JPH10253262A - Remaining thickness detecting method of refractory used to operating part of industrial furnace - Google Patents

Remaining thickness detecting method of refractory used to operating part of industrial furnace

Info

Publication number
JPH10253262A
JPH10253262A JP5530597A JP5530597A JPH10253262A JP H10253262 A JPH10253262 A JP H10253262A JP 5530597 A JP5530597 A JP 5530597A JP 5530597 A JP5530597 A JP 5530597A JP H10253262 A JPH10253262 A JP H10253262A
Authority
JP
Japan
Prior art keywords
fluid
fluid passage
refractory
pressure
remaining thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5530597A
Other languages
Japanese (ja)
Inventor
Koji Aida
広治 合田
Takenori Yoshitomi
丈記 吉富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurosaki Refractories Co Ltd
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP5530597A priority Critical patent/JPH10253262A/en
Publication of JPH10253262A publication Critical patent/JPH10253262A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Measuring Arrangements Characterized By The Use Of Fluids (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a remaining thickness detecting method of refractories, used to the operating part of an industrial furnace, which is capable of detecting the impossibility of detection due to the blocking of fluid passage previously and effecting trouble preventing measure quickly thereafter, upon detecting the remaining thickness of the refractories by the changes of the flow rate of fluid, a pressure and the like through the fluid passage in the refractories. SOLUTION: The remaining thickness of refractories used for the operating part of an industrial furnace is detected by a method wherein a fluid passage 2 is provided from the back surface side of refractories to the position of a predetermined thickness toward the operating surface side in the refractories to measure the change of flow rate or pressure of the fluid, supplied into or discharged out of the fluid passage 2, by flow rate detectors 6a, 6b or pressure detectors, arranged at the supplying side and discharging side of fluid connected to the fluid passage 2. In this case, the remaining thickness of refractories 1 is detected by the change and the detection of non-passing of the fluid in the fluid passage is also detected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶融金属容器、溶
融金属処理装置、セメントキルン、焼却炉、加熱炉等の
工業窯炉の稼働部分に使用する耐火物の残存厚を検出す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a residual thickness of a refractory used in an operating part of an industrial kiln such as a molten metal container, a molten metal processing apparatus, a cement kiln, an incinerator, and a heating furnace.

【0002】[0002]

【従来の技術】従来から、工業窯炉の稼働側に使用する
耐火物、例えば、内張り材、ガス吹き込み用ノズルある
いはプラグ等の耐火物の損耗は、操業上大きな問題とな
るので、その損耗状態を確実にとらえて、補修、交換を
効率よく行うことは非常に大切な作業の一つである。こ
の耐火物の損耗状態、すなわち、耐火物の残存厚を検出
する手段としては、レーザー、映像、温度、背圧等を利
用して各種器具により測定したり、可視面構造が異なる
ものを重設することで変化を見知して判定する方法等が
知られている。
2. Description of the Related Art Conventionally, wear of refractories used on the operating side of an industrial kiln, for example, refractories such as lining materials, gas injection nozzles or plugs, is a serious problem in operation. It is one of the very important tasks to ensure that the repair and replacement are performed efficiently. As a means of detecting the wear state of the refractory, that is, the remaining thickness of the refractory, it can be measured with various instruments using laser, image, temperature, back pressure, etc. There is known a method of determining a change by detecting the change.

【0003】これらの方法の中で、流体を用いてその変
化により損耗状態を検出するものとして、例えば、特開
昭52−35104号公報には、炉壁内に流体センサー
を埋設し、流体噴出口を開口させて流体の噴出による背
圧の変化により、炉壁の侵食状態を検出する方法が開示
され、実公昭62−19924号公報には、炉壁の長さ
方向に炉内圧よりも高い一定の圧力流体を封入した複数
の仕切室を設け、炉外の圧力測定器を介して圧力流体発
生器に接続した検出装置が開示され、また、実開昭63
−90562号公報には、背面から上面まで連通した複
数貫通孔とともに、背面から上面に向かって途中まで貫
通した半貫通孔を設けたガス吹込用プラグが開示されて
いる。これらは、いずれも先端が耐火物中に封じられた
状態で管が埋設され、送給されていた流体は、耐火物の
損耗により稼働中の炉内に噴出し、供給元の流体圧力測
定による背圧低下の変化を検出することで、どの位置ま
で稼働面側が損耗したかを知ることができるのである。
[0003] Among these methods, as a method of detecting a wear state by a change using a fluid, for example, Japanese Patent Application Laid-Open No. 52-35104 discloses a method in which a fluid sensor is embedded in a furnace wall and a fluid sensor is injected. A method of detecting the erosion state of the furnace wall by opening the outlet and changing the back pressure due to the ejection of the fluid is disclosed. Japanese Utility Model Publication No. 62-19924 discloses that the furnace wall pressure is higher than the furnace internal pressure in the length direction of the furnace wall. A detection device is disclosed in which a plurality of partition chambers each containing a constant pressure fluid are provided and connected to a pressure fluid generator via a pressure measuring device outside the furnace.
JP-A-90562 discloses a gas blowing plug having a plurality of through holes communicating from the back surface to the upper surface and a semi-through hole penetrating partway from the back surface to the upper surface. Each of these pipes is buried with the tip sealed in a refractory, and the fluid that has been fed is squirted into the operating furnace due to wear of the refractory, and the fluid pressure measured by the source is measured. By detecting the change in the back pressure drop, it is possible to know to which position the operating surface has been worn.

【0004】また、実開昭60−117846号公報に
は、炉壁の貫通孔内を挿入自在かつほぼ直角に気体を噴
射する流体センサーと、この流体センサーの背圧変化及
び挿入長さを測定する装置が開示され、炉壁に設けられ
た貫通孔内に、先端部から貫通孔に対してほぼ直角に流
体噴出する流体センサーを除々に挿入し、先端の噴出口
が炉内に突き出た時点で、流体の背圧低下をとらえると
ともに、その時の流体センサーの挿入長さを計測するこ
とで炉壁の残存厚みを検出するものである。
Japanese Utility Model Laid-Open Publication No. Sho 60-117846 discloses a fluid sensor which can be inserted into a through hole in a furnace wall and injects gas substantially at a right angle, and measures a back pressure change and an inserted length of the fluid sensor. A device is disclosed, in which a fluid sensor that ejects a fluid from a tip portion substantially at right angles to the through hole is gradually inserted into a through-hole provided in a furnace wall, and a point at which the ejection port at the tip projects into the furnace. Thus, the back pressure of the fluid is reduced, and the remaining thickness of the furnace wall is detected by measuring the insertion length of the fluid sensor at that time.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記の
特開昭52−35104号公報、実公昭62−1992
4号公報及び実開昭63−90562号公報記載のもの
は、これらの流体が耐火物中に封じ込められているた
め、背圧が低くならない原因が未だ耐火物が損耗してい
ないためなのか、あるいは流体供給路内がなんらかの障
害で閉塞されて背圧が低くならないためなのか区別する
ことが困難であるため、十分な損耗確認手段とはいえ
ず、溶湯の漏洩事故にもつながる可能性が多分にあっ
た。つまり、これらの検出手段であれば、流体通路が途
中で閉塞している場合、耐火物の残存厚さを検出できな
いばかりか、流体通路が途中で閉塞していることを事前
に検知することは困難であり、耐火物の損耗に気が付か
ないまま、耐火物の残存が無くなり事故につながること
も考えられる。
However, the above-mentioned Japanese Patent Application Laid-Open No. 52-35104 and Japanese Utility Model Publication No. Sho 62-1992.
No. 4 and Japanese Utility Model Application Laid-Open No. 63-90562 describe that these fluids are sealed in a refractory, so the reason why the back pressure does not decrease is because the refractory has not been worn yet. Alternatively, it is difficult to distinguish whether the back pressure is not lowered because the inside of the fluid supply path is blocked due to some kind of obstacle, so it can not be said that it is a sufficient wear confirmation means, and it may possibly lead to a molten metal leakage accident Was in In other words, with these detection means, when the fluid passage is closed halfway, not only can the remaining thickness of the refractory not be detected, but also it is possible to detect in advance that the fluid passage is closed halfway. It is difficult, and it is conceivable that there is no remaining refractory material without noticing the wear of the refractory material, leading to an accident.

【0006】さらに、実開昭60−117846号公報
に開示された残存厚検出装置の場合も、噴出口の詰まり
による背圧変化、あるいは検出不能であることの見落と
しによる対応処置の遅れ、あるいは、流体センサーの進
退させるための作業スペース、取り付け構造、高熱場所
での安全な作業、貫通孔からの溶融金属進入によるトラ
ブル回避のため、溶融金属に接することのない場所での
使用等を考慮する必要があり、適用範囲が限られること
になる。
Furthermore, in the case of the residual thickness detecting device disclosed in Japanese Utility Model Application Laid-Open No. Sho 60-117846, a change in back pressure due to clogging of the ejection port or a delay in a countermeasure due to an oversight that detection is not possible, or Work space for moving the fluid sensor forward and backward, mounting structure, safe work in a high temperature place, use in a place that does not come into contact with the molten metal, etc. in order to avoid trouble due to molten metal entering through the through hole, etc. And the scope of application is limited.

【0007】本発明は、耐火物中の流体通路を介し流体
の流量、圧力等の変化により耐火物の残存厚を検出する
に際し、流体通路や噴出口の閉塞による検出不能を事前
に検知し、その後の事故防止処置を早急に行うことがで
きる工業窯炉の稼働部分に使用する耐火物の残存厚検出
方法を提供するものである。
According to the present invention, when detecting the remaining thickness of a refractory through a change in a flow rate, a pressure, or the like of a fluid through a fluid passage in the refractory, it is necessary to detect in advance that the refractory cannot be detected due to a blockage of a fluid passage or a spout. An object of the present invention is to provide a method for detecting the remaining thickness of a refractory used in an operating part of an industrial kiln, in which a subsequent accident prevention measure can be promptly performed.

【0008】[0008]

【課題を解決するための手段】本発明は、耐火物背面側
から耐火物内部の稼働面側に向けて所定厚位置まで流体
が流通する流体通路を設け、該流体通路に接続する流体
供給側及び排出側に配設した流量検出器あるいは圧力検
出器により、前記流体通路に供給し排出するかあるいは
充填した流体の流量あるいは圧力の変化を計測し、前記
変化により耐火物の残存厚を検出すると共に、前記検出
器により使用前の流体通路内の流体流通あるいは加圧充
填可否の検出を行う工業窯炉の稼働部分に使用する耐火
物の残存厚を検出する。
According to the present invention, there is provided a fluid passage through which a fluid flows from a back side of a refractory to a working surface side inside the refractory to a predetermined thickness position, and a fluid supply side connected to the fluid passage. And a flow rate detector or a pressure detector disposed on the discharge side measures a change in the flow rate or pressure of the fluid supplied to or discharged from the fluid passage or filled, and detects the remaining thickness of the refractory based on the change. At the same time, the remaining thickness of the refractory used in the operating part of the industrial kiln for detecting whether or not the fluid is flowing in the fluid passage or whether or not pressurization can be filled is detected by the detector.

【0009】[0009]

【発明の実施の形態】本発明は、流量あるいは圧力測定
のための流体を、耐火物背面から注入し耐火物内部の所
定厚み位置までを経由してまた耐火物背面から排出する
流体通路を耐火物内に設け、所定の位置で流体通路に供
給し排出する流体の流量、あるいは加圧充填する流体の
圧力を計測することにより、使用前の流体通路の開封あ
るいは不通(閉塞)による残存厚測定不能状態を検知し
て溶湯の漏えい事故を防止するとともに、耐火物の残存
厚検出を行う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the present invention, a fluid passage for injecting a fluid for flow rate or pressure measurement from the back of a refractory and passing through a predetermined thickness position inside the refractory and discharging from the back of the refractory is provided. By measuring the flow rate of the fluid supplied to and discharged from the fluid passage at a predetermined position and the pressure of the fluid to be filled under pressure, measurement of the residual thickness due to opening or blocking (blocking) of the fluid passage before use Detecting the impossible state, preventing the accident of molten metal leakage, and detecting the remaining thickness of the refractory.

【0010】本発明において、流量や圧力を計測するた
めの流体としては、水でも可能であるが、ガスを使用す
ることが好ましい。また、耐火物内に流体を流すことが
可能な通路として金属管を使用する場合は、その金属管
と高温での反応ができるだけ少ないガス、例えば、窒素
ガスやアルゴンガス等を使用することが好ましい。
In the present invention, water can be used as the fluid for measuring the flow rate and pressure, but it is preferable to use gas. When a metal tube is used as a passage through which a fluid can flow in the refractory, it is preferable to use a gas that reacts with the metal tube at a high temperature as little as possible, for example, a nitrogen gas or an argon gas. .

【0011】本発明は、溶融金属容器、溶融金属処理装
置、セメントキルン、焼却炉、加熱炉等の工業窯炉にお
ける稼働部分に使用する耐火物、即ち、各容器、装置、
炉の内張り用耐火物、羽口受けれんが、羽口れんが、ガ
ス吹き込みプラグ等の耐火物の残存を確認する必要があ
る箇所に適用できる。
The present invention relates to a refractory used in an operating part of an industrial kiln such as a molten metal container, a molten metal processing apparatus, a cement kiln, an incinerator, and a heating furnace, that is, each container, device,
It can be applied to places where it is necessary to check the remaining refractories such as refractories for furnace lining, tuyere bricks, tuyere bricks and gas blowing plugs.

【0012】使用する流体の圧力検出器としては、歪み
抵抗等を利用した電子式圧力センサーやダイヤフラム等
を利用した機械式圧力センサー等を、また、流量検出器
としては、電子式フローメーターやマスフローメーター
等をそれぞれ組合わせて使用できる。
As a pressure detector for the fluid to be used, an electronic pressure sensor using a strain resistance or the like or a mechanical pressure sensor using a diaphragm or the like is used. As a flow rate detector, an electronic flow meter or a mass flow sensor is used. Meters can be used in combination.

【0013】[0013]

【実施例】図1は本発明の計測した流量の変化で流体通
路の開封あるいは閉塞と、耐火物の残存厚を検出する方
法である第一実施例の概略図で、転炉のマグネシア・カ
ーボン質れんが1の内部に外径4mm,内径2mmのS
US304製のU字形の金属管2を設置し、アルゴンガ
スボンベ3から開閉弁4、レギュレーター5及びマスフ
ローメータ6aを経て金属管2の一方からアルゴンガス
を1000cc/分の流量で流し、もう一方から排出さ
れるアルゴンガスの流量をマスフローメーター6bで検
出した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view of a first embodiment of a method for detecting the opening or closing of a fluid passage and the remaining thickness of a refractory based on a change in a measured flow rate according to the present invention. Inside of the brick 1 S 4 mm outside diameter and 2 mm inside diameter
A U-shaped metal tube 2 made of US304 is installed, and argon gas is flowed from one of the metal tubes 2 at a flow rate of 1000 cc / min from an argon gas cylinder 3 via an on-off valve 4, a regulator 5 and a mass flow meter 6a, and discharged from the other. The flow rate of the supplied argon gas was detected by the mass flow meter 6b.

【0014】本実施例では、まず、使用前に耐火物中に
設置した流体通路(金属管)2が何らかの原因で閉塞し
ている場合は、マスフローメーター6aと6bで検出さ
れる流量がゼロであり、また、使用前に流体通路2が何
らかの原因で開封している場合は、マスフローメーター
6bで検出される流量がマスフローメーター6aで検出
された流量より少なくなるが、使用前にマスフローメー
ター6aと6bで検出されたアルゴンガスの流量は等し
く、流体通路2に異常が無いことを確認できた。
In this embodiment, first, when the fluid passage (metal tube) 2 installed in the refractory before use is closed for some reason, the flow rate detected by the mass flow meters 6a and 6b is zero. If the fluid passage 2 is opened for some reason before use, the flow rate detected by the mass flow meter 6b becomes smaller than the flow rate detected by the mass flow meter 6a. The flow rate of the argon gas detected in 6b was equal, and it was confirmed that there was no abnormality in the fluid passage 2.

【0015】次に、使用時のマスフローメーター6bで
検出される流量がマスフローメーター6aで検出される
流量より低下した時点(マスフローメーター6aで検出
される流量は1000cc/分のまま)、即ち、耐火物
中の流体通路2の先端まで耐火物の損耗が進んで、流体
通路2の先端が開封した時点のマグネシア・カーボン質
れんが1の残存厚の実測値と、U字形流体通路2の先端
の設置位置から推定されるマグネシア・カーボン質れん
が1の残存厚は一致し、本発明による耐火物の残存厚検
出方法は非常に有効であつた。
Next, when the flow rate detected by the mass flow meter 6b during use becomes lower than the flow rate detected by the mass flow meter 6a (the flow rate detected by the mass flow meter 6a remains 1000 cc / min), The measured value of the remaining thickness of the magnesia-carbon brick 1 at the time when the end of the fluid passage 2 is opened as the wear of the refractory proceeds to the tip of the fluid passage 2 in the object, and the installation of the tip of the U-shaped fluid passage 2 The residual thickness of the magnesia-carbon brick 1 estimated from the position matched, and the method for detecting the residual thickness of the refractory according to the present invention was very effective.

【0016】図2は、本発明の加圧充填した流体の圧力
変化を計測することで流体通路の開封あるいは閉塞と、
耐火物の残存厚を検出する方法である第二実施例の概略
図で、転炉のマグネシア・カーボン質れんが1の内部に
外径4mm、内径2mmのSUS304製U字形流体通
路(金属管)2を設置し、アルゴンガスボンベ3から開
閉弁4、レギュレター5を経て流体通路2の一方からア
ルゴンガスを2Kg/cm2の圧力で加圧充填し、流体
通路2のもう一方でアルゴンガスの圧力をダイヤフラム
式センサー7で検出した。
FIG. 2 is a diagram showing the opening or closing of a fluid passage by measuring a pressure change of a fluid filled under pressure according to the present invention;
FIG. 4 is a schematic view of a second embodiment of the method for detecting the remaining thickness of the refractory, in which a SUS304 U-shaped fluid passage (metal tube) 2 having an outer diameter of 4 mm and an inner diameter of 2 mm is placed inside a magnesia-carbon brick 1 of a converter. Is installed from the argon gas cylinder 3 via the on-off valve 4 and the regulator 5, and pressurized and filled with argon gas from one of the fluid passages 2 at a pressure of 2 kg / cm2. Detected by sensor 7.

【0017】本実施例では、まず、便用前に流体通路2
が何らかの原因で閉塞している揚合は、ダイヤフラム式
センサー7で検出される圧力がゼロであり、また、使用
前に流体通路2が何らかの原因で開封している場合は、
ダイヤフラム式センサー7で検出される圧力がレギュレ
ター5によって流体通路2に加圧充填するアルゴンガス
の圧力より小さくなるが、使用前にダイヤフラム式セン
サー7で検出された圧力とレギュレター5によって流体
通路2に加圧充填された圧力は等しく、流体通路2に異
常が無いことを確認できた。
In this embodiment, first, before the stool, the fluid passage 2
Is closed for some reason, the pressure detected by the diaphragm sensor 7 is zero, and if the fluid passage 2 is opened for some reason before use,
Although the pressure detected by the diaphragm sensor 7 becomes smaller than the pressure of the argon gas to be pressurized and filled into the fluid passage 2 by the regulator 5, the pressure detected by the diaphragm sensor 7 and the regulator 5 before use cause the fluid passage 2 to enter the fluid passage 2. The pressures filled under pressure were equal, and it was confirmed that there was no abnormality in the fluid passage 2.

【0018】次に、使用時のダイヤフフム式センサー7
で検出されるアルゴンガスの圧力がレギュレター5によ
って耐火物中の流体通路2に加圧充填する圧力よりも低
下した時点、即ち、流体通路2の耐火物中先端まで耐火
物の損耗が進んで、流体通路2の先端が開封した時点の
マグネシア・カーボン質れんが1の実測値と、U字形の
流体通路(金属管)2の先端の設置位置から推定される
マグネシア・カーボン質れんが1の残存厚は一致し、本
発明による耐火物の残存厚検出方法は非常に有効であっ
た。
Next, the diaphragm sensor 7 during use
When the pressure of the argon gas detected at the time becomes lower than the pressure for pressurizing and filling the fluid passage 2 in the refractory by the regulator 5, that is, the wear of the refractory proceeds to the tip of the refractory in the fluid passage 2, The measured thickness of the magnesia-carbon brick 1 at the time when the tip of the fluid passage 2 is opened and the remaining thickness of the magnesia-carbon brick 1 estimated from the installation position of the tip of the U-shaped fluid passage (metal pipe) 2 are as follows. In agreement, the method for detecting the remaining thickness of refractories according to the present invention was very effective.

【0019】以下に、本発明の耐火物の残存厚検出方法
を流体通路の各種構造とともに説明する。
Hereinafter, the method for detecting the remaining thickness of the refractory of the present invention will be described together with various structures of the fluid passage.

【0020】検出方法としては、流体通路に流体を流
し、その流体の流量を計測する方法と、流体通路内に流
体を加圧充填し、その流体の圧力を計測する方法で実施
が可能である。
As a detection method, a method of flowing a fluid through a fluid passage and measuring the flow rate of the fluid, and a method of pressurizing and filling the fluid in the fluid passage and measuring the pressure of the fluid can be used. .

【0021】図3は本発明に用いる流体通路の概略図
で、耐火物内に、流体を注入し、排出することが可能な
流体通路2をU字管の先端が所望の厚み位置に来るよう
に設けた構造である。
FIG. 3 is a schematic view of a fluid passage used in the present invention. A fluid passage 2 capable of injecting and discharging a fluid into a refractory is provided so that the tip of a U-shaped tube is at a desired thickness position. It is the structure provided in.

【0022】図4で、図4−(a)は図3に示す耐火物
の流体通路2が損耗により開封した状態、図4−(b)
は金属等の付着や進入で流体通路2が閉塞された状熊を
示す概略図である。
FIG. 4A shows the state in which the fluid passage 2 of the refractory shown in FIG. 3 is opened due to wear, and FIG.
FIG. 3 is a schematic view showing a state in which the fluid passage 2 is closed due to adhesion or entry of metal or the like.

【0023】残存厚検出方法として前述した二つの実施
例を示したが、図4−(a)のように流体通路2が開封
した場合、流量による検出方法では流体が開封口から放
出されるため、流体排出側で計測される流量が流体供給
側で計測される流量より小さくなるので、流体通路2が
開封したことを検知することができる。なお、流体排出
側だけで流量を計測する場合は、流量が減少することで
流体通路2の開封を検知することでできる。
Although the above-described two embodiments have been described as a method for detecting the remaining thickness, when the fluid passage 2 is opened as shown in FIG. 4A, the fluid is discharged from the opening by the flow rate detection method. Since the flow rate measured on the fluid discharge side becomes smaller than the flow rate measured on the fluid supply side, it is possible to detect that the fluid passage 2 has been opened. When the flow rate is measured only on the fluid discharge side, it is possible to detect the opening of the fluid passage 2 by decreasing the flow rate.

【0024】また、加圧充填した流体圧力で検出する場
合、流体が開封口から放出されるため、流体排出側で計
測される圧力が流体供給側で示される充填圧力より小さ
くなるので流体通路の開封を検出することができ、更
に、流体排出側のみで圧力計測する場合は、当初の圧力
より小さくなることで開封を検知することができる。
When the pressure is detected by the pressure of the filled fluid, since the fluid is discharged from the opening, the pressure measured on the fluid discharge side becomes smaller than the filling pressure indicated on the fluid supply side. Opening can be detected, and when pressure is measured only on the fluid discharge side, opening can be detected when the pressure becomes lower than the initial pressure.

【0025】次に、図4−(b)のように流体通路2が
閉塞した場合の残存厚検出方法における、流量による検
出は、流体供給側と流体排出側で計測される流量が共に
ゼロとなり、流体通路の閉塞を検知することでできる。
Next, in the method for detecting the remaining thickness when the fluid passage 2 is closed as shown in FIG. 4B, the detection based on the flow rate is such that both the flow rates measured on the fluid supply side and the fluid discharge side become zero. This can be achieved by detecting blockage of the fluid passage.

【0026】圧力による検出は、流体排出側で計測され
る圧力が、流体供給側で加圧充填される圧力より小さく
なるので、流体通路2が閉塞したことを検知することが
できる。但し、流体通路2が閉塞した揚合、圧力低下が
無い場合もあり得るので、加圧充填側の圧力を時間変動
させて、その変動圧力を計測することが好ましい。
In the detection based on the pressure, since the pressure measured on the fluid discharge side is smaller than the pressure charged and filled on the fluid supply side, it is possible to detect that the fluid passage 2 is closed. However, since there may be no case where the fluid passage 2 is closed and there is no pressure drop, it is preferable to change the pressure on the pressurized filling side with time and measure the changed pressure.

【0027】これらの残存厚検出に先立ち、使用前の流
体通路2の開封や閉塞による異常確認をするには、流量
による場合は、流体供給側及び排出側で計測する流体の
流量が等しいことを確認するか、あるいは、流体排出側
の一方だけで流量を計測する時は、流体排出側に流体が
流れていることと、流体通路2に流体を加圧充填して流
体の漏れが無いことで確認する。また、圧力による場合
は、一定圧で加圧充填した流体の圧力と流体排出側で計
測される流体の圧力が等しいことを確認する。さらに、
流体排出側の一方だけで圧力を計測する時は、流体圧力
を感受することで閉塞状態でないことを検知し、充填状
態で感受する圧力に強弱変化がないことで開封もないこ
とを検知して、本発明の残存厚検出方法が実施できるこ
とを確認する。
Prior to the detection of the remaining thickness, it is necessary to confirm that the flow rate of the fluid measured on the fluid supply side and the flow rate of the fluid on the discharge side are the same in the case of the flow rate. When confirming or measuring the flow rate only on one side of the fluid discharge side, it is necessary to confirm that the fluid is flowing to the fluid discharge side and that the fluid is pressurized and filled in the fluid passage 2 so that there is no leakage of the fluid. Confirm. In the case of pressure, it is confirmed that the pressure of the fluid pressurized and filled at a constant pressure is equal to the pressure of the fluid measured on the fluid discharge side. further,
When measuring pressure only on one side of the fluid discharge side, it detects that it is not a closed state by sensing the fluid pressure, and detects that there is no change in the pressure sensed in the filled state and there is no opening Then, it is confirmed that the method for detecting the remaining thickness of the present invention can be implemented.

【0028】図5は本発明に用いる各種の流体通路の概
略図で、図5−(a)は先端の曲形状変形例、図5−
(b)は先端部が角張った例、図5−(c)は耐火物内
での流体通路を二分し先端で流通する例、図5−(d)
は流体通路を複層で構成し、先端部で内通路又は外通路
から流体が流れ出る構造の例である。このように、流体
が流体通路2を流入、排出する構造であれば、流体通路
2の外側に流体圧や流量の検出器を設置することでその
背圧あるいは流量変化が検出可能になる。
FIG. 5 is a schematic view of various fluid passages used in the present invention. FIG.
(B) is an example in which the tip is angular, FIG. 5- (c) is an example in which the fluid passage in the refractory is divided into two and circulates at the tip, and FIG.
Is an example of a structure in which a fluid passage is composed of a plurality of layers, and a fluid flows out from an inner passage or an outer passage at a tip portion. As described above, if the fluid flows into and out of the fluid passage 2, a back pressure or a change in the flow can be detected by installing a fluid pressure or flow rate detector outside the fluid passage 2.

【0029】また、図6は本発明に用いる段階的に複数
個設けた流体通路の概略図で、耐火物内に複数個の流体
通路2を稼働面からの距離を変えて設置すれば、耐火物
1の損耗速度や損耗状態を検出することも可能となる。
FIG. 6 is a schematic view of a plurality of fluid passages provided in a stepwise manner used in the present invention. It is also possible to detect the wear speed and the wear state of the object 1.

【0030】本発明のような耐火物内に流体を注入し、
そして排出することが可能な流体通路は、耐火物中に、
例えば、金属管を埋め込むことによって簡単に製造でき
る。ただし、非常に高温で使用される耐火物内では、金
属管が酸化や炭化するために、耐火物の損耗によって溶
融金属等と接触する前に開封してしまうことがある場合
は、金属管の材質として高温での耐食性が非常に高いも
のを使用することも可能であるが、金属管内(通路内)
に流体を流しその流体の流量と圧力の一方あるいは両方
を計測する方法を採用すれば、流す流体によって金属管
が冷却されるのでステンレス鋼程度の安価な金属で十分
に耐用がある。
Injecting a fluid into a refractory as in the present invention,
And the fluid passage that can be discharged, in the refractory,
For example, it can be easily manufactured by embedding a metal tube. However, in refractories used at very high temperatures, if the metal tube is oxidized or carbonized, it may be opened before it comes into contact with molten metal, etc. due to wear of the refractory. Although it is possible to use a material that has very high corrosion resistance at high temperatures, it is possible to use a metal tube (in a passage).
If a method of measuring the flow rate and / or the pressure of the fluid by flowing the fluid through the pipe is adopted, the metal pipe is cooled by the flowing fluid, so that inexpensive metal such as stainless steel is sufficiently durable.

【0031】[0031]

【発明の効果】本発明は、耐火物の残存厚さや損耗状態
確認を、流量や圧力変化を適時とらえて検出可能な測定
方法であり、実施個所は制限されることなく溶融金属容
器、溶融金属処理装置、セメントキルン、焼却炉、加熱
炉等の工業窯炉における稼働側と接する部分に使用する
耐火物の残存厚の検出に適用することが可能になった。
The present invention is a measuring method capable of detecting the remaining thickness and the wear state of a refractory by properly detecting a flow rate and a change in pressure. It can be applied to the detection of the residual thickness of refractory used in the part in contact with the operating side in industrial kilns such as treatment equipment, cement kilns, incinerators, and heating furnaces.

【0032】さらに、耐火物中の流体通路を介し流体の
流量や圧力変化から耐火物残存厚を検出するに際し、流
体通路の閉塞による流量、圧力の検出不可を事前に察知
し、その後の事故防止処置を早急に行うことも可能とな
った。
Further, when detecting the remaining thickness of the refractory from a change in the flow rate and pressure of the fluid through the fluid passage in the refractory, the impossibility of detecting the flow rate and pressure due to the blockage of the fluid passage is detected in advance, and the subsequent accident prevention It is now possible to take immediate action.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第一実施例の概略図である。FIG. 1 is a schematic diagram of a first embodiment of the present invention.

【図2】 本発明の第二実施例の概略図である。FIG. 2 is a schematic view of a second embodiment of the present invention.

【図3】 本発明に用いる流体通路の概略図である。FIG. 3 is a schematic view of a fluid passage used in the present invention.

【図4】 図4−(a)は流体通路の開封状態を、図4
−(b)は流体通路閉塞状態を示す概略図である。
FIG. 4 (a) shows the unsealed state of the fluid passage, and FIG.
FIG. 4B is a schematic diagram illustrating a fluid passage closed state.

【図5】 本発明に用いる各種の流体通路の概略図であ
る。
FIG. 5 is a schematic view of various fluid passages used in the present invention.

【図6】 本発明に用いる段階的に複数個設けた流体通
路の概略図である。
FIG. 6 is a schematic view of a plurality of fluid passages provided in a stepwise manner used in the present invention.

【符号の説明】[Explanation of symbols]

1 れんが(耐火物) 2 金属管(流体通路) 3 アルゴンガスボンベ 4 開閉弁 5 レギュレーター 6a,6b マスフローメーター 7 ダイヤフラム式センサー Reference Signs List 1 brick (refractory) 2 metal pipe (fluid passage) 3 argon gas cylinder 4 on-off valve 5 regulator 6a, 6b mass flow meter 7 diaphragm sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 耐火物背面側から耐火物内部の稼働面側
に向けて所定厚位置まで流体が流通する流体通路を設
け、該流体通路に接続する流体排出側、あるいは供給側
及び排出側に配設した流量検出器により、前記流体通路
に供給し排出する流体の流量の変化を計測し、前記変化
により耐火物の残存厚を検出するとともに、前記検出器
により使用前の流体通路内での流体流通可否の検出を行
う工業窯炉の稼働部分に使用する耐火物の残存厚検出方
法。
1. A fluid passage through which fluid flows from a rear side of a refractory to a working surface side inside the refractory to a predetermined thickness position, and a fluid discharge side connected to the fluid passage, or a supply side and a discharge side. The change in the flow rate of the fluid supplied to and discharged from the fluid passage is measured by the disposed flow rate detector, and the remaining thickness of the refractory is detected by the change. A method for detecting the remaining thickness of refractories used in operating parts of industrial kilns that detects whether fluid can flow.
【請求項2】 耐火物背面側から耐火物内部の稼働面側
に向けて所定厚位置まで流体が流通する流体通路を設
け、該流体通路に接続する流体排出側あるいは流体供給
側と共に配設した流体圧力検出器により、前記流体通路
に加圧充填した流体の圧力変化を計測し、前記変化によ
り耐火物の残存厚を検出するとともに、前記検出器によ
り使用前の流体通路内への流体充填可否の検出を行う工
業窯炉の稼働部分に使用する耐火物の残存厚検出方法。
2. A fluid passage through which fluid flows from a back side of the refractory to a working surface side inside the refractory to a predetermined thickness position, and is provided together with a fluid discharge side or a fluid supply side connected to the fluid passage. A fluid pressure detector measures a change in pressure of the fluid pressurized and filled in the fluid passage, detects the remaining thickness of the refractory based on the change, and determines whether the fluid can be filled into the fluid passage before use by the detector. Method for detecting the remaining thickness of refractories used in the operating part of an industrial kiln that detects air.
JP5530597A 1997-03-10 1997-03-10 Remaining thickness detecting method of refractory used to operating part of industrial furnace Pending JPH10253262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5530597A JPH10253262A (en) 1997-03-10 1997-03-10 Remaining thickness detecting method of refractory used to operating part of industrial furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5530597A JPH10253262A (en) 1997-03-10 1997-03-10 Remaining thickness detecting method of refractory used to operating part of industrial furnace

Publications (1)

Publication Number Publication Date
JPH10253262A true JPH10253262A (en) 1998-09-25

Family

ID=12994867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5530597A Pending JPH10253262A (en) 1997-03-10 1997-03-10 Remaining thickness detecting method of refractory used to operating part of industrial furnace

Country Status (1)

Country Link
JP (1) JPH10253262A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113483626A (en) * 2021-06-24 2021-10-08 中国十七冶集团有限公司 Steel structure fireproof coating thickness measuring device and construction method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113483626A (en) * 2021-06-24 2021-10-08 中国十七冶集团有限公司 Steel structure fireproof coating thickness measuring device and construction method thereof
CN113483626B (en) * 2021-06-24 2023-12-15 中国十七冶集团有限公司 Steel structure fireproof coating thickness measuring device and construction method thereof

Similar Documents

Publication Publication Date Title
EP0646778B1 (en) Apparatus for measuring temperature using optical fiber and method therefor
NO324289B1 (en) Method for Downhole Wellstream Monitoring by Tracer Injection into the Flow Fluid
US10400293B2 (en) Metal making lance with infrared camera in lance head
CN104428618A (en) Method and device for detecting a leakage in the area of at least one cooling device of a furnace, and a furnace
TW202110554A (en) Plate condition tool
JP2009198472A (en) Device and method for measuring high-pressure gas flow
JPH10253262A (en) Remaining thickness detecting method of refractory used to operating part of industrial furnace
JP2010159444A (en) Apparatus for preventing backflow in metallurgical lance having burner function
KR200277337Y1 (en) An apparatus for trouble perception on the PCI lance of blast furnace being chocked up
KR101466174B1 (en) Pressure measuring device for furnace
US20070126162A1 (en) Metal making lance slag detection system
KR100825613B1 (en) A system for drilling a blocked pressure detection hole by using an air motor
JPS6219924Y2 (en)
KR20220076697A (en) Hot air typed leak detection device
KR20130060081A (en) Gas supply apparatus for ladle furnace
JPH0852568A (en) Device for control of fusion welding using filler material
KR101937422B1 (en) Analyzing system for the adhesion characteristics of ash in real time
JP2971336B2 (en) Slag cut control method and slag cut device in molten metal refining furnace
JPS5831021A (en) Slag outflow preventing method in case of charging
JPH08277458A (en) Thermal spraying device having backfire detector and method for extinguishing backfire
JPH1017911A (en) Method for diagnosing breakage of tuyere
JPH0629796B2 (en) Fluid resistance type temperature measuring device
JP5929629B2 (en) Method for detecting blockage of powder pipe transportation device
JPH0820290B2 (en) Method and apparatus for measuring in-furnace gas ejection amount
JPH0751830A (en) Device for correcting thermal deformation of injection sleeve