JPH10253735A - Positioning system - Google Patents

Positioning system

Info

Publication number
JPH10253735A
JPH10253735A JP7466897A JP7466897A JPH10253735A JP H10253735 A JPH10253735 A JP H10253735A JP 7466897 A JP7466897 A JP 7466897A JP 7466897 A JP7466897 A JP 7466897A JP H10253735 A JPH10253735 A JP H10253735A
Authority
JP
Japan
Prior art keywords
antenna
polarization direction
positioning
wave
frequency range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7466897A
Other languages
Japanese (ja)
Other versions
JP3715741B2 (en
Inventor
Shigeo Kawashima
茂男 河島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP7466897A priority Critical patent/JP3715741B2/en
Publication of JPH10253735A publication Critical patent/JPH10253735A/en
Application granted granted Critical
Publication of JP3715741B2 publication Critical patent/JP3715741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance the positioning accuracy significantly by eliminating the effect of multipath. SOLUTION: A GPS satellite delivers a right circularly polarized wave of carrier frequency and the polarizing direction of an antenna is turned by an antenna polarizing direction turning unit 3. Since a direct wave and the reflected wave of a left circularly polarized wave are subjected to frequency shift in different directions, a capturing/tracking frequency range is set around the shifting position of direct wave at a capturing/tracking frequency range converting section 24 such that a shifted wave deviates from that range thus preventing erroneous capturing/tracking of reflected wave and enhancing the positioning accuracy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はGPS衛星からの信
号を利用した測位装置、さらに詳しくはその受信部に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positioning device using a signal from a GPS satellite, and more particularly to a receiving unit thereof.

【0002】[0002]

【従来の技術】図3は、従来の擬似距離(補正)方式で
単独測位を行う測位装置の概略の構成を示す図であり、
1は空中線、2は受信装置を示す。GPS衛星からの電
波は空中線1で受信され、信号として受信装置2へ送ら
れる。受信装置2では、GPS受信機21で空中線1か
らの信号を受信し、メモリ23に記憶しているアルマナ
ック(almanac) 等の情報を用いてキャリア周波数の捕
捉,追尾を行い、航法データを復調して位置計算部22
へ送り、位置計算部22で空中線1の現在位置を測位す
る。
2. Description of the Related Art FIG. 3 is a diagram showing a schematic configuration of a positioning device that performs a single positioning by a conventional pseudorange (correction) method.
1 indicates an antenna, and 2 indicates a receiving device. Radio waves from GPS satellites are received by the antenna 1 and transmitted to the receiving device 2 as signals. In the receiving device 2, the GPS receiver 21 receives a signal from the antenna 1, captures and tracks a carrier frequency using information such as almanac stored in the memory 23, and demodulates navigation data. Position calculation unit 22
And the position calculator 22 measures the current position of the antenna 1.

【0003】このような測位装置における測位精度を劣
化させる大きな要因にマルチパスがある。マルチパスと
は、良く知られているように衛星から直接空中線で受信
する電波の他に、地表の建物等で反射した反射波が直接
波と同時に受信されてしまう現象であるが、マルチパス
が強いと例えば直接波の本当のコードと反射波のそれと
の区別がつきにくく擬似距離測定誤差につながる。な
お、マルチパスは全ての種類のGPSを利用する測位装
置の精度に影響を及ぼし、単独測位でも無視できない
が、測位精度の高いDGPS(differentialGPS)や干渉
測位を行うcarrier phase DGPS等では特に問題とな
る。このようなGPSを利用して位置を求める方法やマ
ルチパスの影響については、例えば日本測量協会発行の
「GPS−人工衛星による精密測位システム」,「GP
S測量の基礎」等に記載されている。
A major factor that deteriorates the positioning accuracy in such a positioning device is multipath. As is well known, multipath is a phenomenon in which, in addition to radio waves received directly from a satellite via an antenna, reflected waves reflected by buildings on the surface of the earth are received simultaneously with the direct waves. If it is strong, for example, it is difficult to distinguish the true code of the direct wave from that of the reflected wave, which leads to a pseudorange measurement error. Note that multipath affects the accuracy of positioning devices that use all types of GPS, and cannot be ignored even in single positioning.However, there is a particular problem in DGPS (differentialGPS) with high positioning accuracy and carrier phase DGPS that performs interference positioning. Become. For the method of obtaining a position using such GPS and the influence of multipath, for example, "GPS-accurate positioning system by satellite" and "GP
Basics of S Survey ".

【0004】従ってこのマルチパスを除去させる方法と
して、従来では、 水平方向の感度を低減させた空中線を用いる。 GPS衛星の電波が右円偏波であることを利用し、右
円偏波の受信感度が高いチョーク・リング型空中線を用
いる等の方法が考えられている。
Therefore, as a method of removing this multipath, an antenna having reduced sensitivity in the horizontal direction is conventionally used. A method has been considered in which a radio wave of a GPS satellite is right circularly polarized wave and a choke ring type antenna having high reception sensitivity for right circularly polarized wave is used.

【0005】[0005]

【発明が解決しようとする課題】上記のように従来のG
PSを利用する測位装置ではマルチパスに起因する測定
誤差によりその測位精度が劣化し、例えば擬似距離(補
正)方式のDGPSではその測位精度を1メートル以内
にすることが可能であるにも係わらず、マルチパスの影
響により実際には数メートル程度の測位精度となる。ま
た、水平方向の感度を低減させた空中線を用いる場合、
低仰角衛星からの受信感度が犠牲になり、衛星の有効利
用が制限されてしまう。また、チョーク・リング型空中
線は機械構造的に大きく重く、高価格なため、現在のと
ころDGPSサービスを提供する基準局(既知局)など
での利用に留まっており、小型の移動局に利用できな
い。さらに、同様に低仰角からの電波の受信感度が弱
く、衛星の有効利用が制限されてしまう等の問題点があ
った。
As described above, the conventional G
In a positioning device using a PS, the positioning accuracy deteriorates due to a measurement error caused by multipath. For example, in a pseudo-range (correction) DGPS, the positioning accuracy can be reduced to within 1 meter. Actually, the positioning accuracy is about several meters due to the influence of multipath. Also, when using an antenna with reduced horizontal sensitivity,
The sensitivity of receiving from low elevation satellites is sacrificed and the effective use of satellites is limited. Further, the choke ring type antenna is large and heavy in mechanical structure and expensive, so that it is currently used only at a reference station (known station) that provides a DGPS service and cannot be used for a small mobile station. Further, similarly, there is a problem that the reception sensitivity of radio waves from a low elevation angle is weak, and the effective use of satellites is limited.

【0006】本発明はかかる問題点を解決するためにな
されたものであり、マルチパスの影響を除去して測位精
度を大幅に改善した測位装置を提供することを目的とし
ている。
The present invention has been made in order to solve such a problem, and an object of the present invention is to provide a positioning device in which the influence of multipath is removed and positioning accuracy is greatly improved.

【0007】[0007]

【課題を解決するための手段】本発明に係わる測位装置
は、GPS衛星からの電波を受信する空中線、この空中
線が受信する電波の偏波方向を回転させる偏波方向回転
装置、前記空中線で受信した信号を処理し測位を行う受
信装置、この受信装置に設けられ、前記偏波方向回転装
置からの回転情報と、アルマナック等により、前記空中
線の偏波方向の回転によりGPS衛星からの直接波がシ
フトした周波数位置を算出し、この位置を中心に捕捉,
追尾周波数範囲を設定する捕捉・追尾周波数範囲設定手
段を備えたことを特徴とする。GPS衛星からのキャリ
ア周波数は右円偏波であり空中線の偏波方向を回転させ
ることにより、直接波と反射波(直接波が1回反射した
反射波)とは異なった方向に周波数がシフトするので直
接波がシフトする位置を中心に捕捉,追尾周波数範囲を
設定すれば、シフトした反射波はこの捕捉,追尾周波数
範囲から外れるので、反射波を誤って捕捉,追尾するこ
とがなくなる。
SUMMARY OF THE INVENTION A positioning device according to the present invention comprises an antenna for receiving radio waves from GPS satellites, a polarization direction rotating device for rotating the polarization direction of the radio waves received by the antenna, A receiving device for processing and positioning the received signal, provided in this receiving device, the rotation information from the polarization direction rotation device, and the direct wave from the GPS satellites due to the rotation of the antenna in the polarization direction due to the almanac and the like. Calculate the shifted frequency position and capture around this position.
A tracking / frequency range setting means for setting a tracking frequency range is provided. The carrier frequency from the GPS satellite is right circular polarization, and the frequency shifts in a direction different from the direct wave and the reflected wave (reflected wave obtained by reflecting the direct wave once) by rotating the polarization direction of the antenna. Therefore, if the capture and tracking frequency range is set around the position where the direct wave shifts, the shifted reflected wave deviates from the capture and tracking frequency range, so that the reflected wave is not erroneously captured and tracked.

【0008】また、既知点に配設される、前記空中線,
偏波方向回転装置,捕捉・追尾周波数範囲設定手段を設
けた受信装置で構成される既知局装置、測位点に、前記
空中線,偏波方向回転装置,捕捉・追尾周波数範囲設定
手段を設けた受信装置で構成される測位局装置を備え、
前記既知局装置から伝送される情報を用いて前記測位局
装置でDGPSによる測位を行う構成を特徴とする。D
GPSを構成する場合でも、既知局装置,測位局装置と
もに本発明の構成とすれば、既知局から得られる擬似距
離補正情報やキャリア周波数の位相情報も正確なものと
なり、擬似距離(補正)方式DGPSでもcarrier phas
e DGPSでもその測位精度を大幅に向上させることが
できる。
The antenna, which is disposed at a known point,
A known station device comprising a polarization direction rotating device and a receiving device provided with acquisition / tracking frequency range setting means, a reception device provided with the antenna, the polarization direction rotating device, and a capturing / tracking frequency range setting device at a positioning point. Equipped with a positioning station device composed of devices,
It is characterized in that the positioning station device performs positioning by DGPS using information transmitted from the known station device. D
Even when a GPS is configured, if both the known station device and the positioning station device are configured according to the present invention, the pseudorange correction information and the carrier frequency phase information obtained from the known station are also accurate, and the pseudorange (correction) method is used. Carrier phas in DGPS
e DGPS can also greatly improve the positioning accuracy.

【0009】また、前記偏波方向回転装置は、前記空中
線が受信する電波の偏波方向を電子的に回転させる装置
で構成されることを特徴とする。偏波方向を電子的に回
転させることにより、空中線および偏波方向回転装置を
軽量,小型,安価に構成でき、カーナビゲーションにお
ける移動局等に容易に実施できるようになる。
Further, the polarization direction rotating device is characterized in that the polarization direction rotating device is configured to electronically rotate the polarization direction of a radio wave received by the antenna. By rotating the polarization direction electronically, the antenna and the polarization direction rotating device can be configured to be lightweight, small, and inexpensive, and can be easily implemented in mobile stations and the like in car navigation.

【0010】さらに、前記偏波方向回転装置は、前記空
中線が受信する電波の偏波方向を機械的に回転させる装
置で構成されることを特徴とする。空中線の種類によっ
ては、偏波方向を電子的に回転させることが難しい場合
には機械的に回転させる装置としても同様に実施でき
る。
Further, the polarization direction rotating device is characterized in that it comprises a device for mechanically rotating the polarization direction of the radio wave received by the antenna. Depending on the type of the antenna, if it is difficult to rotate the polarization direction electronically, it can be similarly implemented as a device that rotates mechanically.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態を図面を
用いて説明する。図1は、本発明の装置構成の一実施形
態を示す概略ブロック図であり、図において、1は空中
線、2は受信装置、3は空中線偏波方向回転装置であ
る。また、受信装置2において、21はGPS受信機、
22は位置計算部、23はメモリ、24は捕捉・追尾周
波数範囲変換部を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic block diagram showing an embodiment of the device configuration of the present invention, in which 1 is an antenna, 2 is a receiving device, and 3 is an antenna polarization direction rotating device. In the receiving device 2, reference numeral 21 denotes a GPS receiver,
Reference numeral 22 denotes a position calculation unit, 23 denotes a memory, and 24 denotes an acquisition / tracking frequency range conversion unit.

【0012】GPS測位装置の測位精度劣化要因である
マルチパスは、直接波と反射波とが同時に受信され、反
射波が直接波の波形を乱すことにあるので、マルチパス
を除去させるためには、直接波と反射波とを分離し、直
接波のみを取り出せば良い。このために直接波と反射波
の性質の違いを利用する。
In the multipath, which is a cause of deterioration of the positioning accuracy of the GPS positioning apparatus, the direct wave and the reflected wave are received at the same time, and the reflected wave disturbs the waveform of the direct wave. It is sufficient to separate the direct wave from the reflected wave and take out only the direct wave. For this purpose, the difference between the properties of the direct wave and the reflected wave is used.

【0013】すなわち、 GPS衛星からの電波は右円偏波であること。 右円偏波は1回反射すると左円偏波になること。 通常,反射する度に受信電界強度は急激に弱まるの
で、マルチパスで問題となるのは、1回反射した左円偏
波であること。 従ってマルチパスの影響を除去するためには、右円偏波
と左円偏波とを分離して右円偏波のみを捕獲,追尾する
ように構成すれば良い。このため本発明では、右円偏波
と左円偏波とを分離できるだけその周波数をシフトさ
せ、通常受信装置のメモリに記憶しているアルマナック
(almanac) 等を利用して右円偏波が周波数シフトすると
予測される位置に、捕捉,追尾周波数範囲を設定するこ
とによって、右円偏波である直接波のみを信号として取
り入れる構成とできる。
That is, the radio waves from the GPS satellites are right circularly polarized waves. The right circular polarization is to be left circular polarization once reflected. Normally, the intensity of the received electric field rapidly decreases with each reflection, so the problem with multipath is that the left circular polarization is reflected once. Therefore, in order to remove the influence of the multipath, the right circular polarization and the left circular polarization may be separated to capture and track only the right circular polarization. For this reason, in the present invention, the right circular polarization and the left circular polarization are shifted as much as possible in frequency, and the almanac stored in the memory of the normal receiver is usually used.
By setting the acquisition and tracking frequency ranges at positions where the right circular polarization is predicted to shift in frequency using (almanac) or the like, it is possible to adopt a configuration in which only the direct wave that is the right circular polarization is taken in as a signal.

【0014】例えば、近代科学社,1958, 空中線(下
巻)pp542 〜566 ( J.D.Kraus)には、円偏波を受信する
空中線の場合、この空中線の偏波方向を回転させると、
右円偏波と左円偏波とがそれぞれ異なる方向に、空中線
の回転周波数分だけ周波数シフトすることが記載されて
いる。偏波方向を機械的に回転させることはこの種の全
ての空中線で容易に行うことができ、また垂直偏波と水
平偏波との受信強度を電子的にズラすことで、この種の
多くの空中線で偏波方向を電子的に容易に回転させるこ
とができる。従って本実施形態では、空中線偏波方向回
転装置3を備え、空中線1の偏波方向を機械的または電
子的に回転させることによって右円偏波と左円偏波の周
波数を互いに反対方向シフトして分離する。
For example, in the case of a modern antenna, 1958, antenna (lower volume), pp. 542 to 566 (JDKraus), in the case of an antenna receiving circularly polarized waves, when the polarization direction of the antenna is rotated,
It describes that the right circular polarization and the left circular polarization shift in frequency in different directions by the rotation frequency of the antenna. Mechanical rotation of the polarization direction can be easily done in all such antennas, and by electronically shifting the reception strength between vertical and horizontal polarization, many of these types of antennas can be used. The antenna can easily rotate the polarization direction electronically. Therefore, in the present embodiment, the antenna polarization direction rotating device 3 is provided, and the polarization direction of the antenna 1 is mechanically or electronically rotated to shift the frequencies of the right circular polarization and the left circular polarization in opposite directions. And separate.

【0015】一方、受信装置には、GPS衛星信号を捕
捉する場合の受信キャリア周波数の探索を高速に行うべ
く、通常メモリ23にアルマナックと呼ばれる全衛星の
概略の軌道情報を記憶しており、従来の受信装置(図3
の2に示す)ではこの情報と空中線の概略位置および概
略の現在時刻を基に、受信キャリア周波数を推定し、そ
の推定情報200をGPS受信機21へ入力して、その
周波数を中心に探索する方法が取られている。
On the other hand, in the receiving device, general orbit information of all satellites called almanac is usually stored in a memory 23 in order to quickly search for a receiving carrier frequency when capturing a GPS satellite signal. Receiver (Fig. 3
2)), based on this information, the approximate position of the antenna, and the approximate current time, the received carrier frequency is estimated, the estimated information 200 is input to the GPS receiver 21, and the search is performed around that frequency. The way has been taken.

【0016】本実施形態においては、この推定情報20
0が捕捉・追尾周波数範囲変換部24に入力され、空中
線偏波方向回転装置3から入力される空中線の回転方向
および回転周波数の情報300により補正されてGPS
受信機21へ入力され、GPS受信機21では直接波が
シフトした周波数位置を中心に探索を行う捕捉・追尾周
波数範囲設定手段が設けられている。従って偏波方向の
回転周波数を充分大きくしておけば、直接波と反射波の
周波数差を大きくでき、補正された情報201により直
接波のみがシフトした周波数範囲を中心に探索が行われ
るので、その周波数が大きく外れた反射波を誤って捕捉
することなく、直接波のみの捕捉が容易に行えるように
なる。
In this embodiment, the estimated information 20
0 is input to the acquisition / tracking frequency range conversion unit 24, corrected by the antenna rotation direction and rotation frequency information 300 input from the antenna polarization direction rotation device 3, and corrected by GPS.
The GPS receiver 21 is provided with an acquisition / tracking frequency range setting means for searching around the frequency position where the direct wave is shifted and inputted to the receiver 21. Therefore, if the rotation frequency in the polarization direction is sufficiently increased, the frequency difference between the direct wave and the reflected wave can be increased, and the search is performed centering on the frequency range in which only the direct wave is shifted by the corrected information 201. It is possible to easily capture only the direct wave without erroneously capturing the reflected wave whose frequency deviates greatly.

【0017】また追尾では、受信キャリア周波数を追尾
する帯域幅は、通常数十Hz以下に設計される。従って
これに比べて充分大きな空中線偏波方向回転周波数を設
定することにより、反射波を誤追尾することもない。本
実施形態に係わる測位装置は以上のような構成および動
作により、マルチパスに含まれる反射波を分離,除去
し、直接波のみによる高精度な測位が可能となる。
In tracking, a bandwidth for tracking a received carrier frequency is usually designed to be several tens Hz or less. Therefore, by setting a sufficiently large rotation frequency in the antenna polarization direction, there is no erroneous tracking of the reflected wave. With the configuration and operation described above, the positioning device according to the present embodiment separates and removes reflected waves included in multipath, and enables highly accurate positioning using only direct waves.

【0018】図2は、本発明の他の実施形態の装置構成
の概略を示すブロック図であり、図において、1a,2
a,3aはそれぞれ既知点Aに既知局装置として設置さ
れる空中線,受信装置,空中線偏波方向回転装置、1
b,2b,3bはそれぞれ測位点Bの測位局装置となる
空中線,受信装置,空中線偏波方向回転装置であり、共
に図1に示す空中線1,受信装置2,空中線偏波方向回
転装置3と同様の構成のものである。また、4aは既知
局情報送信機、4bは既知局情報受信機を示す。
FIG. 2 is a block diagram schematically showing the configuration of an apparatus according to another embodiment of the present invention.
Reference numerals a and 3a denote antennas, receivers, antenna polarization direction rotating devices, and antennas installed at known points A as known station devices, respectively.
Reference numerals b, 2b, and 3b denote an antenna, a receiving device, and an antenna polarization direction rotating device serving as a positioning station device of the positioning point B, respectively, and the antenna 1, the receiving device 2, and the antenna polarization direction rotating device 3 shown in FIG. It has a similar configuration. 4a indicates a known station information transmitter, and 4b indicates a known station information receiver.

【0019】上述の実施形態は、擬似距離(補正)方式
による単独測位を行う装置について説明したが、既知点
Aに設置する既知局装置を上述の実施形態で説明した構
成と同様な装置構成とすることにより、マルチパスに含
まれる反射波を分離,除去し、直接波のみによる高精度
な補正情報を測位局装置へ送信することができ、高精度
なDGPSによる測位が可能となる。なおこの場合のD
GPSは、擬似距離(補正)方式でも良く、マルチパス
の影響が除去されたキャリア周波数の位相情報を送信し
て干渉測位を行うcarrierphase DGPSでも良いこと
は言うまでもないが、例えば擬似距離(補正)方式DG
PSの測位誤差は通常、受信機の熱雑音等のマルチパス
以外の要因による誤差が数十センチメートル以下に設計
されており、本実施形態のように既知点Aに設置する装
置でもマルチパスに含まれる反射波を分離・除去し、直
接波のみで測位して補正値を送信する構成とすれば、高
精度な補正が行え、1メートル以下の測位精度が期待で
きるようになる。
In the above-described embodiment, an apparatus that performs single positioning by the pseudorange (correction) method has been described. However, a known station apparatus installed at a known point A has the same apparatus configuration as the configuration described in the above-described embodiment. By doing so, it is possible to separate and remove the reflected waves included in the multipath, transmit high-precision correction information using only direct waves to the positioning station apparatus, and perform high-precision positioning using DGPS. Note that D in this case
It is needless to say that the GPS may be a pseudo-range (correction) system, or may be a carrierphase DGPS that transmits the phase information of the carrier frequency from which the influence of the multipath has been removed and performs the interference positioning. DG
The positioning error of the PS is usually designed so that an error due to factors other than multipath such as thermal noise of a receiver is several tens of centimeters or less. If the configuration is such that the reflected wave included is separated / removed and the position is corrected using only the direct wave and the correction value is transmitted, high-precision correction can be performed, and positioning accuracy of 1 meter or less can be expected.

【0020】[0020]

【発明の効果】本発明の測位装置は以上のように構成す
ることにより、マルチパスの影響を除去して測位精度を
大幅に改善することができる。特に空中線の偏波方向を
電子的に回転させる構成とした場合、機械構造的に小さ
く軽くでき、かつ低仰角衛星からの受信感度を犠牲にす
ることなく、更に低価格で実現できる。またDGPSを
構成する場合、擬似距離(補正)方式を用いる場合であ
っても1メートル以下の測位精度が期待でき、近年始ま
りつつあるDGPSサービスを利用するDGPS移動局
で構成されるカーナビゲーション装置等に、特に有効と
なる等の効果がある。
According to the positioning apparatus of the present invention configured as described above, the influence of multipath can be eliminated and the positioning accuracy can be greatly improved. In particular, in the case where the polarization direction of the antenna is electronically rotated, the antenna can be made smaller and lighter in terms of mechanical structure, and can be realized at a lower price without sacrificing the receiving sensitivity from the low-elevation angle satellite. In the case of configuring the DGPS, even if the pseudo-range (correction) method is used, a positioning accuracy of 1 meter or less can be expected, and a car navigation apparatus or the like configured by a DGPS mobile station using a DGPS service that has recently begun. Has the effect of being particularly effective.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の装置構成の概略を示すブ
ロック図である。
FIG. 1 is a block diagram illustrating an outline of a device configuration according to an embodiment of the present invention.

【図2】本発明の他の実施形態の装置構成の概略を示す
ブロック図である。
FIG. 2 is a block diagram illustrating an outline of a device configuration according to another embodiment of the present invention.

【図3】従来のこの種の測位装置の構成を示すブロック
図である。
FIG. 3 is a block diagram showing a configuration of a conventional positioning device of this type.

【符号の説明】[Explanation of symbols]

1,1a,1b 空中線 2,2a,2b 受信装置 3,3a,3b 空中線偏波方向回転装置 4a 既知局情報送信機 4b 既知局情報受信機 21 GPS受信機 22 位置計算部 23 メモリ 24 捕捉・追尾周波数範囲変換部 1, 1a, 1b Antenna 2, 2a, 2b Receiving device 3, 3a, 3b Antenna polarization direction rotation device 4a Known station information transmitter 4b Known station information receiver 21 GPS receiver 22 Position calculation unit 23 Memory 24 Capture / tracking Frequency range converter

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 GPS衛星からの電波を受信する空中
線、 この空中線が受信する電波の偏波方向を回転させる偏波
方向回転装置、 前記空中線で受信した信号を処理し測位を行う受信装
置、 この受信装置に設けられ、前記偏波方向回転装置からの
回転情報と、アルマナック(almanac) 等により、前記空
中線の偏波方向の回転によりGPS衛星からの直接波が
シフトした周波数位置を算出し、この位置を中心に捕
捉,追尾周波数範囲を設定する捕捉・追尾周波数範囲設
定手段を備えたことを特徴とする測位装置。
An antenna for receiving a radio wave from a GPS satellite, a polarization direction rotating device for rotating a polarization direction of a radio wave received by the antenna, a receiving device for processing a signal received by the antenna and performing positioning. Provided in the receiving device, by using the rotation information from the polarization direction rotation device, almanac (almanac), etc., calculate the frequency position where the direct wave from the GPS satellite is shifted by the rotation of the antenna in the polarization direction. A positioning device comprising a capture / tracking frequency range setting means for setting a capturing / tracking frequency range centering on a position.
【請求項2】 既知点に配設される、前記空中線,偏波
方向回転装置,捕捉・追尾周波数範囲設定手段を設けた
受信装置で構成される既知局装置、 測位点に、前記空中線,偏波方向回転装置,捕捉・追尾
周波数範囲設定手段を設けた受信装置で構成される測位
局装置を備え、 前記既知局装置から伝送される情報を用いて前記測位局
装置でDGPS(differential GPS)による測位を行う測
位装置。
2. A known station device which is provided at a known point and comprises a receiving device provided with said antenna, a polarization direction rotating device, and an acquisition / tracking frequency range setting means. A positioning station device comprising a wave direction rotating device and a receiving device provided with an acquisition / tracking frequency range setting means is provided. The positioning station device uses DGPS (differential GPS) by using information transmitted from the known station device. A positioning device that performs positioning.
【請求項3】 前記偏波方向回転装置は、前記空中線が
受信する電波の偏波方向を電子的に回転させる装置で構
成されることを特徴とする請求項第1項または第2項記
載の測位装置。
3. The polarization direction rotating device according to claim 1, wherein the polarization direction rotating device is configured to electronically rotate a polarization direction of a radio wave received by the antenna. Positioning device.
【請求項4】 前記偏波方向回転装置は、前記空中線が
受信する電波の偏波方向を機械的に回転させる装置で構
成されることを特徴とする請求項第1項または第2項記
載の測位装置。
4. The apparatus according to claim 1, wherein the polarization direction rotating device is configured to mechanically rotate the polarization direction of a radio wave received by the antenna. Positioning device.
JP7466897A 1997-03-12 1997-03-12 Positioning device Expired - Fee Related JP3715741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7466897A JP3715741B2 (en) 1997-03-12 1997-03-12 Positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7466897A JP3715741B2 (en) 1997-03-12 1997-03-12 Positioning device

Publications (2)

Publication Number Publication Date
JPH10253735A true JPH10253735A (en) 1998-09-25
JP3715741B2 JP3715741B2 (en) 2005-11-16

Family

ID=13553854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7466897A Expired - Fee Related JP3715741B2 (en) 1997-03-12 1997-03-12 Positioning device

Country Status (1)

Country Link
JP (1) JP3715741B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131454A (en) * 1998-10-22 2000-05-12 Hitachi Ltd Detecting device for moving body and detecting apparatus for position of airplane by using the same
JP2000268300A (en) * 1999-01-13 2000-09-29 Hitachi Ltd Aircraft position detection device
JP2006202298A (en) * 1999-01-13 2006-08-03 Hitachi Ltd Aircraft position detection device and method thereof
CN109506660A (en) * 2019-01-08 2019-03-22 大连理工大学 A kind of posture optimization calculation method for bionic navigation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131454A (en) * 1998-10-22 2000-05-12 Hitachi Ltd Detecting device for moving body and detecting apparatus for position of airplane by using the same
JP2000268300A (en) * 1999-01-13 2000-09-29 Hitachi Ltd Aircraft position detection device
JP2006202298A (en) * 1999-01-13 2006-08-03 Hitachi Ltd Aircraft position detection device and method thereof
CN109506660A (en) * 2019-01-08 2019-03-22 大连理工大学 A kind of posture optimization calculation method for bionic navigation

Also Published As

Publication number Publication date
JP3715741B2 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
JP3576177B2 (en) GPS pointing or attitude system using a single receiver
US7885314B1 (en) Cancellation system and method for a wireless positioning system
US5422813A (en) No-outage GPS/commercial RF positioning system
CN109061695B (en) Navigation positioning method suitable for attitude maneuvering satellite
US7403155B2 (en) Method for the accelerated acquisition of satellite signals
US6771211B2 (en) Method, system and devices for positioning a receiver
US6788251B2 (en) Method and apparatus for interference reduction in a positioning system
US6882312B1 (en) Method and apparatus for multipath mitigation using antenna array
CA2599702C (en) Pseudo random code modulated signal combiner
US6009335A (en) Method of calibrating and testing spatial nulling antenna
US6882936B2 (en) Integrated GPS/interference location system with anti-jam processor
EP3667369A1 (en) Positioning system for a land vehicle and method for computing high-precision gnss positions of a land vehicle
JPH10253735A (en) Positioning system
US20020005801A1 (en) Low signal-to-noise ratio positioning system
JP3557024B2 (en) Positioning device
JPH01318982A (en) Gps receiver for diversity reception
JP4169643B2 (en) Mobile communication navigation system
JP2010156626A (en) Satellite-positioning device
JP7372436B2 (en) Positioning device, positioning method and program
JP2021018218A (en) Displacement measuring method and displacement measuring system
JP2003177173A (en) Position measuring device for moving body
JP2001083227A (en) Gps receiver
CN114355402B (en) Satellite-borne multidimensional GNSS-S radar system and ship target detection method
US20230417858A1 (en) Wireless communication systems and methods
JP2003167044A (en) Position measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050426

A131 Notification of reasons for refusal

Effective date: 20050607

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050801

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050826

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees