JP2009242118A - Steel fiber-reinforced mortar with fiber oriented - Google Patents

Steel fiber-reinforced mortar with fiber oriented Download PDF

Info

Publication number
JP2009242118A
JP2009242118A JP2008087287A JP2008087287A JP2009242118A JP 2009242118 A JP2009242118 A JP 2009242118A JP 2008087287 A JP2008087287 A JP 2008087287A JP 2008087287 A JP2008087287 A JP 2008087287A JP 2009242118 A JP2009242118 A JP 2009242118A
Authority
JP
Japan
Prior art keywords
mortar
steel
magnet
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008087287A
Other languages
Japanese (ja)
Inventor
Yoshinori Kitsutaka
義典 橘高
Airi Shinomiya
愛理 四宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Public University Corp
Original Assignee
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Public University Corp filed Critical Tokyo Metropolitan Public University Corp
Priority to JP2008087287A priority Critical patent/JP2009242118A/en
Publication of JP2009242118A publication Critical patent/JP2009242118A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method to efficiently perform the orientation of short fibers in short fiber-reinforced mortar, and to provide the mortar with the short fibers oriented obtained by the method. <P>SOLUTION: Steel fibers in the mortar are oriented by reciprocating a magnet in a fixed direction at the neighborhood of the surface of the mortar after placing steel-fiber reinforced mortar. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、磁力により繊維が配向された鋼繊維補強モルタルを形成する方法及びこの方法により形成された鋼繊維補強モルタル構造物に関する。   The present invention relates to a method for forming a steel fiber reinforced mortar in which fibers are oriented by magnetic force, and a steel fiber reinforced mortar structure formed by this method.

脆性破壊の改善や、ひび割れ防止ならびに引張強度を高める目的で、従来から短繊維補強モルタルが使用されている。これはモルタルに短繊維を混入して練り混ぜ、短繊維を3次元ランダム配向させることにより、モルタルの曲げ強度、引張強度、曲げ靭性、耐衝撃性等の機械的特性を向上させることによっている。混入する短繊維としては、ガラス繊維、炭素繊維等の無機繊維や、ビニロン繊維、ポリプロピレン繊維、アラミド繊維等の有機繊維の短繊維や鋼繊維などの金属繊維の短繊維(例えば、特許文献1〜3参照)などが知られている。これを外殻プレキャストコンクリート製品や外壁補修用モルタル等に適用することより、コンクリート構造物の耐久性、耐震性向上が期待される。しかし、短繊維を混入させる方法は、混入された短繊維の分散状態が不均一となると機械的特性のバラツキが増大するという問題を内在している。   Conventionally, short fiber reinforced mortar has been used for the purpose of improving brittle fracture, preventing cracking and increasing tensile strength. This is because the short fibers are mixed and kneaded into the mortar and the short fibers are three-dimensionally randomly oriented, thereby improving the mechanical properties of the mortar such as bending strength, tensile strength, bending toughness and impact resistance. Examples of the short fibers to be mixed include inorganic fibers such as glass fibers and carbon fibers, short fibers of organic fibers such as vinylon fibers, polypropylene fibers, and aramid fibers, and short fibers of metal fibers such as steel fibers (for example, Patent Documents 1 to 3) is known. By applying this to outer shell precast concrete products, outer wall repair mortar, etc., it is expected to improve the durability and earthquake resistance of concrete structures. However, the method of mixing short fibers has a problem that variation in mechanical characteristics increases when the mixed state of the mixed short fibers becomes non-uniform.

特開平6−115988号公報Japanese Unexamined Patent Publication No. 6-115988 特表平9−500352号公報Japanese National Patent Publication No. 9-500352 特開平11−246255号公報JP-A-11-246255

前記したように、モルタルは外殻プレキャストコンクリート製品や外壁補修用材料などとして広く用いられているが、モルタルに発生するひび割れは建物の特定部位において特定方向に発生する傾向がある。このため、建物の構造から、モルタルのひび割れの発生しやすい個所およびその場所でのひび割れ方向はある程度予測することができる。これに対応するには、短繊維補強モルタルが壁面材料などとして用いられている場合には、ひび割れが発生すると予測される個所において、ひび割れが発生すると考えられる方向に対し短繊維を直角に配向させてやればよい。従来、モルタルなどに短繊維を混入する場合、短繊維をモルタルに均一に分散、混入させることが難しいこと、また短繊維の混入により流動性が低下するという問題があることから、これらに対応する技術は種々開発されてきているが、混入した短繊維の方向性に関する研究は少ない。これまで、短繊維を配向させる方法として、平行な仕切り板を密に設け、この間隙に短繊維補強コンクリートを流し込み振動を加えて配向させるとか遠心力をかけて配向させる方法などが試みられている。本発明者らもこのような振動や流し込み方向などを検討してみたが、十分に満足のいく結果は得られていない。短繊維の配向を任意所定の方向に行うことができれば、前記モルタルのひび割れを効率よく防ぐことができ、モルタル構造物の耐久性、耐震性向上を図ることができる。   As described above, mortar is widely used as an outer shell precast concrete product, an outer wall repair material, and the like, but cracks generated in the mortar tend to occur in a specific direction in a specific part of the building. For this reason, the location where mortar cracks are likely to occur and the direction of cracks at those locations can be predicted to some extent from the structure of the building. To cope with this, when short fiber reinforced mortar is used as a wall material, etc., the short fibers are oriented at right angles to the direction where cracks are expected to occur at the places where cracks are expected to occur. Do it. Conventionally, when short fibers are mixed in mortar or the like, it is difficult to uniformly disperse and mix the short fibers in the mortar, and there is a problem that fluidity is reduced due to the mixing of the short fibers. Various technologies have been developed, but there are few studies on the directionality of mixed short fibers. Until now, as a method for orienting short fibers, a method has been attempted in which parallel partition plates are densely arranged, short fiber reinforced concrete is poured into this gap and oriented by applying vibration or centrifugal force. . The present inventors have also examined such vibrations and pouring directions, but have not obtained sufficiently satisfactory results. If the orientation of the short fibers can be performed in any predetermined direction, the mortar can be efficiently prevented from cracking, and the durability and earthquake resistance of the mortar structure can be improved.

したがって、本発明は、短繊維補強モルタルにおいて、短繊維の配向を効率よく行う方法およびこれにより得られる短繊維の配向されたモルタルを提供することを目的とするものである。   Accordingly, an object of the present invention is to provide a method for efficiently orienting short fibers in a short fiber reinforced mortar and an oriented mortar of the short fibers obtained thereby.

本発明者らは、これらの課題を解決するため鋭意検討を行ったところ、短繊維として鋼繊維を用い、これをモルタルに混入して練り混ぜ、この鋼繊維が混入されたモルタルを塗る、吹き付けるあるいは型に流し込んだ後、モルタル表面近傍において磁石を一定方向に往復動させることにより、モルタル内でより引張りを受ける表面近傍の鋼繊維を配向させることができ、こうして得られたモルタルは最大荷重後の強度が保持され、靭性が向上することを見出した。本発明はこのような知見に基づいてなされたものである。   The present inventors have intensively studied to solve these problems. As a result, steel fibers are used as short fibers, mixed with mortar, kneaded, and coated with mortar mixed with steel fibers. Or after pouring into the mold, reciprocating the magnet in a certain direction in the vicinity of the mortar surface, it is possible to orient the steel fibers in the vicinity of the surface that is more tensioned in the mortar. It was found that the strength of the steel was maintained and the toughness was improved. The present invention has been made based on such findings.

すなわち、本発明は、鋼繊維補強モルタルを打設した後、該モルタルの表面近傍において一定方向に磁石を往復動させることを特徴とする配向した鋼繊維を含む鋼繊維補強モルタルを形成する方法に関する。   That is, the present invention relates to a method of forming a steel fiber reinforced mortar containing oriented steel fibers, wherein a steel fiber reinforced mortar is placed and then a magnet is reciprocated in a certain direction near the surface of the mortar. .

また、本発明は、上記方法により形成された、配向した鋼繊維を含む鋼繊維補強モルタル構造物に関する。   The present invention also relates to a steel fiber reinforced mortar structure including oriented steel fibers formed by the above method.

前記方法において、打設には、鋼繊維モルタルの塗布、吹き付け、型枠への流し込みが含まれる。また、本発明の配向した鋼繊維を含む鋼繊維補強モルタルを形成する方法およびこの方法により形成された鋼繊維補強モルタル構造物で用いられる鋼繊維補強モルタル材料は、従来周知あるいは公知の方法および材料を用いて形成されたものでよい。すなわち、使用されるセメント、細骨材、配合剤などは従来知られたどのようなものでもよく、またその配合量、および水の配合量も、従来知られた範囲内のものであればいずれものもでもよい。鋼繊維の長さ、幅あるいは径、形状、材質も、従来知られた範囲内のものであればいずれものもでもよい。例えば、従来鋼繊維としては、一般的には長さ20〜80mm、公称直径0.3〜0.8mm程度のものが使用されている。さらに、打設方法も従来と同様の方法でよい。   In the method, the placing includes application of steel fiber mortar, spraying, and pouring into a mold. Further, the method for forming a steel fiber reinforced mortar containing oriented steel fibers of the present invention and the steel fiber reinforced mortar material used in the steel fiber reinforced mortar structure formed by this method are well known or known methods and materials. It may be formed using. That is, the cement, fine aggregate, compounding agent, and the like used may be any conventionally known one, and the compounding amount and water compounding amount may be any as long as they are within the conventionally known range. Things may be used. The length, width or diameter, shape, and material of the steel fiber may be any as long as they are within a conventionally known range. For example, as a conventional steel fiber, one having a length of 20 to 80 mm and a nominal diameter of about 0.3 to 0.8 mm is generally used. Further, the placement method may be the same as the conventional method.

本発明においては、鋼繊維を配向させるために磁石が用いられるが、この磁石は永久磁石、電磁石などモルタル材料内の鋼繊維に磁力を付与することができるものである限り何れのものでもよい。鋼繊維にかけられる磁力は強ければ強いほど配向する傾向が強くなるが、強すぎるとモルタルの粘度にもよるが、混入された鋼繊維が磁石方向に吸引され、凝集して配向性および分散性が低下する傾向があることから、モルタル表面において最大磁束密度が60mT程度であることが好ましい。さらに、配向の程度は磁石の移動速度および往復回数によっても影響を受ける。磁石の移動速度は遅いほど鋼繊維が配向する傾向が強いが、あまりにも遅いと混入された鋼繊維が磁石方向に吸引され、凝集して配向性が低下する傾向が顕著となってくる。またあまりにも移動速度を高めると鋼繊維が配向しなくなる。このため、通常磁石の移動速度は、磁石の磁力、すなわちモルタル表面の磁束密度、その他の条件によって異なるものの、通常5〜10cm/s程度とすることが好ましい。一方、磁石の往復回数については、少ないと配向が難しく、そうかといって回数を増やせばいくらでも配向程度が向上するというものでもない。また磁石の往復回数は、磁石の磁力などによっても影響を受けるが、一般的には4〜8回程度が好ましい。さらに、鋼繊維のモルタル中での配向は、鋼繊維が混入されるモルタルの粘度、および鋼繊維の混入量によっても影響を受ける。鋼繊維が混入されるモルタルの粘度が低いと配向傾向は高くなるが鋼繊維が磁石に吸引される傾向も高くなる。一方、粘度が高いと鋼繊維の配向が難しくなる。このことから、モルタルの粘度は通常0.085〜0.161Pa・s程度であることが好ましく、また鋼繊維の混入量は0.5〜1.5%程度であることが好ましい。その他、繊維長などでも幾分影響が出てくる。このように、鋼繊維の配向は、磁力の大きさ、磁石の移動速度、磁石の往復動回数、モルタル粘度、鋼繊維の混入量等が相互に影響しあうことから、好適条件はこれら各条件が総合して決められるべきであり、上記好ましい範囲を外れているからといって、他の条件によっては鋼繊維の配向が可能となる場合もあるから、本発明の配向した鋼繊維補強モルタルを形成する方法における上記諸条件の好ましい範囲が、上記の具体的条件に必ずしも限定されるものではない。   In the present invention, a magnet is used to orient the steel fibers, but any magnet may be used as long as it can apply a magnetic force to the steel fibers in the mortar material such as a permanent magnet and an electromagnet. The stronger the magnetic force applied to the steel fibers, the stronger the tendency of orientation, but if it is too strong, depending on the viscosity of the mortar, the mixed steel fibers are attracted in the direction of the magnet and aggregate to cause orientation and dispersibility. Since it tends to decrease, the maximum magnetic flux density on the mortar surface is preferably about 60 mT. Furthermore, the degree of orientation is also affected by the moving speed of the magnet and the number of reciprocations. The slower the moving speed of the magnet, the stronger the tendency of the steel fibers to be oriented. However, when the magnet speed is too slow, the mixed steel fibers are attracted in the direction of the magnets, and the tendency of the orientation to deteriorate due to aggregation. If the moving speed is increased too much, the steel fibers will not be oriented. For this reason, although the moving speed of a normal magnet changes with magnetic force of a magnet, ie, the magnetic flux density of the mortar surface, and other conditions, it is usually preferable to set it as about 5-10 cm / s. On the other hand, if the number of reciprocations of the magnet is small, the orientation is difficult, but if it is increased, the degree of orientation does not improve as much as the number of times is increased. The number of reciprocations of the magnet is also affected by the magnetic force of the magnet, but is generally preferably about 4 to 8 times. Furthermore, the orientation of the steel fibers in the mortar is also affected by the viscosity of the mortar in which the steel fibers are mixed and the amount of the steel fibers mixed. When the viscosity of the mortar mixed with the steel fibers is low, the orientation tendency increases, but the tendency of the steel fibers to be attracted by the magnet also increases. On the other hand, when the viscosity is high, the orientation of the steel fibers becomes difficult. Therefore, the viscosity of the mortar is usually preferably about 0.085 to 0.161 Pa · s, and the mixing amount of steel fibers is preferably about 0.5 to 1.5%. In addition, the fiber length is somewhat affected. Thus, the orientation of the steel fiber is influenced by the magnitude of the magnetic force, the moving speed of the magnet, the number of reciprocations of the magnet, the mortar viscosity, the mixing amount of the steel fiber, and the like. Therefore, the orientation of the steel fiber reinforced mortar of the present invention may be possible because the orientation of the steel fiber may be possible depending on other conditions. The preferable range of the above conditions in the forming method is not necessarily limited to the above specific conditions.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下本発明をさらに具体的に説明する。
本発明においては、モルタルに鋼繊維を混入し、磁石を往復動させて鋼繊維の配向を行っても、モルタル内でどのように鋼繊維が挙動、配向しているのかを直接確認することが難しい。このため、先ず、透明の擬似モルタルを使用するモデル実験により、磁力の強さ、磁石の移動速度、往復回数、モルタルの粘度、鋼繊維の混入量など諸条件が鋼繊維の配向に及ぼす影響を確認した。以下、モデル実験を、下記〔実験1〕及び〔実験2〕により具体的に説明するが、〔実験1〕では1本の鋼繊維の配向の確認を行い、この実験を踏まえ、〔実験2〕では通常の鋼繊維混入量での配向の確認を行った。
The present invention will be described more specifically below.
In the present invention, even if steel fibers are mixed in the mortar and the steel fibers are oriented by reciprocating the magnet, it is possible to directly confirm how the steel fibers behave and are oriented in the mortar. difficult. For this reason, first, a model experiment using a transparent pseudo mortar was conducted to examine the effects of various conditions such as the strength of the magnetic force, the moving speed of the magnet, the number of reciprocations, the viscosity of the mortar, and the amount of steel fibers mixed on the orientation of the steel fibers. confirmed. Hereinafter, the model experiment will be specifically described by the following [Experiment 1] and [Experiment 2]. In [Experiment 1], the orientation of one steel fiber is confirmed, and based on this experiment, [Experiment 2] Then, the orientation was confirmed with a normal steel fiber mixing amount.

〔実験1〕
実験1では、下記表1に示される材料が用いられた。
[Experiment 1]
In Experiment 1, the materials shown in Table 1 below were used.

Figure 2009242118
Figure 2009242118

表1において、高吸水性樹脂は、サンフレッシュST−500MPS(三洋化成工業(株)製)を用いた。この樹脂の水溶液の粘度は濃度におおよそ線形比例する。また磁石は、40mm×40mm×10mmの大きさのフェライト磁石であり、吸引力は2kg、最大磁束密度は130mTである。   In Table 1, as the superabsorbent resin, Sunfresh ST-500MPS (manufactured by Sanyo Chemical Industries, Ltd.) was used. The viscosity of the aqueous resin solution is approximately linearly proportional to the concentration. The magnet is a ferrite magnet having a size of 40 mm × 40 mm × 10 mm, the attraction force is 2 kg, and the maximum magnetic flux density is 130 mT.

実験は、図1に示す装置を用いて行った。図1の装置においては、ベルトコンベア上に磁石を固定し、磁石の上端面から10mmの所に透明ケースの底表面が位置するように配置されている。図2は樹脂内に配置した鋼繊維の角度計測方法を説明する説明図であり、図3は、鋼繊維が配置された透明ケース部分の断面図であり、図4は同透明ケース部分の平面図である。   The experiment was performed using the apparatus shown in FIG. In the apparatus of FIG. 1, a magnet is fixed on a belt conveyor, and the bottom surface of the transparent case is disposed at a position 10 mm from the upper end surface of the magnet. FIG. 2 is an explanatory view for explaining a method of measuring the angle of the steel fiber disposed in the resin, FIG. 3 is a cross-sectional view of the transparent case portion where the steel fiber is disposed, and FIG. 4 is a plan view of the transparent case portion. FIG.

この実験では、先ず、透明ケースに高吸水性樹脂を入れ、これにお湯を注いで高吸水性樹脂を溶解し、液体塑性粘度:η=0.16の液を作成した。そして、図1に示すように、ベルトコンベア上に磁石を配置し、この磁石と一定距離(ケース内部底面と磁石間の距離:10mm)を保った位置に高吸収性樹脂溶液を収容する透明ケースを配置した。透明ケースの樹脂内には、図3に示すように、鋼繊維(長さ30mm、両端フック付き)を透明ケースの底面から0、10、20、30mmの高さに2本ずつ、底面と平行に、かつ磁石の進行方向となす角度が45°、90°の2水準で鋼繊維を配置した。そして、この状態で、ベルトコンベアを動かすことにより磁石を様々な速度で5往復させ、繊維の角度変化を評価した。実験は、磁石の最大磁束密度、磁石の移動速さ、磁石繊維間距離、繊維初期角度、磁石の往復回数を下記表2(水準)のように変えて行った。磁力により配向処理を行った後、磁石進行方向と鋼繊維のなす角度を測り、計測角度とした。したがって、計測角度は鋼繊維の変化角度ではない。計測角度は、同条件にある2本の鋼繊維の計測角度の平均値とした。なお、磁石の磁気付与面最大磁束密度(B=183、203、224、232)は、使用する磁石の数を1〜4と変えることにより行った。このとき擬似モルタル表面(底面)における最大磁束密度は、各々52mT程度であった。   In this experiment, first, a superabsorbent resin was placed in a transparent case, and hot water was poured into the transparent case to dissolve the superabsorbent resin, thereby preparing a liquid plastic viscosity: η = 0.16. And as shown in FIG. 1, the transparent case which arrange | positions a magnet on a belt conveyor and accommodates a superabsorbent resin solution in the position which maintained this magnet and the fixed distance (distance between a case internal bottom face and a magnet: 10 mm). Arranged. In the resin of the transparent case, as shown in FIG. 3, two steel fibers (length 30 mm, with hooks on both ends) are placed at a height of 0, 10, 20, and 30 mm from the bottom of the transparent case, parallel to the bottom. In addition, the steel fibers were arranged at two levels of 45 ° and 90 ° with respect to the moving direction of the magnet. In this state, the magnet was reciprocated five times at various speeds by moving the belt conveyor, and the change in the angle of the fiber was evaluated. The experiment was performed by changing the maximum magnetic flux density of the magnet, the moving speed of the magnet, the distance between the magnet fibers, the initial fiber angle, and the number of reciprocations of the magnet as shown in Table 2 (level) below. After performing the orientation treatment by magnetic force, the angle formed by the magnet traveling direction and the steel fiber was measured to obtain a measurement angle. Therefore, the measurement angle is not the change angle of the steel fiber. The measurement angle was the average value of the measurement angles of the two steel fibers under the same conditions. Note that the maximum magnetic flux density (B = 183, 203, 224, 232) of the magnetism imparting surface of the magnet was changed by changing the number of magnets used to 1 to 4. At this time, the maximum magnetic flux density on the pseudo mortar surface (bottom surface) was about 52 mT, respectively.

Figure 2009242118
Figure 2009242118

実験の結果(磁石を5回往復した後の結果)を図5に示す。図5は、磁石の磁束密度ごとの磁石の移動速度(cm/s)に対する鋼繊維の計測角度を示す図であり、計測角度がゼロとなったとき、磁石の移動方向に鋼繊維が配向したことを示すものである。図5(a)は、最大磁束密度が183mTである場合の配向効果を示すが、磁石−繊維間距離が20、30、40mmのものには角度変化は見られなかった(即ち配向は起こらなかった)。磁石の移動速度が速くなると、10mmのものにおいても計測角度はもとの角度に近い値、あるいはもとの角度のままであり、配向効果が劣る結果となった。また、図5(b)は最大磁束密度が203mTである場合の実験結果であるが、図5(b)から、初期角度90°である場合、磁石繊維間距離が40mmである場合には磁石移動速度によらず角度変化はみられないものの、初期角度が45°である場合は、磁石繊維間距離が30mm以下については、磁石の移動速度によっては角度変化がみられ、磁石繊維間距離が10mmとなると、初期角度、磁石の移動速度にほとんど関係なく、鋼繊維がほぼ磁石移動方向を向いていることが分かる。さらに、図5(c)および図5(d)から、最大磁束密度がさらに増大するに従って、この鋼繊維の配向傾向がますます大きくなっていることが分かる。   The result of the experiment (result after reciprocating the magnet 5 times) is shown in FIG. FIG. 5 is a diagram showing the measurement angle of the steel fiber with respect to the moving speed (cm / s) of the magnet for each magnetic flux density of the magnet. When the measuring angle becomes zero, the steel fiber is oriented in the moving direction of the magnet. It shows that. FIG. 5 (a) shows the orientation effect when the maximum magnetic flux density is 183 mT, but no change in angle was observed for magnet-fiber distances of 20, 30, and 40 mm (ie, no orientation occurred). ) When the moving speed of the magnet was increased, the measurement angle was a value close to the original angle or the original angle even in the case of 10 mm, and the orientation effect was inferior. FIG. 5B shows the experimental results when the maximum magnetic flux density is 203 mT. From FIG. 5B, when the initial angle is 90 °, the magnet fiber distance is 40 mm. Although no change in angle is observed regardless of the moving speed, when the initial angle is 45 °, the change in angle is observed depending on the moving speed of the magnet when the distance between the magnet fibers is 30 mm or less. When it is 10 mm, it can be seen that the steel fibers are substantially oriented in the magnet moving direction, regardless of the initial angle and the moving speed of the magnet. Further, from FIGS. 5 (c) and 5 (d), it can be seen that the orientation tendency of this steel fiber becomes larger as the maximum magnetic flux density further increases.

この実験の結果から、磁力が強く移動速度が遅いほど、磁石の進行方向に繊維が配向しやすいことが確認された。さらに、この実験において、進行方向と繊維がほぼ平行になると擬似モルタルとの抵抗が大幅に減少し、磁気による引力でひきつけられ、角度変化だけでなく、磁石進行方向に大きく移動を始めることが確認された。磁石進行方向と鋼繊維のなす角度が大きいほど進行方向に配向する際の抵抗は大きく、特に90°の場合は角度変化の回転方向が定まらず、抵抗がかなり大きい。そのため、初期角度45°の方が初期角度90°の場合に比べて配向しやすく、初期角度90°の実験でも磁石進行方向に配向し始めると抵抗が減少し角度の変化量が大きくなる。このため、往復回数が増すとさらに配向性が向上することが理解できる。また磁石の移動速さが遅いほど配向効果が高かったが、遅すぎる場合、例えば5cm/sの場合は、繊維が分散性を失い凝集すると考えられる。このことから、磁力の付与速度は5cm/s以上20cm/s程度が適当であり、より好ましくは10cm/s程度である。   From the results of this experiment, it was confirmed that the fiber was more easily oriented in the direction of travel of the magnet as the magnetic force was higher and the moving speed was slower. Furthermore, in this experiment, it was confirmed that when the traveling direction and the fiber were almost parallel, the resistance to the pseudo mortar was greatly reduced, attracted by magnetic attraction, and started moving not only in the angle change but also in the magnet traveling direction. It was done. The greater the angle formed by the magnet traveling direction and the steel fiber, the greater the resistance when orienting in the traveling direction. In particular, in the case of 90 °, the rotational direction of the angle change is not determined and the resistance is considerably large. For this reason, the initial angle of 45 ° is easier to align than the initial angle of 90 °. Even in the experiment of the initial angle of 90 °, the resistance decreases and the amount of change in the angle increases when the initial orientation begins in the magnet traveling direction. For this reason, it can be understood that the orientation is further improved as the number of reciprocations increases. Further, the orientation effect was higher as the moving speed of the magnet was slower. However, in the case of being too slow, for example, at 5 cm / s, it is considered that the fiber loses dispersibility and aggregates. For this reason, the application rate of magnetic force is suitably about 5 cm / s or more and about 20 cm / s, and more preferably about 10 cm / s.

〔実験2〕
上記実験1では、磁石繊維間距離10、20、30,40mmの各距離において、鋼繊維を2本のみ用いた実験を行い、鋼繊維が配向できることを確認したが、実際の短繊維強化モルタルにおいては通常1、2%程度繊維が混入されることから、さらに鋼繊維を前記高吸水性樹脂に0.5%、1.0%、1.5%混入した実験を図1の装置を用いて行い、混入される鋼繊維の繊維量の影響を調べた。本実験では、液体塑性粘度は0.16に加え、0.06をも採用し、磁石の移動速度は10cm/sおよび20cm/sとした。また、磁石の往復回数による影響も観察した。さらに磁石の最大磁束密度は232mTとした。この実験から、繊維量に関しては、1.5%の場合、繊維量が多いため16往復目でも繊維同士が立体的に拘束してほとんど配向せず、モルタルの粘度の範囲内で作成した低粘度擬似モルタル(η=0.06)では繊維が沈み、凝集して配向性が低下した。なお、繊維量0.5%の場合、繊維は沈みやすいものの、1.0%、1.5%に比べると配向しやすく、4往復目程度の磁力付与でほぼ進行方向に配向した。
[Experiment 2]
In the experiment 1, an experiment using only two steel fibers was performed at each of the distances of 10, 20, 30, and 40 mm between the magnet fibers, and it was confirmed that the steel fibers could be oriented. In an actual short fiber reinforced mortar, In general, about 1% or 2% of fibers are mixed. Therefore, an experiment in which steel fibers are further mixed with 0.5%, 1.0%, and 1.5% of the superabsorbent resin using the apparatus shown in FIG. The effect of the amount of steel fibers mixed was investigated. In this experiment, the liquid plastic viscosity was 0.06 in addition to 0.16, and the moving speed of the magnet was 10 cm / s and 20 cm / s. The effect of the number of reciprocations of the magnet was also observed. Furthermore, the maximum magnetic flux density of the magnet was 232 mT. From this experiment, when the fiber amount is 1.5%, since the fiber amount is large, the fibers are sterically constrained even in the 16th reciprocation and hardly oriented, and the low viscosity created within the viscosity range of the mortar. In the pseudo mortar (η = 0.06), the fibers sunk and aggregated to deteriorate the orientation. When the fiber amount was 0.5%, the fibers were likely to sink, but they were more easily oriented than 1.0% and 1.5%, and were oriented substantially in the direction of travel with the application of a magnetic force at the fourth round.

以上の実験1、2により鋼繊維補強モルタルにおいて、磁力により鋼繊維を配向できることが確認できたことから、さらにモルタルでの鋼繊維の配向およびその効果の確認を行った。実験3における使用材料を表3に示す。   From the above experiments 1 and 2, since it was confirmed that the steel fibers could be oriented by the magnetic force in the steel fiber reinforced mortar, the orientation of the steel fibers in the mortar and the effect thereof were further confirmed. Table 3 shows materials used in Experiment 3.

Figure 2009242118
Figure 2009242118

〔実験3〕
下記表4に記載の調合表に示す条件で、モルタル試験体(40mm×40mm×160mm)を作製した後、図6の3点式1点載荷曲げ試験装置により基礎的力学特性を評価した。試験体は、繊維無混入の試験体、繊維量:0.5%で繊維配向性の無い試験体、及び繊維量:0.5%で繊維配向性の有る試験体を各3体計9体作製した。養生は7日間で封緘養生とした。
[Experiment 3]
A mortar specimen (40 mm × 40 mm × 160 mm) was prepared under the conditions shown in the formulation table shown in Table 4 below, and then the basic mechanical properties were evaluated using the three-point one-point loading bending test apparatus shown in FIG. The test specimens were 9 specimens each including 3 specimens with no fiber orientation, a specimen with a fiber amount of 0.5% and no fiber orientation, and a specimen with a fiber orientation of 0.5% and a fiber orientation. Produced. The curing was a sealed curing in 7 days.

Figure 2009242118
Figure 2009242118

モルタルの練りは次の順序・時間で行った。
捨て練り
セメントと細骨材を入れて空練り 1分
混和剤入りの水を加え練り混ぜ 4.5分
さらに練り混ぜ(繊維有の場合はここで混入) 2分
The mortar was kneaded in the following order and time.
Dispose kneading cement and fine aggregate and knead 1 minute Add water with admixture and knead 4.5 minutes Further kneading (mixed here if fiber is present) 2 minutes

練り混ぜ完了後打設した。また配向性有については、打設後磁気を付与した。フロー計測は打設と同時に、繊維混入の試験体は繊維混入直前に計測した。また、意図しない繊維の沈下を防ぐため、突きは繊維混入なしの試験体も含め行わず、叩きは横側面から5回ずつ、軸方向側面から1回ずつ、計12回行った。粘度計測は打設段階の繊維混入なしのプレーンのモルタルで行った。   Placed after completion of mixing. For orientation, magnetism was applied after casting. The flow measurement was performed at the same time as the placement, and the test specimen containing the fiber was measured immediately before the fiber was mixed. Further, in order to prevent unintended fiber settlement, the test was not performed including the test piece without fiber mixing, and tapping was performed 12 times, 5 times from the lateral side surface and 1 time from the axial side surface. Viscosity was measured with plain mortar without fiber mixing at the casting stage.

試験体型枠は厚さ10mmのアクリル型枠で作成し、下面よりベルトコンベアで速さを調整し磁石側面をアクリルに接触させ、型枠に水平に磁気を付与した。磁気付与に関する条件は、実験1、2より、移動速度は10[cm/s]、付与面最大磁束密度は232mT、往復回数は4回とした。移動速度は分散性の低下を防ぐため10cm/sとし、往復回数は実験1で4回目程度から配向効果に大きな違いが出なくなってきたため、また練り後の磁気付与までの時間に試験体ごとに差ができるだけ出ないよう4往復とした。磁気の付与は練り後早めに行い、20分以内を目安とした。   The test body mold was made of an acrylic mold having a thickness of 10 mm, the speed was adjusted by a belt conveyor from the lower surface, the side of the magnet was brought into contact with acrylic, and magnetism was imparted horizontally to the mold. From Experiments 1 and 2, the conditions relating to magnetism were set such that the moving speed was 10 [cm / s], the maximum magnetic flux density on the applied surface was 232 mT, and the number of reciprocations was 4. The moving speed was set to 10 cm / s to prevent a decrease in dispersibility, and the number of reciprocations was about 4 in Experiment 1, and no significant difference was observed in the orientation effect. Four round trips were made to minimize the difference. The magnetism was applied early after kneading, and was set within 20 minutes.

また、繊維量0.5%の実験では破断面の繊維本数の少ない試験体がみられ、切断面の繊維本数にばらつきが多かったことから、鋼繊維の影響を明確にする意味で繊維量を1.0%とした試験体も繊維量0.5%と同様の条件で製作した。繊維量1.0%の試験体の調合を表5に示す。繊維量が多いため配向しずらいことを考慮し、往復回数は8回とした。   In addition, in the experiment with a fiber amount of 0.5%, a specimen with a small number of fibers on the fractured surface was found, and the number of fibers on the cut surface was highly variable, so the fiber amount was set to clarify the effect of steel fibers. A specimen with 1.0% was also produced under the same conditions as the fiber amount of 0.5%. Table 5 shows the composition of a test specimen having a fiber amount of 1.0%. Considering that it is difficult to orient due to the large amount of fibers, the number of reciprocations was set to eight.

Figure 2009242118
Figure 2009242118

フロー台を用いて、試験体のフロー特性を測定した。計測結果を表5に示す(表中の回数はフロー台振動回数である。)。また、試験体の曲げ試験を図6に示す装置を用い、3点式1点載荷で行った。その際、データロガーで荷重とたわみを計測しながら荷重が大きく低下した時などの主要なタイミング、及び5秒間隔で測定した。曲げ試験の結果を図7(繊維量0.5%)および図8(繊維量1.0%)に示す。   The flow characteristics of the test specimen were measured using a flow table. The measurement results are shown in Table 5 (the number in the table is the flow table vibration frequency). Moreover, the bending test of the test body was performed by a three-point type one-point loading using the apparatus shown in FIG. At that time, while measuring the load and the deflection with a data logger, it was measured at main timing such as when the load was greatly reduced, and at intervals of 5 seconds. The results of the bending test are shown in FIG. 7 (fiber amount 0.5%) and FIG. 8 (fiber amount 1.0%).

Figure 2009242118
Figure 2009242118

図7および8の材齢7日での曲げ試験による荷重変形曲線の測定結果から、曲げひび割れ発生前までは、繊維の有無、配向の有無による影響はみられず、荷重変形曲線の履歴はほぼ重なっているが、それ以降、繊維の有無、配向の有無による影響が出てくる。図7及び図8から、配向ありの方がなしより最大荷重移行の強度が保持されている結果となっており、磁力による繊維配向により靭性が向上することが確認された。   From the measurement results of the load deformation curve by the bending test at the age of 7 days in FIGS. 7 and 8, the influence of the presence or absence of fibers and the presence or absence of orientation is not seen until the occurrence of bending cracks, and the history of the load deformation curve is almost Although it overlaps, after that, the influence by the presence or absence of a fiber and the presence or absence of an orientation comes out. From FIG. 7 and FIG. 8, it was confirmed that the strength with the maximum load transfer was maintained as compared with the case where the orientation was not present, and it was confirmed that the toughness was improved by the fiber orientation due to the magnetic force.

[発明の効果]
以上述べたことから明らかなように、磁石を所定方向に往復動させることにより鋼繊維補強モルタル中の鋼繊維の配向を行うことができ、これによりモルタルのひび割れに対する靭性が高められ、モルタル構造物の耐久性、耐震性向上を図ることができる。
[The invention's effect]
As is clear from the above, the orientation of the steel fibers in the steel fiber reinforced mortar can be performed by reciprocating the magnet in a predetermined direction, thereby enhancing the toughness against cracking of the mortar, and the mortar structure Can improve durability and earthquake resistance.

配向実験装置の概要図である。It is a schematic diagram of an orientation experiment apparatus. 鋼繊維の角度測定方法を示す図である。It is a figure which shows the angle measuring method of steel fiber. 図1の実験装置のケース部分の断面図である。It is sectional drawing of the case part of the experimental apparatus of FIG. 図1の実験装置のケース部分の平面図である。It is a top view of the case part of the experimental apparatus of FIG. 擬似モルタルにおける磁力配向処理結果を示す図である。It is a figure which shows the magnetic orientation processing result in a pseudo mortar. 試験体の曲げ試験装置の模式図である。It is a schematic diagram of the bending test apparatus of a test body. 繊維混入量0.5%の試験体の曲げ試験の結果を示すグラフである。It is a graph which shows the result of the bending test of the test body of fiber mixing amount 0.5%. 繊維混入量1%の試験体の曲げ試験の結果を示すグラフである。It is a graph which shows the result of the bending test of the test body of 1% of fiber mixing amount.

Claims (8)

鋼繊維補強モルタルを打設した後、該モルタルの表面近傍において一定方向に磁石を往復動させることを特徴とする配向した鋼繊維を含む鋼繊維補強モルタルを形成する方法。   A method of forming a steel fiber reinforced mortar containing oriented steel fibers, wherein the steel fiber reinforced mortar is cast and then a magnet is reciprocated in a certain direction near the surface of the mortar. 前記打設は、鋼繊維モルタルの塗布、吹き付けまたは型枠への流し込みを含むことを特徴とする請求項1に記載の配向した鋼繊維を含む鋼繊維補強モルタルを形成する方法。   The method for forming a steel fiber reinforced mortar containing oriented steel fibers according to claim 1, wherein the placing includes applying, spraying or pouring steel fiber mortar into a formwork. 前記磁石による磁力がモルタル表面において最大で60mT程度であることを特徴とする請求項1または2に記載の配向した鋼繊維を含む鋼繊維補強モルタルを形成する方法。   The method of forming a steel fiber reinforced mortar containing oriented steel fibers according to claim 1 or 2, wherein the magnetic force by the magnet is about 60 mT at the maximum on the mortar surface. 前記磁石の移動速度が5〜10cm/sであることを特徴とする請求項1〜3のいずれかに記載の配向した鋼繊維を含む鋼繊維補強モルタルを形成する方法。   The method for forming a steel fiber reinforced mortar containing oriented steel fibers according to any one of claims 1 to 3, wherein the moving speed of the magnet is 5 to 10 cm / s. 前記磁石の往復回数が4〜8であることを特徴とする請求項1〜4のいずれかに記載の配向した鋼繊維を含む鋼繊維補強モルタルを形成する方法。   The method for forming a steel fiber reinforced mortar containing oriented steel fibers according to any one of claims 1 to 4, wherein the number of reciprocations of the magnet is 4 to 8. 前記鋼繊維が混入されるモルタルの粘度が0.085〜0.161Pa・sであることを特徴とする請求項1〜5のいずれかに記載の配向した鋼繊維を含む鋼繊維補強モルタルを形成する方法。   The steel fiber reinforced mortar containing oriented steel fibers according to any one of claims 1 to 5, wherein a viscosity of the mortar mixed with the steel fibers is 0.085 to 0.161 Pa · s. how to. 前記鋼繊維の混入量が0.5〜1.5%であることを特徴とする請求項1〜6のいずれかに記載の配向した鋼繊維を含む鋼繊維補強モルタルを形成する方法。   The method for forming a steel fiber reinforced mortar containing oriented steel fibers according to any one of claims 1 to 6, wherein the mixing amount of the steel fibers is 0.5 to 1.5%. 請求項1〜7のいずれかの方法により形成された、配向した鋼繊維を含む鋼繊維補強モルタル構造物。   A steel fiber reinforced mortar structure comprising oriented steel fibers formed by the method according to claim 1.
JP2008087287A 2008-03-28 2008-03-28 Steel fiber-reinforced mortar with fiber oriented Pending JP2009242118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008087287A JP2009242118A (en) 2008-03-28 2008-03-28 Steel fiber-reinforced mortar with fiber oriented

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008087287A JP2009242118A (en) 2008-03-28 2008-03-28 Steel fiber-reinforced mortar with fiber oriented

Publications (1)

Publication Number Publication Date
JP2009242118A true JP2009242118A (en) 2009-10-22

Family

ID=41304493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008087287A Pending JP2009242118A (en) 2008-03-28 2008-03-28 Steel fiber-reinforced mortar with fiber oriented

Country Status (1)

Country Link
JP (1) JP2009242118A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109899091A (en) * 2019-03-27 2019-06-18 中南大学 A kind of mixing station material mixture ratio Reverse Turning Control method required based on gunite concrete work on the spot
CN111216242A (en) * 2020-02-20 2020-06-02 河北工业大学 Flat magnetic field orienting device and method for preparing unidirectional orienting steel fiber concrete
CN113307573A (en) * 2021-06-18 2021-08-27 中铁二院重庆勘察设计研究院有限责任公司 Steel fiber unidirectionally-distributed ultrahigh-performance concrete material and preparation method thereof
CN114853375A (en) * 2022-04-15 2022-08-05 浙江天造环保科技有限公司 Building garbage intelligent manufacturing process and building material preparation equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109899091A (en) * 2019-03-27 2019-06-18 中南大学 A kind of mixing station material mixture ratio Reverse Turning Control method required based on gunite concrete work on the spot
CN109899091B (en) * 2019-03-27 2021-04-16 中南大学 Reverse control method for material ratio of mixing station
CN111216242A (en) * 2020-02-20 2020-06-02 河北工业大学 Flat magnetic field orienting device and method for preparing unidirectional orienting steel fiber concrete
CN113307573A (en) * 2021-06-18 2021-08-27 中铁二院重庆勘察设计研究院有限责任公司 Steel fiber unidirectionally-distributed ultrahigh-performance concrete material and preparation method thereof
CN113307573B (en) * 2021-06-18 2023-04-07 中铁二院重庆勘察设计研究院有限责任公司 Steel fiber unidirectionally-distributed ultrahigh-performance concrete material and preparation method thereof
CN114853375A (en) * 2022-04-15 2022-08-05 浙江天造环保科技有限公司 Building garbage intelligent manufacturing process and building material preparation equipment

Similar Documents

Publication Publication Date Title
Mu et al. Aligning steel fibers in cement mortar using electro-magnetic field
Song et al. Optimization of fibre orientation and distribution for a sustainable Ultra-High Performance Fibre Reinforced Concrete (UHPFRC): Experiments and mechanism analysis
Khayat et al. Rheological properties of ultra-high-performance concrete—An overview
Ramujee Strength properties of polypropylene fiber reinforced concrete
Gao et al. Durability of concrete exposed to sulfate attack under flexural loading and drying–wetting cycles
Dakhane et al. Crack healing in cementitious mortars using enzyme-induced carbonate precipitation: Quantification based on fracture response
Ghafoori et al. Influence of limestone size and content on transport properties of self-consolidating concrete
KR101668955B1 (en) Manufacturing method of structure with reinforce fiber composite using 3d printer
CN109369095A (en) Hybrid fiber concrete and its preparation method and application
Topič et al. Effect of PVA modification on properties of cement composites
JP2009242118A (en) Steel fiber-reinforced mortar with fiber oriented
Muzenski et al. The development of hydrophobic and superhydrophobic cementitious composites
Widodo Fresh and hardened properties of Polypropylene fiber added Self-Consolidating Concrete
CN110341025A (en) Control the placement layer by layer technique of steel fibre distribution arrangement in steel fiber reinforced concrete
Chen et al. Triple blending with fly ash microsphere and condensed silica fume to improve performance of cement paste
CN114772995A (en) Preparation method and device of hybrid oriented fiber concrete
JP2004067453A (en) Void filling material and void filling work
JPH10258406A (en) Concrete having property changeable by magnetism
Li et al. A new orientational molding method for ultra-high performance concrete with high content of steel fiber and investigation on its flexure and axial tensile properties
JP6664998B2 (en) Method of manufacturing concrete for preventing frost damage
JP2004224631A (en) Polymer hydraulic composition
CN110156403A (en) A kind of underwater self-compaction concrete and preparation method thereof for canal lining panel reparation
JP2004026552A (en) Method for reinforcing telegraph pole made of concrete
Tamrakar The Effect of Steel Fibers Type and Content on the Development of Fresh and Hardened Properties and Durability of Self consolidating Concrete
Zhu et al. Organic additive implantation onto cement hydration products