JPH1025517A - Production of iron-nickel alloy sheet - Google Patents

Production of iron-nickel alloy sheet

Info

Publication number
JPH1025517A
JPH1025517A JP7314897A JP7314897A JPH1025517A JP H1025517 A JPH1025517 A JP H1025517A JP 7314897 A JP7314897 A JP 7314897A JP 7314897 A JP7314897 A JP 7314897A JP H1025517 A JPH1025517 A JP H1025517A
Authority
JP
Japan
Prior art keywords
alloy
deflection yoke
rolled
cold
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7314897A
Other languages
Japanese (ja)
Inventor
Masatoshi Eto
雅俊 衛藤
Toshio Oikawa
俊雄 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Media Electronics Co Ltd
Nikko Kinzoku KK
Original Assignee
Hitachi Media Electronics Co Ltd
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Media Electronics Co Ltd, Nikko Kinzoku KK filed Critical Hitachi Media Electronics Co Ltd
Priority to JP7314897A priority Critical patent/JPH1025517A/en
Publication of JPH1025517A publication Critical patent/JPH1025517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To control a texture so that low magnetostrictive characteristic required of a deflection yoke is obtained, by subjecting an ingot of an Fe-Ni alloy of specific composition to hot rolling, to cold rolling at specific draft, and then to annealing so that specific crystalline grain size is obtained. SOLUTION: An alloy, having a composition consisting of, by weight, 38-52% Ni, <=0.10% C, <=0.5% Si, 0.1-2.0% Mn, and the balance Fe with inevitable impurities, is cast. The resultant ingot is hot-rolled and then cold-rolled at >=80% draft to the prescribed sheet thickness. The resultant cold rolled sheet is annealed so that >=30μm crystalline grain size is obtained. By this procedure, a texture, where crystalline grains in which (200) plane is oriented in rolling surface comprise <=20% can be formed. It is preferable to regulate hot rolling temp. to 700-1200 deg.C. By this method, a pole shoe material for deflection yoke, minimal in collor slippage and beat tofie, stably working in a service temp. region, and excellent in workability, can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Fe−Ni合金板
の製造方法に関するものであり、さらに詳しく述べるな
らば、特に陰極線管表示装置の偏向ヨークを構成する磁
極片として用いられ、優れた偏向特性を有するように集
合組織を制御した強磁性材料の製造方法を提供すること
にある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an Fe--Ni alloy plate, and more particularly, to a method for producing a deflection yoke of a cathode ray tube display, which is used as a pole piece for an excellent deflection. An object of the present invention is to provide a method for manufacturing a ferromagnetic material having a texture controlled to have characteristics.

【0002】[0002]

【従来の技術】上述した偏向ヨーク部品には、画面中
心の色ズレが小さいこと、画面周辺の色ズレが小さい
こと、うなり音が小さいことなどが要求される。従来
は、陰極線管の偏向ヨーク用の磁極片材料には純鉄やケ
イ素鋼板などが使用されていたが、それぞれが面中心部
のズレが大きい、うなり音が大きいなどの欠点があり、
要求を充分満足するものはなかった。このような状況を
打破するべく本出願人のうち1名は特開平7−2543
77号公報において特定の飽和磁気歪みを有するFe−
Ni合金を偏向ヨーク部品として使用することを提案し
た。なお、Fe−Al合金は、ケイ素鋼板と同様にうな
り音が大きく、加工性が劣るため、偏向ヨーク用の磁極
片材料には適していない。
2. Description of the Related Art The deflection yoke component described above is required to have a small color shift at the center of the screen, a small color shift at the periphery of the screen, a low beat sound, and the like. In the past, pure iron or silicon steel plate was used as the pole piece material for the deflection yoke of the cathode ray tube, but each of these had disadvantages such as large deviation of the center of the plane and loud noise.
None of them satisfied the requirements. In order to overcome such a situation, one of the present applicants is disclosed in Japanese Patent Application Laid-Open No. 7-2543.
No. 77, the Fe-
It has been proposed to use Ni alloy as the deflection yoke component. The Fe—Al alloy is not suitable as a pole piece material for a deflection yoke because it has a loud beating sound and is inferior in workability similarly to a silicon steel plate.

【0003】ところで、Fe−Ni系合金の磁歪は、
(200)と(111)の磁歪定数(λ200 、λ111
が知られており、単結晶の磁歪はλ200 と、λ111 の和
によって示される。多結晶のFe−Ni系合金の飽和磁
歪定数はλS =0.4×λ200 +0.6×λ111 で表さ
れる。
[0003] The magnetostriction of an Fe-Ni alloy is as follows.
(200) and (111) magnetostriction constants (λ 200 , λ 111 )
Are known, the magnetostriction of the single crystal and lambda 200, indicated by the sum of lambda 111. The saturation magnetostriction constant of a polycrystalline Fe—Ni alloy is expressed as λ S = 0.4 × λ 200 + 0.6 × λ 111 .

【0004】Fe−Ni合金、Fe−Si合金、純鉄に
ついては図1(表1)に示すような磁歪が知られてい
る。表1に示した42%Ni−Fe,45%Ni−F
e,50%Ni−Fe合金の磁歪は、多結晶の飽和磁歪
定数λS は10×10-6を超える大きな値であるが、単
結晶(200)面の磁歪λ200 は小さな値であるので、
結晶方位を制御して圧延面に(200)面を集合させる
と、磁極片の長手方向の磁歪を低く抑え、偏向ヨークを
励磁・動作時のうなり音の低減を図ることができる。
[0004] As for Fe-Ni alloy, Fe-Si alloy and pure iron, magnetostriction as shown in FIG. 1 (Table 1) is known. 42% Ni-Fe, 45% Ni-F shown in Table 1
e, the magnetostriction of the 50% Ni—Fe alloy is such that the polycrystalline saturation magnetostriction constant λ S is a large value exceeding 10 × 10 −6 , but the magnetostriction λ 200 of the single crystal (200) plane is a small value. ,
When the (200) plane is gathered on the rolled surface by controlling the crystal orientation, the magnetostriction in the longitudinal direction of the pole piece can be suppressed low, and the beating noise during excitation and operation of the deflection yoke can be reduced.

【0005】一方、3.5Si−Fe合金のλ111 は小
さいが、λ200 は大きいために多結晶での磁歪は大き
い。また、6.5Si−Feは磁歪は小さいが加工が困
難である。
On the other hand, λ 111 of the 3.5Si—Fe alloy is small, but λ 200 is large, so that polycrystal has large magnetostriction. 6.5Si-Fe has small magnetostriction but is difficult to process.

【0006】Fe−Ni合金の製造方法に関する特開平
7−126753号公報によると、30〜85%Ni−
Fe合金の熱間圧延板を全圧下率が30%以上で最終冷
間圧延し、続いて900〜1200℃の温度域で磁性焼
鈍して平均結晶粒径を100μm以上に制御することに
よって透磁率が例えばμmax =約7×104 と高く、磁
気ヘッドや磁気シールドとして適した軟磁性材料を得る
方法が提案されている。なお、この公報で実施例に示さ
れた最大の冷間圧延圧下率は75%である。この発明に
おいては、粒界に蓄積された歪みエネルギーを磁性焼鈍
過程において解放させるとともに二次再結晶を起こさ
せ、平均結晶粒径を大きくすることにより高い透磁率を
得ている。
According to Japanese Patent Application Laid-Open No. Hei 7-126753 concerning a method for producing an Fe-Ni alloy, 30-85% Ni-
The final permeability of the hot-rolled sheet of the Fe alloy is subjected to final cold rolling at a total draft of 30% or more, followed by magnetic annealing in a temperature range of 900 to 1200 ° C. to control the average crystal grain size to 100 μm or more. There example mu max = high as about 7 × 10 4, a method of obtaining a soft magnetic material suitable as a magnetic head or a magnetic shield has been proposed. The maximum cold rolling reduction shown in the examples in this publication is 75%. In the present invention, a high magnetic permeability is obtained by releasing the strain energy accumulated in the grain boundaries in the magnetic annealing process and causing secondary recrystallization, and increasing the average crystal grain size.

【0007】また、本出願人の特公昭61−23864
号公報によるとFe−Ni合金を、鍛造、熱間圧延、冷
間圧延、焼鈍、冷間圧延、焼鈍、冷間圧延(加工率90
%超)の工程により加工して厚さが0.13mmのシャ
ドウマスク用素材を得ている。この工程により、成分偏
析に起因するすじむらが消失するが、集合組織を制御す
るための最終焼鈍は行われていない。
Further, the applicant's Japanese Patent Publication No. 23864/1986
According to the publication, forging, hot rolling, cold rolling, annealing, cold rolling, annealing, cold rolling (for a working ratio of 90
%) To obtain a shadow mask material having a thickness of 0.13 mm. By this step, the line unevenness due to the component segregation disappears, but the final annealing for controlling the texture is not performed.

【0008】ところで、約83%Ni−Fe合金はλs
≒0となることはよく知られているが、この近傍の組成
をもつNi−Fe合金は、飽和磁束密度BS が低く、イ
ンダクタンスが高磁界域で低下するため、偏向ヨーク用
の磁極材料として最適とは言えない。一方、30%Ni
−Fe,36%Ni−Feはキューリー点が低く、偏向
ヨークの使用温度域(約100〜200℃)で飽和磁束
密度BS が低下し、強磁性材としての特性が失われてし
まうため、偏向ヨーク用の磁極片材料には適さない。し
たがって、偏向ヨークとして適するFe−Ni合金組成
はNi含有量が36%を超えかつ80%未満に制限され
る。さらに磁歪の観点からはλ200 が小さくなるNi=
40〜50%の組成域が好ましい。
[0008] By the way, about 83% Ni-Fe alloy is λ s
It is well known that ≒ 0, but a Ni—Fe alloy having a composition in the vicinity of this value has a low saturation magnetic flux density B S and a low inductance in a high magnetic field region. Not optimal. On the other hand, 30% Ni
Since -Fe and 36% Ni-Fe have a low Curie point, the saturation magnetic flux density B S decreases in the operating temperature range (about 100 to 200 ° C.) of the deflection yoke, and the characteristics as a ferromagnetic material are lost. Not suitable for pole piece material for deflection yoke. Therefore, the Fe—Ni alloy composition suitable as a deflection yoke has a Ni content limited to more than 36% and less than 80%. Further from the viewpoint of magnetostriction lambda 200 decreases Ni =
A composition range of 40 to 50% is preferred.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上述した技
術の現状に鑑み、上記した好ましい組成(約40%Ni
〜約50%Ni)をもつFe−Ni合金圧延板の集合組
織を偏向ヨークに要求される低磁歪特性が得られるよう
に制御する方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned state of the art, the present invention relates to the above-mentioned preferred composition (about 40% Ni
It is an object of the present invention to provide a method for controlling the texture of a rolled Fe—Ni alloy sheet having a thickness of about 50% Ni) so as to obtain low magnetostriction characteristics required for a deflection yoke.

【0010】[0010]

【課題を解決するための手段】本発明に係るFe−Ni
合金板の製造方法は、Ni:38%〜52%(重量%、
以下同じ)、C:0.10%以下、Si:0.5%以
下、Mn:0.1〜2.0%を含み、残部Fe及びその
他不可避的不純物からなるFe−Ni系合金を溶解し鋳
造したインゴットを熱間圧延し、得られた板材を冷間圧
延することによるFe−Ni合金板の製造方法におい
て、加工率80%以上で冷間圧延を行い、所定の板厚と
された冷間圧延板を結晶粒径が30μm以上となるよう
焼鈍することにより、圧延面において(200)面が配
向した結晶粒が35%以上であり、且つ(111)面が
配向した結晶粒が20%以下である集合組織を形成する
ことを特徴とする。
According to the present invention, there is provided an Fe-Ni alloy according to the present invention.
The method of manufacturing the alloy plate is as follows: Ni: 38% to 52% (% by weight,
The same applies hereinafter), C: 0.10% or less, Si: 0.5% or less, Mn: 0.1 to 2.0%, and melts an Fe-Ni-based alloy consisting of the balance Fe and other unavoidable impurities. In a method of manufacturing an Fe—Ni alloy sheet by hot rolling an ingot that has been cast and cold rolling the obtained sheet material, cold rolling is performed at a working ratio of 80% or more to obtain a cold roll having a predetermined thickness. By annealing the cold-rolled sheet so that the crystal grain size becomes 30 μm or more, the crystal grains with the (200) plane oriented in the rolled surface are 35% or more and the crystal grains with the (111) plane oriented in 20%. The following texture is formed.

【0011】以下本発明のFe−Ni合金の組成限定理
由を説明する。陰極線管の偏向ヨーク用の磁極片材料の
各種要求特性を満足するFe−Ni系合金においてNi
含有量が38%〜52%の範囲で色ズレが小さく、使用
温度域で安定して動作し、また加工性にも優れている。
具体的に述べると、Ni含有量が38%未満になるとキ
ューリー点が200℃以下となるため、偏向ヨークの使
用温度域(約100〜200℃)で飽和磁束密度Bs
低下し、軟磁性材としての特性が失われてしまう。また
Niが52%を超えると磁歪が大きく、結晶方位を調整
しても磁歪の低減が困難なため、使用中のうなり音が要
求を満足できない。よってNi含有量は38〜52%と
する。
The reasons for limiting the composition of the Fe—Ni alloy of the present invention will be described below. Fe-Ni alloy satisfying various required characteristics of pole piece material for deflection yoke of cathode ray tube
When the content is in the range of 38% to 52%, the color misregistration is small, it operates stably in the operating temperature range, and is excellent in workability.
More specifically, when the Ni content is less than 38%, the Curie point becomes 200 ° C. or less, so that the saturation magnetic flux density B s decreases in the operating temperature range (about 100 to 200 ° C.) of the deflection yoke, and the soft magnetic property decreases. Material properties are lost. If Ni exceeds 52%, the magnetostriction is large, and it is difficult to reduce the magnetostriction even when the crystal orientation is adjusted. Therefore, the Ni content is set to 38 to 52%.

【0012】C:Cが0.1%を超えると鉄炭化物の生
成が著しく、合金の硬さが著しく増大するため、プレス
形成性が困難となる、よってCは、0.1%以下とす
る。 Si:Siは脱酸目的で添加するが、0.5%を超えて
含有すると合金の硬さが著しく増大するため、プレス形
成が困難となる。よってSiは、0.5%以下とする。 Mn:Mnは脱酸目的及び熱間加工性を付与するために
添加するが、0.1%より少ないと脱酸効果が不充分で
あり、また熱間加工性に劣る。Mnを2.0%を超えて
含有すると合金の硬さを増し、充分なプレス形成性が得
られない。よってMn含有量は、0.1〜2.0%とす
る。
C: When C exceeds 0.1%, the formation of iron carbide is remarkable, and the hardness of the alloy is remarkably increased, so that press formability is difficult. Therefore, C is set to 0.1% or less. . Si: Si is added for the purpose of deoxidation, but if it exceeds 0.5%, the hardness of the alloy is remarkably increased, so that press forming becomes difficult. Therefore, Si is set to 0.5% or less. Mn: Mn is added for the purpose of deoxidation and for imparting hot workability. If it is less than 0.1%, the deoxidizing effect is insufficient and the hot workability is poor. If the content of Mn exceeds 2.0%, the hardness of the alloy increases, and sufficient press-formability cannot be obtained. Therefore, the Mn content is set to 0.1 to 2.0%.

【0013】上記した組成を有するFe−Ni系合金を
溶解し、適当な形状に鋳造した後、熱間圧延によって板
材を得る。熱間圧延の温度は700〜1200℃が好ま
しい。
[0013] A Fe-Ni alloy having the above-described composition is melted and cast into an appropriate shape, and a sheet material is obtained by hot rolling. The temperature of the hot rolling is preferably from 700 to 1200C.

【0014】続いて熱間圧延板を直接80%以上の加工
率で冷間圧延をするか、あるいは厚さを落とすための加
工・焼鈍などを適宜行い最終の冷間圧延として80%以
上の加工率で冷間圧延を行い所定の板厚とし、その後結
晶粒径が30μm以上、好ましくは50μm以上になる
よう焼鈍を行うことにりより、圧延面に(200)面が
35%以上望ましくは80%以上集合し、かつ少なくと
も圧延板において(111)面が20%以下の集合組織
を形成する。ここで、冷間圧延の加工率が80%を下回
りかつ/または焼鈍後の結晶粒径が30μmであると所
期の集合組織が得られない。
Subsequently, the hot-rolled sheet is directly cold-rolled at a working ratio of 80% or more, or is subjected to processing and annealing to reduce the thickness as appropriate to obtain a final cold-rolled work of 80% or more. Cold rolling is performed at a predetermined rate to obtain a predetermined plate thickness, and then annealing is performed so that the crystal grain size is 30 μm or more, preferably 50 μm or more. % Or more, and at least the (111) plane forms a texture of 20% or less in the rolled sheet. Here, if the working ratio of the cold rolling is less than 80% and / or the crystal grain size after annealing is 30 μm, the desired texture cannot be obtained.

【0015】厚さが1mm以下の板では断面全体が上記
した集合組織を有する。圧延面に(200)面の結晶粒
が多く、(111)面の結晶粒が少ないFe−Ni合金
圧延板を偏向ヨークとし、圧延板に直交する方向に励磁
すると、磁束の方向が磁歪が最も小さい方向になるか
ら、偏向ヨークのうなり音が小さくなる。また圧延面に
平行に励磁しても(111)面内の磁歪は発生しないか
ら、やはり偏向ヨークのうなり音は小さくなる。
In a plate having a thickness of 1 mm or less, the entire cross section has the above texture. When a rolled Fe-Ni alloy rolled plate having a large number of (200) crystal grains and a small number of (111) crystal grains is used as a deflection yoke and excited in a direction perpendicular to the rolled plate, the direction of the magnetic flux has the highest magnetostriction. Since the direction becomes smaller, the beating sound of the deflection yoke is reduced. Also, even if the magnet is excited in parallel with the rolling surface, no magnetostriction occurs in the (111) plane, so that the beating sound of the deflection yoke is also reduced.

【0016】上記した冷間圧延は1パスもしくは数パス
で80%以上の加工率に到達するように行う。複数パス
の冷間圧延の中間では加工性を回復するが再結晶を起こ
さない程度の条件で焼鈍を行うことができる。冷間圧延
後に行う焼鈍は通常800℃以上の温度が好ましい。
The above-mentioned cold rolling is carried out so as to reach a working ratio of 80% or more in one pass or several passes. Annealing can be performed under conditions that recover workability but do not cause recrystallization in the middle of multiple passes of cold rolling. The annealing performed after the cold rolling is preferably performed at a temperature of 800 ° C. or higher.

【0017】一般に、偏向ヨーク用磁極片用材料の要求
品質について説明すると以下の5項目がある。 画面中心部の色ズレを小さくするためには、磁極片の
残留磁束密度や保磁力が小さいこと。 画面周辺部の色ズレを小さくするためには、高磁界域
で磁化が飽和しないこと、さらにインダンクタンスが高
く、高磁界域で低下しないこと。 うなり音を小さくするためには、磁界の変動によって
材料が伸縮しないこと、つまり磁歪が小さいこと。 磁極片材料が強磁性材としての特性を安定して発揮す
るために磁気変態温度(キューリー点)が駆動温度域よ
りも高いこと。 最後に加工が容易で部品形状への形成が容易なことが
要求される。
In general, the required quality of the deflection yoke magnetic pole piece material includes the following five items. To reduce the color shift at the center of the screen, the residual magnetic flux density and coercive force of the pole pieces must be small. In order to reduce the color shift at the peripheral portion of the screen, the magnetization should not be saturated in the high magnetic field region, and the inductance should be high and should not be reduced in the high magnetic field region. In order to reduce the beating noise, the material does not expand or contract due to the fluctuation of the magnetic field, that is, the magnetostriction is small. The magnetic transformation temperature (Curie point) must be higher than the driving temperature range so that the pole piece material can stably exhibit the characteristics as a ferromagnetic material. Finally, it is required that processing is easy and formation into a part shape is easy.

【0018】[0018]

【実施例】図2(表2)に組成を示すFe−Ni系合金
及びFe−Si系合金を溶解、鋳造、鍛造、熱間圧延板
材(厚さ2〜6mm)を得た。次にこの熱間圧延によっ
て得た板材を表2に示した加工率30〜95%の冷間加
工と焼鈍の繰返しによって厚さ0.3mmの板材とした
のち、同じく表2に示した700〜1100℃の温度で
焼鈍した。表中加工率が80%以上でありかつ焼鈍温度
が1000℃以上の圧延材(No.1〜3)が本発明の
実施例であり、その他は比較例もしくは参考例である。
最終焼鈍後、X線回折強度比、結晶粒径を測定し、かつ
上記〜の特性を評価した結果を図2(表2)に示
す。
EXAMPLE An Fe-Ni alloy and an Fe-Si alloy having the compositions shown in FIG. 2 (Table 2) were melted, cast, forged, and hot-rolled sheet materials (2 to 6 mm thick) were obtained. Next, the sheet material obtained by this hot rolling was formed into a sheet material having a thickness of 0.3 mm by repeating cold working and annealing at a working ratio of 30 to 95% shown in Table 2 and then obtained from 700 to 300 shown in Table 2 also. Anneal at a temperature of 1100 ° C. Rolled materials (Nos. 1 to 3) having a working ratio of 80% or more in the table and an annealing temperature of 1000 ° C. or more are examples of the present invention, and others are comparative examples or reference examples.
After the final annealing, the results of measuring the X-ray diffraction intensity ratio and the crystal grain size and evaluating the above characteristics are shown in FIG. 2 (Table 2).

【0019】なお〜の特性の評価は下記の基準を満
たすものを合格(○)、満たさないものを不合格(×)
とした。 画面中心部の色ズレが小さい−保磁力:HC ≦25A
/m 画面周辺部の色ズレが小さい−飽和磁束密度:BS
0.7T うなり音が小さい−磁歪定数:λ≦±7×10-5 磁極片材料が軟磁性材としての特性を安定して発揮す
る−キューリー点:TC ≧200℃) 加工が容易で部品形状への形成が容易である。
In the evaluation of the following characteristics, those satisfying the following criteria were passed (o), and those not satisfied were rejected (x).
And Small color shift at the center of the screen-coercive force: H C ≤ 25A
/ M Small color shift around screen-Saturation magnetic flux density: B S
0.7T Low beating sound-Magnetostriction constant: λ ≤ ± 7 × 10 -5 The pole piece material stably exhibits the properties as a soft magnetic material-Curie point: T C ≥ 200 ° C) Easy to form into shape.

【0020】また(111)面及び(200)面の回折
強度比(R)は以下の式により求めた。 R(111) =I(111) /Itotal ×100(%) R(200) =I(200) /Itotal ×100(%) 但し、Iは回折強度、Itotal =I(111) +I(200)
(220) +I(311) である。
The diffraction intensity ratio (R) of the (111) plane and the (200) plane was obtained by the following equation. R (111) = I (111) / I total × 100 (%) R (200) = I (200) / I total × 100 (%) where I is the diffraction intensity and I total = I (111) + I ( 200) +
I (220) + I (311) .

【0021】表2中で参考例として示した3.5%Si
−Fe(No.10,12)は、(200)面の配向度
が高いが、磁歪が大きく使用中のうなり音が大きいた
め、偏向ヨーク用の磁極片材料として最適とは言えな
い。同じく参考例として6.5%Si−Fe(No.1
1,13)は、その材質が脆いため、磁極片への加工が
難しいので偏向ヨーク用の磁極片材料としては最適とは
言えない。比較例のNo.4,5,6は、偏向ヨーク用
の磁極片材料として適したNi含有量38%〜52%を
有し、かつ結晶粒も大きいが、(200)面の配向度が
小さく通常の結晶方位を有するために、磁歪が大きく、
使用中うなり音が大きいたい。比較例のNo.14〜1
6は、偏向ヨーク用の磁極片材料として適したNi含有
量42%を有するが、結晶粒が小さいために(200)
面の配向度が小さくなり、その結果磁歪が大きく、使用
中うなり音が大きい。比較例7、8は極めて高い(20
0)面配向度を有するが、Ni含有量が低いためにキュ
リー点が低いために強磁性材として安定した特性を有し
ない。比較例9はNi含有量が高いが飽和磁束密度Bs
が低いために、インダクタンスが高磁界域で低下するの
で偏向ヨーク用の磁極片材料としては適していない。
3.5% Si shown in Table 2 as a reference example
-Fe (Nos. 10, 12) has a high degree of orientation in the (200) plane, but is not optimal as a pole piece material for a deflection yoke because of large magnetostriction and a loud whine during use. Similarly, as a reference example, 6.5% Si—Fe (No. 1)
1, 13) is not optimal as a pole piece material for a deflection yoke because its material is brittle and it is difficult to process it into a pole piece. No. of the comparative example. Nos. 4, 5, and 6 have a Ni content of 38% to 52% suitable as a pole piece material for a deflection yoke, and have large crystal grains, but have a small degree of orientation of the (200) plane and a normal crystal orientation. To have large magnetostriction,
I want a loud noise during use. No. of the comparative example. 14-1
No. 6 has a Ni content of 42% suitable as a pole piece material for a deflection yoke, but (200)
The degree of plane orientation is reduced, resulting in large magnetostriction and a loud noise during use. Comparative Examples 7 and 8 are extremely high (20
0) Although it has a degree of plane orientation, it does not have stable characteristics as a ferromagnetic material due to a low Curie point due to a low Ni content. Comparative Example 9 has a high Ni content but a saturated magnetic flux density B s
Is not suitable as a pole piece material for a deflection yoke because the inductance is reduced in a high magnetic field region due to the low magnetic field.

【0022】これに対して本発明実施例に相当するN
o.1〜3はすべての性能が優れているために、色ズ
レ、うなり音が小さく、使用温度域で安定して動作し、
加工性に優れた陰極線管の偏向ヨーク用の磁極片材料を
提供することができる。
On the other hand, N corresponding to the embodiment of the present invention
o. 1-3 are excellent in all performance, color shift, beat sound is small, it operates stably in the operating temperature range,
A pole piece material for a deflection yoke of a cathode ray tube having excellent workability can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Fe−Ni系合金、Fe−Si系合金の磁歪を
示す図表(表1)である。
FIG. 1 is a chart (Table 1) showing magnetostriction of an Fe—Ni alloy and an Fe—Si alloy.

【図2】実施例、比較例及び参考例の圧延加工率、焼鈍
温度及び特性を示す図表(表2)である。
FIG. 2 is a table (Table 2) showing rolling reduction rates, annealing temperatures, and characteristics of Examples, Comparative Examples, and Reference Examples.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22F 1/00 623 8719−4K C22F 1/00 623 660 8719−4K 660C 661 8719−4K 661Z 685 8719−4K 685 694 8719−4K 694A ──────────────────────────────────────────────────の Continuation of front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location C22F 1/00 623 8719-4K C22F 1/00 623 660 8719-4K 660C 661 8719-4K 661Z 685 8719 −4K 685 694 8719 −4K 694A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Ni:38%〜52%(重量%、以下同
じ)、C:0.10%以下、Si:0.5%以下、M
n:0.1〜2.0%を含み、残部Fe及びその他不可
避的不純物からなるFe−Ni系合金を溶解し鋳造した
インゴットを熱間圧延し、得られた板材を冷間圧延する
ことによるFe−Ni合金板の製造方法において、加工
率80%以上で冷間圧延を行い、所定の板厚とされた冷
間圧延板を結晶粒径が30μm以上となるよう焼鈍する
ことにより、圧延面において(200)面が配向した結
晶粒が35%以上であり、且つ(111)面が配向した
結晶粒が20%以下である集合組織を形成することを特
徴とするFe−Ni合金板の製造方法。
1. Ni: 38% to 52% (weight%, the same applies hereinafter), C: 0.10% or less, Si: 0.5% or less, M
n: containing 0.1 to 2.0%, by hot rolling an ingot cast by melting and casting an Fe-Ni alloy containing the balance of Fe and other unavoidable impurities, and cold rolling the obtained sheet material. In the method for producing an Fe—Ni alloy sheet, cold rolling is performed at a working ratio of 80% or more, and a cold-rolled sheet having a predetermined thickness is annealed so that the crystal grain size becomes 30 μm or more. Producing a Fe-Ni alloy sheet, wherein a texture is formed in which the crystal grains with the (200) plane oriented are 35% or more and the crystal grains with the (111) plane oriented are 20% or less. Method.
【請求項2】 結晶粒径が50μm以上になるよう焼鈍
する請求項1記載のFe−Ni合金板の製造方法。
2. The method for producing an Fe—Ni alloy sheet according to claim 1, wherein the annealing is performed so that the crystal grain size becomes 50 μm or more.
JP7314897A 1996-03-27 1997-03-26 Production of iron-nickel alloy sheet Pending JPH1025517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7314897A JPH1025517A (en) 1996-03-27 1997-03-26 Production of iron-nickel alloy sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-72492 1996-03-27
JP7249296 1996-03-27
JP7314897A JPH1025517A (en) 1996-03-27 1997-03-26 Production of iron-nickel alloy sheet

Publications (1)

Publication Number Publication Date
JPH1025517A true JPH1025517A (en) 1998-01-27

Family

ID=26413629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7314897A Pending JPH1025517A (en) 1996-03-27 1997-03-26 Production of iron-nickel alloy sheet

Country Status (1)

Country Link
JP (1) JPH1025517A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029847A1 (en) * 2000-09-29 2002-04-11 Matsushita Electric Industrial Co., Ltd. Cathode ray tube
JP2011089170A (en) * 2009-10-22 2011-05-06 Jfe Steel Corp Motor core
JP2019537248A (en) * 2016-09-30 2019-12-19 アペラム Transformer core for cut and stack type transformer and transformer provided with the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029847A1 (en) * 2000-09-29 2002-04-11 Matsushita Electric Industrial Co., Ltd. Cathode ray tube
US6995503B2 (en) 2000-09-29 2006-02-07 Matsushita Electric Industrial Co., Ltd. Cathode ray tube tension mask made of magnetostrictive material with compensation for terrestrial magnetism
JP2011089170A (en) * 2009-10-22 2011-05-06 Jfe Steel Corp Motor core
JP2019537248A (en) * 2016-09-30 2019-12-19 アペラム Transformer core for cut and stack type transformer and transformer provided with the same

Similar Documents

Publication Publication Date Title
JPH08209306A (en) Iron-nickel alloy with low coefficient of thermal expansion
US4948434A (en) Method for manufacturing Ni-Fe alloy sheet having excellent DC magnetic property and excellent AC magnetic property
JP3150831B2 (en) High Young&#39;s modulus low thermal expansion Fe-Ni alloy
JP3243240B2 (en) Method of manufacturing thin cold rolled inner shield steel sheet with excellent magnetic field shielding properties
JPS63259054A (en) Shadow mask
JPH1025517A (en) Production of iron-nickel alloy sheet
JP2760013B2 (en) Method for producing high permeability magnetic material
JP3861003B2 (en) Steel plate for heat shrink band and method for producing the same
JP3399726B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP2002080948A (en) Nonoriented silicon steel sheet having excellent blanking workability
JP3353321B2 (en) Method for producing Fe-Ni alloy sheet for shadow mask excellent in press formability and Fe-Ni alloy sheet for shadow mask excellent in press formability
JP2674137B2 (en) High permeability magnetic material
EP0964073A1 (en) A steel sheet for use as an electrode-supporting frame member of a color picture tube and manufacturing method thereof
JP3537112B2 (en) Material for aperture grill for color picture tube, method of manufacturing the same, aperture grill and picture tube
JPS61166947A (en) Shadow mask
JP2898793B2 (en) Method for producing non-oriented electrical steel sheet having high magnetic flux density and low iron loss
KR100225447B1 (en) The yoke of an electron gun and producing method of fe-ni alloy for yoke
JPH01263218A (en) Production of high magnetic permeability alloy of ni-fe system
JP3331403B2 (en) Manufacturing method of hot rolled steel sheet for particle accelerator with excellent magnetic and strength properties
JPH076046B2 (en) Method for producing Ni-Fe alloy plate having excellent magnetic properties
US6544356B2 (en) Steel sheet for use as an electrode-supporting frame member of a color picture tube and manufacturing method thereof
EP1065291B1 (en) Material for aperture grill for color picture tube, process for making the same, aperture grill, and picture tube
JP2701526B2 (en) Fe-Ni based high permeability magnetic alloy and method for producing the same
JP3326897B2 (en) Fe-Ni alloy thin plate for shadow mask
JP3284732B2 (en) Fe-Ni-based alloy thin plate and Fe-Ni-Co-based alloy thin plate for a color picture tube having excellent magnetic properties and method of manufacturing the same