JP2009198472A - Device and method for measuring high-pressure gas flow - Google Patents

Device and method for measuring high-pressure gas flow Download PDF

Info

Publication number
JP2009198472A
JP2009198472A JP2008043666A JP2008043666A JP2009198472A JP 2009198472 A JP2009198472 A JP 2009198472A JP 2008043666 A JP2008043666 A JP 2008043666A JP 2008043666 A JP2008043666 A JP 2008043666A JP 2009198472 A JP2009198472 A JP 2009198472A
Authority
JP
Japan
Prior art keywords
pressure
orifice
pipe
gas
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008043666A
Other languages
Japanese (ja)
Inventor
Nobuyasu Sakata
展康 坂田
Keiko Chitose
敬子 千歳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008043666A priority Critical patent/JP2009198472A/en
Publication of JP2009198472A publication Critical patent/JP2009198472A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide device and method for measuring high-pressure gas flow which can correctly measure flow rate of high-pressure gas because use of large diameter orifice diffuser with orifice enables accurate measuring of flow coefficient even if pressure in high-pressure tank significantly varies. <P>SOLUTION: This high-pressure gas flow measuring device measures flow rate of high-pressure gas contained in the high-pressure tank when feeding out the above high-pressure gas through high-pressure piping. It is characterized by that inlet of the large diameter orifice diffuser with its outlet end open to the atmosphere is connected with outlet of the above high-pressure piping, while this orifice diffuser is provided with both orifice and differential manometer for detecting anteroposterior differential pressure of the orifice at an adequate position from the above inlet, and the distance from the above outlet of the orifice is set to the position where pressure of the gas spouted into the orifice diffuser from the above outlet may become near the level of atmospheric pressure. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水素ボンベ等の高圧タンクに収納された高圧ガスを、高圧配管を通して外部に送出するに際し、該高圧ガスの流量を計測する高圧ガス流量計測装置及び流量計測方法に関する。   The present invention relates to a high-pressure gas flow rate measuring apparatus and a flow rate measuring method for measuring the flow rate of a high-pressure gas stored in a high-pressure tank such as a hydrogen cylinder to the outside through a high-pressure pipe.

高圧ガスが収納された高圧タンクからガスが漏洩する場合やガスを放出する場合において、放出ガスの流量を計測する必要が生じるときがある。
一般に、高圧ガスは出口部でチョークして音速となるため、出口穴部での膨張過程が等エントロピー的であれば、出口面積×ガス流速×ガス密度によって、排出流量を推定することができる。
When the gas leaks from the high-pressure tank in which the high-pressure gas is stored or when the gas is released, it may be necessary to measure the flow rate of the released gas.
In general, since the high pressure gas is choked at the outlet and becomes sonic, if the expansion process in the outlet hole is isentropic, the discharge flow rate can be estimated from outlet area × gas flow velocity × gas density.

しかしながら、実際の前記出口穴部では、高圧配管部からの面積変化等に伴う圧力損失等があり、理論的な膨張過程による圧力低下とは異なる場合が多い。また、水素等の気体では、実在気体効果と呼ばれる分子間力の効果により高圧域で理想気体の理論式と異なる挙動を示す場合も多い。
このように、ガス音速、ガス密度は、出口穴部での膨張過程で変化するため、ガス出口として面積が限定された部分でのガス音速、ガス密度を特定するのは、一般に困難である。
However, in the actual outlet hole portion, there is a pressure loss associated with a change in area from the high-pressure pipe portion, and the like, which is often different from a pressure drop due to a theoretical expansion process. In addition, a gas such as hydrogen often exhibits a behavior different from the theoretical formula of an ideal gas in a high pressure region due to an intermolecular force effect called a real gas effect.
As described above, since the gas sound speed and the gas density change in the expansion process at the outlet hole, it is generally difficult to specify the gas sound speed and the gas density in the portion where the area is limited as the gas outlet.

この問題を解決する手段として、図4(A)のような高圧タンク1内の圧力変化が小さい場合で、高圧タンク1に接続された高圧配管2を通して高圧タンク1内の高圧ガスを排出する場合、圧力計15で検出される高圧タンク1内の圧力Pの圧力変化が小さい場合には、高圧タンク1内の圧力変化Pと放出時間から時間当たりの流量を算出し、圧力計16で高圧配管2出口の圧力Pを検出して理論流量を算出し、前記時間当たりの流量を算出値との比から高圧配管2で出口の流量係数を算出して、この流量係数とノズル前圧力とにより実際の流量を推定している。 As a means for solving this problem, when the pressure change in the high-pressure tank 1 is small as shown in FIG. 4A, the high-pressure gas in the high-pressure tank 1 is discharged through the high-pressure pipe 2 connected to the high-pressure tank 1. , when the pressure change of the pressure P 1 in the high-pressure tank 1 that is detected by the pressure gauge 15 is small, and calculates the flow rate per time from the pressure change P 1 and the release time of the high-pressure tank 1, by the pressure gauge 16 The theoretical flow rate is calculated by detecting the pressure P 2 at the outlet of the high-pressure pipe 2, the flow coefficient at the outlet is calculated from the ratio of the flow rate per time to the calculated value, and the flow coefficient and the pre-nozzle pressure are calculated. The actual flow rate is estimated by

また、特許文献1(実開平4−75914号公報)には、ガス状流体が流れる配管の1対のフランジの間に挟持され前後に離間した位置に内外方向に貫通する連通孔が明けられたリング状のスペーサと、該スペーサの内部にガス状流体の流路と交差状態に配置されるオリフィスプレートと、該オリフィスプレートの縁部とスペーサの内面nスペーサの内における連通孔の離間位置とのあいだに接続状態に配置され、オリフィスプレートの半径方向の変位によって変形する支持リングと、スペーサの1対の連通孔の外方に接続されオリフィスプレートの前後位置の圧力を外部に導く圧力伝達管とを備え、
前記支持リングの部分に変位を負担させることにより、オリフィスプレートが相対的に熱膨張したときの変形を支持リングで吸収して、オリフィスプレートとスペーサとの取付部分に熱応力が集中することを低減している。
In addition, Patent Document 1 (Japanese Utility Model Publication No. 4-75914) has a communication hole that is sandwiched between a pair of flanges of a pipe through which a gaseous fluid flows and that penetrates inward and outward at a position spaced forward and backward. A ring-shaped spacer, an orifice plate disposed inside the spacer so as to intersect the flow path of the gaseous fluid, and an edge portion of the orifice plate and a separation position of the communication hole in the inner surface n spacer of the spacer A support ring which is arranged in a connected state and deforms due to a radial displacement of the orifice plate, and a pressure transmission pipe which is connected to the outside of the pair of communication holes of the spacer and guides the pressure at the front and rear positions of the orifice plate to the outside With
By placing a displacement on the support ring portion, the deformation when the orifice plate is relatively thermally expanded is absorbed by the support ring, and the concentration of thermal stress on the attachment portion between the orifice plate and the spacer is reduced. is doing.

実開平4−75914号公報Japanese Utility Model Publication No. 4-75914

図4には、高圧ガスが収納された高圧タンクから送出される高圧ガスの流量を計測する装置の略図であり、図4(A)は高圧タンク内の圧力変化が小さい場合、図4(B)は高圧タンク内の圧力変化が著しく大きい場合について示す。
図4(A)のように、高圧タンク1内の圧力変化が小さい場合には、つまり前記のように、高圧タンク1に接続された高圧配管2を通して高圧タンク1内の高圧ガスを排出し、圧力計15で検出される高圧タンク1内の圧力Pの圧力変化が小さい場合には、高圧タンク1内の圧力変化Pと放出時間から時間当たりの流量を算出し、圧力計16で高圧配管2出口の圧力Pを検出して理論流量を算出し、前記時間当たりの流量を算出値との比から高圧配管2で出口の流量係数を算出して、この流量係数を実際の計測に用いている。
FIG. 4 is a schematic diagram of an apparatus for measuring the flow rate of high-pressure gas delivered from a high-pressure tank containing high-pressure gas. FIG. 4 (A) shows a case where the pressure change in the high-pressure tank is small. ) Shows the case where the pressure change in the high-pressure tank is remarkably large.
As shown in FIG. 4A, when the pressure change in the high-pressure tank 1 is small, that is, as described above, the high-pressure gas in the high-pressure tank 1 is discharged through the high-pressure pipe 2 connected to the high-pressure tank 1, If the pressure change of the pressure P 1 in the high-pressure tank 1 that is detected by the pressure gauge 15 is small, and calculates the flow rate per time from the pressure change P 1 and the release time of the high-pressure tank 1, high pressure by the pressure gauge 16 calculating a theoretical flow rate by detecting the pressure P 2 of the pipe 2 outlets, to calculate the flow coefficient of the outlet in the high-pressure pipe 2 from the ratio between the calculated value flow rate per said time, the flow coefficient of the actual measurement Used.

しかしながら、図4(B)のように高圧タンク1内の圧力変化が、圧力計15で検出される圧力Pのように著しく大きい場合には、時間毎の流量算出が困難であり、また圧力計16で検出される圧力変化もPのように、著しく大きく変化し、所定の圧力に保持できず、かかる場合には流量係数の計測が困難となり、実際の計測の誤差が避けられない。 However, when the pressure change in the high-pressure tank 1 is remarkably large as in the pressure P 3 detected by the pressure gauge 15 as shown in FIG. 4 (B), it is difficult to calculate the flow rate every hour. as the pressure change P 4 detected by the meter 16, significantly largely changed, it can not be maintained at a predetermined pressure, in such a case it is difficult to measure the flow coefficient, inevitably actual error measurement.

本発明はかかる従来技術の課題に鑑み、オリフィス付きの大径のオリフィス拡大管を用いることにより、高圧タンク内の圧力変化が大きい場合でも正確に流量係数の計測が可能となり、高圧ガスの流量を正確に計測し得る高圧ガス流量計測装置及び高圧ガス流量計測方法を提供することを目的とする。   In view of the problems of the prior art, the present invention makes it possible to accurately measure the flow coefficient even when the pressure change in the high-pressure tank is large by using a large-diameter orifice expansion pipe with an orifice, and to control the flow rate of the high-pressure gas. An object of the present invention is to provide a high-pressure gas flow rate measuring device and a high-pressure gas flow rate measuring method capable of accurately measuring.

本発明はかかる目的を達成するもので、高圧タンクに収納された高圧ガスを、高圧配管を通して外部に送出するに際し、該高圧ガスの流量を計測する高圧ガス流量計測装置において、前記高圧配管の出口部に、出口端を大気に開放された大径のオリフィス拡大管の入口を接続するとともに、該オリフィス拡大管は前記入口部から適正位置にオリフィスと該オリフィス前後の圧力差を検出する差圧計を設けてなり、該オリフィスの前記出口部からの距離は前記出口部からオリフィス拡大管内に噴出されたガスの圧力が大気圧近傍になるような位置に設定されたことを特徴とする(請求項1)。   The present invention achieves such an object. In a high-pressure gas flow measuring device that measures the flow rate of a high-pressure gas stored in a high-pressure tank to the outside through the high-pressure pipe, the outlet of the high-pressure pipe is provided. And a differential pressure gauge for detecting a pressure difference between the orifice and the front and back of the orifice at an appropriate position from the inlet portion. The distance from the outlet portion of the orifice is set to a position where the pressure of the gas ejected from the outlet portion into the orifice expansion pipe is close to the atmospheric pressure (Claim 1). ).

かかる発明において、具体的には、
前記高圧配管の出口部を所定の絞り部に構成し、前記オリフィス拡大管は該絞り部から前記断面積が急拡大した所定長さの円筒体に形成され、前記円筒体の途中に前記オリフィス及び差圧計を設ける(請求項2)。
In this invention, specifically,
The outlet portion of the high-pressure pipe is configured as a predetermined throttle portion, and the orifice expanding pipe is formed in a cylindrical body having a predetermined length with the cross-sectional area rapidly expanding from the throttle portion, and the orifice and A differential pressure gauge is provided (Claim 2).

また、本発明に係る高圧ガス流量計測方法は、
高圧タンクに収納された高圧ガスを、高圧配管を通して外部に送出するに際し、該高圧ガスの流量を計測する高圧ガス流量計測方法であって、前記高圧配管の出口部に大径のオリフィス拡大管を接続し、前記オリフィス拡大管内に噴出されたガスの圧力が大気圧近傍になるような位置にオリフィスを設定して、大気圧近傍でオリフィスの差圧を検出することを特徴とする(請求項3)。
Moreover, the high pressure gas flow rate measuring method according to the present invention includes:
A high-pressure gas flow measurement method for measuring the flow rate of a high-pressure gas stored in a high-pressure tank to the outside through a high-pressure pipe, wherein a large-diameter orifice expansion pipe is provided at the outlet of the high-pressure pipe. An orifice is set at a position where the pressure of the gas injected into the orifice expansion pipe is close to the atmospheric pressure, and the differential pressure of the orifice is detected near the atmospheric pressure. ).

また、本発明にかかる高圧ガス流量計測装置の使用手段は、
(1)高圧の水素ボンベに収納された水素ガスを、リークガス配管を通して外部に送出するに際し、水素ガスの流量を計測する高圧ガス流量計測装置において、
出口端を大気に開放された大径のオリフィス拡大管を地中に埋設するとともに、前記リークガス配管の出口部を地中に埋めて該オリフィス拡大管の入口に接続し、前記オリフィス拡大管は前記入口部から適正位置にオリフィスと該オリフィス前後の圧力差を検出する差圧計を設けてなり、該オリフィスの前記リークガス配管の出口部からの距離は該出口部からオリフィス拡大管内に噴出された水素ガスの圧力が大気圧近傍になるような位置に設定される(請求項4)。
The use means of the high-pressure gas flow measuring device according to the present invention is:
(1) In a high-pressure gas flow measuring device that measures the flow rate of hydrogen gas when the hydrogen gas stored in a high-pressure hydrogen cylinder is sent to the outside through a leak gas pipe,
A large-diameter orifice expanding pipe whose outlet end is open to the atmosphere is buried in the ground, and the outlet portion of the leak gas pipe is buried in the ground and connected to the inlet of the orifice expanding pipe. An orifice and a differential pressure gauge for detecting the pressure difference between the front and back of the orifice are provided at appropriate positions from the inlet, and the distance from the outlet of the leak gas pipe of the orifice is the hydrogen gas ejected from the outlet into the orifice expansion pipe Is set at a position where the pressure is near atmospheric pressure.

(2)高圧タンクに収納された高圧ガスを、高圧配管を通して外部に送出するに際し、該高圧ガスの流量を計測する高圧ガス流量計測装置において、前記高圧配管の途中に安全弁を設け、該安全弁出口の前記高圧配管を大径のオリフィス拡大管の入口に接続するとともに、該オリフィス拡大管は前記入口部から適正位置にオリフィスと該オリフィス前後の圧力差を検出する差圧計を設けてなり、該オリフィスの前記出口部からの距離は、前記安全弁を通して前記入口部からオリフィス拡大管内に噴出されたガスの圧力が大気圧近傍になるような位置に設定される(請求項5)。   (2) In a high-pressure gas flow measuring device that measures the flow rate of the high-pressure gas when the high-pressure gas stored in the high-pressure tank is sent to the outside through the high-pressure pipe, a safety valve is provided in the middle of the high-pressure pipe, and the safety valve outlet The high-pressure pipe is connected to the inlet of a large-diameter orifice expansion pipe, and the orifice expansion pipe is provided with a differential pressure gauge for detecting a pressure difference between the orifice and the orifice at a proper position from the inlet portion. The distance from the outlet is set to a position where the pressure of the gas ejected from the inlet through the safety valve into the orifice expansion pipe is close to the atmospheric pressure (Claim 5).

本発明は、高圧タンクに接続される高圧配管の出口部に、出口端を大気に開放された大径のオリフィス拡大管の入口に接続するとともに、該オリフィス拡大管は前記入口部から適正位置にオリフィスと該オリフィス前後の圧力差を検出する差圧計を設けてなり、該オリフィスの前記出口部からの距離は前記出口部からオリフィス拡大管内に噴出されたガスの圧力が大気圧近傍になるような位置に設定され(請求項1,3)、具体的には高圧配管の出口部を所定の絞り部に構成し、前記オリフィス拡大管は該絞り部から断面積が急拡大した所定長さの円筒体に形成され、前記円筒体の途中に前記オリフィス及び差圧計を設けたので(請求項2)、
高圧タンク内の高圧ガスが高圧配管から、絞り部を通って断面積が急拡大した所定長さの円筒体に形成されたオリフィス拡大管内に流入する際に、オリフィス拡大管の断面積が急拡大するのに伴い急膨張して圧力が低下する。この場合、高圧配管側のガスには何の影響も及ぼさない。
The present invention connects an outlet end of a high-pressure pipe connected to a high-pressure tank to an inlet of a large-diameter orifice expanding pipe opened to the atmosphere, and the orifice expanding pipe is positioned at an appropriate position from the inlet section. A differential pressure gauge for detecting the pressure difference between the orifice and the front and back of the orifice is provided, and the distance of the orifice from the outlet portion is such that the pressure of the gas ejected from the outlet portion into the orifice expansion pipe is close to the atmospheric pressure. (Claims 1 and 3), specifically, the outlet portion of the high-pressure pipe is configured as a predetermined throttle portion, and the orifice expansion pipe is a cylinder having a predetermined length whose cross-sectional area is rapidly expanded from the throttle portion. Since the orifice and the differential pressure gauge are provided in the middle of the cylindrical body (Claim 2),
When the high-pressure gas in the high-pressure tank flows from the high-pressure pipe into the orifice expansion pipe formed in a cylindrical body of a predetermined length whose cross-sectional area has expanded rapidly through the throttle, the cross-sectional area of the orifice expansion pipe rapidly increases. As this happens, it suddenly expands and the pressure drops. In this case, there is no influence on the gas on the high-pressure piping side.

そして、オリフィスの高圧配管出口部からの圧力の膨張距離を、前記出口部からオリフィス拡大管内に噴出されたガスの圧力が大気圧近傍になるような位置に設定されているので、オリフィスには大気圧近傍に下がったガスが供給され、通常のオリフィス前後の圧力差を検出する差圧計による計測が可能となり、高圧タンク内の圧力変化が大きい場合でも正確に流量係数の計測が可能となる。
よって、高圧ガスの流量を正確に計測し得る高圧ガス流量計測装置が得られる。
The expansion distance of the pressure from the outlet portion of the high-pressure pipe of the orifice is set to a position where the pressure of the gas injected from the outlet portion into the orifice expansion pipe is close to the atmospheric pressure. Gas that has fallen in the vicinity of the atmospheric pressure is supplied, and measurement by a differential pressure gauge that detects a pressure difference before and after a normal orifice is possible. Even when the pressure change in the high-pressure tank is large, the flow coefficient can be accurately measured.
Therefore, a high-pressure gas flow measuring device that can accurately measure the flow rate of the high-pressure gas is obtained.

また、出口端を大気に開放された大径のオリフィス拡大管を地中に埋設するとともに、前記リークガス配管の出口部を地中に埋めて該オリフィス拡大管の入口に接続し、オリフィス拡大管は入口部から適正位置にオリフィスと該オリフィス前後の圧力差を検出する差圧計を設けてなり、該オリフィスのリークガス配管の出口部からの距離は、該出口部からオリフィス拡大管内に噴出されたガスの圧力が大気圧近傍になるような位置に設定すれば(請求項4)、
高圧の水素ボンベに収納された水素ガスのリークガス配管入口部からの圧力の膨張距離を、前記入口部からオリフィス拡大管内に噴出された水素ガスの圧力が大気圧近傍になるような位置に設定されているので、オリフィスには大気圧近傍に下がった水素ガスが供給され、リークガス配管側に影響を与えることなく、通常のオリフィス前後の圧力差を検出する差圧計による計測が可能となり、リーク水素ガスの流量計測が可能となる。
Further, a large-diameter orifice expanding pipe whose outlet end is open to the atmosphere is buried in the ground, and the outlet portion of the leak gas pipe is buried in the ground and connected to the inlet of the orifice expanding pipe. A differential pressure gauge that detects the pressure difference between the orifice and the front and back of the orifice is provided at an appropriate position from the inlet, and the distance from the outlet of the leak gas pipe of the orifice is the distance of the gas jetted into the orifice expansion pipe from the outlet If the pressure is set at a position close to atmospheric pressure (Claim 4),
The expansion distance of the pressure from the inlet of the leak gas piping of the hydrogen gas stored in the high-pressure hydrogen cylinder is set to a position where the pressure of the hydrogen gas ejected from the inlet into the orifice expansion pipe is close to the atmospheric pressure. Therefore, the hydrogen gas that has dropped to near atmospheric pressure is supplied to the orifice, and measurement with a differential pressure gauge that detects the pressure difference before and after the normal orifice is possible without affecting the leak gas piping side. Can be measured.

また、高圧タンクに収納された高圧ガスが通流する高圧配管の途中に安全弁を設け、該安全弁出口の前記高圧配管を、大径のオリフィス拡大管の入口に接続するとともに、該オリフィス拡大管は入口部から適正位置にオリフィスと該オリフィス前後の圧力差を検出する差圧計を設けてなり、該オリフィスの前記出口部からの距離は、前記安全弁を通して前記入口部からオリフィス拡大管内に噴出されたガスの圧力が大気圧近傍になるような位置に設定すれば(請求項5)、
前記安全弁の下流に、大径のオリフィス拡大管の入口に接続し、該オリフィスの前記出口部からの距離は、安全弁を通して入口部からオリフィス拡大管内に噴出されたガスの圧力が大気圧近傍になるような位置に設定したので、安全弁の作動は何ら影響を受けずに行うことができ、またオリフィス拡大管による流量の計測も支障なく実施できる。
In addition, a safety valve is provided in the middle of the high-pressure pipe through which the high-pressure gas stored in the high-pressure tank flows, and the high-pressure pipe at the outlet of the safety valve is connected to the inlet of the large-diameter orifice expansion pipe. An orifice and a differential pressure gauge for detecting a pressure difference between the front and the back of the orifice are provided at an appropriate position from the inlet, and the distance of the orifice from the outlet is a gas jetted from the inlet to the orifice expansion pipe through the safety valve. If the pressure is set to a position near the atmospheric pressure (Claim 5),
Connected to the inlet of the large-diameter orifice expansion pipe downstream of the safety valve, the distance of the orifice from the outlet portion is such that the pressure of the gas ejected from the inlet portion through the safety valve into the orifice expansion tube is close to the atmospheric pressure. Since the position is set to such a position, the operation of the safety valve can be performed without any influence, and the measurement of the flow rate by the orifice expansion pipe can be performed without any trouble.

以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this example are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only.

図1は、本発明の第1実施例を示す高圧タンクの流量計測装置の構成図である。
図1において、1は高圧ガスが収納される高圧タンク、該高圧タンク1には高圧配管2が接続されている。4は前記高圧配管2が接続されるオリフィス拡大管である。該高圧配管2の前記オリフィス拡大管4への接続される出口部はチョーク部(絞り部)を有するノズル3に形成されている。
前記オリフィス拡大管4は、前記ノズル3から断面積が急拡大した所定長さの円筒体に形成され、前記円筒体の途中にオリフィス5及びオリフィス5入口側の圧力タップ6及びオリフィス5出口側の圧力タップ7が設置され、該圧力タップ6、7からの差圧を圧力センサ8で検出するようになっている。
FIG. 1 is a configuration diagram of a flow rate measuring device for a high-pressure tank showing a first embodiment of the present invention.
In FIG. 1, reference numeral 1 denotes a high-pressure tank in which high-pressure gas is stored, and a high-pressure pipe 2 is connected to the high-pressure tank 1. Reference numeral 4 denotes an orifice expansion pipe to which the high pressure pipe 2 is connected. An outlet portion of the high-pressure pipe 2 connected to the orifice expansion pipe 4 is formed in a nozzle 3 having a choke portion (throttle portion).
The orifice expanding pipe 4 is formed in a cylindrical body having a predetermined length with a cross-sectional area rapidly expanding from the nozzle 3, and the orifice 5 and the pressure tap 6 on the inlet side of the orifice 5 and the orifice 5 on the outlet side in the middle of the cylindrical body. A pressure tap 7 is installed, and a differential pressure from the pressure taps 6 and 7 is detected by a pressure sensor 8.

前記オリフィス5の前記ノズル3からの距離Lは、前記ノズル3からオリフィス拡大管4内に噴出されたガスの圧力が大気圧近傍になるような位置に設定される。
これにより、高圧タンク1内の高圧ガスが高圧配管2から、ノズル(絞り部)3を通って流路を絞られた後、オリフィス拡大管4に流入する際に、オリフィス拡大管4の断面積が急拡大するのに伴い急膨張して圧力が急低下する。この場合、オリフィス拡大管4における前記作動は高圧配管2側のガスには何の悪影響も及ぼさない。
従って、前記オリフィス拡大管4によって、十分な距離Lと前記オリフィス拡大管4の内径を十分に大きく取ることによって、常温、低圧の流れとなり、通常の該圧力タップ6、7からの差圧を圧力センサ8で高精度で検出することが可能となる。
The distance L of the orifice 5 from the nozzle 3 is set at a position where the pressure of the gas ejected from the nozzle 3 into the orifice expansion pipe 4 is close to the atmospheric pressure.
Accordingly, when the high-pressure gas in the high-pressure tank 1 is squeezed from the high-pressure pipe 2 through the nozzle (throttle portion) 3 and then flows into the orifice expansion pipe 4, the cross-sectional area of the orifice expansion pipe 4. As the pressure suddenly expands, the pressure suddenly expands and the pressure drops rapidly. In this case, the operation in the orifice expansion pipe 4 has no adverse effect on the gas on the high-pressure pipe 2 side.
Accordingly, by taking a sufficient distance L and a sufficiently large inner diameter of the orifice expansion pipe 4 by the orifice expansion pipe 4, a normal temperature and low pressure flow is obtained, and the differential pressure from the normal pressure taps 6 and 7 is reduced to the pressure. The sensor 8 can be detected with high accuracy.

具体的には、前記オリフィス拡大管4は、理論流量(予測値)を用いて、通常のオリフィス5の使用制限を満たすように、配管内径及び前記ノズル3からの距離Lを決定する。即ち、次の(1)式をベースに決定できる。予想質量流量:mは、
m(kg/s)=Se・Ue・Ae (1)
Se=出口密度(kg/m
Ue=出口速度(m/s)
Ae=出口面積(m
前記Se(出口密度)及びUe(出口速度)は、等エントロピーの式を用いてタンク内の圧力及び温度から推算し、
オリフィス拡大管4では、圧力は大気圧、温度はタンク温度と想定し、流速Up(m/s)は、
Up=m/Sp/Ap (2)
Sp=大気圧時のガス密度(kg/m
Ap=オリフィス拡大管4の断面積(m
従って、(2)式の、オリフィス部5の流速Up(m/s)が、オリフィス5の使用制限を満たすように、オリフィス拡大管4の断面積Apつまりオリフィス拡大管4の内径を決める。
Specifically, the orifice expansion pipe 4 determines the inner diameter of the pipe and the distance L from the nozzle 3 so as to satisfy the normal use restriction of the orifice 5 by using the theoretical flow rate (predicted value). That is, it can be determined based on the following equation (1). Expected mass flow: m
m (kg / s) = Se · Ue · Ae (1)
Se = Outlet density (kg / m 3 )
Ue = exit speed (m / s)
Ae = Exit area (m 2 )
The Se (outlet density) and Ue (outlet speed) are estimated from the pressure and temperature in the tank using an isentropic equation,
In the orifice expansion pipe 4, it is assumed that the pressure is atmospheric pressure, the temperature is the tank temperature, and the flow velocity Up (m / s) is
Up = m / Sp / Ap (2)
Sp = Gas density at atmospheric pressure (kg / m 3 )
Ap = Cross-sectional area of the orifice expansion pipe 4 (m 2 )
Accordingly, the cross-sectional area Ap of the orifice expanding pipe 4, that is, the inner diameter of the orifice expanding pipe 4 is determined so that the flow velocity Up (m / s) of the orifice portion 5 in equation (2) satisfies the use restriction of the orifice 5.

そして、かかる実施例によれば、オリフィス5の高圧配管出口部のノズル3からの圧力の膨張距離を、前記ノズル3からオリフィス拡大管4内に噴出されたガスの圧力が大気圧近傍になるような位置に設定されているので、オリフィス5には大気圧近傍に下がったガスが供給され、通常のオリフィス5前後の圧力さを検出する圧力センサ8による計測が可能となり、高圧タンク1内の圧力変化が大きい場合でも正確に流量係数の計測が可能となる。よって、高圧ガスの流量を正確に計測し得る高圧ガス流量計測装置が得られる。   According to this embodiment, the expansion distance of the pressure from the nozzle 3 at the outlet of the high-pressure pipe of the orifice 5 is set so that the pressure of the gas ejected from the nozzle 3 into the orifice expansion pipe 4 is close to the atmospheric pressure. Therefore, the orifice 5 is supplied with gas that has dropped to near atmospheric pressure, and can be measured by the pressure sensor 8 that detects the pressure around the normal orifice 5, so that the pressure in the high-pressure tank 1 can be measured. Even when the change is large, the flow coefficient can be accurately measured. Therefore, a high-pressure gas flow measuring device that can accurately measure the flow rate of the high-pressure gas is obtained.

図2は、本発明の第2実施例を示す水素ボンベのリークガス流量計測装置の構成図である。
図2において、大気に開放されたベントスタック11(出口端)に継手10を介して、大径のオリフィス拡大管4を地中14に横方向に埋設するとともに、出口側を継手10を介して大気に開放されたベントスタック11(出口端)に接続する。
前記オリフィス拡大管4の入口側には、高圧の水素ボンベ12に収納された水素ガスを、リークガス配管13が接続され、該リークガス配管13を通してオリフィス拡大管4内にリーク水素ガスを注入する。
FIG. 2 is a block diagram of a hydrogen gas leak gas flow rate measuring apparatus showing a second embodiment of the present invention.
In FIG. 2, a large-diameter orifice expanding pipe 4 is embedded in the ground 14 laterally through a joint 10 in a vent stack 11 (exit end) opened to the atmosphere, and the outlet side is connected through a joint 10. It connects with the vent stack 11 (exit end) opened to the atmosphere.
A leak gas pipe 13 is connected to a hydrogen gas stored in a high-pressure hydrogen cylinder 12 on the inlet side of the orifice expansion pipe 4, and the leak hydrogen gas is injected into the orifice expansion pipe 4 through the leak gas pipe 13.

そして、前記オリフィス拡大管4は、前記第1実施例と同じく、前記リークガス配管13から断面積が急拡大した所定長さの円筒体に形成されている。
そして、前記円筒体の、リークガス配管13の入口部から適正位置Lに、つまり該リークガス配管13からオリフィス拡大管4内に噴出された水素ガスの圧力が大気圧近傍になるような位置Lに、前記オリフィス5及びオリフィス5入口側の圧力タップ6及びオリフィス5出口側の圧力タップ7が設置され、該圧力タップ6、7からの差圧を圧力センサ8で検出するようになっている。
The orifice expansion pipe 4 is formed in a cylindrical body having a predetermined length with a cross-sectional area rapidly expanding from the leak gas pipe 13 as in the first embodiment.
Then, the cylindrical body, the proper position L 0 from the inlet portion of the leak gas pipe 13, i.e. the leak gas pipe 13 located L 0 as the pressure of the jet hydrogen gas becomes close to the atmospheric pressure in the orifice expansion tube 4 from The pressure tap 6 on the orifice 5 and the inlet side of the orifice 5 and the pressure tap 7 on the outlet side of the orifice 5 are installed, and a pressure sensor 8 detects a differential pressure from the pressure taps 6 and 7.

かかる第2実施例によれば、高圧の水素ボンベ12に収納された水素ガスのリークガス配管13入口部からの、圧力の膨張距離Lを、前記リークガス配管13入口部からオリフィス拡大管4内に噴出された水素ガスの圧力が大気圧近傍になるような位置Lに設定されているので、オリフィス5には大気圧近傍に下がった水素ガスが供給され、リークガス配管13側に影響を与えることなく、通常のオリフィス5前後の圧力差を検出する圧力センサ8での差圧計測が可能となり、リーク水素ガスの流量計測が可能となる。 According to the second embodiment, the expansion distance L 0 of the pressure from the inlet portion of the hydrogen gas leak gas pipe 13 accommodated in the high-pressure hydrogen cylinder 12 is set in the orifice expansion pipe 4 from the inlet portion of the leak gas pipe 13. Since the pressure of the jetted hydrogen gas is set at a position L 0 so as to be close to the atmospheric pressure, the orifice 5 is supplied with the hydrogen gas lowered to the vicinity of the atmospheric pressure and affects the leak gas pipe 13 side. In addition, the differential pressure can be measured by the pressure sensor 8 that detects the pressure difference before and after the normal orifice 5, and the flow rate of the leaked hydrogen gas can be measured.

図3は、本発明の第3実施例を示す安全弁を備えた高圧ガス流量計測装置の構成図である。
図3において、高圧タンク1内に収納された高圧ガスを、高圧配管2を通して外部に送出するに際し、該高圧配管2の途中に安全弁15を設け、該安全弁15出口の前記高圧配管2を大径のオリフィス拡大管4の入口部3に接続している。
そして、前記オリフィス拡大管4は、前記入口部3から適正位置Lにオリフィス5を設置している。
つまり、前記第1実施例と同じく、前記安全弁15を通して前記入口部3からオリフィス拡大管4内に噴出されたガスの圧力が大気圧近傍になるような位置Lに、オリフィス5を設置し、オリフィス5入口側の圧力タップ6及びオリフィス5出口側の圧力タップ7が設置されて、該圧力タップ6、7からの差圧を圧力センサ8で検出するようになっている。
FIG. 3 is a block diagram of a high-pressure gas flow rate measuring apparatus equipped with a safety valve according to the third embodiment of the present invention.
In FIG. 3, when the high-pressure gas stored in the high-pressure tank 1 is sent to the outside through the high-pressure pipe 2, a safety valve 15 is provided in the middle of the high-pressure pipe 2, and the high-pressure pipe 2 at the outlet of the safety valve 15 has a large diameter. Are connected to the inlet 3 of the orifice expansion pipe 4.
The orifice expanding pipe 4 is provided with an orifice 5 at an appropriate position L from the inlet portion 3.
That is, as in the first embodiment, the orifice 5 is installed at a position L where the pressure of the gas injected from the inlet 3 into the orifice expansion pipe 4 through the safety valve 15 is close to the atmospheric pressure. A pressure tap 6 on the 5 inlet side and a pressure tap 7 on the outlet side of the orifice 5 are installed, and a differential pressure from the pressure taps 6 and 7 is detected by the pressure sensor 8.

かかる第3実施例によれば、前記安全弁15の下流に、大径のオリフィス拡大管4の入口部3に接続し、該オリフィス5の前記入口部3からの距離は、安全弁15を通して入口部3からオリフィス拡大管4内に噴出されたガスの圧力が大気圧近傍になるような位置Lに設定したので、安全弁15の作動は何ら影響を受けずに行うことができ、またオリフィス拡大管4による流量の計測も支障なく実施できる。   According to the third embodiment, the safety valve 15 is connected to the inlet portion 3 of the large-diameter orifice expanding pipe 4 downstream of the safety valve 15, and the distance of the orifice 5 from the inlet portion 3 through the safety valve 15 is the inlet portion 3. Since the position L is set so that the pressure of the gas jetted into the orifice expansion pipe 4 is close to the atmospheric pressure, the operation of the safety valve 15 can be performed without being affected by the orifice expansion pipe 4. The flow rate can be measured without any problems.

本発明によれば、オリフィス付きの大径のオリフィス拡大管を用いることにより、高圧タンク内の圧力変化が大きい場合でも正確に流量係数の計測が可能となり、高圧ガスの流量を正確に計測し得る高圧ガス流量計測装置及び高圧ガス流量計測方法を提供できる。   According to the present invention, by using a large-diameter orifice expansion pipe with an orifice, the flow coefficient can be accurately measured even when the pressure change in the high-pressure tank is large, and the flow rate of the high-pressure gas can be accurately measured. A high-pressure gas flow measuring device and a high-pressure gas flow measuring method can be provided.

本発明の第1実施例を示す高圧タンクの流量計測装置の構成図である。1 is a configuration diagram of a flow rate measuring device for a high-pressure tank showing a first embodiment of the present invention. FIG. 本発明の第2実施例を示す水素ボンベのリークガス流量計測装置の構成図である。It is a block diagram of the leak gas flow measuring device of the hydrogen cylinder which shows 2nd Example of this invention. 本発明の第3実施例を示す安全弁を備えた高圧ガス流量計測装置の構成図である。It is a block diagram of the high pressure gas flow measuring device provided with the safety valve which shows 3rd Example of this invention. 高圧ガスが収納された高圧タンクから送出される高圧ガスの流量を計測する装置の略図であり、(A)は高圧タンク内の圧力変化が小さい場合、(B)は高圧タンク内の圧力変化が著しく大きい場合について示す。It is the schematic of the apparatus which measures the flow volume of the high pressure gas sent out from the high pressure tank in which the high pressure gas was accommodated, (A) is the case where the pressure change in a high pressure tank is small, (B) is the pressure change in a high pressure tank. The case where it is remarkably large is shown.

符号の説明Explanation of symbols

1 高圧タンク
2 高圧配管
3 ノズル
4 オリフィス拡大管
5 オリフィス
6、7 圧力タップ
8 圧力センサ
11 ベントスタック
12 水素ボンベ
13 リークガス配管
14 地中
15 安全弁
L ノズルからの距離
DESCRIPTION OF SYMBOLS 1 High pressure tank 2 High pressure piping 3 Nozzle 4 Orifice expansion pipe 5 Orifice 6, 7 Pressure tap 8 Pressure sensor 11 Vent stack 12 Hydrogen cylinder 13 Leak gas piping 14 Underground 15 Safety valve L Distance from nozzle

Claims (5)

高圧タンクに収納された高圧ガスを、高圧配管を通して外部に送出するに際し、該高圧ガスの流量を計測する高圧ガス流量計測装置において、
前記高圧配管の出口部に、出口端を大気に開放された大径のオリフィス拡大管の入口を接続するとともに、該オリフィス拡大管は前記入口部から適正位置にオリフィスと該オリフィス前後の圧力差を検出する差圧計を設けてなり、該オリフィスの前記出口部からの距離は前記出口部からオリフィス拡大管内に噴出されたガスの圧力が大気圧近傍になるような位置に設定されたことを特徴とする高圧ガス流量計測装置。
In the high-pressure gas flow measuring device that measures the flow rate of the high-pressure gas when the high-pressure gas stored in the high-pressure tank is sent to the outside through the high-pressure pipe,
The outlet of the high-pressure pipe is connected to the inlet of a large-diameter orifice expanding pipe whose outlet end is opened to the atmosphere. The orifice expanding pipe is configured to adjust the pressure difference between the orifice and the front and back of the orifice at an appropriate position from the inlet. A differential pressure gauge for detection is provided, and the distance of the orifice from the outlet portion is set at a position where the pressure of the gas ejected from the outlet portion into the orifice expansion pipe is close to atmospheric pressure. High pressure gas flow measuring device.
前記高圧配管の出口部を所定の絞り部に構成し、前記オリフィス拡大管は該絞り部から前記断面積が急拡大した所定長さの円筒体に形成され、前記円筒体の途中に前記オリフィス及び差圧計を設けたことを特徴とする請求項1記載の高圧ガス流量計測装置。   The outlet portion of the high-pressure pipe is configured as a predetermined throttle portion, and the orifice expanding pipe is formed in a cylindrical body having a predetermined length with the cross-sectional area rapidly expanding from the throttle portion, and the orifice and The high-pressure gas flow rate measuring device according to claim 1, further comprising a differential pressure gauge. 高圧タンクに収納された高圧ガスを、高圧配管を通して外部に送出するに際し、該高圧ガスの流量を計測する高圧ガス流量計測方法であって、
前記高圧配管の出口部に大径のオリフィス拡大管を接続し、前記オリフィス拡大管内に噴出されたガスの圧力が大気圧近傍になるような位置にオリフィスを設定して、大気圧近傍でオリフィスの差圧を検出することを特徴とする高圧ガス流量計測方法。
A high-pressure gas flow measurement method for measuring a flow rate of the high-pressure gas when the high-pressure gas stored in the high-pressure tank is sent to the outside through a high-pressure pipe,
A large-diameter orifice expansion pipe is connected to the outlet of the high-pressure pipe, and the orifice is set at a position where the pressure of the gas injected into the orifice expansion pipe is close to atmospheric pressure. A high-pressure gas flow rate measuring method characterized by detecting a differential pressure.
高圧の水素ボンベに収納された水素ガスを、リークガス配管を通して外部に送出するに際し、水素ガスの流量を計測する高圧ガス流量計測装置において、
出口端を大気に開放された大径のオリフィス拡大管を地中に埋設するとともに、前記リークガス配管の出口部を地中に埋めて該オリフィス拡大管の入口に接続し、前記オリフィス拡大管は前記入口部から適正位置に、オリフィスと該オリフィス前後の圧力差を検出する差圧計を設けてなり、該オリフィスの前記リークガス配管の出口部からの距離は該出口部からオリフィス拡大管内に噴出された水素ガスの圧力が大気圧近傍になるような位置に設定されたことを特徴とする高圧ガス流量計測装置。
In the high-pressure gas flow measuring device that measures the flow rate of hydrogen gas when the hydrogen gas stored in the high-pressure hydrogen cylinder is sent to the outside through the leak gas pipe,
A large-diameter orifice expanding pipe whose outlet end is open to the atmosphere is buried in the ground, and the outlet portion of the leak gas pipe is buried in the ground and connected to the inlet of the orifice expanding pipe. A differential pressure gauge for detecting the pressure difference between the orifice and the front and back of the orifice is provided at an appropriate position from the inlet, and the distance of the orifice from the outlet of the leak gas pipe is the hydrogen jetted into the orifice expansion pipe from the outlet. A high-pressure gas flow rate measuring apparatus, wherein the gas pressure is set at a position close to atmospheric pressure.
高圧タンクに収納された高圧ガスを、高圧配管を通して外部に送出するに際し、該高圧ガスの流量を計測する高圧ガス流量計測装置において、
前記高圧配管の途中に安全弁を設け、該安全弁出口の前記高圧配管を大径のオリフィス拡大管の入口に接続するとともに、該オリフィス拡大管は前記入口部から適正位置にオリフィスと該オリフィス前後の圧力差を検出する差圧計を設けてなり、該オリフィスの前記出口部からの距離は、前記安全弁を通して前記入口部からオリフィス拡大管内に噴出されたガスの圧力が大気圧近傍になるような位置に設定されたことを特徴とする高圧ガス流量計測装置。
In the high-pressure gas flow measuring device that measures the flow rate of the high-pressure gas when the high-pressure gas stored in the high-pressure tank is sent to the outside through the high-pressure pipe,
A safety valve is provided in the middle of the high-pressure pipe, and the high-pressure pipe at the outlet of the safety valve is connected to an inlet of a large-diameter orifice expanding pipe. The orifice expanding pipe is positioned at an appropriate position from the inlet and the pressure before and after the orifice. A differential pressure gauge for detecting the difference is provided, and the distance from the outlet portion of the orifice is set to a position where the pressure of the gas ejected from the inlet portion into the orifice expansion pipe through the safety valve is close to the atmospheric pressure. This is a high-pressure gas flow rate measuring device.
JP2008043666A 2008-02-25 2008-02-25 Device and method for measuring high-pressure gas flow Withdrawn JP2009198472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008043666A JP2009198472A (en) 2008-02-25 2008-02-25 Device and method for measuring high-pressure gas flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008043666A JP2009198472A (en) 2008-02-25 2008-02-25 Device and method for measuring high-pressure gas flow

Publications (1)

Publication Number Publication Date
JP2009198472A true JP2009198472A (en) 2009-09-03

Family

ID=41142094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008043666A Withdrawn JP2009198472A (en) 2008-02-25 2008-02-25 Device and method for measuring high-pressure gas flow

Country Status (1)

Country Link
JP (1) JP2009198472A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9441997B2 (en) 2012-05-24 2016-09-13 Air Products And Chemicals, Inc. Method of, and apparatus for, measuring the physical properties of two-phase fluids
US9448090B2 (en) 2012-05-24 2016-09-20 Air Products And Chemicals, Inc. Method of, and apparatus for, measuring the mass flow rate of a gas
US9459191B2 (en) 2010-11-29 2016-10-04 Air Products And Chemicals, Inc. Method of and apparatus for measuring the molecular weight of a gas
US9581297B2 (en) 2012-05-24 2017-02-28 Air Products And Chemicals, Inc. Method of, and apparatus for, measuring the true contents of a cylinder of gas under pressure
US9690304B2 (en) 2012-05-24 2017-06-27 Air Products And Chemicals, Inc. Method of, and apparatus for, providing a gas mixture
US9804010B2 (en) 2012-05-24 2017-10-31 Air Products And Chemicals, Inc. Method of, and apparatus for, regulating the mass flow rate of a gas
US9870007B2 (en) 2012-05-24 2018-01-16 Air Products And Chemicals, Inc. Method of, and apparatus for, providing a gas mixture
CN117234245A (en) * 2023-11-14 2023-12-15 合力(天津)能源科技股份有限公司 High-temperature-resistant high-pressure flow control method and system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9459191B2 (en) 2010-11-29 2016-10-04 Air Products And Chemicals, Inc. Method of and apparatus for measuring the molecular weight of a gas
US9441997B2 (en) 2012-05-24 2016-09-13 Air Products And Chemicals, Inc. Method of, and apparatus for, measuring the physical properties of two-phase fluids
US9448090B2 (en) 2012-05-24 2016-09-20 Air Products And Chemicals, Inc. Method of, and apparatus for, measuring the mass flow rate of a gas
US9581297B2 (en) 2012-05-24 2017-02-28 Air Products And Chemicals, Inc. Method of, and apparatus for, measuring the true contents of a cylinder of gas under pressure
KR101730697B1 (en) * 2012-05-24 2017-04-26 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Method of, and apparatus for, measuring the mass flow rate of a gas
US9690304B2 (en) 2012-05-24 2017-06-27 Air Products And Chemicals, Inc. Method of, and apparatus for, providing a gas mixture
US9804010B2 (en) 2012-05-24 2017-10-31 Air Products And Chemicals, Inc. Method of, and apparatus for, regulating the mass flow rate of a gas
US9870007B2 (en) 2012-05-24 2018-01-16 Air Products And Chemicals, Inc. Method of, and apparatus for, providing a gas mixture
CN117234245A (en) * 2023-11-14 2023-12-15 合力(天津)能源科技股份有限公司 High-temperature-resistant high-pressure flow control method and system
CN117234245B (en) * 2023-11-14 2024-01-30 合力(天津)能源科技股份有限公司 High-temperature-resistant high-pressure flow control method and system

Similar Documents

Publication Publication Date Title
JP2009198472A (en) Device and method for measuring high-pressure gas flow
KR101737373B1 (en) Flow volume control device equipped with build-down system flow volume monitor
US7463991B2 (en) Mass flow verifier with flow restrictor
JP4684135B2 (en) Leakage inspection method and leak inspection apparatus for piping
KR101930304B1 (en) Flow meter
US8528420B2 (en) Eccentric venturi flow measurement device
WO2008058872A3 (en) Device for measuring the total pressure of a flow and method using said device
GB2452467A (en) Critical flow based mass flow verifier
WO2007008509A3 (en) Methods for verifying gas flow rates from a gas supply system into a plasma processing chamber
TW200634289A (en) Pulsed mass flow measurement system and method
US8701497B2 (en) Fluid flow testing system
US20210362102A1 (en) Systems and methods for gas disposal
JP2017531771A (en) Multi-application orifice steam trap
WO2003008913A1 (en) Equipment for measuring gas flow rate
EP2910908B1 (en) Differential pressure type flowmeter and flow controller provided with the same
JP2006162417A (en) Total pressure/static pressure measuring venturi system flow measuring device
KR101941423B1 (en) Apparatus for monitoring leakage rate in pipes by using laminar flow element
WO2023060769A1 (en) Blockage and leakage detection structure, and blockage and leakage detection method
JP2007038179A (en) Gas mixer
US20150053272A1 (en) Pressure stabilization method
JP5130231B2 (en) Steam flow meter and differential pressure transmitter
RU2013119493A (en) CONTINUOUS PURGE SYSTEM (OPTIONS) AND METHOD FOR PREVENTING WATER INJURY TO HEAD PIPELINES
JP2005077310A (en) Gas measuring device and self-diagnosis method therefor
KR20160066996A (en) Liquid hold up metering apparatus and method in pipe
JP5093548B2 (en) Metering device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110510