JPH10256483A - Mos semiconductor integrated circuit - Google Patents

Mos semiconductor integrated circuit

Info

Publication number
JPH10256483A
JPH10256483A JP9056308A JP5630897A JPH10256483A JP H10256483 A JPH10256483 A JP H10256483A JP 9056308 A JP9056308 A JP 9056308A JP 5630897 A JP5630897 A JP 5630897A JP H10256483 A JPH10256483 A JP H10256483A
Authority
JP
Japan
Prior art keywords
circuit
potential
schottky barrier
semiconductor substrate
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9056308A
Other languages
Japanese (ja)
Inventor
Kenichi Imamiya
賢一 今宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9056308A priority Critical patent/JPH10256483A/en
Publication of JPH10256483A publication Critical patent/JPH10256483A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily realize a circuit which can generate a desired bias potential by using a diode circuit instead of a MOD transistor circuit in a CMOS circuit board. SOLUTION: An N-type diffusion area 2 is formed in a P-type semiconductor substrate 1 having a 0-V bias and a P-type diffusion area 3 is formed in the diffusion area 2. An N-type diffusion area 4 having an impurity concentration for a Schottky barrier which can operate as a rectifier element is formed in the diffusion area 3 and a metallic electrode 5 for Schottky junction is provided on the diffusion area 4 in a state where the electrode 5 is in contact with the area 4. N<+> and P<+> have impurity concentrations which are sufficient to obtain an ohmic contact with a metal. The diffusion areas 4 and 3 are short-circuited at the same potential. The N-type diffusion area 2 is connected to a voltage (for example, Vcc) higher than 0V. This constitution is formed in an CMOS circuit (11 or 12).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は特にMOS型半導
体集積回路上で順方向のダイオードを設ける回路構成に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention particularly relates to a circuit configuration for providing a forward diode on a MOS type semiconductor integrated circuit.

【0002】[0002]

【従来の技術】図5(a)は、MOS型半導体集積回路
内に構成される負電位昇圧回路(チャージポンプ回路)
の一般的な回路図を示す。電流パスが出力端OUTと0
Vの間に直列接続され、各々ゲート,ドレイン間が接続
されたMOSトランジスタM1,M2 ,M3 と、各MO
Sトランジスタ間の接続ノードとパルス入力端との間に
挿入されたキャパシタC1 ,C2 から構成されている。
バックゲート(ウェル領域のバイアス)は正の電源電圧
Vccに接続される。
2. Description of the Related Art FIG. 5A shows a negative potential boosting circuit (charge pump circuit) formed in a MOS type semiconductor integrated circuit.
1 shows a general circuit diagram of FIG. The current path is connected to the output terminals OUT and 0
V, MOS transistors M1, M2, and M3 each having a gate and a drain connected to each other;
It is composed of capacitors C1 and C2 inserted between the connection node between the S transistors and the pulse input terminal.
The back gate (well region bias) is connected to a positive power supply voltage Vcc.

【0003】上記回路に、図5(b)に示すような相補
なパルス信号をそれぞれのパルス入力端へ入力すると、
MOSトランジスタは、M1 ,M2 ,M3 の並ぶ方向に
出力端OUTの正電荷を転送する。これにより、出力端
OUTは負電位を発生することになるが、正電荷転送は
各MOSトランジスタのしきい電圧により制限される。
また、このしきい電圧はMOSトランジスタのソース電
位が低くなる程、電荷転送の損失を大きくする。
When a complementary pulse signal as shown in FIG. 5 (b) is input to each of the pulse input terminals,
The MOS transistor transfers the positive charge at the output terminal OUT in the direction in which M1, M2 and M3 are arranged. As a result, the output terminal OUT generates a negative potential, but the positive charge transfer is limited by the threshold voltage of each MOS transistor.
In addition, this threshold voltage increases the charge transfer loss as the source potential of the MOS transistor decreases.

【0004】[0004]

【発明が解決しようとする課題】従来では、MOS型半
導体集積回路に設けられる負バイアス電位を生成する回
路は、MOSトランジスタを直列した回路が含まれ、電
荷転送の効率は、各MOSトランジスタのしきい電圧の
制限を受けることになり、好ましくない。
Conventionally, a circuit for generating a negative bias potential provided in a MOS-type semiconductor integrated circuit includes a circuit in which MOS transistors are connected in series, and the efficiency of charge transfer depends on each MOS transistor. This is undesirably limited by the threshold voltage.

【0005】この発明は上記のような事情を考慮し、そ
の課題は、MOSトランジスタ回路の代りにダイオード
回路を用いた所望のバイアス電位を生成する回路を、C
MOS回路基板中に形成するMOS型半導体集積回路を
提供することにある。
The present invention has been made in view of the above circumstances, and has as its object to provide a circuit for generating a desired bias potential using a diode circuit instead of a MOS transistor circuit.
An object of the present invention is to provide a MOS semiconductor integrated circuit formed in a MOS circuit substrate.

【0006】[0006]

【課題を解決するための手段】この発明のCMOS型半
導体集積回路は、P型の半導体基板と、前記半導体基板
に形成される、前記半導体基板に順方向バイアスされ少
なくとも一方の電極が基板電位よりも低い電位に設定さ
れるショットキ・バリヤ・ダイオードと、前記半導体基
板上に形成されるMOSトランジスタとを具備したこと
を特徴とする。
A CMOS type semiconductor integrated circuit according to the present invention has a P-type semiconductor substrate, and at least one electrode formed on the semiconductor substrate, which is forward-biased to the semiconductor substrate and at least one electrode has a substrate potential. A Schottky barrier diode set at a low potential and a MOS transistor formed on the semiconductor substrate.

【0007】この発明では、一般に行われる二重ウェル
構造を利用し、両端に負電位かつ順方向のバイアスを加
えても寄生のバイポーラ素子による動作障害のない整流
素子を得る。
According to the present invention, a rectifying element which does not suffer from an operation failure due to a parasitic bipolar element even when a negative potential and a forward bias are applied to both ends is obtained by utilizing a generally performed double well structure.

【0008】[0008]

【発明の実施の形態】負バイアス電位を生成する回路に
おいて、しきい電圧により制限されるMOSトランジス
タの構成の代りにダイオード回路を採用することを考え
る。例えば、図6は、前記図5(a)の構成に対応させ
たダイオードD1 ,D2 ,D3 の直列回路を含む負電位
昇圧回路である。
BEST MODE FOR CARRYING OUT THE INVENTION In a circuit for generating a negative bias potential, consider the use of a diode circuit instead of a MOS transistor configuration limited by a threshold voltage. For example, FIG. 6 shows a negative potential boosting circuit including a series circuit of diodes D1, D2 and D3 corresponding to the configuration of FIG.

【0009】しかし、このようなダイオードを、P型半
導体基板上おいて、N型領域が基板電位よりも低く、フ
ォワード・バイアスされるP−Nジャンクション・ダイ
オードを寄生のバイポーラトランジスタが動作しないよ
うに形成するには図7のような3重ウェル構造が必要で
ある。この構造は、大変複雑であり、現状で実現するに
してもコストがかかり過ぎる。そこで、この発明におい
ては、一端に負バイアスが印加されるダイオードをCM
OS回路基板において容易に実現する構成を提供する。
However, when such a diode is provided on a P-type semiconductor substrate, an N-type region is lower than the substrate potential, and a forward-biased PN junction diode is used to prevent a parasitic bipolar transistor from operating. The formation requires a triple well structure as shown in FIG. This structure is very complex and is too costly to implement at present. Thus, in the present invention, a diode to which a negative bias is applied to one end is referred to as a CM.
Provided is a configuration that can be easily realized in an OS circuit board.

【0010】図1はこの発明の第1の実施形態に係るダ
イオード回路を含むMOS型半導体集積回路の構成を示
す断面図である。P型半導体基板1 は0Vにバイアスさ
れている。基板1 にはN型の不純物拡散領域(Nウェル
領域)2 が形成されている。N型の不純物拡散領域2 内
にはP型の不純物拡散領域(Pウェル領域)3 が形成さ
れている。P型の不純物拡散領域3 内にはN型の不純物
拡散領域4 が形成されている。
FIG. 1 is a sectional view showing a configuration of a MOS type semiconductor integrated circuit including a diode circuit according to a first embodiment of the present invention. The P-type semiconductor substrate 1 is biased to 0V. An N-type impurity diffusion region (N-well region) 2 is formed on a substrate 1. In the N-type impurity diffusion region 2, a P-type impurity diffusion region (P well region) 3 is formed. An N-type impurity diffusion region 4 is formed in the P-type impurity diffusion region 3.

【0011】N型の不純物拡散領域4 は、整流素子とし
ての動作が可能なショットキ・バリヤのための不純物濃
度を有し、不純物濃度は1018/cm3 以下に設定され
る。N型の不純物拡散領域4 と接触するショットキ接合
のための金属電極5 はAl,Ti,TiSi2 等があげ
られる。
The N-type impurity diffusion region 4 has an impurity concentration for a Schottky barrier operable as a rectifying element, and the impurity concentration is set to 10 18 / cm 3 or less. The metal electrode 5 for Schottky contact in contact with the N-type impurity diffusion region 4 is made of Al, Ti, TiSi 2 or the like.

【0012】また、図中のN+ ,P+ は、金属とオーミ
ック・コンタクトをとるのに十分な不純物濃度を有す
る。N型の不純物拡散領域4 とP型の不純物拡散領域3
は同電位にショートされる。N型の不純物拡散領域2 は
0Vより大きい電圧(例えば電源Vcc)に接続される。
Further, N + and P + in the figure have an impurity concentration sufficient to make ohmic contact with a metal. N-type impurity diffusion region 4 and P-type impurity diffusion region 3
Are shorted to the same potential. The N-type impurity diffusion region 2 is connected to a voltage higher than 0 V (for example, a power supply Vcc).

【0013】基板1 には、その他にCMOS回路等が形
成される。基板1 においてNチャネルMOSFET11が
形成される。N型の不純物拡散領域2 と同じ工程で形成
されるNウェル領域6 には、PチャネルMOSFET12
が形成される。P型の不純物拡散領域3 と同じ工程で形
成されるPウェル領域7 には、NチャネルMOSFET
13が形成される。
On the substrate 1, a CMOS circuit and the like are additionally formed. On the substrate 1, an N-channel MOSFET 11 is formed. An N-well region 6 formed in the same step as the N-type impurity diffusion region 2 has a P-channel MOSFET 12
Is formed. An N-channel MOSFET is provided in a P-well region 7 formed in the same process as the P-type impurity diffusion region 3.
13 is formed.

【0014】上記構成によれば、一般に行われる二重ウ
ェル構造を用いたプロセスにて、両端に負電位かつ順方
向のバイアスを加えても寄生のバイポーラ素子による動
作障害のない整流素子を得ることができる。
According to the above structure, a rectifying element free from operation failure due to a parasitic bipolar element even when a negative potential and a forward bias are applied to both ends in a process generally performed using a double well structure. Can be.

【0015】図2はこの発明の第2の実施形態に係るM
OS型半導体集積回路内に構成される負電位昇圧回路を
示す回路図である。負電位昇圧回路はチャージポンプ回
路と呼ばれ、例えばメモリ回路内の動作電源電圧を生成
するために設けられる。出力端OUTと0Vの間に各シ
ョットキ・バリヤ・ダイオードSBD1 ,SBD2 ,S
BD3 が順方向バイアスで直列接続されている。それぞ
れ2つのショットキ・バリヤ・ダイオード間の接続ノー
ドとパルス入力端との間にキャパシタC1 ,C2 が挿入
されている。
FIG. 2 is a block diagram showing a second embodiment of the present invention.
FIG. 3 is a circuit diagram showing a negative potential boosting circuit configured in the OS type semiconductor integrated circuit. The negative potential booster circuit is called a charge pump circuit, and is provided, for example, to generate an operation power supply voltage in a memory circuit. Each of the Schottky barrier diodes SBD1, SBD2, S is connected between the output terminal OUT and 0V.
BD3 is connected in series with a forward bias. Capacitors C1 and C2 are inserted between the connection node between the two Schottky barrier diodes and the pulse input terminal.

【0016】各キャパシタC1 ,C2 のパルス入力端
に、接地電位と正の電源電位との間で振幅する相補信号
(図5(b)と同様)を与えることにより、ダイオード
SBD1 ,SBD2 ,SBD3 の並ぶ順方向に出力端O
UT側の正電荷を転送する。これにより、出力端OUT
は負電位を発生することになる。正電荷転送は各ダイオ
ードの順方向バイアス電圧の損失だけであり、高効率、
高電圧の負電位昇圧回路を構成することができる。
A complementary signal (similar to that shown in FIG. 5 (b)) which oscillates between the ground potential and the positive power supply potential is applied to the pulse input terminals of the capacitors C1 and C2, so that the diodes SBD1, SBD2 and SBD3 are turned off. Output end O in line in the forward direction
Transfers positive charges on the UT side. Thereby, the output terminal OUT
Generates a negative potential. Positive charge transfer is only loss of forward bias voltage of each diode, high efficiency,
A high-voltage negative potential boosting circuit can be formed.

【0017】図3は、図2の一部を示す、ショットキ・
バリヤ・ダイオードとキャパシタの構成を示す断面図で
ある。キャパシタ(ここではC2 )はMOSキャパシタ
で構成されている。ショットキ・バリヤ・ダイオード部
は、図1と同様の箇所に同一符号を付している。
FIG. 3 shows a part of FIG.
FIG. 3 is a cross-sectional view illustrating a configuration of a barrier diode and a capacitor. The capacitor (here, C2) is constituted by a MOS capacitor. In the Schottky barrier diode unit, the same parts as those in FIG.

【0018】図4は、この発明の第3の実施形態に係る
定電圧発生回路を示す回路図である。0Vと出力端OU
Tとの間にショットキ・バリヤ・ダイオードSBD4 が
順方向に接続されている。出力端OUTは抵抗Rを介し
て負電位VEEに接続される。このような構成によれば、
基板の濃度と基板に電極として接触する金属材料、及び
ダイオードの直列接続数によるが、ショットキ・バリヤ
のバイアス電圧に応じた負の定電位が得られる。
FIG. 4 is a circuit diagram showing a constant voltage generating circuit according to a third embodiment of the present invention. 0V and output terminal OU
A Schottky barrier diode SBD4 is connected in the forward direction between T and T. The output terminal OUT is connected to the negative potential VEE via the resistor R. According to such a configuration,
Depending on the concentration of the substrate, the metal material in contact with the substrate as an electrode, and the number of diodes connected in series, a negative constant potential corresponding to the bias voltage of the Schottky barrier can be obtained.

【0019】なお、上記実施の形態ではP型半導体基板
にショットキ・バリヤ・ダイオードの回路を設け、接地
電位とそれよりも高い正の電源電位から負電位を生成す
る構成を説明したが、N型半導体基板にショットキ・バ
リヤ・ダイオードの回路を設け、接地電位とそれよりも
高い電源電位から電源電位よりも高い電圧を発生するよ
うに構成してもよい。
In the above-described embodiment, a configuration in which a Schottky barrier diode circuit is provided on a P-type semiconductor substrate and a negative potential is generated from a ground potential and a positive power supply potential higher than the ground potential has been described. A Schottky barrier diode circuit may be provided on a semiconductor substrate to generate a voltage higher than the power supply potential from the ground potential and a power supply potential higher than the ground potential.

【0020】[0020]

【発明の効果】以上説明したようにこの発明によれば、
一般に行われる2重ウェル構造のプロセスを利用して、
CMOS回路の製造工程に伴って構成することができ、
両端に負電位かつ順方向のバイアスを加えても、寄生バ
イポーラ素子による動作障害のない整流素子を得ること
ができる。また、この整流素子つまりショットキ・バリ
ヤ・ダイオードをP型基板上で電荷転送手段として応用
でき、高効率、高電圧の負電位昇圧回路を設けたCMO
S型半導体集積回路を提供することができる。
As described above, according to the present invention,
Utilizing the process of the double well structure generally performed,
It can be configured according to the manufacturing process of the CMOS circuit,
Even if a negative potential and a forward bias are applied to both ends, a rectifying element free from operation failure due to a parasitic bipolar element can be obtained. In addition, this rectifier element, that is, a Schottky barrier diode can be applied as a charge transfer means on a P-type substrate, and a CMO provided with a high-efficiency, high-voltage negative potential booster circuit is provided.
An S-type semiconductor integrated circuit can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施形態に係るダイオード回
路を含むMOS型半導体集積回路の構成を示す断面図。
FIG. 1 is a sectional view showing a configuration of a MOS semiconductor integrated circuit including a diode circuit according to a first embodiment of the present invention.

【図2】この発明の第2の実施形態に係るMOS型半導
体集積回路内に構成される負電位昇圧回路を示す回路
図。
FIG. 2 is a circuit diagram showing a negative potential boosting circuit configured in a MOS semiconductor integrated circuit according to a second embodiment of the present invention.

【図3】図2の一部を示す、ショットキ・バリヤ・ダイ
オードとキャパシタの構成を示す断面図。
FIG. 3 is a cross-sectional view showing a part of FIG. 2 and showing a configuration of a Schottky barrier diode and a capacitor.

【図4】この発明の第3の実施形態に係る定電圧発生回
路を示す回路図。
FIG. 4 is a circuit diagram showing a constant voltage generation circuit according to a third embodiment of the present invention.

【図5】(a)はMOS型半導体集積回路内に構成され
る負電位昇圧回路(チャージポンプ回路)の一般的な回
路図。(b)はパルス入力端に供給する相補なパルス信
号の波形図。
FIG. 5A is a general circuit diagram of a negative potential boosting circuit (charge pump circuit) configured in a MOS semiconductor integrated circuit. (B) is a waveform diagram of a complementary pulse signal supplied to a pulse input terminal.

【図6】前記図5(a)の構成に対応したダイオードの
直列回路を含む負電位昇圧回路を示す回路図。
FIG. 6 is a circuit diagram showing a negative potential boosting circuit including a series circuit of diodes corresponding to the configuration of FIG. 5A.

【図7】図6中の一部のダイオードを構成する断面図。FIG. 7 is a sectional view of a part of the diode in FIG. 6;

【符号の説明】[Explanation of symbols]

1 …P型半導体基板 2 …N型の不純物拡散領域(Nウェル領域) 3 …P型の不純物拡散領域(Pウェル領域) 4 …N型の不純物拡散領域 5 …金属電極 6 …Nウェル領域 7 …Pウェル領域 11 ,13…NチャネルMOSFET 12 …PチャネルMOSFET SBD1 〜3 …ショットキ・バリヤ・ダイオード C1 ,C2 …キャパシタ 1 P-type semiconductor substrate 2 N-type impurity diffusion region (N-well region) 3 P-type impurity diffusion region (P-well region) 4 N-type impurity diffusion region 5 Metal electrode 6 N-well region 7 ... P-well regions 11 and 13... N-channel MOSFET 12... P-channel MOSFET SBD1 to 3.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H02M 3/07 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H02M 3/07

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 P型の半導体基板と、 前記半導体基板に形成される、前記半導体基板に順方向
バイアスされ少なくとも一方の電極が基板電位よりも低
い電位に設定されるショットキ・バリヤ・ダイオード
と、 前記半導体基板上に形成されるMOSトランジスタとを
具備したことを特徴とするMOS型半導体集積回路。
A P-type semiconductor substrate; a Schottky barrier diode formed on the semiconductor substrate, wherein the Schottky barrier diode is forward-biased to the semiconductor substrate and at least one electrode is set at a potential lower than the substrate potential; And a MOS transistor formed on the semiconductor substrate.
【請求項2】 前記ショットキ・バリヤ・ダイオードは
接地電位とそれよりも高い正の電源電位から負電位を生
成するチャージポンプ回路の一部に含まれることを特徴
とする請求項1記載のMOS型半導体集積回路。
2. The MOS type according to claim 1, wherein the Schottky barrier diode is included in a part of a charge pump circuit that generates a negative potential from a ground potential and a positive power supply potential higher than the ground potential. Semiconductor integrated circuit.
【請求項3】 前記ショットキ・バリヤ・ダイオードは
基準電位を発生する回路に用いられることを特徴とする
請求項1記載のMOS型半導体集積回路。
3. The MOS semiconductor integrated circuit according to claim 1, wherein said Schottky barrier diode is used in a circuit for generating a reference potential.
【請求項4】 N型の半導体基板と、 前記半導体基板に形成される、前記半導体基板に順方向
バイアスされ少なくとも一方の電極が基板電位よりも高
い電位に設定されるショットキ・バリヤ・ダイオード
と、 前記半導体基板上に形成されるMOSトランジスタとを
具備したことを特徴とするMOS型半導体集積回路。
4. An N-type semiconductor substrate; a Schottky barrier diode formed on the semiconductor substrate, wherein the Schottky barrier diode is forward-biased to the semiconductor substrate and at least one electrode is set to a potential higher than the substrate potential; And a MOS transistor formed on the semiconductor substrate.
【請求項5】 前記ショットキ・バリヤ・ダイオードは
接地電位とそれよりも高い電源電位から電源電位よりも
高い電圧を発生する回路の一部に含まれることを特徴と
する請求項4記載のMOS型半導体集積回路。
5. The MOS type according to claim 4, wherein said Schottky barrier diode is included in a part of a circuit for generating a voltage higher than a power supply potential from a ground potential and a power supply potential higher than the ground potential. Semiconductor integrated circuit.
【請求項6】 前記ショットキ・バリヤ・ダイオードは
基準電位を発生する回路に用いられることを特徴とする
請求項4記載のMOS型半導体集積回路。
6. The MOS semiconductor integrated circuit according to claim 4, wherein said Schottky barrier diode is used in a circuit for generating a reference potential.
JP9056308A 1997-03-11 1997-03-11 Mos semiconductor integrated circuit Pending JPH10256483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9056308A JPH10256483A (en) 1997-03-11 1997-03-11 Mos semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9056308A JPH10256483A (en) 1997-03-11 1997-03-11 Mos semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH10256483A true JPH10256483A (en) 1998-09-25

Family

ID=13023526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9056308A Pending JPH10256483A (en) 1997-03-11 1997-03-11 Mos semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH10256483A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035994A (en) * 1999-07-15 2001-02-09 Toshiba Corp Semiconductor integrated-circuit device and system substratte
JP2004311684A (en) * 2003-04-07 2004-11-04 Sanyo Electric Co Ltd Semiconductor device
KR100658549B1 (en) 2004-09-28 2006-12-19 산요덴키가부시키가이샤 Semiconductor device, full-wave rectifying circuit, and half-wave rectifying circuit
JP2009105421A (en) * 2001-11-21 2009-05-14 Fuji Electric Device Technology Co Ltd Semiconductor device
JP2009193401A (en) * 2008-02-15 2009-08-27 Seiko Epson Corp Voltage stabilizer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035994A (en) * 1999-07-15 2001-02-09 Toshiba Corp Semiconductor integrated-circuit device and system substratte
JP2009105421A (en) * 2001-11-21 2009-05-14 Fuji Electric Device Technology Co Ltd Semiconductor device
JP2004311684A (en) * 2003-04-07 2004-11-04 Sanyo Electric Co Ltd Semiconductor device
KR100658549B1 (en) 2004-09-28 2006-12-19 산요덴키가부시키가이샤 Semiconductor device, full-wave rectifying circuit, and half-wave rectifying circuit
JP2009193401A (en) * 2008-02-15 2009-08-27 Seiko Epson Corp Voltage stabilizer

Similar Documents

Publication Publication Date Title
EP0870357B2 (en) Active rectifier having minimal energy losses
JP2509596B2 (en) Intermediate potential generation circuit
JP3550197B2 (en) Voltage booster circuit for semiconductor memory device
KR100922681B1 (en) Charge pump circuit
US4875151A (en) Two transistor full wave rectifier
US4303958A (en) Reverse battery protection
JP4383159B2 (en) Charge pump circuit
JPH06105785B2 (en) Power semiconductor device with reverse voltage protection circuit
JPH10256483A (en) Mos semiconductor integrated circuit
US6018252A (en) Dual-power type integrated circuit
US5444291A (en) Integrated bridge device for optimizing conduction power losses
JPH06325569A (en) Middle voltage generating circuit for semiconductor integrated circuit
JPH09266281A (en) Step-up circuit
JPH09246945A (en) Output level conversion circuit
JPH05152526A (en) Semiconductor integrated circuit device
US6372568B1 (en) Method of manufacture of a semiconductor having a triple well structure
JP4773147B2 (en) Booster circuit
JP2001134230A (en) Display device driving circuit
JPS62160750A (en) Substrate-voltage generating circuit
US4888505A (en) Voltage multiplier compatible with a self-isolated C/DMOS process
JPH04206960A (en) Semiconductor substrate potential generating circuit
JP2994691B2 (en) Semiconductor integrated circuit device
JP3387940B2 (en) Power supply backup semiconductor device
JP3313324B2 (en) Automatic switch circuit for applying power to the load with the correct polarity regardless of the connection polarity of the power supply
JPH01261856A (en) Semiconductor integrated circuit device