した。合板(2
8)に3mm鋼棒を15mmx15mmの格子にした網
状鉄線(29)を張った。これに電磁石(30)を取り
付けて10000ガウスの磁力を発生させ、吹付ノズル
(32)、圧気管(33)を用い、材料ホース(34)
により、配合を、水159、セメント265、砂50
0、HG細骨材465、砕石粗骨材657、HG粗骨材
588、急結材80(単位kg/m)の磁性骨材混合
コンクリート(31)による吹付被覆層(31b)を作
った。この後、磁力を作用させずに、その他は同じ条件
で吹付を行なった。両実験でリバウンド(31a)量の
測定を行い、前者のリバンドは約12%で、後者は32
%となった。
The embodiment of FIG. 5 shows a concrete spraying experiment. A plywood (28) was curved and attached to a stay (27) on a beam (26) to simulate a tunnel roof. Plywood (2
8) A mesh iron wire (29) in which a 3 mm steel rod was formed into a grid of 15 mm × 15 mm was stretched. An electromagnet (30) is attached thereto to generate a magnetic force of 10,000 gauss, and a material hose (34) is formed using a spray nozzle (32) and a compressed air pipe (33).
, Water 159, cement 265, sand 50
0, HG fine aggregate 465, crushed coarse aggregate 657, HG coarse aggregate 588, spray-coated layer (31b) made of magnetic aggregate mixed concrete (31) of quick-setting aggregate 80 (unit kg / m 3 ). . Thereafter, spraying was performed under the same conditions except that no magnetic force was applied. In both experiments, the amount of rebound (31a) was measured, and the former had a rebound of about 12% and the latter had a rebound of 32%.
%.

【0021】図6の実施例は、硬くて、脆い炭化珪素粒
を10%(重量)混合した磁性骨材添加コンクリート
(35)の表面炭化珪素粒保護構造の造成実験を示す。
配合を、水159、セメント265、砂500、HG細
骨材465、砕石粗骨材657、HG粗骨材588、混
和材1.59(単位kg/m)とした磁性骨材コンク
リート(35)を透明プラスチック容器(36)に入
れ、表面(37)を平滑にしたあと10000ガウスの
永久磁石(38)をコンクリートが硬化するまで矢印の
様に往復させた。この後表面部分のサンプリングを行
い、表面に露出した磁性材料の単位面積当たりの数を測
定した。この後、同じ条件で、磁石を使わないときの表
面の磁性材料を硬化させ、前者と同様に磁性材料単位面
積当たりの数を測定した。両者の磁性材料成分の比較か
ら、磁力によって表面部分にはHG骨材と炭化珪素粒が
一様に分散し、脆い炭化珪素粒の表面保護層が作られた
ことが確かめられた。
The embodiment of FIG. 6 shows an experiment for forming a protective structure of silicon carbide particles on the surface of a magnetic aggregate-added concrete (35) in which hard and brittle silicon carbide particles are mixed by 10% (by weight).
Magnetic aggregate concrete (35) containing water 159, cement 265, sand 500, HG fine aggregate 465, crushed coarse aggregate 657, HG coarse aggregate 588, and admixture 1.59 (unit kg / m 3 ). ) Was placed in a transparent plastic container (36), and after smoothing the surface (37), a 10,000 gauss permanent magnet (38) was reciprocated as indicated by an arrow until the concrete hardened. Thereafter, the surface portion was sampled, and the number of magnetic materials exposed on the surface per unit area was measured. Thereafter, the magnetic material on the surface when the magnet was not used was cured under the same conditions, and the number per unit area of the magnetic material was measured in the same manner as the former. From the comparison of the two magnetic material components, it was confirmed that the HG aggregate and the silicon carbide particles were uniformly dispersed in the surface portion by the magnetic force, and a surface protection layer of brittle silicon carbide particles was formed.

【0022】図7の実施例は耐磨耗性HG骨材粉末40
重量%を添加した舗装塗料(39)で舗装材(40)表
面にマーキングする実験を示す。マーキング後、表面近
くを磁石(41)で磁力を与えて吸引しながら矢印の様
に往復させながら乾燥させた。更に、磁石を用いない同
じ条件でマーキングを行い、表面試料を切り取りその断
面を観察した。両者のマーキング表面の磁性材料の占め
る数を拡大鏡で測定した。この結果、前者では、後者に
はないHG骨材表面集中(39a)が見られた。下の図
はA部の拡大である。
FIG. 7 shows an embodiment of a wear-resistant HG aggregate powder 40.
An experiment of marking the surface of a pavement material (40) with a pavement paint (39) to which weight% is added is shown. After the marking, the surface was dried while reciprocating as indicated by an arrow while applying a magnetic force with a magnet (41) near the surface. Further, marking was performed under the same conditions without using a magnet, the surface sample was cut out, and the cross section was observed. The number occupied by the magnetic materials on both marking surfaces was measured with a magnifying glass. As a result, in the former, HG aggregate surface concentration (39a) not found in the latter was observed. The figure below is an enlargement of part A.

【0023】図8の実施例は、岩盤上向きボアホール注
入工事のセメントモルタルの流出阻止実験を示す。岩盤
内壁(42)から上向きボーリングを行い、ボアホール
(43)の入り口に10000ガウスの磁石(46)を
挿入し、注入管(44)で、ボアホール(43)に水6
7、セメント150、HG細骨材330からなるモルタ
ル(45)を注入した。磁石(46)は流失する注入セ
メントの流動性を低下させてボアホールを閉塞させ、モ
ルタルの損失が阻止された。
The embodiment shown in FIG. 8 shows an experiment for preventing outflow of cement mortar in a work of injecting a borehole facing rock. Drill upward from the inner wall of the bedrock (42), insert a 10000 gauss magnet (46) into the entrance of the borehole (43), and fill the borehole (43) with water 6 using the injection pipe (44).
7. Mortar (45) made of cement 150 and HG fine aggregate 330 was injected. The magnets (46) reduced the flowability of the lost injected cement, clogging the boreholes and preventing mortar loss.

【0024】図9の実施例は、型枠を用いてコンクリー
トを打ち込む時、コンクリートの漏洩を阻止実験を示
す。配合を、水159、セメント265、砂500、H
G細骨材465、砕石粗骨材657、HG粗骨材58
8、混和材1.59(単位kg/m)とした磁性骨材
コンクリートを、底から0.7mに幅10mm、長さ2
00mmの亀裂(48)を持つ型枠(49)に流し込
み、コンクリートを亀裂(48)から漏洩させた。次に
10000ガウスのプレート磁石(47)を亀裂(4
8)に近接して固定した。この結果コンクリートの粘性
が増加し、漏洩は止まった。
The embodiment of FIG. 9 shows an experiment for preventing concrete from leaking when concrete is driven using a formwork. Mix with water 159, cement 265, sand 500, H
G fine aggregate 465, crushed coarse aggregate 657, HG coarse aggregate 58
8. The magnetic aggregate concrete with the admixture of 1.59 (unit kg / m 3 ) is 0.7 m from the bottom, 10 mm wide and 2 mm long.
The concrete (49) having a crack (48) of 00 mm was poured, and the concrete leaked from the crack (48). Next, a 10,000 gauss plate magnet (47) was cracked (4).
8) Fixed close to. As a result, the viscosity of the concrete increased, and the leakage stopped.

【0025】図10の実施例は型枠中のコンクリートの
流れを制御する実験を示す。 高さ0.3mの側板(5
0a)、(50b)、(51a)、(51b)を用いた
型枠を、側板(50a)、(50b)の幅を0.7m、
側板(51a)、(51b)の幅を0.2mとして構成
し、側板(50a)の側板(51b)側に高さ0.7
m、幅0.2mの1200ガウスの棒磁石(54)を縦
に取り付けた。この型枠の上面のコンクリート挿入口
(52)から、配合を、水159、セメント265、砂
500、HG細骨材465、砕石粗骨材657、HG粗
骨材588、混和材1.59(単位kg/m)とした
磁性骨材コンクリート(55)を注入した。この結果、
コンクリートは隔壁が無いにもかかわらず、磁石(5
4)通る線(53)を境界として板(51b)側には流
出しなかった。磁力を取り去るとコンクリートは板(5
1b)側に流れた。
The embodiment of FIG. 10 shows an experiment for controlling the flow of concrete in a form. 0.3m height side plate (5
0a), (50b), (51a), and a mold using (51b), the width of the side plates (50a) and (50b) is 0.7 m,
The width of the side plates (51a) and (51b) is set to 0.2 m, and the height of the side plate (50a) is 0.7
A 1200 gauss bar magnet (54) m, 0.2 m wide was mounted vertically. From the concrete insertion port (52) on the upper surface of this formwork, the mixture was mixed with water 159, cement 265, sand 500, HG fine aggregate 465, crushed coarse aggregate 657, HG coarse aggregate 588, and admixture 1.59 ( Magnetic aggregate concrete (55) in a unit of kg / m 3 ) was injected. As a result,
Concrete has no magnets (5
4) There was no outflow to the plate (51b) side with the passing line (53) as the boundary. When the magnetic force is removed, the concrete becomes a board (5
1b).

【0026】図11の実施例はコンクリートホースを通
るまだ固まらないコンクリートを制御する実験を示す。
水平から45度傾斜した内径75mmのゴムホース(5
6)に、配合を、水159、セメント265、砂50
0、HG細骨材465、砕石粗骨材657、HG粗骨材
588、混和材1.59(単位kg/m)とした磁性
骨材コンクリート(57)を矢印の方向から自然流下さ
せた。ホース(56)に電磁巻線(58)を巻き付け、
10000ガウスの磁力を発生させた結果コンクリート
(57)の流れは完全に停止した。電源(59)電流の
増減でコンクリート(57)の流れを止めたり再度流下
させたり出来ることが確認された。
The embodiment of FIG. 11 shows an experiment for controlling unset concrete passing through a concrete hose.
Rubber hose with an inner diameter of 75 mm inclined 45 degrees from horizontal (5
6) In the formulation, water 159, cement 265, sand 50
0, magnetic aggregate concrete (57) made of HG fine aggregate 465, crushed coarse aggregate 657, HG coarse aggregate 588, and admixture 1.59 (unit kg / m 3 ) was allowed to flow naturally in the direction of the arrow. . Wrap an electromagnetic winding (58) around the hose (56),
The flow of concrete (57) was completely stopped as a result of generating a magnetic force of 10,000 Gauss. It was confirmed that the flow of the concrete (57) could be stopped or dropped again by increasing or decreasing the current of the power supply (59).

【0027】図12の実施例は磁気遮蔽の実験を示す。
ガラス管(60)の周りに磁性細骨材40重量%のまだ
固まらないコンクリートモルタル(61)を20mm厚
さで巻き、ガラス管の内側に棒磁石を入れて硬化した。
棒磁石を抜き取り、硬化モルタルの外側に巻線(62)
を巻き付け、巻線端末には電流計(64)を取り付け
た。ガラス管内に磁石(63)を入れ矢印方向に移動さ
せて巻線の電流を測定した。磁石を使用せずに硬化した
モルタルを用いた装置で同じ実験を行った。この結果前
者は後者に比べて巻線電流が少なく磁気シールド性が高
いことを認めた。
The embodiment of FIG. 12 shows an experiment of magnetic shielding.
A non-solidified concrete mortar (61) of 40% by weight of magnetic fine aggregate was wound around the glass tube (60) to a thickness of 20 mm, and a rod magnet was put inside the glass tube and cured.
Pull out the bar magnet and wind it outside the hardening mortar (62)
And an ammeter (64) was attached to the winding end. The magnet (63) was placed in a glass tube and moved in the direction of the arrow to measure the current of the winding. The same experiment was performed in an apparatus using a mortar cured without using a magnet. As a result, the former was found to have a smaller winding current and a higher magnetic shielding property than the latter.

【0028】[0028]

【発明の効果】本発明葉は、以上説明したように構成さ
れているので、まだ固まらないコンクリート下に磁性骨
材を混合し、内外から磁力を作用させるとき、磁力によ
る磁性材料の振動、移動、固定及び凝縮現象が起こる。
このため以下に記載されているような効果を奏する。
Since the leaf of the present invention is constituted as described above, when a magnetic aggregate is mixed under concrete that has not yet set and a magnetic force is applied from inside and outside, vibration and movement of the magnetic material due to the magnetic force are caused. , Fixing and condensation phenomena occur.
Therefore, the following effects can be obtained.

【0029】鉄筋の磁気誘導により鉄筋近傍のまだ固ま
らないコンクリートが硬化するとき、圧縮を受けて緻密
になり、強度が改善されるので、鉄筋とコンクリートと
の付着強度の増加及び鉄筋劣化の保護作用が生じ、鉄筋
コンクリートの強度及び耐久性を向上させるコンクリー
トが得られる。
When hardened concrete near the rebar due to the magnetic induction of the rebar hardens, the concrete becomes compacted by compression and the strength is improved. Therefore, the bonding strength between the rebar and the concrete is increased, and the rebar has a protective effect against deterioration. Is generated, and concrete that improves the strength and durability of reinforced concrete is obtained.

【0030】磁力による凝集作用によりまだ固まらない
コンクリートの粘性が増加し、型枠施工コンクリート打
設のときのコンクリートの流れ方向の変更、コンクリー
ト漏洩の停止が出来るほか、障壁材料を用いる事なく流
れを止めるコンクリートが得られる。
The viscosity of the concrete that has not yet solidified due to the cohesion due to the magnetic force increases, the flow direction of the concrete can be changed at the time of placing the concrete in the formwork, the leakage of the concrete can be stopped, and the flow can be reduced without using a barrier material. The concrete to stop is obtained.

【0031】注入工法でモルタルが注入孔の口元から漏
洩する場合、孔中に磁石を設置して流出損失を防止でき
るコンクリートが得られる。
When the mortar leaks from the mouth of the injection hole by the injection method, a concrete can be obtained in which a magnet can be installed in the hole to prevent the loss of outflow.

【0032】コンクリート中の空気は磁力振動により分
散され、いわゆる型枠工法コンクリート表面の空気穴跡
のない、平滑な表面を持つコンクリートが得られる。
The air in the concrete is dispersed by the magnetic vibration, so that concrete having a smooth surface without air hole marks on the so-called formwork concrete surface can be obtained.

【0033】鉄筋を過密に配置した型枠内に打設したコ
ンクリートは、磁力で振動を与えることにより流動し、
流動化材を使わなくとも密充填されたコンクリートが得
られる。
The concrete poured into the formwork in which the reinforcing bars are densely arranged flows by giving a vibration by magnetic force.
A tightly packed concrete can be obtained without using a fluidizing material.

【0034】コンクリート流送用シュートは磁力の振動
又は移動によりシュート詰まりをなくしたり、流れの一
時停止を可能とするコンクリートが得られる。
The concrete feeding chute can obtain concrete which can eliminate the clogging of the chute by the vibration or movement of the magnetic force and can temporarily stop the flow.

【0035】磁性材料を骨材とするプレパックドコンク
リートは磁力の振動又は移動により充填密度を高めるこ
とができるので、強度の高いコンクリートが得られる。
[0035] Prepacked concrete using a magnetic material as an aggregate can increase the packing density by vibrating or moving magnetic force, so that high strength concrete can be obtained.

【0036】吹き付けコンクリートでは、吹付面に金網
を張り、これを磁気誘導することにより磁力によるコン
クリート吸引力が生じ、リバウンドを減少させ、更に磁
石の金網への吸引力により緻密で高強度なコンクリート
が得られる。
In the sprayed concrete, a wire mesh is stretched on the sprayed surface, and magnetic induction of the wire mesh causes magnetic attraction to generate concrete attraction, thereby reducing rebound. Further, dense and high-strength concrete is attracted by the attraction of the magnet to the wire mesh. can get.

【0037】舗装コンクリートでは、硬度及び延性の高
い磁性材料を用いることにより表面に磁力を作用させて
表面硬度の大きい舗装コンクリートが得られる。
In the case of pavement concrete, a magnetic material having high hardness and ductility is used to cause a magnetic force to act on the surface to obtain pavement concrete having a large surface hardness.

【0038】舗装のマーキングでは、塗料に硬度の高い
磁性材料を添加し、仕上げ工程で表面に磁力を作用さる
とき、塗料中の磁性材料は表面に集まり、耐久性の高い
マーキング材料えられる。
In pavement marking, when a magnetic material having a high hardness is added to the paint and a magnetic force is applied to the surface in the finishing step, the magnetic material in the paint gathers on the surface to obtain a highly durable marking material.

【0039】磁性骨材を用い、磁力で磁性材料を密集さ
せることにより磁気シールド性が高いコンクリートが得
られる。
By using a magnetic aggregate and concentrating the magnetic material by magnetic force, concrete with high magnetic shielding properties can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】コンクリート境界面の状態を示す実施例の縦断
面図である。
FIG. 1 is a longitudinal sectional view of an embodiment showing a state of a concrete boundary surface.

【図2】コンクリートの侵入の実施例を示す平面図であ
る。
FIG. 2 is a plan view showing an example of concrete intrusion.

【図3】コンクリートの流れの実施例を示す断面図であ
る。
FIG. 3 is a sectional view showing an example of a flow of concrete.

【図4】プレパックされたコンクリート骨材の実施例を
示す図である。
FIG. 4 is a view showing an embodiment of a prepacked concrete aggregate.

【図5】吹付コンクリートの実施例を示す図である。FIG. 5 is a view showing an example of shotcrete.

【図6】耐磨耗舗装の実施例を示す縦断面図である。FIG. 6 is a longitudinal sectional view showing an example of wear-resistant pavement.

【図7】舗装マーカの実施例を示す縦断面図である。FIG. 7 is a longitudinal sectional view showing an embodiment of a pavement marker.

【図8】モルタル注入の実施例を示す縦断面図である。FIG. 8 is a longitudinal sectional view showing an example of mortar injection.

【図9】コンクリート漏洩止めの実施例を示す図であ
る。
FIG. 9 is a view showing an embodiment of a concrete leak stop.

【図10】型枠内のコンクリート流れの実施例を示す図
である。
FIG. 10 is a diagram showing an example of concrete flow in a formwork.

【図11】ホース内のコンクリート流れの実施例を示す
図である。
FIG. 11 shows an example of concrete flow in a hose.

【図12】磁気遮蔽の実施例を示す図である。FIG. 12 is a diagram showing an example of magnetic shielding.

【符号の説明】[Explanation of symbols]

1、15、20、31b、35、40、45、55、5
7、61 コンクリート 4、13、18、30、38、41、46、47、5
4、63 磁石 21、22、23、58、62 コイル
1, 15, 20, 31b, 35, 40, 45, 55, 5,
7,61 Concrete 4,13,18,30,38,41,46,47,5
4, 63 magnets 21, 22, 23, 58, 62 coils

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C04B 14:34) 111:90 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C04B 14:34) 111: 90

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】骨材の少なくとも一部に磁性体を含むまだ
固まらないコンクリートの内外に、上記磁性体を磁化出
来る磁石を取り付け、上記磁石を固定または移動するこ
とにより性状を変えるコンクリート
1. A concrete whose property is changed by attaching or moving a magnet capable of magnetizing the magnetic material inside and outside of concrete that has not yet hardened yet contains a magnetic material in at least a part of the aggregate.
【請求項2】コンクリートが通過する穴、管、溝及び容
器に対する磁石の位置は磁力が磁性体に有効に働く距離
とする請求項1のコンクリート
2. The concrete according to claim 1, wherein the position of the magnet relative to the holes, tubes, grooves and containers through which the concrete passes is a distance at which the magnetic force effectively works on the magnetic material.
【請求項3】コンクリート表面、又はコンクリートと他
の物質との境界面に対しする磁石の位置は磁力が磁性体
に有効に働く距離とする請求項1のコンクリート
3. The concrete according to claim 1, wherein the position of the magnet relative to the concrete surface or the boundary surface between the concrete and another substance is a distance at which the magnetic force effectively works on the magnetic material.
【請求項4】コンクリート吹付面に対する磁石の位置は
磁力が磁性体に有効に働く距離とする請求項1のコンク
リート
4. The concrete according to claim 1, wherein the position of the magnet relative to the concrete spraying surface is a distance at which the magnetic force effectively acts on the magnetic material.
【請求項5】補強筋に対する磁石の位置は磁力が補強筋
を通して磁性体に有効に働く距離とする請求項1のコン
クリート
5. The concrete according to claim 1, wherein the position of the magnet relative to the reinforcement is a distance at which the magnetic force effectively acts on the magnetic material through the reinforcement.
JP9105085A 1997-03-19 1997-03-19 Concrete having property changeable by magnetism Pending JPH10258406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9105085A JPH10258406A (en) 1997-03-19 1997-03-19 Concrete having property changeable by magnetism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9105085A JPH10258406A (en) 1997-03-19 1997-03-19 Concrete having property changeable by magnetism

Publications (1)

Publication Number Publication Date
JPH10258406A true JPH10258406A (en) 1998-09-29

Family

ID=14398092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9105085A Pending JPH10258406A (en) 1997-03-19 1997-03-19 Concrete having property changeable by magnetism

Country Status (1)

Country Link
JP (1) JPH10258406A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6280521B1 (en) * 1995-12-08 2001-08-28 Carter Ernest E Jr Grout compositions for construction of subterranean barriers
JP2014208575A (en) * 2013-03-22 2014-11-06 愛知製鋼株式会社 Magnetized material, and high strength concrete and bioactivation material using the same
JP2017118032A (en) * 2015-12-25 2017-06-29 花王株式会社 Magnetic fluid composition
JP2017114060A (en) * 2015-12-25 2017-06-29 花王株式会社 Manufacturing method of cured body
JP2017159495A (en) * 2016-03-08 2017-09-14 住友大阪セメント株式会社 Method for forming cured body
CN109180091A (en) * 2018-10-19 2019-01-11 中铁十八局集团有限公司 A kind of machine-made sand concrete containing steel fibre
WO2019088150A1 (en) * 2017-11-02 2019-05-09 茂 平峰 Method for improving flowability of fresh concrete
CN111646741A (en) * 2020-06-28 2020-09-11 宁波新力建材科技有限公司 Iron ore special concrete and preparation method thereof
CN112878213A (en) * 2021-03-30 2021-06-01 何怡 Self-plugging concrete bridge deck maintenance process
CN114108636A (en) * 2021-11-26 2022-03-01 三峡大学 Method for underwater pile casting by using magnetic mixed slurry
CN114319871A (en) * 2021-12-09 2022-04-12 浙江大学 Surface treatment method for iron-containing magnetic aggregate concrete
CN114770699A (en) * 2022-04-06 2022-07-22 内蒙古中铁轨枕制造有限公司 Concrete pillow vibration compacting and forming system
CN114837422A (en) * 2022-05-18 2022-08-02 三峡大学 Construction device and method for steel bar magnetic protection layer
CN117365118A (en) * 2023-09-01 2024-01-09 河海大学 Magnetic coupling mechanical vibration composite vibration tamper

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6280521B1 (en) * 1995-12-08 2001-08-28 Carter Ernest E Jr Grout compositions for construction of subterranean barriers
JP2014208575A (en) * 2013-03-22 2014-11-06 愛知製鋼株式会社 Magnetized material, and high strength concrete and bioactivation material using the same
JP2017118032A (en) * 2015-12-25 2017-06-29 花王株式会社 Magnetic fluid composition
JP2017114060A (en) * 2015-12-25 2017-06-29 花王株式会社 Manufacturing method of cured body
JP2017159495A (en) * 2016-03-08 2017-09-14 住友大阪セメント株式会社 Method for forming cured body
JPWO2019088150A1 (en) * 2017-11-02 2020-12-10 茂 平峰 How to improve the fluidity of fresh concrete
WO2019088150A1 (en) * 2017-11-02 2019-05-09 茂 平峰 Method for improving flowability of fresh concrete
CN109180091A (en) * 2018-10-19 2019-01-11 中铁十八局集团有限公司 A kind of machine-made sand concrete containing steel fibre
CN111646741A (en) * 2020-06-28 2020-09-11 宁波新力建材科技有限公司 Iron ore special concrete and preparation method thereof
CN111646741B (en) * 2020-06-28 2022-03-25 宁波新力建材科技有限公司 Iron ore special concrete and preparation method thereof
CN112878213A (en) * 2021-03-30 2021-06-01 何怡 Self-plugging concrete bridge deck maintenance process
CN114108636A (en) * 2021-11-26 2022-03-01 三峡大学 Method for underwater pile casting by using magnetic mixed slurry
CN114319871A (en) * 2021-12-09 2022-04-12 浙江大学 Surface treatment method for iron-containing magnetic aggregate concrete
CN114770699A (en) * 2022-04-06 2022-07-22 内蒙古中铁轨枕制造有限公司 Concrete pillow vibration compacting and forming system
CN114770699B (en) * 2022-04-06 2023-06-06 内蒙古中铁轨枕制造有限公司 Concrete sleeper vibration compacting system
CN114837422A (en) * 2022-05-18 2022-08-02 三峡大学 Construction device and method for steel bar magnetic protection layer
CN114837422B (en) * 2022-05-18 2024-03-12 三峡大学 Construction device and method for reinforced magnetic protection layer
CN117365118A (en) * 2023-09-01 2024-01-09 河海大学 Magnetic coupling mechanical vibration composite vibration tamper
CN117365118B (en) * 2023-09-01 2024-03-08 河海大学 Magnetic coupling mechanical vibration composite vibration tamper

Similar Documents

Publication Publication Date Title
JPH10258406A (en) Concrete having property changeable by magnetism
Kaufmann et al. Rebound and orientation of fibers in wet sprayed concrete applications
Ramujee Strength properties of polypropylene fiber reinforced concrete
Yang et al. Performance of shotcrete containing amorphous fibers for tunnel applications
Tayeh et al. Pull-out behavior of post installed rebar connections using chemical adhesives and cement based binders
CN104863369B (en) Magnetic force vibrating method containing ferromagnetism aggregate concrete and device
Li et al. The influence of fiber orientation on bleeding of steel fiber reinforced cementitious composites
CN113250482A (en) Device and method for sealing floor slab cracks through magnetic slurry
CN111216242A (en) Flat magnetic field orienting device and method for preparing unidirectional orienting steel fiber concrete
KR20230107160A (en) Concrete construction method using drone
Çelik et al. Granular soil improvement by using polyester grouts
KR102536886B1 (en) Pre-treatment process and construction method before concrete curing
JP5511061B2 (en) Crack repair method for underground reinforced concrete structures
Yang et al. Fibre alignment in fresh concrete with coarse aggregates and its visualization in transparent model concrete
CN105587125A (en) Method for pouring concrete based on magnetic drive
CN115749342A (en) Bank protection crack defect repairing process under surge and impact load
JP2984876B2 (en) Grout wood
Tamrakar The Effect of Steel Fibers Type and Content on the Development of Fresh and Hardened Properties and Durability of Self consolidating Concrete
JP2009242118A (en) Steel fiber-reinforced mortar with fiber oriented
JP5052010B2 (en) Hollow filler
JP2001181009A (en) Binder for water-permeable concrete pavement, and water-permeable concrete pavement concreted at site
Hung et al. Sprayed high-strength strain-hardening cementitious composite: Anisotropic mechanical properties and fiber distribution characteristics
JP6106836B1 (en) Aging method for existing spray mortar slopes
JP4947571B2 (en) Civil engineering / architecture using cement-containing hardened materials, and civil engineering / architecture structures
JP2021021271A (en) Concrete construction method and concrete