JPH10253758A - Method and apparatus for estimation of frequency, doppler sonar and tidal current meter - Google Patents

Method and apparatus for estimation of frequency, doppler sonar and tidal current meter

Info

Publication number
JPH10253758A
JPH10253758A JP5866497A JP5866497A JPH10253758A JP H10253758 A JPH10253758 A JP H10253758A JP 5866497 A JP5866497 A JP 5866497A JP 5866497 A JP5866497 A JP 5866497A JP H10253758 A JPH10253758 A JP H10253758A
Authority
JP
Japan
Prior art keywords
frequency
reflected wave
value
spectrum
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5866497A
Other languages
Japanese (ja)
Other versions
JP3881078B2 (en
Inventor
Satoru Okunishi
哲 奥西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP5866497A priority Critical patent/JP3881078B2/en
Publication of JPH10253758A publication Critical patent/JPH10253758A/en
Application granted granted Critical
Publication of JP3881078B2 publication Critical patent/JP3881078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a frequency estimation method in which a reliable frequency estimation value can be obtained even when an S/N ratio is small in the frequency estimation method in which a DFT(discrete Fourier transform) is used. SOLUTION: A signal which estimates a frequency is A/D-converted and then discrete-Fourier-transformed, and the frequency is estimated. Then, the estimated frequency and a spectrum number kmax at a time when an amplitude spectrum takes a maximum value are stored. This operation is executed repeatedly regarding a plurality of sampling series of the signal which estimates the signal. Data by this repetitive processing operation are stored, the histogram of the kmax is formed, and its most frequent value (mode) kmax-mode is calculated. The most frequent value refers to a kmax value in which the number of times of appearances is largest. Out of a plurality of found frequency estimated values, values which are contained in a definite frequency range which includes frequencies corresponding to the kmax-mode are sorted, and their mean value is found.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、信号周波数を離
散フーリエ変換(DFT)で求められたスペクトル分布
に基づいて推定する周波数推定方法に関し、特に、信号
のS/N比が小さいときに正確な周波数を推定できる周
波数推定方法および周波数推定装置に関する。また、こ
の発明は、反射波のS/N比が小さいときでも、正確な
船速や潮流速度を測定することのできるドップラソナー
および潮流計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a frequency estimating method for estimating a signal frequency based on a spectrum distribution obtained by a discrete Fourier transform (DFT), and more particularly, to an accurate frequency estimating method when the S / N ratio of a signal is small. The present invention relates to a frequency estimation method and a frequency estimation device capable of estimating a frequency. The present invention also relates to a Doppler sonar and a tide meter capable of accurately measuring a ship speed and a tidal current speed even when the S / N ratio of a reflected wave is small.

【0002】[0002]

【従来の技術】ドップラソナーや潮流計などのドップラ
効果を利用する機器では、受信した信号の周波数を、D
FT(実際の演算は高速フーリエ変換(FFT)で行
う。)を利用して推定する手法が適用されている。たと
えば、田部井誠、上田光宏両氏による「FFTを用いた
高精度周波数決定法」(電子通信学会情報誌、1987
年5月号、798頁〜805頁)にDFTを用いる高精
度な周波数推定法(以下、田部井・上田法という)が提
案されている。この田部井・上田法は、入力された時系
列データにハニング窓を乗じたのちDFTを行って得ら
れる離散的な振幅スペクトルのうち、最大値をとるスペ
クトルと、これに隣り合う周波数での振幅スペクトルと
の比に基づき、補間を行って真のピーク周波数fpea
kを推定しようとするものであり(図6参照)、信号の
S/N比がある程度以上大きければこの方法によって精
度のよい周波数推定を行うことができる。
2. Description of the Related Art In a device using the Doppler effect, such as a Doppler sonar or a tidal current meter, the frequency of a received signal is set to D.
A method of estimating using FT (actual calculation is performed by fast Fourier transform (FFT)) is applied. For example, "High-precision frequency determination method using FFT" by Makoto Tabei and Mitsuhiro Ueda (IEICE Information Magazine, 1987
May 1989, pp. 798 to 805), a highly accurate frequency estimation method using DFT (hereinafter referred to as the Tabei-Ueda method) has been proposed. The Tabei / Ueda method is based on the discrete spectrum obtained by multiplying the input time-series data by a Hanning window and then performing DFT, the spectrum having the maximum value, and the amplitude spectrum at the frequency adjacent thereto. Interpolation based on the ratio of the true peak frequency fpea
k is to be estimated (see FIG. 6), and if the S / N ratio of the signal is larger than a certain level, accurate frequency estimation can be performed by this method.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記のような
周波数推定法では、信号のS/N比が小さい場合には必
ずしも真値に近い推定値を得ることができない。たとえ
ば、白色雑音を含む正弦波信号をサンプリングして得ら
れる系列(あるいは、この系列と適当な窓関数の系列と
の積)をg(n)(n=0,1,2,…,N−1)とす
ると、g(n)のDFTは次式で定義される。
However, in the above frequency estimation method, when the S / N ratio of the signal is small, an estimated value close to the true value cannot always be obtained. For example, a sequence obtained by sampling a sine wave signal including white noise (or a product of this sequence and a sequence of an appropriate window function) is represented by g (n) (n = 0, 1, 2,..., N− Assuming 1), the DFT of g (n) is defined by the following equation.

【0004】[0004]

【数1】 (Equation 1)

【0005】ここで、g(n)は振幅スペクトル|G
(k)|の特徴によって、次の(A),(B)に分類さ
れる。
Here, g (n) is an amplitude spectrum | G
According to the feature of (k) |, it is classified into the following (A) and (B).

【0006】(A)は|G(k)|の最大値に信号成分
が主として寄与する系列(以下、A系列という)であ
る。この系列の|G(k)|の例を図5(A)に示す。
|G(k)|が最大値をとるときの周波数番号kをkm
axとすると、A系列のkmaxは信号の周波数fに対
応した値をとり、両者の関係は次式で表される。 f≒kmax(fs/N) ここで、fsはサンプリング周波数、Nはサンプリング
点数である。
(A) is a sequence in which signal components mainly contribute to the maximum value of | G (k) | (hereinafter referred to as A sequence). An example of | G (k) | of this series is shown in FIG.
The frequency number k when | G (k) | takes the maximum value is km
Assuming that a is ax, kmax of the A series takes a value corresponding to the frequency f of the signal, and the relationship between them is expressed by the following equation. f ≒ kmax (fs / N) where fs is the sampling frequency and N is the number of sampling points.

【0007】一方、(B)は|G(k)|の最大値に信
号成分が寄与しない系列(以下、B系列という)であ
る。この系列の|G(k)|の例を図5(B)に示す。
B系列のkmaxは信号の周波数fとは無関係な値をと
る。すなわち、信号のスペクトルがノイズのスペクトル
のなかに埋もれてしまい、ノイズ成分がピークをとって
しまう。
[0007] On the other hand, (B) is a sequence in which the signal component does not contribute to the maximum value of | G (k) | FIG. 5B shows an example of | G (k) | of this series.
The value kmax of the B sequence takes a value irrelevant to the frequency f of the signal. That is, the spectrum of the signal is buried in the spectrum of the noise, and the noise component has a peak.

【0008】S/N比が小さいほどB系列の生じる確率
は高くなるため、従来のDFTによる周波数推定法は、
S/N比が小さいときには信頼性に欠ける問題点があっ
た。
Since the probability of occurrence of the B sequence increases as the S / N ratio decreases, the conventional frequency estimation method using DFT
When the S / N ratio is small, there is a problem that reliability is lacking.

【0009】この発明は、DFTを用いた周波数推定法
において、S/N比が小さい場合でも信頼できる周波数
推定値を得ることができる周波数推定方法および周波数
推定装置を提供することを目的とし、また、この発明
は、精度のよい計測を可能としたドップラソナーおよび
潮流計を提供することを目的とする。
An object of the present invention is to provide a frequency estimating method and a frequency estimating apparatus which can obtain a reliable frequency estimated value even when the S / N ratio is small in a frequency estimating method using DFT. SUMMARY OF THE INVENTION It is an object of the present invention to provide a Doppler sonar and a tidal current meter capable of performing accurate measurement.

【0010】[0010]

【課題を解決するための手段】この出願の請求項1の発
明は、アナログ・ディジタル変換(A/D変換)された
信号をDFTによって離散スペクトルに分解し、このス
ペクトル分布に基づいて前記信号の周波数推定値を求め
る方法において、前記信号の複数のサンプリング系列を
入力して、各サンプリング系列毎に前記周波数推定値を
記憶するとともに、各サンプリング系列の振幅スペクト
ルが最大値をとるときの周波数番号の度数を計数し、前
記度数が最大値をとる周波数番号に対応する周波数を含
む一定の周波数範囲内に含まれる周波数推定値だけを選
別し、これら選別された周波数推定値の平均値を確定周
波数推定値とすることを特徴とする。
According to a first aspect of the present invention, a signal that has been subjected to analog-to-digital conversion (A / D conversion) is decomposed into a discrete spectrum by DFT, and the signal is divided based on the spectrum distribution. In the method for obtaining a frequency estimation value, a plurality of sampling sequences of the signal are input, the frequency estimation value is stored for each sampling sequence, and a frequency number at which the amplitude spectrum of each sampling sequence has a maximum value is obtained. The frequency is counted, and only the frequency estimation values included in a certain frequency range including the frequency corresponding to the frequency number at which the frequency has the maximum value are selected, and the average value of the selected frequency estimation values is determined as the definite frequency estimation. It is characterized by a value.

【0011】この出願の請求項2の発明は、A/D変換
された信号をDFTによって離散スペクトルに分解し、
このスペクトル分布に基づいて前記信号の周波数推定値
を求める装置において、前記信号の複数のサンプリング
系列を入力して、各サンプリング系列毎に前記周波数推
定値を記憶する記憶手段と、各サンプリング系列の振幅
スペクトルが最大値をとるときの周波数番号の度数を計
数し、前記度数が最大値をとる周波数番号に対応する周
波数を含む一定の周波数範囲に含まれる周波数推定値だ
けを選別し、これら選別された周波数推定値の平均値を
確定周波数推定値とする周波数確定手段と、を備えたこ
とを特徴とする。
The invention according to claim 2 of the present application decomposes an A / D converted signal into a discrete spectrum by DFT,
In a device for obtaining a frequency estimation value of the signal based on the spectrum distribution, a storage means for inputting a plurality of sampling sequences of the signal and storing the frequency estimation value for each sampling sequence; Count the frequency of the frequency number when the spectrum has the maximum value, and select only the frequency estimation value included in a certain frequency range including the frequency corresponding to the frequency number at which the frequency has the maximum value. Frequency determination means for setting an average value of the frequency estimation values to the determined frequency estimation value.

【0012】この出願の請求項3の発明は、送波器から
出力した超音波信号の対象物からの反射波を受波器で受
信し、該反射波のドップラシフト周波数に基づいて前記
対象物に対する船舶の相対速度を測定するドップラソナ
ーにおいて、前記反射波をディジタル信号に変換するア
ナログ・ディジタル変換手段と、該ディジタル信号を離
散フーリエ変換することによって離散スペクトルに分解
するスペクトル分解手段と、該離散スペクトルに基づい
て前記反射波のドップラシフト周波数を推定する周波数
推定手段と、前記離散スペクトルにおいてその絶対値が
最大値をとるときの周波数番号である最大振幅番号を検
出する最大振幅番号検出手段と、複数回の送波よって得
られる複数個の反射波について、前記アナログ・ディジ
タル変換手段、スペクトル分解手段、周波数推定手段、
および、最大振幅番号検出手段を実行し、前記最大振幅
番号の度数が最大値をとる周波数番号に対応する周波数
を含む一定の周波数範囲に含まれる周波数推定値だけを
選別し、これら選別された周波数推定値の平均値を確定
周波数推定値とする周波数確定手段と、を備えたことを
特徴とする。
According to a third aspect of the present invention, the ultrasonic wave signal output from the transmitter is received by a receiver from a reflected wave of the target object, and the target object is detected based on the Doppler shift frequency of the reflected wave. A Doppler sonar for measuring a relative speed of a ship with respect to a digital signal; an analog-digital conversion means for converting the reflected wave into a digital signal; a spectrum decomposition means for decomposing the digital signal into a discrete spectrum by performing a discrete Fourier transform; Frequency estimation means for estimating the Doppler shift frequency of the reflected wave based on the spectrum, maximum amplitude number detection means for detecting the maximum amplitude number which is the frequency number when the absolute value of the discrete spectrum takes the maximum value, For a plurality of reflected waves obtained by transmitting a plurality of times, the analog / digital conversion means Vector decomposition means, frequency estimation means,
And executing maximum amplitude number detection means, and selects only frequency estimation values included in a certain frequency range including a frequency corresponding to a frequency number at which the frequency of the maximum amplitude number has a maximum value. Frequency determining means for setting an average value of the estimated values as the determined frequency estimated value.

【0013】この出願の請求項4の発明は、送波器から
出力した超音波信号の水底および水塊からの反射波を受
波器で受信し、各反射波のドップラシフト周波数に基づ
いて対地速度および対水速度を求め、これらを減算する
ことによって潮流速度を求める潮流計において、前記水
底からの反射波をディジタル信号に変換する水底反射波
アナログ・ディジタル変換手段と、該ディジタル信号を
離散フーリエ変換することによって離散スペクトルに分
解する水底反射波スペクトル分解手段と、該離散スペク
トルに基づいて前記水底反射波の周波数を推定する水底
反射波周波数推定手段と、前記離散スペクトルにおいて
その絶対値が最大値をとるときの周波数番号である水底
反射波最大振幅番号を検出する水底反射波最大振幅番号
検出手段と、複数回の送波によって得られる複数個の水
底反射波について、前記水底反射波アナログ・ディジタ
ル変換手段、水底反射波スペクトル分解手段、水底反射
波周波数推定手段、および、水底反射波最大振幅番号検
出手段を実行し、前記最大振幅番号の度数が最大値をと
る周波数番号に対応する周波数を含む一定の周波数範囲
に含まれる水底反射波周波数推定値だけを選別し、これ
ら選別された水底反射波周波数推定値の平均値を確定水
底反射波周波数推定値とする水底反射波周波数確定手段
と、前記水塊からの反射波をディジタル信号に変換する
水塊反射波アナログ・ディジタル変換手段と、該ディジ
タル信号を離散フーリエ変換することによって離散スペ
クトルに分解する水塊反射波スペクトル分解手段と、該
離散スペクトルに基づいて前記水塊反射波の周波数を推
定する水塊反射波周波数推定手段と、前記離散スペクト
ルにおいてその絶対値が最大値をとるときの周波数番号
である水塊反射波最大振幅番号を検出する水塊反射波最
大振幅番号検出手段と、複数回の送波によって得られる
複数個の水塊反射波について、前記水塊反射波アナログ
・ディジタル変換手段、水塊反射波スペクトル分解手
段、水塊反射波周波数推定手段、および、水塊反射波最
大振幅番号検出手段を実行し、前記最大振幅番号の度数
が最大値をとる周波数番号に対応する周波数を含む一定
の周波数範囲に含まれる水塊反射波周波数推定値だけを
選別し、これら選別された水塊反射波周波数推定値の平
均値を確定水塊反射波周波数推定値とする水塊反射波周
波数確定手段と、を備えたことを特徴とする。
According to a fourth aspect of the present invention, there is provided an ultrasonic signal output from a transmitter, wherein a reflected wave from the bottom of the water and a body of water is received by a receiver, and a ground based on the Doppler shift frequency of each reflected wave. In a tide meter for determining a velocity and a velocity with respect to water and subtracting these, a tide analog-digital conversion means for converting a reflected wave from the bottom to a digital signal, and a discrete Fourier Underwater reflected wave spectrum decomposing means for decomposing into a discrete spectrum by converting, underwater reflected wave frequency estimating means for estimating the frequency of the underwater reflected wave based on the discrete spectrum, and the absolute value of the discrete spectrum is the maximum value A bottom-bottom reflected wave maximum amplitude number detecting means for detecting a bottom-bottom reflected wave maximum amplitude number which is a frequency number when taking For the plurality of bottom reflection waves obtained by the transmission of the above, the bottom reflection wave analog-to-digital conversion means, bottom reflection wave spectrum decomposition means, bottom reflection frequency estimation means, and bottom reflection maximum amplitude number detection means are executed. Then, the frequency of the maximum amplitude number is selected only underwater reflected wave frequency estimation value included in a certain frequency range including the frequency corresponding to the frequency number having the maximum value, of the selected underwater reflected wave frequency estimation value Underwater reflected wave frequency determining means for determining the average value as the determined underwater reflected wave frequency estimated value, water body reflected wave analog-to-digital conversion means for converting the reflected wave from the water body into a digital signal, and a discrete Fourier A water mass reflection wave spectrum decomposing means for decomposing the water mass into a discrete spectrum by converting the water mass based on the discrete spectrum; Water mass reflection wave frequency estimating means for estimating the frequency of the radiation wave, and water mass reflection wave maximum amplitude for detecting a water mass reflection wave maximum amplitude number which is a frequency number when the absolute value of the discrete spectrum takes the maximum value Number detection means, and for a plurality of water body reflected waves obtained by a plurality of transmissions, the water body reflected wave analog / digital conversion means, water body reflected wave spectrum decomposing means, water body reflected wave frequency estimating means, and Executing the water mass reflection wave maximum amplitude number detecting means and selecting only the water mass reflection wave frequency estimation value included in a certain frequency range including the frequency corresponding to the frequency number at which the frequency of the maximum amplitude number has the maximum value. And a water body reflected wave frequency determining means for setting an average value of the selected water body reflected wave frequency estimated values as a confirmed water body reflected wave frequency estimated value.

【0014】この発明では、周波数を推定する信号をA
/D変換→DFT変換し、その周波数を推定する。そし
てこの推定周波数、および、振幅スペクトル|G(k)
|が最大値をとるときの周波数番号kmaxを記憶す
る。これを上記周波数を推定する信号の複数のサンプリ
ング系列について繰り返し実行する。ここで、各サンプ
リング系列は、複数のサンプリング値からなる時系列デ
ータである。この繰り返し処理によるデータの蓄積のの
ち、kmaxのヒストグラムをとり、その最頻値(モー
ド)kmax−modeを割り出す。最頻値とは、最も
出現回数の多かったkmaxの値である。この周波数番
号kmax−modeに対応する周波数、 fo≡kmax−mode(fs/N) fs:サンプ
リング周波数 N:サンプリング点数 を求め、前記複数求められた周波数推定値のうち、この
周波数foを含む一定の周波数範囲に含まれるものを選
別してその平均値を求める。これを最終的な周波数推定
値として採用する。
According to the present invention, the signal for estimating the frequency is represented by A
/ D conversion → DFT conversion to estimate the frequency. Then, the estimated frequency and the amplitude spectrum | G (k)
The frequency number kmax when | takes the maximum value is stored. This is repeated for a plurality of sampling sequences of the signal for estimating the frequency. Here, each sampling sequence is time-series data including a plurality of sampling values. After accumulating data by this repetitive processing, a histogram of kmax is obtained and its mode (mode) kmax-mode is determined. The mode is the value of kmax that has the highest number of appearances. A frequency corresponding to this frequency number kmax-mode, fo≡kmax-mode (fs / N), fs: sampling frequency N: number of sampling points, and a certain value including the frequency fo among the plurality of obtained frequency estimation values Those included in the frequency range are selected and the average value is obtained. This is adopted as the final frequency estimation value.

【0015】このように、周波数foに近い値をとる周
波数推定値を選別・平均化して最終的な周波数推定値を
求めるようにしたことにより、信号のS/N比が小さく
ても、信号のスペクトルレベルがノイズよりも優勢なと
きの推定値のみを選別し、それ以外のときの推定値を無
視するため、正確な周波数推定値を得ることができる。
As described above, the frequency estimation value having a value close to the frequency fo is selected and averaged to obtain the final frequency estimation value. Thus, even if the S / N ratio of the signal is small, the signal estimation value is small. Since only the estimated value when the spectrum level is superior to the noise is selected and the estimated value at other times is ignored, an accurate frequency estimated value can be obtained.

【0016】[0016]

【発明の実施の形態】図面を参照してこの発明について
説明する。図1はこの発明が適用される潮流計を搭載し
た船舶を示す図、図2は同潮流計のブロック図である。
船舶1の船底には3つの超音波振動子である送受波器1
1が設けられており、3方向に超音波ビーム2を発する
とともに、該超音波ビーム2の海底および水塊からの反
射波を受信する。3つの送受波器11a,11b,11
cにはそれぞれトラップ12a,12b,12cを介し
て送信駆動部19が接続されている。送信駆動部は送受
波器11に対して電気的なパルス信号を繰り返し供給す
る。また、各トラップ12a〜12cには受信系統とし
て周波数変換器13a〜13c,増幅器14a〜14c
およびA/D変換器15a〜15cが接続されている。
前記トラップ12は送信駆動部19から入力される高レ
ベルの信号を受信系統に回り込まないようにし、且つ、
送受波器11が受信した低レベルの反射信号を受信系統
に伝達する回路である。トラップ12に接続されている
周波数変換器13は受信信号の周波数を低い値に変換す
る。周波数を下げることにより、後段のA/D変換器1
5のサンプリングレートを下げることができる。なお、
周波数を変換してもドップラシフトは保存される。周波
数変換された信号は増幅器14で増幅されたのちA/D
変換器15でディジタルデータ(量子化された離散時間
信号)に変換される。このディジタルデータは演算部1
6に入力される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the drawings. FIG. 1 is a view showing a ship equipped with a tide meter to which the present invention is applied, and FIG. 2 is a block diagram of the tide meter.
At the bottom of the ship 1, a transducer 1 as three ultrasonic transducers
1 is provided, emits an ultrasonic beam 2 in three directions, and receives reflected waves of the ultrasonic beam 2 from the sea floor and a body of water. Three transducers 11a, 11b, 11
The transmission drive unit 19 is connected to c through traps 12a, 12b, and 12c, respectively. The transmission driver repeatedly supplies an electric pulse signal to the transducer 11. Each of the traps 12a to 12c has a frequency converter 13a to 13c and an amplifier 14a to 14c as a receiving system.
And A / D converters 15a to 15c are connected.
The trap 12 prevents a high-level signal input from the transmission drive unit 19 from sneaking into a reception system, and
This is a circuit for transmitting a low-level reflection signal received by the transducer 11 to a receiving system. A frequency converter 13 connected to the trap 12 converts the frequency of the received signal to a lower value. By lowering the frequency, the subsequent A / D converter 1
5 can be reduced. In addition,
The Doppler shift is preserved even if the frequency is changed. The frequency-converted signal is amplified by the amplifier 14 and then A / D
The data is converted by the converter 15 into digital data (quantized discrete-time signal). This digital data is stored in arithmetic unit 1
6 is input.

【0017】また、前記周波数変換器13から出力され
た信号は海底検出部20に入力される。海底検出部20
は各送受波器11a〜11cが受信した反射波形の時間
差に基づいて海底深度を割り出す。
The signal output from the frequency converter 13 is input to a seafloor detector 20. Undersea detector 20
Calculates the seabed depth based on the time difference between the reflected waveforms received by the transducers 11a to 11c.

【0018】演算部16は送受波器11が受信した信号
(周波数変換されディジタルデータ化された信号)のう
ち、海底深度に対応する部分の波形と、1または複数の
潮流測定深度に対応する部分の波形を抽出し、この抽出
された波形をDFTすることによってその周波数を推定
する。この各測定深度毎の反射波の周波数推定は各送受
波器11a〜11cの受信信号毎に別々に行われる。そ
して、この各測定深度の推定周波数に基づいて、船舶の
海底に対する速度ベクトルである対地速度および船舶の
所定深度の水塊に対する速度ベクトルである対水速度を
求める。そしてこの対地速度から対水速度を減算するこ
とによって、前記水塊の海底に対する速度ベクトルであ
る潮流速度を算出する。算出された対地速度および潮流
速度は表示部17に入力される。表示部17はこの対地
速度,潮流速度を所定の表示形式(たとえば、矢印ベク
トル表示や数値・方位表示)に変換し、画面上のパター
ンに展開してモニタ18に出力する。モニタ18がこの
パターンを表示することにより、ユーザが対地速度,潮
流速度を認識することができる。
The arithmetic unit 16 comprises a waveform corresponding to the seafloor depth of a signal (frequency converted and converted into digital data) received by the transducer 11 and a portion corresponding to one or a plurality of tidal current measurement depths. Is extracted, and the frequency is estimated by performing DFT on the extracted waveform. The frequency estimation of the reflected wave at each measurement depth is performed separately for each reception signal of each of the transducers 11a to 11c. Then, based on the estimated frequencies at the respective measured depths, a ground speed, which is a speed vector of the ship with respect to the sea floor, and a water speed, which is a speed vector of a ship with a predetermined depth of water, are obtained. Then, by subtracting the water speed from the ground speed, a tidal current speed, which is a speed vector of the water mass with respect to the seabed, is calculated. The calculated ground speed and tidal current speed are input to the display unit 17. The display unit 17 converts the ground speed and the tidal current speed into a predetermined display format (for example, an arrow vector display or a numerical value / azimuth display), develops the pattern on the screen, and outputs the pattern to the monitor 18. By displaying this pattern on the monitor 18, the user can recognize the ground speed and the tidal current speed.

【0019】図3〜図5を参照して、演算部16におけ
る反射波受信信号の周波数推定処理動作を説明する。図
3は上記周波数推定処理動作を示すフローチャート、図
4は前記演算部16に設定される処理結果蓄積テーブル
を示す図、図5はDFTによって求められる振幅スペク
トルおよびkmaxのヒストグラムを示す図である。
With reference to FIGS. 3 to 5, the operation of the calculating section 16 for estimating the frequency of the received reflected wave signal will be described. FIG. 3 is a flowchart showing the frequency estimation processing operation, FIG. 4 is a view showing a processing result accumulation table set in the arithmetic unit 16, and FIG. 5 is a view showing a histogram of an amplitude spectrum and kmax obtained by DFT.

【0020】図3の処理動作は、超音波パルスを繰り返
し送受信して、各受信信号のサンプリング系列を処理す
る動作であり、上記各送受波器11a〜11c毎に、か
つ、海底深度および1または複数の測定深度に対応する
部分の波形毎に処理動作が繰り返し実行される。まず、
データ収集回数すなわち送受信した超音波パルスの送受
信回数を示すカウンタmに1をセットする(s10)。
潮流測定対象となる測定深度あるいは海底深度に対応す
る波形区間のサンプリングデータをNサンプル(x
(0)〜x(N−1))読み込み(s11)、このサン
プリングデータ列に対して、下式に示すようにハニング
窓などの適当な窓関数w(n)を乗じる(s12)。
The processing operation of FIG. 3 is an operation of repeatedly transmitting and receiving ultrasonic pulses to process a sampling sequence of each received signal. For each of the transducers 11a to 11c, the depth of the seabed and 1 or The processing operation is repeatedly performed for each waveform of a portion corresponding to a plurality of measurement depths. First,
The counter m indicating the number of times of data collection, that is, the number of times of transmission / reception of transmitted / received ultrasonic pulses is set to 1 (s10).
The sampling data of the waveform section corresponding to the measurement depth or the seabed depth that is the tidal current measurement target is N samples (x
(0) to x (N-1)) read (s11), and multiply this sampling data sequence by an appropriate window function w (n) such as a Hanning window as shown in the following equation (s12).

【0021】g(n)=w(n)・x(n) (n=
0,1,…,N−1) このデータ列{g(n)}を〔数1〕式にしたがってD
FT変換する(s13)。このDFT変換にはFFTア
ルゴリズムを用いればよい。
G (n) = w (n) .x (n) (n =
0, 1,..., N−1) This data string {g (n)} is expressed by D in accordance with [Equation 1].
FT conversion is performed (s13). The FFT algorithm may be used for this DFT transformation.

【0022】このDFT変換されたG(k)の値を用い
て周波数推定値f(m)を算出する(s14)。この周
波数推定法にはいくつかの手法があるが、たとえば、上
述した田部井・上田法を用いればよい。この周波数推定
値は演算部16に設定されている処理結果蓄積テーブル
(図4参照)に記録される。そして振幅スペクトル|G
(k)|が最大値をとるときの周波数番号kを求め、k
max(m)とする(s15)。このkmax(m)も
前記処理結果蓄積テーブルに記録される。このとき受信
信号のS/N比が大きければ、スペクトルは図5(A)
のようになり、kmaxは信号周波数に対応する値をと
るが、S/N比が小さければ、スペクトルは図5(B)
のようになり、kmaxは信号周波数と無関係な値をと
ることがある。以上のデータ収集処理をM個の受信信号
について繰り返し行い(s16→s11)、そののちs
18の集計動作に進む。
A frequency estimation value f (m) is calculated using the value of G (k) subjected to the DFT transformation (s14). There are several methods for this frequency estimation. For example, the above-mentioned Tabei-Ueda method may be used. This frequency estimation value is recorded in a processing result accumulation table (see FIG. 4) set in the calculation unit 16. And the amplitude spectrum | G
(K) Find the frequency number k when | takes the maximum value, and
max (m) (s15). This kmax (m) is also recorded in the processing result accumulation table. At this time, if the S / N ratio of the received signal is large, the spectrum is as shown in FIG.
And kmax takes a value corresponding to the signal frequency, but if the S / N ratio is small, the spectrum becomes as shown in FIG.
, And kmax may take a value independent of the signal frequency. The above data collection processing is repeated for M received signals (s16 → s11), and then s
The process proceeds to the counting operation of No. 18.

【0023】s18では、処理結果蓄積テーブルに記憶
されているM個のkmax(m)(m=1〜M)のヒス
トグラムをとり(図5(C)参照)、最頻値kmax−
modeを割り出す。そして、この最頻値に対応するf
o=kmax−mode・(fs/N)を算出し、上記
s14の動作で算出されたM個の周波数推定値f(m)
(m=1〜M)のうち、上記周波数foを含む一定の周
波数範囲に含まれる値だけを選別する(s19)。そし
て、この選別された周波数推定値の平均値を算出し、こ
の平均値を受信信号の周波数として出力する(s2
0)。
At s18, histograms of M kmax (m) (m = 1 to M) stored in the processing result accumulation table are obtained (see FIG. 5C), and the mode value kmax-m is calculated.
Find the mode. Then, f corresponding to this mode value
o = kmax−mode · (fs / N) is calculated, and the M frequency estimated values f (m) calculated in the operation of s14 are calculated.
From (m = 1 to M), only values included in a certain frequency range including the frequency fo are selected (s19). Then, the average value of the selected frequency estimation values is calculated, and the average value is output as the frequency of the received signal (s2
0).

【0024】現実に送受波器11から送信される超音波
ビームはある程度の広がり角をもつため、たとえば、海
底に対する入射角は一定ではなく、海底での反射波が受
けるドップラシフトには幅がある。このビームの広がり
角に対応する周波数範囲内の推定値を選別することによ
り、有効な推定値を漏れなく利用できる。
Since the ultrasonic beam actually transmitted from the transmitter / receiver 11 has a certain spread angle, for example, the incident angle with respect to the sea floor is not constant, and the Doppler shift received by the reflected wave at the sea floor has a certain width. . By selecting the estimated values within the frequency range corresponding to the beam divergence angle, effective estimated values can be used without omission.

【0025】以上のように、この発明の方式を用いるこ
とにより、受信信号のスペクトルがノイズのスペクトル
に見え隠れする程度にS/N比が小さいときでも、複数
個の推定値から有効なものを選別することによって、正
確な周波数を推定できる。そして、これを潮流計やドッ
プラソナーに適用することにより、正確なドップラシフ
ト周波数を割り出すことができ、精度のよい速度検出を
することができる。
As described above, by using the method of the present invention, even when the S / N ratio is small enough to make the spectrum of the received signal invisible and obscured by the spectrum of the noise, effective ones are selected from a plurality of estimated values. By doing so, an accurate frequency can be estimated. By applying this to a tidal current meter or a Doppler sonar, an accurate Doppler shift frequency can be determined, and accurate speed detection can be performed.

【0026】なお、上記実施形態では、1つの超音波振
動子を送波器および受波器として用いているが、送波器
と受波器を別々に設けてもよい。
In the above embodiment, one ultrasonic transducer is used as the transmitter and the receiver, but the transmitter and the receiver may be provided separately.

【0027】なお、上記実施形態は、船舶に搭載される
潮流計やドップラソナーに適用した例を説明したが、こ
の発明は、この分野に限定されることなく、周波数推定
の処理を含む種々の計測分野に適用できるものである。
Although the above-described embodiment has been described with respect to an example in which the present invention is applied to a tidal current meter or a Doppler sonar mounted on a ship, the present invention is not limited to this field, and various types of processing including frequency estimation processing may be performed. It can be applied to the measurement field.

【0028】[0028]

【発明の効果】以上のようにこの発明によれば、ノイズ
の影響によって生じうる、真値とは大きく異なる推定値
を無視できるため、信号のS/N比が小さくても正確な
周波数推定値を得ることができる。
As described above, according to the present invention, since an estimated value that is significantly different from a true value, which can be caused by the influence of noise, can be ignored, an accurate frequency estimated value can be obtained even if the S / N ratio of the signal is small. Can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明が適用される潮流計が搭載された船舶
を示す図
FIG. 1 is a view showing a ship equipped with a tidal current meter to which the present invention is applied;

【図2】同潮流計のブロック図FIG. 2 is a block diagram of the tidal current meter.

【図3】同潮流計の演算部の動作を示すフローチャートFIG. 3 is a flowchart showing an operation of a calculation unit of the tidal current meter;

【図4】同演算部に設定される処理結果蓄積テーブルを
示す図
FIG. 4 is a diagram showing a processing result accumulation table set in the calculation unit;

【図5】同演算部が算出するスペクトルおよびヒストグ
ラムの例を示す図
FIG. 5 is a diagram showing an example of a spectrum and a histogram calculated by the calculation unit.

【図6】DFTに基づく一般的な周波数推定手法を説明
する図
FIG. 6 is a diagram illustrating a general frequency estimation method based on DFT.

【符号の説明】[Explanation of symbols]

11a〜11c…送受波器、16…演算部 11a to 11c: transducer, 16: arithmetic unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アナログ・ディジタル変換された信号を
離散フーリエ変換によって離散スペクトルに分解し、こ
のスペクトル分布に基づいて前記信号の周波数推定値を
求める方法において、 前記信号の複数のサンプリング系列を入力して、各サン
プリング系列毎に前記周波数推定値を記憶するととも
に、各サンプリング系列の振幅スペクトルが最大値をと
るときの周波数番号の度数を計数し、 前記度数が最大値をとる周波数番号に対応する周波数を
含む一定の周波数範囲に含まれる周波数推定値だけを選
別し、これら選別された周波数推定値の平均値を確定周
波数推定値とすることを特徴とする周波数推定方法。
1. A method for decomposing an analog-to-digital converted signal into discrete spectrums by a discrete Fourier transform and obtaining a frequency estimation value of the signal based on the spectrum distribution, wherein a plurality of sampling sequences of the signal are input. In addition to storing the frequency estimation value for each sampling sequence, counting the frequency of the frequency number when the amplitude spectrum of each sampling sequence has the maximum value, the frequency corresponding to the frequency number at which the frequency has the maximum value A frequency estimation method characterized by selecting only frequency estimation values included in a certain frequency range including the above, and using an average value of the selected frequency estimation values as a definite frequency estimation value.
【請求項2】 アナログ・ディジタル変換された信号を
離散フーリエ変換によって離散スペクトルに分解し、こ
のスペクトル分布に基づいて前記信号の周波数推定値を
求める装置において、 前記信号の複数のサンプリング系列を入力して、各サン
プリング系列毎に前記周波数推定値を記憶する記憶手段
と、 各サンプリング系列の振幅スペクトルが最大値をとると
きの周波数番号の度数を計数し、前記度数が最大値をと
る周波数番号に対応する周波数を含む一定の周波数範囲
に含まれる周波数推定値だけを選別し、これら選別され
た周波数推定値の平均値を確定周波数推定値とする周波
数確定手段と、 を備えたことを特徴とする周波数推定装置。
2. An apparatus for decomposing an analog-digital converted signal into a discrete spectrum by a discrete Fourier transform and obtaining a frequency estimation value of the signal based on the spectrum distribution, wherein a plurality of sampling sequences of the signal are input. Storing means for storing the frequency estimation value for each sampling sequence, counting the frequency of the frequency number when the amplitude spectrum of each sampling sequence has the maximum value, and corresponding to the frequency number at which the frequency has the maximum value Frequency selection means for selecting only frequency estimation values included in a certain frequency range including the frequency to be set, and using an average value of the selected frequency estimation values as a definite frequency estimation value. Estimation device.
【請求項3】 送波器から出力した超音波信号の対象物
からの反射波を受波器で受信し、該反射波のドップラシ
フト周波数に基づいて前記対象物に対する船舶の相対速
度を測定するドップラソナーにおいて、 前記反射波をディジタル信号に変換するアナログ・ディ
ジタル変換手段と、 該ディジタル信号を離散フーリエ変換することによって
離散スペクトルに分解するスペクトル分解手段と、 該離散スペクトルに基づいて前記反射波のドップラシフ
ト周波数を推定する周波数推定手段と、 前記離散スペクトルにおいてその絶対値が最大値をとる
ときの周波数番号である最大振幅番号を検出する最大振
幅番号検出手段と、 複数回の送波よって得られる複数個の反射波について、
前記アナログ・ディジタル変換手段、スペクトル分解手
段、周波数推定手段、および、最大振幅番号検出手段を
実行し、前記最大振幅番号の度数が最大値をとる周波数
番号に対応する周波数を含む一定の周波数範囲に含まれ
る周波数推定値だけを選別し、これら選別された周波数
推定値の平均値を確定周波数推定値とする周波数確定手
段と、 を備えたことを特徴とするドップラソナー。
3. A reflected wave from an object of an ultrasonic signal output from a transmitter is received by a receiver, and a relative speed of a ship with respect to the object is measured based on a Doppler shift frequency of the reflected wave. In Doppler sonar, analog-to-digital conversion means for converting the reflected wave into a digital signal; spectrum decomposition means for decomposing the digital signal into a discrete spectrum by performing a discrete Fourier transform; and Frequency estimation means for estimating the Doppler shift frequency, maximum amplitude number detection means for detecting the maximum amplitude number that is the frequency number when the absolute value of the discrete spectrum takes the maximum value, obtained by multiple transmissions For multiple reflected waves,
The analog-to-digital conversion means, the spectrum decomposition means, the frequency estimating means, and the maximum amplitude number detecting means are executed, and the frequency of the maximum amplitude number becomes a certain frequency range including a frequency corresponding to a frequency number having a maximum value. Doppler sonar comprising: frequency determination means for selecting only included frequency estimation values and using an average value of the selected frequency estimation values as a determined frequency estimation value.
【請求項4】 送波器から出力した超音波信号の水底お
よび水塊からの反射波を受波器で受信し、各反射波のド
ップラシフト周波数に基づいて対地速度および対水速度
を求め、これらを減算することによって潮流速度を求め
る潮流計において、 前記水底からの反射波をディジタル信号に変換する水底
反射波アナログ・ディジタル変換手段と、 該ディジタル信号を離散フーリエ変換することによって
離散スペクトルに分解する水底反射波スペクトル分解手
段と、 該離散スペクトルに基づいて前記水底反射波の周波数を
推定する水底反射波周波数推定手段と、 前記離散スペクトルにおいてその絶対値が最大値をとる
ときの周波数番号である水底反射波最大振幅番号を検出
する水底反射波最大振幅番号検出手段と、 複数回の送波によって得られる複数個の水底反射波につ
いて、前記水底反射波アナログ・ディジタル変換手段、
水底反射波スペクトル分解手段、水底反射波周波数推定
手段、および、水底反射波最大振幅番号検出手段を実行
し、前記最大振幅番号の度数が最大値をとる周波数番号
に対応する周波数を含む一定の周波数範囲に含まれる水
底反射波周波数推定値だけを選別し、これら選別された
水底反射波周波数推定値の平均値を確定水底反射波周波
数推定値とする水底反射波周波数確定手段と、 前記水塊からの反射波をディジタル信号に変換する水塊
反射波アナログ・ディジタル変換手段と、 該ディジタル信号を離散フーリエ変換することによって
離散スペクトルに分解する水塊反射波スペクトル分解手
段と、 該離散スペクトルに基づいて前記水塊反射波の周波数を
推定する水塊反射波周波数推定手段と、 前記離散スペクトルにおいてその絶対値が最大値をとる
ときの周波数番号である水塊反射波最大振幅番号を検出
する水塊反射波最大振幅番号検出手段と、 複数回の送波によって得られる複数個の水塊反射波につ
いて、前記水塊反射波アナログ・ディジタル変換手段、
水塊反射波スペクトル分解手段、水塊反射波周波数推定
手段、および、水塊反射波最大振幅番号検出手段を実行
し、前記最大振幅番号の度数が最大値をとる周波数番号
に対応する周波数を含む一定の周波数範囲に含まれる水
塊反射波周波数推定値だけを選別し、これら選別された
水塊反射波周波数推定値の平均値を確定水塊反射波周波
数推定値とする水塊反射波周波数確定手段と、 を備えたことを特徴とする潮流計。
4. A receiver receives reflected waves from the water bottom and water mass of an ultrasonic signal output from a transmitter, and calculates a ground speed and a water speed based on a Doppler shift frequency of each reflected wave, A tide meter for calculating a tidal current velocity by subtracting these; a bottom-of-water reflected-wave analog-to-digital conversion means for converting a reflected wave from the bottom to a digital signal; and a discrete Fourier transform of the digital signal to separate a discrete spectrum. Underwater reflected wave spectrum decomposing means, underwater reflected wave frequency estimating means for estimating the frequency of the underwater reflected wave based on the discrete spectrum, and a frequency number when the absolute value of the discrete spectrum takes the maximum value. Underwater reflected wave maximum amplitude number detecting means for detecting underwater reflected wave maximum amplitude number, obtained by multiple transmissions Several of underwater reflected waves, the water bottom reflection wave analog-to-digital conversion means,
Underwater reflected wave spectrum decomposing means, underwater reflected wave frequency estimating means, and executing underwater reflected wave maximum amplitude number detecting means, a constant frequency including a frequency corresponding to a frequency number at which the frequency of the maximum amplitude number takes a maximum value Bottom reflected wave frequency estimating means for selecting only the bottom water reflected wave frequency estimation value included in the range, and determining the average value of the selected bottom water reflected wave frequency estimation values as the fixed bottom water reflected wave frequency estimation value, Water mass reflection wave analog-to-digital conversion means for converting the reflected wave of the digital signal into a digital signal; water mass reflection wave spectrum decomposing means for decomposing the digital signal into a discrete spectrum by performing a discrete Fourier transform; A water body reflected wave frequency estimating means for estimating the frequency of the water body reflected wave; A water body reflection wave maximum amplitude number detecting means for detecting a water body reflection wave maximum amplitude number that is a frequency number when taking a value, and a plurality of water body reflection waves obtained by transmitting a plurality of times, the water body Reflected wave analog / digital conversion means,
The water mass reflected wave spectrum decomposing means, the water mass reflected wave frequency estimating means, and the water mass reflected wave maximum amplitude number detecting means are executed, and the frequency of the maximum amplitude number includes a frequency corresponding to a frequency number having a maximum value. Only the estimated value of the reflected wave frequency of the water included in the certain frequency range is selected, and the average value of the estimated values of the reflected wave frequencies of the selected water mass is determined. Means, and a tide meter.
JP5866497A 1997-03-13 1997-03-13 Frequency estimation method, frequency estimation device, Doppler sonar and tidal meter Expired - Fee Related JP3881078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5866497A JP3881078B2 (en) 1997-03-13 1997-03-13 Frequency estimation method, frequency estimation device, Doppler sonar and tidal meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5866497A JP3881078B2 (en) 1997-03-13 1997-03-13 Frequency estimation method, frequency estimation device, Doppler sonar and tidal meter

Publications (2)

Publication Number Publication Date
JPH10253758A true JPH10253758A (en) 1998-09-25
JP3881078B2 JP3881078B2 (en) 2007-02-14

Family

ID=13090866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5866497A Expired - Fee Related JP3881078B2 (en) 1997-03-13 1997-03-13 Frequency estimation method, frequency estimation device, Doppler sonar and tidal meter

Country Status (1)

Country Link
JP (1) JP3881078B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264425A (en) * 2000-03-17 2001-09-26 Oki Electric Ind Co Ltd Peak detector
JP2002040066A (en) * 2000-07-26 2002-02-06 Furuno Electric Co Ltd Signal frequency calculation method and signal processing device
JP2006047304A (en) * 2004-07-05 2006-02-16 Chube Univ Frequency-measuring device
JP2007248419A (en) * 2006-03-20 2007-09-27 Japan Radio Co Ltd Water-flow speed measuring device
JP2014134434A (en) * 2013-01-09 2014-07-24 Japan Radio Co Ltd Water flow velocity measuring device
CN107064546A (en) * 2017-05-10 2017-08-18 东南大学 A kind of fluid velocity method of estimation based on not rounded signal frequency algorithm for estimating

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264425A (en) * 2000-03-17 2001-09-26 Oki Electric Ind Co Ltd Peak detector
JP2002040066A (en) * 2000-07-26 2002-02-06 Furuno Electric Co Ltd Signal frequency calculation method and signal processing device
JP2006047304A (en) * 2004-07-05 2006-02-16 Chube Univ Frequency-measuring device
JP2007248419A (en) * 2006-03-20 2007-09-27 Japan Radio Co Ltd Water-flow speed measuring device
JP4728851B2 (en) * 2006-03-20 2011-07-20 日本無線株式会社 Water flow velocity measuring device
JP2014134434A (en) * 2013-01-09 2014-07-24 Japan Radio Co Ltd Water flow velocity measuring device
CN107064546A (en) * 2017-05-10 2017-08-18 东南大学 A kind of fluid velocity method of estimation based on not rounded signal frequency algorithm for estimating

Also Published As

Publication number Publication date
JP3881078B2 (en) 2007-02-14

Similar Documents

Publication Publication Date Title
US9268022B2 (en) Underwater detection device and underwater detecting method
US8681585B2 (en) Multi-range object location estimation
US20060238412A1 (en) Method and apparatus for detecting slow-moving targets in high-resolution sea clutter
JP2007507691A (en) Sonar systems and processes
EP2474836B1 (en) A method for echo processing in a pulse-echo ranging system
JP2008275351A (en) Bottom quality discrimination device and bottom quality discrimination method
US8638641B2 (en) Real-time robust method for determining the trajectory of one or more cetaceans by means of passive acoustics, using a laptop computer
US6530890B2 (en) Ultrasound diagnostic apparatus and method for measuring blood flow velocity using doppler effect
US6380887B1 (en) Method of reducing clutter and mutual interference in a coherent doppler radar system
EP3086137B1 (en) Underwater detection apparatus
Atkins et al. Transmit-signal design and processing strategies for sonar target phase measurement
US7363177B2 (en) Apparatus and method for performing the time delay estimation of signals propagating through an environment
Colin et al. False-alarm reduction for low-frequency active sonar with BPSK pulses: experimental results
JP3881078B2 (en) Frequency estimation method, frequency estimation device, Doppler sonar and tidal meter
US7355925B2 (en) Signal-processing method and active sonar implementing same
CN110269643A (en) Self-adapting clutter filtering in the ultrasonic imaging based on acoustic radiation power
JP3785715B2 (en) Target detection device
JP3969703B2 (en) Received signal processing apparatus and distance measuring apparatus
JP5708018B2 (en) Active sonar device
JP2010060318A (en) Radar device
RU2510045C2 (en) Side-scanning phase sonar
WO2011058527A1 (en) Method and apparatus for processing sonar signals
JP2535745B2 (en) Sonar signal detection method
RU83344U1 (en) UNDERWATER OBJECT DETECTION DEVICE FOR EVALUATING A MEASUREMENT RANDOM OF A HYDROLOCATOR ECHO SIGNAL
JPH03248082A (en) Sea bottom detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061109

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141117

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees