JPH10253556A - Preparation of sample for analysis - Google Patents

Preparation of sample for analysis

Info

Publication number
JPH10253556A
JPH10253556A JP9060487A JP6048797A JPH10253556A JP H10253556 A JPH10253556 A JP H10253556A JP 9060487 A JP9060487 A JP 9060487A JP 6048797 A JP6048797 A JP 6048797A JP H10253556 A JPH10253556 A JP H10253556A
Authority
JP
Japan
Prior art keywords
substrate
sample
contamination
liquid
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9060487A
Other languages
Japanese (ja)
Inventor
Kazuyuki Hozawa
一幸 朴澤
Toshihiko Itoga
敏彦 糸賀
Toshio Kojima
寿夫 小嶋
Osamu Okura
理 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9060487A priority Critical patent/JPH10253556A/en
Publication of JPH10253556A publication Critical patent/JPH10253556A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the reliability of a sample for analysis, to shorten the time for preparation of the sample, and to improve the accuracy of quantitative determination of contamination of the surface of a base, of which the amount of contamination is unknown, by dripping a sampling liquid by a small quantity in several times repeatedly onto one point of the surface of the base being heated. SOLUTION: A base 11 for a standard sample is set on a jig 12 and heated to a temperature of 110 deg.C, by using a temperature regulator 21, in a state wherein the shape of the base 11 is changed to a recessed one with the rear thereof kept in vacuum. A standard solution of which the atomic concentration is known is sampled by 100μl (the atomic weight is equivalent to 1×10<14> atoms/cm<2> ) by using a micropipette 22. The micropipette 22 is fixed at the center of the base 11 by using micropipette supports 23, 24 and 25 and a sampling liquid 15 is dripped by 2μl in 50 times separately to the center of the base 11. The result shows that the dimension of a trace of the dripped liquid is 2mm or less with respect to any samples. The detection efficiency of a working curve of the standard sample for the working curve is improved in values of the curve to be about three times better than that of the working curve prepared by a usual method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は精度の高い測定が可
能な分析用試料の作成方法、および試料作製時間の短縮
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preparing an analytical sample capable of performing highly accurate measurement, and to a reduction in sample preparation time.

【0002】[0002]

【従来の技術】従来、全反射蛍光X線分析装置の検量線
用標準試料は、スピンコート法、および、滴下液法の二
つの方法で作製されていた。スピンコート法は膜中に取
り込まれた汚染原子を定量するための検量線試料,滴下
液法はパーティクル状汚染原子を定量するための検量線
試料作製に用いられる。
2. Description of the Related Art Conventionally, a standard sample for a calibration curve of a total reflection X-ray fluorescence analyzer has been prepared by two methods, a spin coating method and a dropping liquid method. The spin coating method is used for preparing a calibration curve sample for quantifying contaminant atoms taken into the film, and the dropping liquid method is used for preparing a calibration curve sample for quantifying particle contaminant atoms.

【0003】スピンコート法は、清浄化した基板表面の
全面に自然酸化膜を成長させながら、酸化膜中に一定量
の原子を取り込ませる方法である。基板表面の自然酸化
膜中に原子を取り込ませる方法は、原子濃度が判ってい
る酸化剤(過酸化水素,硝酸,アンモニア等)と純水の
混合溶液を、基板全面にスピンコートなどを用いて塗布
し、溶液中の酸化剤の酸化力により自然酸化膜を成長さ
せながら酸化膜中に原子を取り込ませる方法である。
[0003] The spin coating method is a method in which a certain amount of atoms is incorporated into an oxide film while growing a natural oxide film on the entire surface of a cleaned substrate. A method for incorporating atoms into the natural oxide film on the substrate surface is to use a mixed solution of an oxidizing agent (hydrogen peroxide, nitric acid, ammonia, etc.) of known atomic concentration and pure water by spin coating or the like on the entire surface of the substrate. This is a method in which atoms are incorporated into an oxide film while being applied and growing a natural oxide film by the oxidizing power of an oxidizing agent in a solution.

【0004】滴下液法は、清浄化した基板上に、原子濃
度が既知な標準溶液からマイクロピペットを用いて一定
量の液をサンプリングし、この液を基板上に滴下する。
標準溶液は、純水、またはフッ酸と純水、またはフッ酸
と酸化剤(過酸化水素や硝酸)と純水の混合溶液である。
滴下した液中の金属元素は、大気中で自然乾燥させる
か、または大気からのコンタミネーションを防ぐため真
空中で乾燥させるかして、基板上に液滴痕として残留さ
せる。
In the dropping liquid method, a predetermined amount of liquid is sampled from a standard solution having a known atomic concentration using a micropipette onto a cleaned substrate, and the liquid is dropped on the substrate.
The standard solution is pure water, a mixed solution of hydrofluoric acid and pure water, or a mixed solution of hydrofluoric acid and an oxidizing agent (hydrogen peroxide or nitric acid) and pure water.
The metal element in the dropped liquid is air-dried in the air or dried in a vacuum to prevent contamination from the air, and is left as a droplet mark on the substrate.

【0005】上記方法で作製した2種類の検量線用標準
試料を、全反射蛍光X線分析装置を用いて測定し、検量
する原子から発生した蛍光X線の積分強度と、スピンコ
ート法の場合は単位面積当たりに存在する膜中の原子濃
度,滴下液法の場合は液滴痕中の原子濃度から全反射蛍
光X線の検量線を作成していた。
[0005] Two kinds of standard samples for a calibration curve prepared by the above method are measured using a total reflection X-ray fluorescence spectrometer, and the integrated intensity of the fluorescent X-rays generated from the atoms to be calibrated and the spin coat method Has prepared a calibration curve of total reflection X-ray fluorescence based on the atomic concentration in the film existing per unit area, and in the case of the dropping liquid method, the atomic concentration in the droplet mark.

【0006】また、汚染量が未知なシリコン基板表面の
パーティクル、および基板表面自然酸化膜中の汚染など
を、全反射蛍光X線分析装置を用いて定量するための試
料作製方法がある。これは、特開平5−82495号公報に記
載されているように、汚染量が未知なシリコン基板表面
上の汚染を、純水,フッ酸と純水、またはフッ酸と酸化
剤(過酸化水素,硝酸,アンモニアなど)と純水の混合
溶液を基板上に滴下し、滴下した液を基板上全面に移動
させることで基板表面の汚染を抽出する。滴下液は、基
板上のパーティクル、および酸化膜を溶解しながら酸化
膜中の汚染をこの液中に取り込む。汚染を抽出した滴下
液を、基板上で乾燥させることで液滴痕として残留さ
せ、この液滴痕を全反射蛍光X線を用いて汚染量が未知
なシリコン基板表面の汚染を定量する方法である。この
場合の汚染定量には、滴下液法にて作製した試料の検量
線を用いて定量する。
There is also a sample preparation method for quantifying particles on the silicon substrate surface whose contamination amount is unknown and contamination in the substrate surface natural oxide film using a total reflection X-ray fluorescence analyzer. This is because, as described in Japanese Patent Application Laid-Open No. 5-82495, contamination on the silicon substrate surface of which the amount of contamination is unknown is determined by using pure water, hydrofluoric acid and pure water, or hydrofluoric acid and an oxidizing agent (hydrogen peroxide). , Nitric acid, ammonia, etc.) and pure water are dropped on the substrate, and the dropped liquid is moved over the entire surface of the substrate to extract contamination on the substrate surface. The dripping liquid takes in particles on the substrate and contamination in the oxide film while dissolving the oxide film into the liquid. The dropping solution from which the contamination is extracted is dried on the substrate to remain as a droplet mark, and the droplet mark is determined by using total reflection X-ray fluorescence to quantify the contamination on the silicon substrate surface whose contamination amount is unknown. is there. In this case, the contamination is quantified using a calibration curve of a sample prepared by a dropping liquid method.

【0007】[0007]

【発明が解決しようとする課題】全反射蛍光X線分析装
置は、図1に示すような構造を有し、以下に述べる方法
で原子種の同定および定量分析を行う。
The total reflection X-ray fluorescence spectrometer has a structure as shown in FIG. 1 and performs identification and quantitative analysis of atomic species by the following method.

【0008】初めに、試料基板4表面の測定位置にX線
3を照射するため、基板4のX軸Z軸θ軸を調整し、基
板4を測定位置まで移動する。次に、試料基板のφ軸を
調整し、X線を測定基板4表面に全反射角φa5で入射
させる。基板4表面に全反射角で入射したX線は試料表
面近傍に存在する原子6を励起し、励起された原子から
特性X線7が発生する。この特性X線は基板上の半導体
検出器(SSD)8で検出され、信号増幅器9を通り、
特性X線のエネルギの大小に比例した電気信号に変換さ
れる。この特性X線のエネルギおよび積分強度を、パー
ソナルコンピュータ10を用いて解析し、原子の同定お
よび定量を行う。
First, in order to irradiate the measurement position on the surface of the sample substrate 4 with X-rays 3, the X axis, the Z axis, and the θ axis of the substrate 4 are adjusted, and the substrate 4 is moved to the measurement position. Next, the φ axis of the sample substrate is adjusted, and X-rays are incident on the surface of the measurement substrate 4 at a total reflection angle φa5. The X-rays incident on the surface of the substrate 4 at a total reflection angle excite the atoms 6 existing near the sample surface, and characteristic X-rays 7 are generated from the excited atoms. This characteristic X-ray is detected by a semiconductor detector (SSD) 8 on the substrate, passes through a signal amplifier 9,
It is converted into an electric signal proportional to the magnitude of the characteristic X-ray energy. The energy and integrated intensity of the characteristic X-rays are analyzed using the personal computer 10 to identify and quantify the atoms.

【0009】全反射蛍光X線分析装置の定量に用いる検
量線は、標準試料の原子濃度が既知な試料から発生する
特性X線の積分強度から得られる。
A calibration curve used for quantification by a total reflection X-ray fluorescence analyzer is obtained from the integrated intensity of characteristic X-rays generated from a standard sample having a known atomic concentration.

【0010】特に、シリコン基板上の粒子状あるいはパ
ーティクル状の汚染を定量する場合、スピンコート法で
作製した試料をもとに求めた検量線を用いて定量する
と、粒子状あるいはパーティクル状の汚染は単位面積あ
たりの汚染量が膜状のそれと異なるため、定量値は実際
の値とは異なり定量値に信頼性がない。そのため、粒子
状あるいはパーティクル状の汚染を定量する場合には、
滴下液法で作製した試料の検量線を用いなければならな
い。半導体製造工程で発生する汚染の多くは、パーティ
クル状の汚染であり、検量線作成には滴下液法で作製し
た試料を用いなければならない場合が多い。しかし、滴
下液法で試料を作製する場合、以下に示す問題を有して
いた。
In particular, when quantifying particulate or particulate contamination on a silicon substrate, quantification is performed using a calibration curve obtained based on a sample prepared by a spin coating method. Since the amount of contamination per unit area is different from that of a film, the quantitative value differs from the actual value and the quantitative value is not reliable. Therefore, when quantifying particulate or particulate contamination,
A calibration curve of the sample prepared by the drop solution method must be used. Most of the contamination generated in the semiconductor manufacturing process is particle-like contamination, and it is often necessary to use a sample prepared by a dropping liquid method for preparing a calibration curve. However, preparing a sample by the dropping liquid method has the following problems.

【0011】全反射蛍光X線分析装置に用いられている
半導体検出器は、図2に示すような検出器面内感度特性
を持つ。図から判るように、滴下液法により作製した標
準試料の測定値の信頼性を95%以上にするためには、
標準試料上の液滴痕の大きさは2mm以下にする必要があ
り、液滴痕の大きさを2mm以下にする場合のサンプリン
グ液量は5μl以下である。しかしながら、標準溶液の
サンプリング精度、および、サンプリング液を滴下する
際の残留液などを考慮すると、サンプリング液量は50
μl以上必要である。サンプリング液50μlを基板上
に滴下すると液滴痕の大きさは5〜6mmとなり、SSD
の検出感度が低い領域で液滴痕中の原子から発生する特
性X線を検出することになり、特性X線の数え落としが
発生し、正確な原子濃度を測定できない。つまり、検量
線の信頼性を高めるためには、SSD検出面内感度依存
性を考慮しサンプリング液の量を少なくする必要がある
が、液量を少なくするとサンプリング液を滴下する際の
精度が低下するという、相反する問題が発生していた。
さらに、サンプリング液の滴下後、滴下液を乾燥させる
ために時間を費やしていた。
A semiconductor detector used in a total reflection X-ray fluorescence spectrometer has a detector in-plane sensitivity characteristic as shown in FIG. As can be seen from the figure, in order to make the reliability of the measured value of the standard sample prepared by the dropping liquid method 95% or more,
The size of the droplet mark on the standard sample must be 2 mm or less, and the amount of the sampling liquid when the size of the droplet mark is 2 mm or less is 5 μl or less. However, taking into account the sampling accuracy of the standard solution and the residual solution when the sample solution is dropped, the amount of the sample solution is 50%.
More than μl is required. When 50 μl of the sampling liquid is dropped on the substrate, the size of the droplet mark becomes 5 to 6 mm and the SSD
The characteristic X-rays generated from the atoms in the droplet traces are detected in the region where the detection sensitivity is low, and the characteristic X-rays are counted down, so that the accurate atomic concentration cannot be measured. In other words, in order to increase the reliability of the calibration curve, it is necessary to reduce the amount of the sampling liquid in consideration of the sensitivity dependence in the SSD detection plane, but if the amount of liquid is reduced, the accuracy when dropping the sampling liquid decreases. Contradictory problems had occurred.
Further, after the dropping of the sampling liquid, time is spent for drying the dripping liquid.

【0012】また、汚染量が未知な基板表面の汚染を溶
液中に抽出し、乾燥させて全反射蛍光X線分析する試料
作製方法にも、同様な問題を有していた。
The same problem also exists in a sample preparation method in which contamination on the surface of a substrate whose contamination amount is unknown is extracted into a solution, dried, and subjected to total reflection X-ray fluorescence analysis.

【0013】汚染量が未知な基板表面の汚染を溶液中に
抽出する際、汚染抽出液の量が少ないと、基板表面全面
を移動させる時、基板の大きさに比例して汚染抽出効率
が低下する。汚染抽出効率を向上するために汚染抽出液
量を多くすると、抽出液を乾燥させた後の液滴痕の大き
さが、SSD検出面内の高感度領域より大きくなり、汚
染定量値の信頼性が低下する。
When the amount of contaminant extract is small when extracting the contaminant on the substrate surface of which the amount of contaminant is unknown into the solution, the contaminant extraction efficiency decreases in proportion to the size of the substrate when the entire surface of the substrate is moved. I do. When the amount of the contaminated extract is increased to improve the contamination extraction efficiency, the size of the droplet trace after drying the extract becomes larger than the high sensitivity area in the SSD detection surface, and the reliability of the contamination quantitative value is improved. Decrease.

【0014】つまり、汚染量が未知な基板表面の汚染の
定量値の信頼性を高めるためには、汚染抽出液の量を多
くしなければならないが、抽出液量を多くすると抽出液
乾燥後の液滴痕が大きくなり、SSDの検出感度が低い
領域で液滴痕中の原子から発生する特性X線を検出し特
性X線の数え落としが発生するという相反する問題を有
していた。
In other words, in order to increase the reliability of the quantitative value of the contamination on the substrate surface of which the amount of contamination is unknown, the amount of the contaminated extract must be increased. There is a contradictory problem that droplet traces become large and characteristic X-rays generated from atoms in droplet traces are detected in a region where SSD detection sensitivity is low, and characteristic X-rays are counted down.

【0015】本発明は、全反射蛍光X線分析装置を例に
した従来の分析用試料作製方法の問題点を解決し、分析
用試料の信頼性の向上と試料作製時間の短縮化、および
汚染量が未知な基板表面の汚染定量精度の向上、および
試料作製時間を短縮することを目的とする。
The present invention solves the problems of the conventional method for preparing a sample for analysis using a total reflection X-ray fluorescence analyzer as an example, improves the reliability of the sample for analysis, shortens the time for preparing the sample, and reduces contamination. It is an object of the present invention to improve the accuracy of quantification of contamination on the surface of a substrate whose amount is unknown, and to shorten the sample preparation time.

【0016】また、本発明は、X線光電子分光分析(X
PS)や、オージェ電子分光分析などの分析装置の分析
用試料にも用いることが可能である。
Further, the present invention provides an X-ray photoelectron spectroscopy (X
PS) or an analysis sample of an analyzer such as Auger electron spectroscopy.

【0017】[0017]

【課題を解決するための手段】上記本発明の目的は、溶
液から一定量の液をマイクロピペットを用いてサンプリ
ングし基板表面に滴下する際、基板を加熱した状態でサ
ンプリング液を少量ずつ数回に分けて基板表面の一点に
繰り返し滴下することにより達成される。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for sampling a predetermined amount of a solution from a solution using a micropipette and dropping the sample solution several times little by little while heating the substrate. This is achieved by repeatedly dropping one point on the surface of the substrate.

【0018】この方法を用いてサンプリング液を少量ず
つ数回に分けて基板上の一点に繰り返し滴下すると、基
板が加熱状態であるため、少量(5μl以下)の滴下液
は基板上で数秒以内に乾燥して2mm以下の液滴痕とな
る。これを、何度も繰り返すことでサンプリング液量が
多い場合でも、液滴痕の大きさを2mm以下にすることが
できる。また、液滴痕の乾燥時間が非常に短いため、大
気からの汚染を抑制することも可能となる。
Using this method, when the sampling solution is repeatedly dropped on a single point on the substrate in small batches of several times, a small amount (5 μl or less) of the dropping solution is deposited on the substrate within a few seconds because the substrate is in a heated state. Dries to form droplet marks of 2 mm or less. By repeating this many times, the size of the droplet trace can be reduced to 2 mm or less even when the amount of the sampling liquid is large. Further, since the drying time of the droplet trace is very short, it is possible to suppress the contamination from the atmosphere.

【0019】基板を加熱する場合、基板加熱温度が低い
と液滴の乾燥時間が長くかかるため、最低でも50℃以
上は必要である。また、基板加熱温度が高すぎると滴下
した液滴が基板上に散乱するため、高くても150℃以
下にする必要がある。
When the substrate is heated, if the substrate heating temperature is low, it takes a long time to dry the droplets. Therefore, at least 50 ° C. or more is required. In addition, if the substrate heating temperature is too high, the dropped droplets scatter on the substrate, so that the temperature needs to be 150 ° C. or less at most.

【0020】また、基板裏面を真空状態にし、基板を凹
の形に反らせた状態でサンプリング液を滴下する。基板
が凹の形に反っているため、滴下液を基板中心に集める
ことができ、滴下液の滴下位置誤差を小さくすることが
可能である。
Further, the sampling liquid is dropped in a state where the back surface of the substrate is evacuated and the substrate is warped in a concave shape. Since the substrate is warped in a concave shape, the dripping liquid can be collected at the center of the substrate, and the drop position error of the dripping liquid can be reduced.

【0021】[0021]

【発明の実施の形態】図3は、本発明の一実施例を示
し、同図(a)は正面図、(b)は平面図である。予め
基板表面を清浄化した標準試料用シリコン基板11を、
基板裏面を真空状態にしながら基板を加熱することがで
きる治具12の上にセットする。
FIG. 3 shows an embodiment of the present invention. FIG. 3 (a) is a front view and FIG. 3 (b) is a plan view. The standard sample silicon substrate 11 whose substrate surface has been cleaned in advance,
The substrate is set on a jig 12 capable of heating the substrate while keeping the back surface of the substrate in a vacuum state.

【0022】治具12は、治具側面に設けられた真空引
き用バルブ13から、ロータリーポンプなどを用いて治
具12内部を真空状態にすることができる。基板11と
治具12の間にあるゴム製のOリング14により治具1
2内部の真空度は保たれ、基板裏面を真空状態にするこ
とで、標準試料用基板11を凹の形に変形させることが
できる。基板11が凹の形になると、サンプリング液1
5を基板11表面に滴下した際、滴下液を基板中心に集
めることができる。
The inside of the jig 12 can be evacuated from a vacuuming valve 13 provided on the side of the jig by using a rotary pump or the like. The jig 1 is fixed by a rubber O-ring 14 between the substrate 11 and the jig 12.
The degree of vacuum inside 2 is maintained, and by setting the back surface of the substrate to a vacuum state, the standard sample substrate 11 can be deformed into a concave shape. When the substrate 11 becomes concave, the sampling liquid 1
When 5 is dropped on the surface of the substrate 11, the dropped liquid can be collected at the center of the substrate.

【0023】また、治具12内部には、基板11を加熱
するためのペルチェ素子16と、基板11に熱を伝える
ための銅17があり、ペルチェ素子16と銅17は一体
化され、ペルチェ素子16下面のばね18により治具1
2に固定されている。熱伝導用の銅17には熱電対19
が設置されており、この熱電対19の配線は、治具12
側面の配線引きだし用コネクタ20にペルチェ素子16
の配線と共に接続され、治具12外部の基板温度調整器
21につながっている。この温度調整器21は、常時基
板11の温度をモニタでき、この温度に応じてペルチェ
素子16に加える電圧を変化させ基板温度を設定温度に
保つことが可能である。
The jig 12 has a Peltier element 16 for heating the substrate 11 and a copper 17 for transmitting heat to the substrate 11. The Peltier element 16 and the copper 17 are integrated into a Peltier element. 16 jig 1 by spring 18 on the lower surface
It is fixed to 2. Thermocouple 19 is used for copper 17 for heat conduction.
Is installed, and the wiring of the thermocouple 19 is
The Peltier device 16 is connected to the side
And is connected to a substrate temperature controller 21 outside the jig 12. The temperature controller 21 can constantly monitor the temperature of the substrate 11 and can change the voltage applied to the Peltier element 16 in accordance with the temperature to maintain the substrate temperature at the set temperature.

【0024】標準試料用基板11の上方にあるマイクロ
ピペット22は、マイクロピペット支持具23,24,
25により固定されている。マイクロピペット支持具2
3,24,25は、治具12表面に明記された定規のメ
モリ26と支持具24に明記された定規のメモリ27に
より、基板11表面のどの位置にでも正確にマイクロピ
ペット22の先端を固定することが可能である。
The micropipette 22 above the standard sample substrate 11 has micropipette supports 23, 24,
25. Micro pipette support 2
3, 24 and 25 fix the tip of the micropipette 22 accurately at any position on the surface of the substrate 11 by the ruler memory 26 specified on the surface of the jig 12 and the ruler memory 27 specified on the support 24. It is possible to

【0025】治具12に標準試料用基板11をセット
し、基板11裏面を真空状態に保ち基板11を凹の形に
変形させた状態で、基板11の温度を温度調整器21を
用いて110℃に加熱する。この状態で、原子濃度が既
知な標準溶液(鉄0.0925ppm,ニッケル0.097
5ppm,銅0.1055ppm,白金0.3240ppm)から、
マイクロピペット22を用いて100μl(原子量は1
×1014atoms/cm2に相当)サンプリングする。サンプ
リング後、マイクロピペット支持具23,24,25を
用いてマイクロピペット22を基板11中心に固定す
る。固定後、このマイクロピペット22を用いて、サン
プリング液15を標準試料用基板11表面の中心に2μ
lずつ50回に分けて滴下した。
The standard sample substrate 11 is set on the jig 12, and the substrate 11 is deformed into a concave shape while the back surface of the substrate 11 is kept in a vacuum state. Heat to ° C. In this state, a standard solution having a known atomic concentration (iron 0.0925 ppm, nickel 0.097 ppm)
5ppm, copper 0.155ppm, platinum 0.3240ppm)
100 μl using a micropipette 22 (atomic weight is 1
× 10 14 atoms / cm 2 ). After sampling, the micropipette 22 is fixed to the center of the substrate 11 using the micropipette supports 23, 24, 25. After the fixation, the sampling liquid 15 is applied to the center of the surface of the standard sample
The solution was added dropwise in 50 portions each.

【0026】同様に、原子量が1×1011,1×1
12,1×1013(atoms/cm2)の試料も作製した。滴
下後の滴下液痕の大きさはいずれも2mm以下であった。
Similarly, the atomic weight is 1 × 10 11 , 1 × 1
Samples of 0 12 and 1 × 10 13 (atoms / cm 2 ) were also prepared. The size of the droplet trace after dropping was 2 mm or less in each case.

【0027】図4に全反射蛍光X線分析装置を用いて測
定した検量線図を示す。図より、本発明を用いて作成し
た検量線用標準試料の検量線は、従来の方法で作成した
検量線の値よりも、およそ3倍程検出効率が向上してい
ることが分かる。
FIG. 4 shows a calibration curve measured using a total reflection X-ray fluorescence analyzer. It can be seen from the figure that the detection efficiency of the calibration curve of the standard sample for the calibration curve prepared by using the present invention is approximately three times higher than the value of the calibration curve prepared by the conventional method.

【0028】以上のように、全反射蛍光X線分析装置の
検量線用標準試料を本発明を用いて作製すれば、検量線
の精度を向上させることができた。
As described above, if a standard sample for a calibration curve of a total reflection X-ray fluorescence analyzer was prepared using the present invention, the accuracy of the calibration curve could be improved.

【0029】本発明の他の実施例を、図5及び図6及び
図7を用いて説明する。
Another embodiment of the present invention will be described with reference to FIGS. 5, 6, and 7. FIG.

【0030】図5は、本発明の他の実施例である。この
実施例は、シリコン基板表面および表面の自然酸化膜中
に存在するパーティクルや金属汚染を全反射蛍光X線分
析装置を用いて測定する方法例である。
FIG. 5 shows another embodiment of the present invention. This embodiment is an example of a method for measuring particles and metal contamination existing on the surface of a silicon substrate and a natural oxide film on the surface using a total reflection X-ray fluorescence analyzer.

【0031】図5に基板表面汚染抽出方法を示す。汚染
量が未知なシリコン基板28表面は、清浄化を行ってい
ないため、基板28表面上にはパーティクルや異物があ
り、さらに表面自然酸化膜中には金属汚染が存在してい
る。この基板表面上に汚染抽出用のサンプリング液30
0μlを滴下する。このサンプリング液の成分は、硝
酸:フッ酸:純水=1:5:1000で、硝酸は基板2
8表面近傍に存在する銅を抽出するために添加した。
FIG. 5 shows a method for extracting contamination on the substrate surface. Since the surface of the silicon substrate 28 whose contamination amount is unknown is not cleaned, there are particles and foreign substances on the surface of the substrate 28, and metal contamination exists in the surface native oxide film. On the surface of the substrate, a sampling solution 30 for extracting contamination is provided.
Add 0 μl dropwise. The components of this sampling solution were nitric acid: hydrofluoric acid: pure water = 1: 5: 1000 and nitric acid was
8 Added to extract copper existing near the surface.

【0032】汚染抽出液滴下後、抽出液29を基板28
表面上にすき間なく移動させ、抽出液29中に、表面の
パーティクル、および自然酸化膜中の金属汚染、さらに
基板表面近傍に存在する銅などを取り込む。基板表面汚
染抽出後、抽出液29を基板中心に移動し、この基板を
図6のように治具12にセットする。基板28のセット
後、基板裏面を真空状態にし基板を凹の形に変形させ
る。
After dropping the contaminated extraction droplet, the extraction liquid 29 is applied to the substrate 28.
It is moved without any gaps on the surface, and the particles on the surface, metal contamination in the native oxide film, and copper existing near the substrate surface are taken into the extract 29. After the extraction of the substrate surface contamination, the extraction liquid 29 is moved to the center of the substrate, and the substrate is set on the jig 12 as shown in FIG. After setting the substrate 28, the back surface of the substrate is evacuated to deform the substrate into a concave shape.

【0033】次に、前記実施例の図3と同様のマイクロ
ピペット支持具(図示せず)を用いてマイクロピペット
22の先端を基板中心に固定し、汚染抽出液29を回収
する。マイクロピペット22を用いて汚染抽出液29を
回収する場合、回収効率は経験的に99%以上の液を回
収できる。回収後、汚染抽出液の残留液31が基板表面
上にわずかに残る(この場合2μl以下)。マイクロピ
ペット22で回収できなかった残留液30を基板表面上
に残したまま、実施例と同様に、基板28裏面を真空状
態にしながら基板温度を110℃に加熱する。この状態
で、マイクロピペット22で回収した回収液31を、基
板28表面の残留液30上に2μlずつ150回に分け
て滴下した。
Next, the tip of the micropipette 22 is fixed to the center of the substrate using the same micropipette holder (not shown) as in FIG. 3 of the above embodiment, and the contaminated extract 29 is collected. When the contaminated extract 29 is collected by using the micropipette 22, the collection efficiency can be empirically recovered to 99% or more. After the collection, the residual liquid 31 of the contaminated extract slightly remains on the substrate surface (in this case, 2 μl or less). The substrate temperature is heated to 110 ° C. while leaving the back surface of the substrate 28 in a vacuum as in the embodiment, with the residual liquid 30 that could not be recovered by the micropipette 22 remaining on the substrate surface. In this state, the recovered liquid 31 recovered by the micropipette 22 was dropped on the residual liquid 30 on the surface of the substrate 28 in 2 μl portions 150 times.

【0034】同様に、汚染抽出液量を200,100,
50,30μlと変えて、シリコン基板表面汚染を抽出
した。
Similarly, the amount of the contaminated extract was set to 200, 100,
By changing to 50 and 30 μl, contamination on the silicon substrate surface was extracted.

【0035】図7に、全反射蛍光X線分析装置を用い
て、汚染抽出量を変えたシリコン基板表面汚染測定結果
を示す。縦軸のシリコン基板表面汚染量の正確さを高め
るため、予め汚染抽出用の抽出液のみをマイクロピペッ
ト22を用いて30〜300μlの抽出液だけを回収
し、前記方法で清浄化した基板上に、異なる回収液ごと
前記実施例と同様に滴下し、滴下後の滴下液痕を全反射
蛍光X線分析装置を用いて定量した。この汚染抽出液用
の回収液中の汚染定量値を、汚染抽出液量の異なるシリ
コン基板表面汚染定量値から引き算し、この引き算した
値を基板28の表面積で割り算した値を縦軸のシリコン
基板表面汚染定量値とした。
FIG. 7 shows the results of measuring the contamination on the surface of the silicon substrate using the total reflection X-ray fluorescence spectrometer with varying amounts of contamination extraction. In order to improve the accuracy of the silicon substrate surface contamination amount on the vertical axis, only 30 to 300 μl of the extract for contamination extraction is collected using a micropipette 22 in advance, and the extract is collected on the substrate cleaned by the above method. Then, different collected liquids were dropped in the same manner as in the above example, and traces of the dropped liquid after dropping were quantified using a total reflection X-ray fluorescence analyzer. The quantitative value of the contamination in the collected liquid for the contaminated extract was subtracted from the quantitative value of the surface contamination of the silicon substrate having a different amount of the contaminated extract, and the value obtained by dividing the subtracted value by the surface area of the substrate 28 was used as the silicon substrate on the vertical axis. The surface contamination was determined.

【0036】図7より、汚染抽出液量が増加しても、シ
リコン基板表面汚染の定量値は変化しないことが分か
る。特に、100μl以上の抽出液で基板表面汚染を抽
出すれば、汚染定量精度が向上する。また、汚染抽出液
量が増加するに従い汚染抽出時間が短くなることも分か
る。これは、汚染抽出液量が多いと、シリコン基板表面
全面を移動させる時の移動時間が短くなるためである。
FIG. 7 shows that the quantitative value of the surface contamination of the silicon substrate does not change even when the amount of the contaminated extract increases. In particular, if the substrate surface contamination is extracted with 100 μl or more of the extract, the accuracy of the contamination quantification is improved. It can also be seen that the contamination extraction time becomes shorter as the amount of the contaminated extract increases. This is because, when the amount of the contaminated extract is large, the movement time when the entire surface of the silicon substrate is moved becomes short.

【0037】以上のように、本発明をシリコン基板表面
汚染抽出方法に適用すれば、基板表面汚染の定量精度を
低下させずに、短時間の抽出が可能となる。
As described above, if the present invention is applied to the silicon substrate surface contamination extraction method, it is possible to perform the extraction in a short time without reducing the quantitative accuracy of the substrate surface contamination.

【0038】二つの実施例から判るように、本発明を用
いて全反射蛍光X線分析用試料を作製すると、全反射蛍
光X線分析装置の検量線用標準試料の信頼性の向上と試
料作製時間の短縮化、および、汚染量が未知なシリコン
基板表面の汚染定量精度の向上、および試料作製時間の
短縮化を達成することができる。
As can be seen from the two examples, when a sample for total reflection X-ray fluorescence analysis is prepared using the present invention, the reliability of the standard sample for the calibration curve of the total reflection X-ray fluorescence analyzer and the sample preparation are improved. It is possible to shorten the time, improve the accuracy of quantifying contamination on the surface of the silicon substrate whose contamination amount is unknown, and shorten the sample preparation time.

【0039】[0039]

【発明の効果】本発明によれば、分析線用試料を、高信
頼性かつ短時間で作製することが実現できるので、分析
装置の原子定量の信頼性を向上させることができる。
According to the present invention, a sample for an analytical line can be produced with high reliability and in a short time, so that the reliability of the atomic quantification of the analyzer can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】全反射蛍光X線装置のブロック図。FIG. 1 is a block diagram of a total reflection fluorescent X-ray apparatus.

【図2】半導体検出器の検出面内感度特性図。FIG. 2 is a sensitivity characteristic diagram in a detection plane of a semiconductor detector.

【図3】本発明の一実施例を示す試料作成用治具とマイ
クロピペットを示す正面図および平面図。
FIGS. 3A and 3B are a front view and a plan view showing a sample preparation jig and a micropipette according to an embodiment of the present invention. FIGS.

【図4】本発明の効果を示す検量線を示す図。FIG. 4 is a diagram showing a calibration curve showing the effect of the present invention.

【図5】本発明の他の実施例での試料作製方法の説明
図。
FIG. 5 is an explanatory view of a sample manufacturing method according to another embodiment of the present invention.

【図6】本発明の他の実施例での試料作製方法の説明
図。
FIG. 6 is an explanatory view of a sample manufacturing method according to another embodiment of the present invention.

【図7】本発明の効果を示す測定図。FIG. 7 is a measurement diagram showing the effect of the present invention.

【符号の説明】[Explanation of symbols]

11…シリコン基板、12…治具、13…バルブ、14
…Oリング、15…サンプリング液、16…ペルチェ素
子、17…銅、18…ばね、19…熱電対、20…コネ
クタ、21…基板温度調整器、22…マイクロピペッ
ト、23…支柱及びその台座、24…ピペットの吊り上
げ及び位置調整具、25…ピペットの固定具、26…ピ
ペット位置メモリ治具表面、27…ピペット位置メモリ
ピペット支持具表面。
11 silicon substrate, 12 jig, 13 valve, 14
... O-ring, 15 ... Sampling liquid, 16 ... Peltier element, 17 ... Copper, 18 ... Spring, 19 ... Thermocouple, 20 ... Connector, 21 ... Substrate temperature controller, 22 ... Micropipette, 23 ... Post and its base, 24: Pipette lifting and position adjuster, 25: Pipette fixture, 26: Pipette position memory jig surface, 27: Pipette position memory pipette support surface.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大倉 理 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Osamu Okura 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo Inside Central Research Laboratory, Hitachi, Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】溶液から一定量の液をサンプリングし、基
板表面に滴下乾燥して分析用試料を作製する方法におい
て、基板を加熱した状態でサンプリング液を滴下するこ
とを特徴とする試料作製方法。
1. A method for preparing a sample for analysis by sampling a predetermined amount of a solution from a solution and drop-drying the sample on a substrate surface, wherein the sample solution is dropped while the substrate is heated. .
【請求項2】請求項1において、上記サンプリング液を
滴下する際、上記サンプリング液を少量ずつ複数回に分
けて同一点上に滴下する試料作製方法。
2. A sample preparation method according to claim 1, wherein, when dropping the sampling liquid, the sampling liquid is dropped a plurality of times in small amounts on the same point.
【請求項3】請求項1において、一度に滴下する液量を
20μl以下とし、乾燥後の液痕の直径を3mm以下とす
る試料作製方法。
3. The method for preparing a sample according to claim 1, wherein the amount of the liquid dropped at a time is 20 μl or less, and the diameter of the liquid trace after drying is 3 mm or less.
【請求項4】請求項1において、基板の加熱温度範囲を
50℃〜150℃とする試料作製方法。
4. The method according to claim 1, wherein the heating temperature range of the substrate is 50 ° C. to 150 ° C.
【請求項5】請求項1において、基板裏面を真空状態に
し基板を凹の形に反らせながらサンプリング液を滴下す
る試料作製方法。
5. A method according to claim 1, wherein the back surface of the substrate is evacuated and the sample is dropped while the substrate is warped into a concave shape.
【請求項6】汚染量が未知な基板表面の汚染を溶液中に
取り込み、この溶液をマイクロピペットを用いて回収し
基板表面に滴下する試料作製方法において、請求項1を
用いて回収液を基板表面に滴下する試料作製方法。
6. A method for preparing a sample in which contamination on the surface of a substrate whose contamination amount is unknown is taken into a solution, and this solution is collected using a micropipette and dropped onto the surface of the substrate. A sample preparation method of dropping on the surface
JP9060487A 1997-03-14 1997-03-14 Preparation of sample for analysis Pending JPH10253556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9060487A JPH10253556A (en) 1997-03-14 1997-03-14 Preparation of sample for analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9060487A JPH10253556A (en) 1997-03-14 1997-03-14 Preparation of sample for analysis

Publications (1)

Publication Number Publication Date
JPH10253556A true JPH10253556A (en) 1998-09-25

Family

ID=13143696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9060487A Pending JPH10253556A (en) 1997-03-14 1997-03-14 Preparation of sample for analysis

Country Status (1)

Country Link
JP (1) JPH10253556A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288464A (en) * 2011-07-05 2011-12-21 时文春 Preparation method for standard sample of chloramphenicol residual lyophiled powder in muscle of carp
CN103234798A (en) * 2013-05-06 2013-08-07 秦皇岛出入境检验检疫局煤炭检测技术中心 High-uniformity quantitative splitting and subpackaging technology of standard coal sample
JP2017044591A (en) * 2015-08-27 2017-03-02 住友金属鉱山株式会社 Quantitative analysis method for sample solutions using x-ray fluorescence analyzer
CN110132669A (en) * 2019-04-29 2019-08-16 河北科技大学 Cotton fiber sample preparation device
JP2021001778A (en) * 2019-06-20 2021-01-07 住友金属鉱山株式会社 Filter paper pedestal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288464A (en) * 2011-07-05 2011-12-21 时文春 Preparation method for standard sample of chloramphenicol residual lyophiled powder in muscle of carp
CN103234798A (en) * 2013-05-06 2013-08-07 秦皇岛出入境检验检疫局煤炭检测技术中心 High-uniformity quantitative splitting and subpackaging technology of standard coal sample
CN103234798B (en) * 2013-05-06 2015-06-03 秦皇岛出入境检验检疫局煤炭检测技术中心 High-uniformity quantitative splitting and subpackaging technology of standard coal sample
JP2017044591A (en) * 2015-08-27 2017-03-02 住友金属鉱山株式会社 Quantitative analysis method for sample solutions using x-ray fluorescence analyzer
CN110132669A (en) * 2019-04-29 2019-08-16 河北科技大学 Cotton fiber sample preparation device
JP2021001778A (en) * 2019-06-20 2021-01-07 住友金属鉱山株式会社 Filter paper pedestal

Similar Documents

Publication Publication Date Title
Neumann et al. Ultra-trace analysis of metallic contaminations on silicon wafer surfaces by vapour phase decomposition/total reflection X-ray fluorescence (VPD/TXRF)
Pahlke et al. Determination of ultra trace contaminants on silicon wafer surfaces using total-reflection X-ray fluorescence TXRF ‘state-of-the-art’
JP3179175B2 (en) Analysis pretreatment method
JP7229315B2 (en) Selective monitoring of multiple silicon compounds
CN107655960A (en) Serum mass spectrometric analysis method, matrix based on gold-palladium and preparation method thereof, application
CN104833758A (en) Method for analytic determination of contents of peimine, peiminine and sipeimine-3-D-glucoside in fritillaria pallidiflora schrek
CN106814130B (en) It is a kind of for the novel nano chip of Mass Spectrometer Method and its preparation and application
Alder et al. The single element determination of trace metals in hair by carbon-furnace atomic absorption spectrometry
JP2004028787A (en) Total reflection fluorescent x-ray analysis method, total reflection fluorescent x-ray analysis pretreatment device, and total reflection fluorescent x-ray analyzer
JPH10253556A (en) Preparation of sample for analysis
Hellin et al. Validation of vapor phase decomposition–droplet collection–total reflection X-ray fluorescence spectrometry for metallic contamination analysis of silicon wafers
Miller et al. Semiconductor applications of nanoliter droplet methodology with total reflection X-ray fluorescence analysis
JP3088250B2 (en) Drying equipment
JP2726816B2 (en) Secondary ion mass spectrometry and standard sample preparation method
WO2023212286A1 (en) Methods and devices for obtaining silicon photomultiplier data
JP2002296269A (en) Device and method for evaluating water quality for sample water
JP2001242052A (en) Method for analyzing impurity in semiconductor substrate or chemicals
CN113504291A (en) Sample preparation method and detection method for determining impurities in ultra-high-purity aluminum by utilizing ICP-MS (inductively coupled plasma-mass spectrometry)
CN114216921A (en) Method for testing activation energy of catalyst
JP2002184828A (en) Method of analyzing metallic impurities in semiconductor substrate
CN111413168A (en) Method for testing zirconia in zirconia-coated nickel-cobalt-manganese ternary positive electrode material
JP2001091504A (en) Method for analyzing impurity on semiconductor substrate surface
CN110455779A (en) Analysis method based on Ce elements in direct reading spectrometry measurement low-alloy steel
Fabry et al. Application of TXRF in silicon wafer manufacturing
JP4537367B2 (en) Sample reflection substrate for total reflection X-ray fluorescence analysis, total reflection X-ray fluorescence analyzer, and total reflection X-ray fluorescence analysis method