JPH10253179A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH10253179A
JPH10253179A JP6305597A JP6305597A JPH10253179A JP H10253179 A JPH10253179 A JP H10253179A JP 6305597 A JP6305597 A JP 6305597A JP 6305597 A JP6305597 A JP 6305597A JP H10253179 A JPH10253179 A JP H10253179A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
heat exchanger
bypass
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6305597A
Other languages
Japanese (ja)
Other versions
JP3866359B2 (en
Inventor
Tomohiko Kasai
智彦 河西
Shiro Takatani
士郎 高谷
Naoki Tanaka
直樹 田中
Shin Sekiya
慎 関屋
Hitoshi Iijima
等 飯島
Toshihide Koda
利秀 幸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13218282&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH10253179(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP06305597A priority Critical patent/JP3866359B2/en
Publication of JPH10253179A publication Critical patent/JPH10253179A/en
Application granted granted Critical
Publication of JP3866359B2 publication Critical patent/JP3866359B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a deteriorated product of freezer oil from being produced by providing a bypass circuit which branches from a refrigerant piping located between a condenser and a drawing apparatus, and is connected with a refrigerant piping located between the drawing apparatus and a compressor. SOLUTION: Upon cooling a gas refrigerant compressed in a compressor 1 is converted into a high temperature high pressure liquid refrigerant in a heat source machine side heat exchanger 3. Then, part of the liquid refrigerant after passage through a second drawing apparatus 6 flows into a bypass circuit 15, and is converted into a low temperature low pressure gas/liquid binary refrigerant in a third drawing apparatus 17 after passage through a drier 16, and in bypass heat exchangers 18a, 18b it heat exchanges with a liquid refrigerant flowing out from the heat source machine side heat exchanger 3 and with a liquid refrigerant flowing out from the second drawing apparatus 6. It joints a refrigerant passing through indoor machines B, C, D between a changeover valve 2 and the compressor 1 and is returned to the compressor 1. Thereupon, hydrolysis is sufficiently restricted with the aid of water adsorption capability of the drier 16 so that generation of sludge component in the compressor 1 can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、作動媒体として
ハイドロフルオロカ−ボン系の冷媒を、冷凍機油として
この冷媒と相溶性のある油を用いる空気調和装置に関す
る。
The present invention relates to an air conditioner using a hydrofluorocarbon-based refrigerant as a working medium and an oil compatible with the refrigerant as a refrigerating machine oil.

【0002】[0002]

【従来の技術】図28は、従来の空気調和装置の冷媒回
路図で、図において、Aは熱源機、B、C、Dは室内
機、1は圧縮機、2は切換弁、3は熱源機側熱交換器、
4はアキュムレ−タ、5はアキュムレ−タ4の油戻し
穴、6は暖房時絞り装置(以下第2の絞り装置とい
う)、7b、7c、7dは室内機側熱交換器、8b、8
c、8dは冷房時絞り装置(以下第1の絞り装置とい
う)、9は、熱源機Aの熱源機側熱交換器3側の一端と
室内機B、C、Dの第1の絞り装置8b、8c、8d側
の一端とを接続する液側接続冷媒配管、10は、熱源機
Aの上記切換弁2側の一端と室内機B、C、Dの室内機
側熱交換器7b、7c、7d側の一端とを接続するガス
側接続冷媒配管、11,12は、合成ゼオライトなどを
主成分とする乾燥剤を円筒容器や配管内に内蔵させた、
冷媒回路中に混入した水分を吸湿するドライヤ、13,
14b、14c、14dは、細かい網目状のフィルタを
円筒容器や配管内に内蔵してスラッジを捕捉するスラッ
ジフィルタである。
2. Description of the Related Art FIG. 28 is a refrigerant circuit diagram of a conventional air conditioner, in which A is a heat source unit, B, C, and D are indoor units, 1 is a compressor, 2 is a switching valve, and 3 is a heat source unit. Machine side heat exchanger,
4 is an accumulator, 5 is an oil return hole of the accumulator 4, 6 is a throttle device for heating (hereinafter referred to as a second throttle device), 7b, 7c and 7d are indoor unit side heat exchangers, 8b and 8
Reference numerals c and 8d denote cooling-time expansion devices (hereinafter referred to as first expansion devices), 9 denotes one end of the heat source device A on the heat source device side heat exchanger 3 side and the first expansion devices 8b of the indoor units B, C, and D. , 8c, 8d, is connected to one end of the heat source unit A on the switching valve 2 side and the indoor unit B, C, D indoor unit side heat exchangers 7b, 7c, The gas-side connecting refrigerant pipes connecting the one end on the 7d side, 11 and 12 have a desiccant mainly composed of synthetic zeolite or the like incorporated in a cylindrical container or a pipe.
Dryer for absorbing moisture mixed in the refrigerant circuit, 13,
Reference numerals 14b, 14c, and 14d denote sludge filters that capture sludge by incorporating a fine mesh filter in a cylindrical container or a pipe.

【0003】次に、冷媒の流れを図によって説明する。
図中実線矢印が冷房時の流れを、破線矢印が暖房時の流
れを示す。まず、冷房時においては、圧縮機1で高温高
圧まで圧縮されたガス冷媒は切換弁2を経て熱源機側熱
交換器3に流入し、空気などと熱交換して凝縮し、高温
高圧の液冷媒となる。さらに、冷房時全開の第2の絞り
装置6、液側接続冷媒配管9をへて、室内機B、C、D
に達し、室内機側熱交換器7b、7c、7dの出口の過
熱度が一定範囲になるように制御される第1の絞り装置
8b、8c、8dによって、低圧の気液ニ相状態まで絞
られる。低圧の気液ニ相冷媒は室内機側熱交換器7b、
7c、7dに流入して、室内の空気と熱交換してガス化
し、ガス側接続冷媒配管10、切換弁2、アキュムレ−
タ4を経て圧縮機1へ戻る。アキュムレ−タ4内部の冷
凍機油は液冷媒とともに油戻し穴5より圧縮機1へ戻
る。
Next, the flow of the refrigerant will be described with reference to the drawings.
In the figure, solid arrows indicate flows during cooling, and broken arrows indicate flows during heating. First, during cooling, the gas refrigerant compressed to a high temperature and a high pressure by the compressor 1 flows into the heat source device side heat exchanger 3 through the switching valve 2 and exchanges heat with air or the like to be condensed. It becomes a refrigerant. Further, the indoor units B, C, and D pass through the second expansion device 6 and the liquid-side connection refrigerant pipe 9 that are fully opened during cooling.
And the first expansion devices 8b, 8c, 8d are controlled so that the degree of superheat at the outlets of the indoor unit side heat exchangers 7b, 7c, 7d is within a certain range. Can be The low-pressure gas-liquid two-phase refrigerant is supplied to the indoor unit side heat exchanger 7b,
7c, 7d, gas exchange by heat exchange with the indoor air, gaseous connection refrigerant pipe 10, switching valve 2, accumulator
And returns to the compressor 1 via the compressor 4. The refrigerating machine oil inside the accumulator 4 returns to the compressor 1 through the oil return hole 5 together with the liquid refrigerant.

【0004】暖房時においては、圧縮機1で高温高圧ま
で圧縮されたガス冷媒は切換弁2、ガス側接続冷媒配管
10を経て、室内機B、C、Dに達し、室内機側熱交換
器7b、7c、7dに流入し、室内の空気と熱交換して
凝縮し、高温高圧の液冷媒となる。室内側熱交換器7
b、7c、7dを出た液冷媒はほとんど全開状態の第1
の絞り装置7b、7c、7dで少し減圧され、液側接続
冷媒配管9をへて第2の絞り装置6に達し、ここで低圧
の気液ニ相状態まで絞られる。低圧の気液ニ相冷媒は熱
源機側熱交換器3に流入し、空気などと熱交換してガス
化し、切換弁2、アキュムレ−タ4を経て圧縮機1へ戻
る。アキュムレ−タ4内部の冷凍機油は液冷媒とともに
油戻し穴5より圧縮機1へ戻る。
At the time of heating, the gas refrigerant compressed to a high temperature and a high pressure by the compressor 1 reaches the indoor units B, C and D via the switching valve 2 and the gas side connection refrigerant pipe 10, and the indoor unit side heat exchanger. It flows into 7b, 7c, 7d, exchanges heat with indoor air and condenses, and becomes a high-temperature and high-pressure liquid refrigerant. Indoor heat exchanger 7
The liquid refrigerant that has exited from b, 7c, and 7d is almost completely open.
The pressure is slightly reduced by the expansion devices 7b, 7c, and 7d, and reaches the second expansion device 6 via the liquid-side connection refrigerant pipe 9, where it is reduced to a low-pressure gas-liquid two-phase state. The low-pressure gas-liquid two-phase refrigerant flows into the heat source-side heat exchanger 3, exchanges heat with air or the like to gasify, and returns to the compressor 1 via the switching valve 2 and the accumulator 4. The refrigerating machine oil inside the accumulator 4 returns to the compressor 1 through the oil return hole 5 together with the liquid refrigerant.

【0005】以上のような冷媒回路において、作動媒体
としてハイドロクロロフルオロカーボン系の冷媒の代り
に最近ハイドロフルオロカ−ボン系の冷媒が用いられて
きた。ところが、ハイドロフルオロカ−ボン系の冷媒は
塩素成分がないため、冷凍機油として用いられる従来の
鉱油とは相溶性がなく、アキュムレ−タ4内部で液冷媒
と分離して、上部に浮かんでしまい、油戻し穴5から冷
凍機油が圧縮機1へ戻らなくなる。したがって、アキュ
ムレ−タに大量の液冷媒を溜め、かつ圧縮機1をモ−タ
で駆動する空気調和装置においては、ハイドロフルオロ
カ−ボン系の冷媒と相溶性があり、絶縁性に優れたポリ
エステル油またはポリエ−テル油が一般的に用いられ
る。
In such a refrigerant circuit, a hydrofluorocarbon-based refrigerant has recently been used as a working medium instead of a hydrochlorofluorocarbon-based refrigerant. However, since the hydrofluorocarbon-based refrigerant has no chlorine component, it is not compatible with the conventional mineral oil used as refrigerating machine oil, and separates from the liquid refrigerant inside the accumulator 4 and floats on the upper portion. Then, the refrigerating machine oil does not return to the compressor 1 from the oil return hole 5. Therefore, in an air conditioner in which a large amount of liquid refrigerant is stored in an accumulator and the compressor 1 is driven by a motor, polyester which is compatible with a hydrofluorocarbon-based refrigerant and has excellent insulation properties. Oils or polyether oils are commonly used.

【0006】ところが、これらポリエステル油やポリエ
−テル油は水分を吸湿して、圧縮機1の摺動部のような
高温状態の許におかれると加水分解したり、酸素や冷媒
回路構成品を加工する際に混入する加工油や洗浄剤の残
成分により劣化するおそれがある。特に、ポリエ−テル
油に使用される添加剤のうち摩耗防止剤は一般に活性度
の高いエステル系のものでポリエ−テル油が加水分解し
なくてもこの添加剤が加水分解し高温状態の圧縮機1の
摺動部において熱劣化する。
However, these polyester oils and polyether oils absorb moisture and are hydrolyzed when exposed to high temperatures such as the sliding parts of the compressor 1, and cause oxygen and refrigerant circuit components. Deterioration may occur due to residual components of processing oil and cleaning agents mixed in during processing. In particular, among the additives used in the polyether oil, the antiwear agent is generally an ester-based one having high activity. Even if the polyether oil is not hydrolyzed, the additive is hydrolyzed and compressed at a high temperature. Thermal degradation occurs in the sliding part of the machine 1.

【0007】その際に発生するこれら劣化生成物は冷凍
機油中に固体として存在するものと、溶けこんで存在す
るものとがある。この固体成分と溶解成分のいずれも高
温高圧のガス冷媒が圧縮機1から吐出されると、冷凍機
油とともに吐出ガスに混ざって冷媒回路中に吐出され
る。上記冷凍機油の劣化生成物は冷媒とともに凝縮器
(冷房時は熱源機側熱交換器3、暖房時は室内機側熱交
換器7b、7c、7d)へ流入し、冷媒はここで液化す
る。冷媒が液化して冷媒の濃度が高まると、冷媒ととも
に流れていた冷凍機油中に溶けこんでいた冷凍機油の劣
化生成物は溶けこめなくなり、固体として析出するもの
と直接配管の管壁に析出するものが出現する。
[0007] The degradation products generated at this time include those present as solids in the refrigerating machine oil and those present as being dissolved therein. When the high-temperature and high-pressure gas refrigerant is discharged from the compressor 1 in both the solid component and the dissolved component, the gas refrigerant is discharged into the refrigerant circuit while being mixed with the discharge gas together with the refrigerating machine oil. The deterioration product of the refrigerating machine oil flows into a condenser (the heat source unit side heat exchanger 3 during cooling, and the indoor unit side heat exchangers 7b, 7c, 7d during cooling) together with the refrigerant, and the refrigerant is liquefied here. When the refrigerant is liquefied and the concentration of the refrigerant increases, the degradation products of the refrigerating machine oil dissolved in the refrigerating machine oil flowing together with the refrigerant cannot be dissolved and precipitate as solids and precipitate directly on the pipe wall of the pipe. Things appear.

【0008】これら新たに析出された劣化生成物は元か
ら固体として存在していた劣化生成物とともに第1の絞
り装置8b、8c、8d、第2の絞り装置6へ流入す
る。冷媒回路構成品を加工する際に混入する加工油や洗
浄剤の残成分の中のハイドロフルオロカ−ボン系の冷媒
と相溶性の無いものが配管の管壁に皮膜を形成し、この
非相溶成分がバインダ−となって、上記冷凍機油の劣化
生成物が配管の管壁に付着する。特に、急に、流路断面
積が変化する毛細管などの絞り装置では、流れに淀みが
でき、この冷凍機油の劣化生成物の付着が著しい。この
ようにして、冷凍機油中に固体として存在する冷凍機油
劣化物はスラッジとして第1の絞り装置8b、8c、8
d及び第2の絞り装置6に付着する。また、アキュムレ
−タ4内部に液冷媒が溜まっている場合、油戻し穴5に
も絞り装置と同様に冷凍機油の固体もしくは溶解成分で
ある劣化生成物が析出・付着する。
[0008] These newly precipitated degradation products flow into the first expansion devices 8b, 8c, 8d and the second expansion device 6 together with the degradation products originally existing as solids. Incompatibility with the hydrofluorocarbon-based refrigerant in the remaining components of the processing oil and cleaning agent mixed when processing the refrigerant circuit components forms a film on the pipe wall of the piping, The dissolved component becomes a binder, and the degradation products of the refrigerating machine oil adhere to the pipe wall of the pipe. In particular, in a throttle device such as a capillary tube whose channel cross-sectional area changes suddenly, the flow becomes stagnant, and the degradation products of the refrigerating machine oil are remarkably attached. In this way, the refrigerating machine oil degraded substance present as a solid in the refrigerating machine oil is converted into sludge by the first expansion devices 8b, 8c, 8
d and adheres to the second aperture device 6. Further, when the liquid refrigerant is accumulated in the accumulator 4, degradation products as solid or dissolved components of the refrigerating machine oil are deposited and adhere to the oil return hole 5 as in the expansion device.

【0009】以上のようなスラッジ付着の対策として、
合成ゼオライトなどを主成分とする乾燥剤を円筒容器や
配管内に内蔵させたドライヤ11,12が切換弁2とア
キュムレ−タ4との間の冷媒配管、及び第1の絞り装置
8b、8c、8dと第2の絞り装置6との間の液側接続
冷媒配管9に設けられ、そして、細かい網目状のフィル
タを円筒容器や配管内に内蔵したスラッジフィルタが、
熱源機側熱交換器3と第2の絞り装置6との間の冷媒配
管、及び室内側熱交換器7b、7c、7dと第1の絞り
装置8b、8c、8dとの間の冷媒配管に設けられる。
As a countermeasure against the sludge adhesion as described above,
Dryers 11 and 12 in which a desiccant mainly composed of synthetic zeolite or the like is built in a cylindrical container or a pipe are refrigerant pipes between the switching valve 2 and the accumulator 4, and first throttle devices 8b and 8c. A sludge filter provided in the liquid-side connection refrigerant pipe 9 between the second throttle device 8d and the second expansion device 6, and having a fine mesh filter built in a cylindrical container or pipe,
A refrigerant pipe between the heat source unit side heat exchanger 3 and the second expansion device 6 and a refrigerant pipe between the indoor side heat exchangers 7b, 7c, 7d and the first expansion devices 8b, 8c, 8d. Provided.

【0010】切換弁2とアキュムレ−タ4との間に設け
られたドライヤ11には、冷房時は室内機側熱交換器7
b、7c、7dから、暖房時は熱源機側熱交換器3から
切換弁2を経てガス冷媒が流入し、ガス冷媒中に含まれ
る水分が吸収される。第1の絞り装置8b、8c、8d
と第2の絞り装置6との間の液側接続冷媒配管9に設け
られたドライヤ12には、冷房時は熱源機側熱交換器3
から、ほとんど全開の第2の絞り装置6をへて、暖房時
は室内機側熱交換器7b、7c、7dから、ほとんど全
開の第1の絞り装置8b、8c、8dをへて、ともに少
し減圧された液単相流の冷媒が流入する。従ってドライ
ヤ12内の圧力損失は小さくて流れが静かになり充分に
水分が吸収される。
A dryer 11 provided between the switching valve 2 and the accumulator 4 has an indoor unit side heat exchanger 7 during cooling.
From b, 7c and 7d, the gas refrigerant flows from the heat source device side heat exchanger 3 via the switching valve 2 during heating, and the moisture contained in the gas refrigerant is absorbed. First diaphragm devices 8b, 8c, 8d
The dryer 12 provided in the liquid-side connection refrigerant pipe 9 between the heat source unit side heat exchanger 3 and the second expansion device 6 during cooling.
From the second expansion device 6 which is almost fully opened, and from the indoor unit side heat exchangers 7b, 7c, 7d during heating, to the first expansion device 8b, 8c, 8d which is almost fully opened, and a little. A depressurized liquid single-phase refrigerant flows in. Therefore, the pressure loss in the dryer 12 is small, the flow becomes quiet, and moisture is sufficiently absorbed.

【0011】熱源機側熱交換器3と第2の絞り装置6と
の間の冷媒配管に設けられたスラッジフィルタ13にお
いて、冷房時に熱源機側熱交換器3へ冷媒とともに流入
した冷凍機油の劣化生成物と、この熱源機側熱交換器3
での冷媒の液化及び流速の低下により析出・付着した冷
凍機油中に溶けこんでいた劣化生成物とがスラッジとし
て捕捉される。また、室内側熱交換器7b、7c、7d
と第1の絞り装置8b、8c、8dとの間の冷媒配管に
設けられたスラッジフィルタ14b、14c、14dに
おいて、暖房時に室内側熱交換器7b、7c、7dへ冷
媒とともに流入した冷凍機油の劣化生成物と、これら室
内側熱交換器7b、7c、7dでの冷媒の液化及び流速
の低下により析出・付着した冷凍機油中に溶けこんでい
た劣化生成物とがスラッジとして捕捉される。
In the sludge filter 13 provided in the refrigerant pipe between the heat source unit side heat exchanger 3 and the second expansion device 6, the deterioration of the refrigerating machine oil which flows into the heat source unit side heat exchanger 3 together with the refrigerant during cooling. Product and the heat exchanger 3
The degradation products dissolved in the refrigerating machine oil deposited and adhered due to the liquefaction of the refrigerant and the decrease in the flow rate at the time are captured as sludge. In addition, the indoor heat exchangers 7b, 7c, 7d
Filters 14b, 14c, 14d provided in the refrigerant pipes between the first expansion devices 8b, 8c, 8d and the first expansion devices 8b, 8c, 8d. The degradation products and the degradation products dissolved in the refrigerating machine oil deposited and adhered due to the liquefaction of the refrigerant in the indoor heat exchangers 7b, 7c, and 7d and the decrease in the flow velocity are captured as sludge.

【0012】[0012]

【発明が解決しようとする課題】上記のようなドライヤ
を用いた従来の空気調和装置においては、ドライヤ11
を冷媒ガスが通過することで吸入圧力損失が発生し、蒸
発能力が低下し、逆に蒸発能力の低下を抑えようとする
とドライヤ11を大形化する必要がある。また、冷媒配
管の施工時に充分な無酸化ロウ付けを実施されていない
と酸化スケ−ルが発生し、それが運転時にドライヤ1
1,12に流入し、流路が閉塞したり、ドライヤ11が
粉砕したりする危険性があった。さらに、圧縮機起動、
冷暖房切換、デフロスト開始・終了などの過渡的な運転
時に生ずる急激な液バックや、冷媒液の激しい流れによ
りドライヤ11,12が粉砕する危険性もあった。
In a conventional air conditioner using a dryer as described above, a dryer 11 is used.
As a result, the suction pressure loss occurs due to the passage of the refrigerant gas, and the evaporating capacity is reduced. Conversely, in order to suppress the decrease in the evaporating capacity, it is necessary to enlarge the dryer 11. In addition, if sufficient non-oxidation brazing is not performed during the construction of the refrigerant pipe, an oxidation scale is generated.
There was a risk that the gas would flow into the channels 1 and 12 to block the flow path and the dryer 11 would be crushed. In addition, starting the compressor,
There is also a danger that the dryers 11 and 12 may be pulverized due to a sudden liquid back that occurs during a transient operation such as switching between cooling and heating, defrost start / end, and an intense flow of the refrigerant liquid.

【0013】また、上記のようなスラッジフィルタを設
置した従来の空気調和装置においては、熱源機側熱交換
器3と第2の絞り装置6との間及び室内側熱交換器7
b、7c、7dと第1の絞り装置8b、8c、8dとの
間の全ての位置にスラッジフィルタを設置する必要があ
り、空気調和装置全体が大形化するという問題点があっ
た。また、冷房時に熱源機側熱交換器3と第2の絞り装
置6との間のスラッジフィルタ13で捕捉されたスラッ
ジは、流れが暖房に切換わると剥離して、熱源機側熱交
換器3及び切換弁2を経由してアキュムレ−タ4に流入
し、油戻し穴5が閉塞される。同様に暖房時に室内側熱
交換器7b、7c、7dと第1の絞り装置8b、8c、
8dとの間のスラッジフィルタ14b、14c、14d
で捕捉したスラッジは、流れが冷房に切換わると剥離し
て、室内側熱交換器7b、7c、7d及び切換弁2を経
由してアキュムレ−タ4に流入し、油戻し穴5が閉塞さ
れる。さらに、冷媒配管の施工時に充分な無酸化ロウ付
けを実施されていないと酸化スケ−ルが発生し、それが
運転時にスラッジフィルタ13,14b、14c、14
dに流入し、流路が閉塞したり、スラッジフィルタを傷
めたりする危険性もあった。
In a conventional air conditioner provided with the above-described sludge filter, the heat exchanger 7 between the heat source unit side heat exchanger 3 and the second expansion device 6 and the indoor heat exchanger 7
It is necessary to install sludge filters at all positions between b, 7c, 7d and the first expansion devices 8b, 8c, 8d, and there is a problem that the entire air conditioner becomes large. Further, the sludge caught by the sludge filter 13 between the heat source unit side heat exchanger 3 and the second expansion device 6 during cooling is separated when the flow is switched to heating, and the heat source unit side heat exchanger 3 Then, the oil flows into the accumulator 4 via the switching valve 2, and the oil return hole 5 is closed. Similarly, at the time of heating, the indoor heat exchangers 7b, 7c, 7d and the first expansion devices 8b, 8c,
8d and sludge filters 14b, 14c, 14d
The sludge caught in the above is separated when the flow is switched to cooling, flows into the accumulator 4 via the indoor heat exchangers 7b, 7c, 7d and the switching valve 2, and the oil return hole 5 is closed. You. Furthermore, if sufficient non-oxidation brazing is not performed during the construction of the refrigerant pipe, an oxidation scale will be generated, which will cause sludge filters 13, 14b, 14c, 14 during operation.
d, there is also a risk that the flow path will be blocked or the sludge filter will be damaged.

【0014】この発明は上記のような問題点を解消する
ためになされたもので、ハイドロフルオロカ−ボン系の
冷媒を作動流体とし、この冷媒と相溶性のある油を冷凍
機油として用いても、冷凍機油の劣化生成物が生じにく
く、例え劣化生成物が生じたとしても、これによる不具
合のない信頼性の高い空気調和装置を得ることを目的と
している。
The present invention has been made to solve the above-mentioned problems, and it is possible to use a hydrofluorocarbon-based refrigerant as a working fluid and use an oil compatible with the refrigerant as a refrigerating machine oil. It is another object of the present invention to provide a highly reliable air conditioner that does not easily cause deterioration products of refrigeration oil even if deterioration products are generated.

【0015】[0015]

【課題を解決するための手段】請求項1に係るこの発明
の空気調和装置は、圧縮機、凝縮器、絞り装置、蒸発器
より構成された主冷媒回路を備え、ハイドロフルオロカ
−ボン系の冷媒を作動媒体として用い、この冷媒と相溶
性のある油を冷凍機油として用いる空気調和装置におい
て、上記凝縮器と上記絞り装置との間の冷媒配管より分
岐し、水分を吸収するドライヤ及びバイパス絞り装置を
介し、上記主冷媒回路の絞り装置と圧縮機との間の冷媒
配管に接続されるバイパス回路を設けたものである。
According to a first aspect of the present invention, there is provided an air conditioner including a main refrigerant circuit including a compressor, a condenser, a throttle device, and an evaporator. In an air conditioner using a refrigerant as a working medium and an oil compatible with the refrigerant as a refrigerating machine oil, a dryer and a bypass throttle that branch from a refrigerant pipe between the condenser and the throttle device to absorb moisture. There is provided a bypass circuit connected to a refrigerant pipe between the expansion device of the main refrigerant circuit and the compressor via the device.

【0016】請求項2に係るこの発明の空気調和装置
は、圧縮機、凝縮器、絞り装置、蒸発器より構成された
主冷媒回路を備え、ハイドロフルオロカ−ボン系の冷媒
を作動媒体として用い、この冷媒と相溶性のある油を冷
凍機油として用いる空気調和装置において、上記圧縮機
の吐出側の冷媒配管より分岐し、水分を吸収するドライ
ヤ及びバイパス絞り装置を介し、上記圧縮機の吸入側の
冷媒配管に接続されるバイパス回路を設けたものであ
る。
An air conditioner according to a second aspect of the present invention includes a main refrigerant circuit comprising a compressor, a condenser, a throttle device, and an evaporator, and uses a hydrofluorocarbon-based refrigerant as a working medium. In an air conditioner that uses oil compatible with this refrigerant as refrigerating machine oil, the refrigerant is branched from a refrigerant pipe on the discharge side of the compressor, and is supplied to a suction side of the compressor via a dryer and a bypass throttle device that absorb moisture. In which a bypass circuit connected to the refrigerant pipe is provided.

【0017】請求項3に係るこの発明の空気調和装置
は、請求項1または2記載の発明において、ドライヤに
流入する冷媒を冷却するバイパス熱交換器をバイパス途
中に設けたものである。
According to a third aspect of the present invention, in the air conditioner of the first or second aspect, a bypass heat exchanger for cooling the refrigerant flowing into the dryer is provided in the middle of the bypass.

【0018】請求項4に係るこの発明の空気調和装置
は、圧縮機、切換弁、熱源機側熱交換器及び暖房時絞り
装置よりなる熱源機と、冷房時絞り装置及び室内側熱交
換器よりなる室内機と、上記熱源機の暖房時絞り装置側
の一端と上記室内機の冷房時絞り装置側の一端とを接続
する液側接続冷媒配管と、上記熱源機の切換弁側の一端
と上記室内機の室内側熱交換器側の一端とを接続するガ
ス側接続冷媒配管とを有する主冷媒回路を備え、ハイド
ロフルオロカ−ボン系の冷媒を作動媒体として用い、こ
の冷媒と相溶性のある油を冷凍機油として用いる空気調
和装置において、上記液側接続冷媒配管より分岐し、水
分を吸収するドライヤ、バイパス絞り装置及び上記ドラ
イヤに流入する冷媒を冷却するバイパス熱交換器を有
し、上記圧縮機吸入部と上記切換弁との間の冷媒配管に
接続されるバイパス回路を設けたものである。
According to a fourth aspect of the present invention, there is provided an air conditioner comprising a heat source unit including a compressor, a switching valve, a heat source unit side heat exchanger and a heating throttle unit, and a cooling source throttle unit and an indoor heat exchanger. An indoor unit, a liquid-side connecting refrigerant pipe connecting one end of the heat source unit on the heating throttle side and one end of the indoor unit on the cooling throttle side, and one end of the heat source unit on the switching valve side. A main refrigerant circuit having a gas-side connecting refrigerant pipe connecting to one end of the indoor unit on the indoor heat exchanger side, using a hydrofluorocarbon-based refrigerant as a working medium, and having compatibility with the refrigerant; An air conditioner using oil as refrigerating machine oil, comprising: a dryer that branches off from the liquid-side connection refrigerant pipe, absorbs moisture, a bypass expansion device, and a bypass heat exchanger that cools a refrigerant flowing into the dryer. Machine suction section Is provided with a bypass circuit connected to the refrigerant pipe between said switching valve.

【0019】請求項5に係るこの発明の空気調和装置
は、圧縮機、切換弁及び熱源機側熱交換器よりなる熱源
機と、絞り装置及び室内側熱交換器よりなる室内機と、
上記熱源機の熱源機側熱交換器側の一端と上記室内機の
絞り装置側の一端とを接続する液側接続冷媒配管と、上
記熱源機の切換弁側の一端と上記室内機の室内側熱交換
器側の一端とを接続するガス側接続冷媒配管とを有する
主冷媒回路を備え、ハイドロフルオロカ−ボン系の冷媒
を作動媒体として用い、この冷媒と相溶性のある油を冷
凍機油として用いる空気調和装置において、上記圧縮機
吐出部と上記切換弁との間の冷媒配管より分岐し、冷媒
を冷却するバイパス熱交換器、水分を吸収するドライヤ
及びバイパス絞り装置を介し、上記圧縮機吸入部と上記
切換弁との間の冷媒配管に接続されるバイパス回路を設
けたものである。
According to a fifth aspect of the present invention, there is provided an air conditioner comprising: a heat source unit comprising a compressor, a switching valve and a heat source unit side heat exchanger; and an indoor unit comprising a throttle unit and an indoor side heat exchanger.
A liquid-side connecting refrigerant pipe connecting one end of the heat source unit on the heat source unit side heat exchanger side and one end of the indoor unit on the expansion device side, one end of the heat source unit on the switching valve side and the indoor side of the indoor unit A main refrigerant circuit having a gas-side connection refrigerant pipe connecting one end of the heat exchanger side is provided, and a hydrofluorocarbon-based refrigerant is used as a working medium, and oil compatible with the refrigerant is used as a refrigerating machine oil. In the air conditioner to be used, the compressor suction is branched from a refrigerant pipe between the compressor discharge part and the switching valve, via a bypass heat exchanger for cooling the refrigerant, a dryer for absorbing moisture, and a bypass throttle device. A bypass circuit connected to a refrigerant pipe between the section and the switching valve.

【0020】請求項6に係るこの発明の空気調和装置
は、請求項1〜5の何れかに記載の発明において、作動
媒体としてハイドロフルオロカ−ボン系の混合冷媒を用
い、バイパス絞り装置の入口部に設けられた第1の温度
検出手段と、バイパス途中のバイパス絞り装置の下流に
設けられた第2の温度検出手段と、圧縮機吸入部に設け
られた吸入圧力検出手段と、上記第1、第2の温度検出
手段及び上記吸入圧力検出手段の検出値により冷媒の組
成を演算する組成演算手段とを備えたものである。
According to a sixth aspect of the present invention, there is provided an air conditioner according to any one of the first to fifth aspects, wherein a hydrofluorocarbon-based mixed refrigerant is used as a working medium, and an inlet of a bypass expansion device is provided. A first temperature detecting means provided in the compressor, a second temperature detecting means provided downstream of the bypass throttle device in the middle of the bypass, a suction pressure detecting means provided in the compressor suction section, , A second temperature detecting means and a composition calculating means for calculating the composition of the refrigerant based on the detected value of the suction pressure detecting means.

【0021】請求項7に係るこの発明の空気調和装置
は、圧縮機、凝縮器、絞り装置、蒸発器より構成された
主冷媒回路を備え、ハイドロフルオロカ−ボン系の冷媒
を作動媒体として用い、この冷媒と相溶性のある油を冷
凍機油として用いる空気調和装置において、上記圧縮機
吐出部に油分離器を設け、分離した冷凍機油を圧縮機吸
入部に戻す返油バイパス回路を設けたものである。
An air conditioner according to a seventh aspect of the present invention includes a main refrigerant circuit including a compressor, a condenser, a throttle device, and an evaporator, and uses a hydrofluorocarbon-based refrigerant as a working medium. An air conditioner using an oil compatible with this refrigerant as a refrigerating machine oil, wherein an oil separator is provided at the compressor discharge part, and an oil return bypass circuit is provided for returning the separated refrigerating machine oil to the compressor suction part. It is.

【0022】請求項8に係るこの発明の空気調和装置
は、請求項7に記載の発明において、返油バイパス回路
途中にスラッジフィルタを設けたものである。
According to an eighth aspect of the present invention, in the air conditioner of the seventh aspect, a sludge filter is provided in the middle of the oil return bypass circuit.

【0023】請求項9に係るこの発明の空気調和装置
は、請求項8に記載の発明において、返油バイパス回路
途中のスラッジフィルタ上流に冷凍機油を冷却するバイ
パス熱交換器を設けたものである。
According to a ninth aspect of the present invention, in the air conditioner of the eighth aspect, a bypass heat exchanger for cooling refrigerating machine oil is provided upstream of the sludge filter in the middle of the oil return bypass circuit. .

【0024】請求項10に係るこの発明の空気調和装置
は、請求項8に記載の発明において、返油バイパス回路
途中のスラッジフィルタ上流に液冷媒を注入する液冷媒
注入回路を設けたものである。
According to a tenth aspect of the present invention, in the air conditioner of the eighth aspect, a liquid refrigerant injection circuit for injecting a liquid refrigerant upstream of the sludge filter in the oil return bypass circuit is provided. .

【0025】請求項11に係るこの発明の空気調和装置
は、請求項6〜10の何れかに記載の発明において、返
油バイパス途中のスラッジフィルタを、水分を吸収しか
つスラッジフィルタ機能を有するドライヤとしたもので
ある。
According to an eleventh aspect of the present invention, in the air conditioner according to any one of the sixth to tenth aspects, the sludge filter in the middle of the oil return bypass absorbs moisture and has a sludge filter function. It is what it was.

【0026】請求項12に係るこの発明の空気調和装置
は、請求項1〜6及び11の何れかに記載の発明におい
て、ドライヤの取付姿勢を流れ方向に対して下向きとし
たものである。
According to a twelfth aspect of the present invention, there is provided an air conditioner according to any one of the first to sixth and eleventh aspects, wherein the mounting posture of the dryer is downward with respect to the flow direction.

【0027】請求項13に係るこの発明の空気調和装置
は、請求項3〜6,9,11及び12の何れかに記載の
発明において、バイパス熱交換器の全部または一部とし
て熱源機側熱交換器の最下部を通す構成としたものであ
る。
According to a thirteenth aspect of the present invention, in the air conditioner according to any one of the third to sixth, ninth, eleventh, and twelfth aspects, the heat source device side heat exchanger is used as all or a part of the bypass heat exchanger. It is configured to pass through the lowermost part of the exchanger.

【0028】請求項14に係るこの発明の空気調和装置
は、圧縮機、凝縮器、絞り装置、蒸発器、アキュムレ−
タより構成された主冷媒回路を備え、ハイドロフルオロ
カ−ボン系の冷媒を作動媒体として用い、この冷媒と相
溶性のある油を冷凍機油として用いる空気調和装置にお
いて、上記アキュムレ−タの底部に貯留する冷凍機油
を、このアキュムレ−タから上記圧縮機への冷媒流出配
管の上下2個所に並列に返油させる返油機構を設けたも
のである。
According to a fourteenth aspect of the present invention, there is provided an air conditioner comprising a compressor, a condenser, a throttle device, an evaporator, an accumulator.
An air conditioner comprising a main refrigerant circuit composed of a refrigerant, a hydrofluorocarbon-based refrigerant as a working medium, and an oil compatible with the refrigerant as a refrigerating machine oil. An oil return mechanism is provided for returning the refrigerating machine oil to be stored in parallel at two locations above and below a refrigerant outflow pipe from the accumulator to the compressor.

【0029】請求項15に係るこの発明の空気調和装置
は、圧縮機、凝縮器、絞り装置、蒸発器より構成された
主冷媒回路を備え、ハイドロフルオロカ−ボン系の冷媒
を作動媒体として用い、この冷媒と相溶性のある油を冷
凍機油として用いる空気調和装置において、上記絞り装
置を、上記蒸発器入口及び出口の媒体温度により算出さ
れた上記蒸発器出口の過熱度が一定範囲となるように制
御し、制御上の発散による過度な開弁を抑止する上限開
度が設けられるとともに、上記蒸発器出口の過熱度が一
定範囲を超え、この絞り装置の開度が上記上限開度に達
する時、上記絞り装置の入口側の冷媒温度、上記圧縮機
の吐出側圧力及び上記冷媒の組成により算出された上記
絞り装置入口の過冷却度が所定値以上であると、上記上
限開度を大きく補正する絞り装置制御装置を備えたもの
である。
An air conditioner according to a fifteenth aspect of the present invention includes a main refrigerant circuit composed of a compressor, a condenser, a throttle device, and an evaporator, and uses a hydrofluorocarbon-based refrigerant as a working medium. In the air conditioner using the oil compatible with the refrigerant as the refrigerating machine oil, the throttling device is adjusted so that the degree of superheat at the evaporator outlet calculated from the medium temperature at the evaporator inlet and outlet is within a certain range. And an upper limit opening is provided to suppress excessive valve opening due to control divergence, the degree of superheat at the evaporator outlet exceeds a certain range, and the opening degree of the expansion device reaches the upper limit opening. When the refrigerant temperature on the inlet side of the expansion device, the discharge side pressure of the compressor and the supercooling degree of the expansion device inlet calculated from the composition of the refrigerant are equal to or more than a predetermined value, the upper limit opening is increased. Supplement Those having a diaphragm device control apparatus.

【0030】請求項16に係るこの発明の空気調和装置
は、圧縮機、熱源機側熱交換器よりなる熱源機と、絞り
装置及び室内側熱交換器よりなる複数の室内機とを有す
る主冷媒回路を備え、ハイドロフルオロカ−ボン系の冷
媒を作動媒体として用い、この冷媒と相溶性のある油を
冷凍機油として用いる空気調和装置において、上記各室
内機に、除霜用の送風機と、一部の室内機のみ冷房運転
している場合に、冷房運転していない室内機の室内側熱
交換器出口側の媒体温度が所定時間連続して所定温度を
下回った場合に、上記送風機を運転させる除霜制御装置
とを設けたものである。
An air conditioner according to a sixteenth aspect of the present invention is a main refrigerant having a heat source unit including a compressor and a heat source unit side heat exchanger, and a plurality of indoor units including a throttling device and an indoor side heat exchanger. An air conditioner including a circuit, using a hydrofluorocarbon-based refrigerant as a working medium, and using oil compatible with the refrigerant as a refrigerating machine oil, wherein each of the indoor units includes a blower for defrosting, The air blower is operated when the medium temperature at the outlet side of the indoor heat exchanger of the indoor unit that is not performing the cooling operation continuously falls below the predetermined temperature for a predetermined time when only the indoor unit of the unit is performing the cooling operation. A defrost control device is provided.

【0031】請求項17に係るこの発明の空気調和装置
は、請求項19に記載の発明において、各室内機に、除
霜用の送風機と同時に運転が開始し、この送風機の運転
停止から所定時間経過後停止するよう除霜制御装置によ
り制御される、上記室内機で発生するドレンを排水する
ドレンポンプを設けたたものである。
According to a seventeenth aspect of the present invention, in the air conditioner according to the nineteenth aspect, the operation of each of the indoor units is started simultaneously with the defrosting fan, and a predetermined time has elapsed since the operation of the blower was stopped. A drain pump for draining drain generated in the indoor unit, which is controlled by a defrost control device so as to stop after a lapse of time, is provided.

【0032】[0032]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.以下、この発明の実施の形態1を図1に
よって説明する。図1はこの実施の形態1にかかる空気
調和装置の冷媒回路図である。図において、Aは熱源
機、B、C、Dは室内機、1は圧縮機、2は切換弁、3
は熱源機側熱交換器、4はアキュムレ−タ、5はアキュ
ムレ−タ4の油戻し穴、6は第2の絞り装置、7b、7
c、7dは室内機側熱交換器、8b、8c、8dは第1
の絞り装置、9は液側接続冷媒配管、10はガス側接続
冷媒配管で、以上は図28に示す従来例と同様のもので
ある。
Embodiment 1 FIG. Hereinafter, Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 1. In the figure, A is a heat source unit, B, C and D are indoor units, 1 is a compressor, 2 is a switching valve, 3
Is a heat source side heat exchanger, 4 is an accumulator, 5 is an oil return hole of the accumulator 4, 6 is a second expansion device, 7b, 7
c and 7d are indoor unit side heat exchangers, and 8b, 8c and 8d are first heat exchangers.
Reference numeral 9 denotes a liquid side connection refrigerant pipe, and 10 denotes a gas side connection refrigerant pipe. The above is the same as the conventional example shown in FIG.

【0033】15は第2の絞り装置6と液側接続冷媒配
管9との間から分岐し、他端が切換弁2と圧縮機1との
間の冷媒配管に接続するバイパス回路、16はバイパス
回路15の配管途中に設けられたドライヤ、17はバイ
パス回路15の配管途中のドライヤ16の下流に設けら
れたバイパス絞り装置(以下第3の絞り装置という)、
18aはバイパス回路15の第3の絞り装置17より下
流の部分と、第2の絞り装置6と熱源機側熱交換器3と
の間の部分とが熱交換する第1のバイパス熱交換器、1
8bはバイパス回路15の第3の絞り装置17より下流
の部分と、第2の絞り装置6と液側接続冷媒配管9との
間の部分とが熱交換する第2のバイパス熱交換器、19
はバイパス回路15の配管途中の絞り装置17より上流
の部分に設けられた第1の温度検出手段、20はバイパ
ス回路15の配管途中の絞り装置17より下流でかつ第
1、第2のバイパス熱交換器18a、18bの上流の部
分に設けられた第2の温度検出手段、21は切換弁2と
圧縮機1との間の部分に設けられた吸入圧力検出手段で
ある。
A bypass circuit 15 branches from the second expansion device 6 to the liquid side connection refrigerant pipe 9, and the other end is connected to a refrigerant pipe between the switching valve 2 and the compressor 1. A dryer 17 provided in the piping of the circuit 15; a bypass throttle device (hereinafter referred to as a third throttle device) provided downstream of the dryer 16 in the piping of the bypass circuit 15;
18a is a first bypass heat exchanger in which a portion of the bypass circuit 15 downstream of the third expansion device 17 and a portion between the second expansion device 6 and the heat source device side heat exchanger 3 exchange heat. 1
Reference numeral 8b denotes a second bypass heat exchanger in which a portion of the bypass circuit 15 downstream of the third expansion device 17 and a portion between the second expansion device 6 and the liquid-side connection refrigerant pipe 9 exchange heat.
Is a first temperature detecting means provided in a portion of the bypass circuit 15 at a position upstream of the expansion device 17, and reference numeral 20 is a temperature of the first and second bypass heats downstream of the expansion device 17 and a portion of the bypass circuit 15. Second temperature detecting means 21 provided at a portion upstream of the exchangers 18a, 18b is a suction pressure detecting means provided at a portion between the switching valve 2 and the compressor 1.

【0034】次に、冷媒の流れを図によって説明する。
まず、冷房時においては、圧縮機1で高温高圧まで圧縮
されたガス冷媒は切換弁2を経て熱源機側熱交換器3に
流入し、空気などと熱交換して凝縮し、高温高圧の液冷
媒となる。さらに、冷房時全開の第2の絞り装置6、液
側接続冷媒配管9をへて、室内機B、C、Dに達し、室
内機側熱交換器7b、7c、7dの出口の過熱度が一定
範囲になるように制御される第1の絞り装置8b、8
c、8dによって、低圧の気液ニ相状態まで絞られる。
低圧の気液ニ相冷媒は室内機側熱交換器7b、7c、7
dに流入して、室内の空気と熱交換してガス化し、ガス
側接続冷媒配管10、切換弁2、アキュムレ−タ4を経
て圧縮機1へ戻る。アキュムレ−タ4内部の冷凍機油は
液冷媒とともに油戻し穴5より圧縮機1へ戻る。
Next, the flow of the refrigerant will be described with reference to the drawings.
First, during cooling, the gas refrigerant compressed to a high temperature and a high pressure by the compressor 1 flows into the heat source device side heat exchanger 3 through the switching valve 2 and exchanges heat with air or the like to be condensed. It becomes a refrigerant. Further, the air reaches the indoor units B, C, and D through the second expansion device 6 and the liquid-side connection refrigerant pipe 9 that are fully opened during cooling, and reaches the indoor units B, C, and D. First aperture devices 8b, 8 controlled to be within a certain range
By c and 8d, the pressure is reduced to a low-pressure gas-liquid two-phase state.
The low-pressure gas-liquid two-phase refrigerant is supplied to the indoor unit side heat exchangers 7b, 7c, 7
d, gas exchanges with the indoor air by heat exchange, and returns to the compressor 1 via the gas side connection refrigerant pipe 10, the switching valve 2, and the accumulator 4. The refrigerating machine oil inside the accumulator 4 returns to the compressor 1 through the oil return hole 5 together with the liquid refrigerant.

【0035】また、熱源機側熱交換器3から全開状態の
第2の絞り装置6を通過した液冷媒一部がバイパス回路
15に流入する。バイパス回路15ではドライヤ16を
経て、第3の絞り装置17で低圧まで減圧され低温低圧
の気液ニ相冷媒となる。この低温低圧の気液ニ相冷媒
は、バイパス熱交換器18a、18bで、熱源機側熱交
換器3を出た高温高圧の液冷媒と、また第2の絞り装置
6を出た高温高圧の液冷媒と熱交換し、ガス化して、切
換弁2と圧縮機1との間で、室内機B、C、Dを経た冷
媒と合流し、圧縮機1へ戻る。一方、熱源機側熱交換器
3を出た液冷媒は第1のバイパス熱交換器18aで冷却
され、バイパス回路15に流入する液冷媒は熱源機側熱
交換器3を出た液冷媒より温度が低下する。また、その
冷媒は更に第2の絞り装置6を経て、第2のバイパス熱
交換器18bで冷却され、液側接続冷媒配管9に流入す
る液冷媒は充分に過冷却が取られる。よって、液側接続
冷媒配管9の長さが長く、ここを流れる間に冷媒の圧力
降下が大きくても、また室内機B、C,、Dが熱源機A
より上に設置され液側接続冷媒配管内の液冷媒の重力の
影響が大きくても、第1の絞り装置8a、8b、8cに
流入する冷媒は液状態を確保することができ、安定した
運転が可能である。
A part of the liquid refrigerant that has passed through the second expansion device 6 in the fully opened state from the heat source unit side heat exchanger 3 flows into the bypass circuit 15. In the bypass circuit 15, the pressure is reduced to a low pressure by the third expansion device 17 via the dryer 16, and becomes a low-temperature low-pressure gas-liquid two-phase refrigerant. The low-temperature and low-pressure gas-liquid two-phase refrigerant is connected to the high-temperature and high-pressure liquid refrigerant exiting the heat-source-unit-side heat exchanger 3 and the high-temperature and high-pressure refrigerant exiting the second expansion device 6 in the bypass heat exchangers 18a and 18b. The refrigerant exchanges heat with the liquid refrigerant, gasifies, and joins the refrigerant that has passed through the indoor units B, C, and D between the switching valve 2 and the compressor 1 and returns to the compressor 1. On the other hand, the liquid refrigerant that has exited the heat source unit side heat exchanger 3 is cooled by the first bypass heat exchanger 18a, and the liquid refrigerant that flows into the bypass circuit 15 has a higher temperature than the liquid refrigerant that has exited the heat source unit side heat exchanger 3. Decrease. The refrigerant further passes through the second expansion device 6 and is cooled by the second bypass heat exchanger 18b, and the liquid refrigerant flowing into the liquid-side connection refrigerant pipe 9 is sufficiently supercooled. Therefore, even if the length of the liquid-side connection refrigerant pipe 9 is long and the pressure drop of the refrigerant is large while flowing through the pipe, the indoor units B, C, and D are also connected to the heat source unit A.
The refrigerant flowing into the first expansion devices 8a, 8b, 8c can maintain the liquid state even when the influence of the gravity of the liquid refrigerant in the liquid-side connection refrigerant pipe installed above is large, and the stable operation can be achieved. Is possible.

【0036】暖房時においては、圧縮機1で高温高圧ま
で圧縮されたガス冷媒は切換弁2、ガス側接続冷媒配管
10を経て、室内機B、C、Dに達し、室内機側熱交換
器7b、7c、7dに流入し、室内の空気と熱交換して
凝縮し、高温高圧の液冷媒となる。室内側熱交換器7
b、7c、7dを出た液冷媒は暖房時殆ど全開の第1の
絞り装置7b、7c、7dで少し減圧して、液側接続冷
媒配管9をへて第2の絞り装置6に達し、ここで低圧の
気液ニ相状態まで絞られる。低圧の気液ニ相冷媒は熱源
機側熱交換器3に流入し、空気などと熱交換してガス化
し、切換弁2、アキュムレ−タ4を経て圧縮機1へ戻
る。アキュムレ−タ4内部の冷凍機油は液冷媒とともに
油戻し穴5より圧縮機1へ戻る。
At the time of heating, the gas refrigerant compressed to a high temperature and a high pressure by the compressor 1 reaches the indoor units B, C and D via the switching valve 2 and the gas side connection refrigerant pipe 10, and the indoor unit side heat exchanger. It flows into 7b, 7c, 7d, exchanges heat with indoor air and condenses, and becomes a high-temperature and high-pressure liquid refrigerant. Indoor heat exchanger 7
The liquid refrigerant that has exited b, 7c, and 7d is slightly depressurized by the first expansion devices 7b, 7c, and 7d that are almost fully open during heating, reaches the second expansion device 6 via the liquid-side connection refrigerant pipe 9, and Here, the pressure is reduced to a low-pressure gas-liquid two-phase state. The low-pressure gas-liquid two-phase refrigerant flows into the heat source-side heat exchanger 3, exchanges heat with air or the like to gasify, and returns to the compressor 1 via the switching valve 2 and the accumulator 4. The refrigerating machine oil inside the accumulator 4 returns to the compressor 1 through the oil return hole 5 together with the liquid refrigerant.

【0037】また、室内機側熱交換器7b、7c、7d
から全開状態の第1の絞り装置8a、8b、8c、液側
接続冷媒配管9を通過した液冷媒の一部がバイパス回路
15に流入する。バイパス回路15ではドライヤ16を
経て、第3の絞り装置17で低圧まで減圧され低温低圧
の気液ニ相冷媒となる。この低温低圧の気液ニ相冷媒
は、バイパス熱交換器18bで液側接続冷媒配管9を出
た高温高圧の液冷媒と、バイパス熱交換器18aで第2
の絞り装置6で絞られた低圧の気液ニ相冷媒と熱交換
し、ガス化して、切換弁2と圧縮機1との間で、熱源機
側熱交換器3を経た冷媒と合流し、圧縮機1へ戻る。一
方、液側接続冷媒配管9を出た液冷媒は第2のバイパス
熱交換器18bで冷却され、バイパス回路15に流入す
る液冷媒は液側接続冷媒配管9を出た液冷媒より温度が
低下し、第2の絞り装置6に流入する冷媒は液状態を確
保することができ、安定した運転が可能である。
The indoor unit side heat exchangers 7b, 7c, 7d
A part of the liquid refrigerant that has passed through the first expansion devices 8a, 8b, 8c and the liquid-side connection refrigerant pipe 9 in the fully opened state flows into the bypass circuit 15. In the bypass circuit 15, the pressure is reduced to a low pressure by the third expansion device 17 via the dryer 16, and becomes a low-temperature low-pressure gas-liquid two-phase refrigerant. The low-temperature and low-pressure gas-liquid two-phase refrigerant is supplied to the high-temperature and high-pressure liquid refrigerant exiting the liquid-side connection refrigerant pipe 9 at the bypass heat exchanger 18b and to the second refrigerant at the bypass heat exchanger 18a.
Heat exchanges with the low-pressure gas-liquid two-phase refrigerant throttled by the expansion device 6, gasifies, and merges with the refrigerant that has passed through the heat source device side heat exchanger 3 between the switching valve 2 and the compressor 1; Return to the compressor 1. On the other hand, the liquid refrigerant that has exited the liquid-side connection refrigerant pipe 9 is cooled by the second bypass heat exchanger 18b, and the temperature of the liquid refrigerant that flows into the bypass circuit 15 is lower than that of the liquid refrigerant that has exited the liquid-side connection refrigerant pipe 9. However, the refrigerant flowing into the second expansion device 6 can maintain a liquid state, and stable operation is possible.

【0038】次に、ドライヤ16の作用について説明す
る。圧縮機1を吐出した冷媒・冷凍機油中に含まれる水
分は、飽和上限以下であればバイパス回路15の起点に
達するまで変化しない。この点から冷房時には室内側熱
交換器7b、7c、7dを、暖房時には熱源機側熱交換
器3を経由して、切換弁2をへてバイパス回路15との
合流点にいたる主冷媒回路では、それ以後も冷媒・冷凍
機油中に含まれる水分は変化しない。一方、バイパス回
路15では、冷媒・冷凍機油がドライヤ16に流入する
とそこで吸湿され、ドライヤ16の下流では冷媒・冷凍
機油中の水分量は低下する。切換弁2と圧縮機1との間
のバイパス回路15を流れる冷媒・冷凍機油と主冷媒回
路を流れる冷媒・冷凍機油とが合流する点で、それまで
主冷媒回路を流れる冷媒・冷凍機油中に含まれていた水
分とバイパス回路15を流れる冷媒・冷凍機油中に含ま
れていた水分とが混合し、主冷媒回路を流れる冷媒・冷
凍機油中に含まれていた水分量よりも合流後の水分量は
その濃度では低下する。即ち、バイパス回路15にある
ドライヤ16により水分は吸収され冷媒回路中の含有水
分量は低下する。
Next, the operation of the dryer 16 will be described. The moisture contained in the refrigerant / refrigerant oil discharged from the compressor 1 does not change until it reaches the starting point of the bypass circuit 15 if it is equal to or lower than the saturation upper limit. From this point, in the main refrigerant circuit reaching the junction with the bypass circuit 15 via the switching valve 2 through the indoor heat exchangers 7b, 7c and 7d during cooling, and via the heat source unit side heat exchanger 3 during heating during heating. After that, the moisture contained in the refrigerant / refrigeration oil does not change. On the other hand, in the bypass circuit 15, when the refrigerant / refrigeration oil flows into the dryer 16, the moisture is absorbed there, and the water content in the refrigerant / refrigeration oil decreases downstream of the dryer 16. At the point where the refrigerant / refrigerant oil flowing through the bypass circuit 15 between the switching valve 2 and the compressor 1 and the refrigerant / refrigerant oil flowing through the main refrigerant circuit merge, the refrigerant / refrigerant oil flowing through the main refrigerant circuit up to that point The moisture contained and the moisture contained in the refrigerant / refrigeration oil flowing through the bypass circuit 15 are mixed, and the moisture after merging is smaller than the water content contained in the refrigerant / refrigeration oil flowing through the main refrigerant circuit. The amount decreases at that concentration. That is, moisture is absorbed by the dryer 16 in the bypass circuit 15, and the moisture content in the refrigerant circuit decreases.

【0039】この実施の形態では、主冷媒回路中にドラ
イヤを設ける場合と比べて水分吸着速度は遅くなるが、
ポリエステル油の加水分解劣化の速度も遅いので、バイ
パス回路15の配管途中にあるドライヤ16の水分吸着
能力により加水分解は充分抑制され、圧縮機1でのスラ
ッジ成分生成を抑制することができる。また、ドライヤ
16をバイパス回路15の配管途中に設けることでドラ
イヤ16を流れる冷媒流れの衝撃を低下させることがで
き、ドライヤ16が粉砕しにくくなる。さらに、第1、
第2のバイパス熱交換器18a、18bによりドライヤ
16に流入する冷媒を冷却するため、圧縮機1の起動時
やデフロストなどの過渡的な運転時にあっても、ドライ
ヤ16に流入する冷媒を液状態としやすく、ドライヤ1
6がさらに粉砕しにくくなる。また、冷媒は温度が低い
と冷媒への水分飽和溶解度が低く、ドライヤとの共存下
では、相対的に冷媒中よりもドライヤに水分は移動しや
すく、ドライヤの水分吸着能力は高くなる。よって、ド
ライヤ16に流入する冷媒の温度が低くなると、それだ
けドライヤ16の水分吸着量が増え、冷凍機油の加水分
解を抑えることができる。
In this embodiment, the moisture adsorption speed is lower than when a dryer is provided in the main refrigerant circuit.
Since the rate of hydrolysis and degradation of the polyester oil is low, hydrolysis is sufficiently suppressed by the moisture adsorption ability of the dryer 16 in the piping of the bypass circuit 15, and the generation of sludge components in the compressor 1 can be suppressed. Further, by providing the dryer 16 in the middle of the piping of the bypass circuit 15, the impact of the refrigerant flow flowing through the dryer 16 can be reduced, and the dryer 16 is less likely to be crushed. In addition, the first,
Since the refrigerant flowing into the dryer 16 is cooled by the second bypass heat exchangers 18a and 18b, the refrigerant flowing into the dryer 16 is in a liquid state even when the compressor 1 is started or during a transient operation such as defrost. Dryer 1
6 becomes more difficult to grind. Further, when the temperature of the refrigerant is low, the water has a low saturation of water solubility in the refrigerant, and in the coexistence with the dryer, the water moves relatively easily to the dryer than in the refrigerant, and the moisture adsorption capacity of the dryer increases. Therefore, as the temperature of the refrigerant flowing into the dryer 16 decreases, the amount of water adsorbed by the dryer 16 increases accordingly, and hydrolysis of the refrigerating machine oil can be suppressed.

【0040】実施の形態2.以下、この発明の実施の形
態2を図2によって説明する。図2はこの実施の形態2
にかかる空気調和装置の冷媒回路図である。図におい
て、Aは熱源機、B、C、Dは室内機、1は圧縮機、2
は切換弁、3は熱源機側熱交換器、4はアキュムレ−
タ、5はアキュムレ−タ4の油戻し穴、6は第2の絞り
装置、7b、7c、7dは室内機側熱交換器、8b、8
c、8dは第1の絞り装置、9は液側接続冷媒配管、1
0はガス側接続冷媒配管で、以上は図28に示す従来例
と同様のものである。
Embodiment 2 Hereinafter, a second embodiment of the present invention will be described with reference to FIG. FIG. 2 shows the second embodiment.
FIG. 2 is a refrigerant circuit diagram of the air conditioner according to FIG. In the figure, A is a heat source unit, B, C, D are indoor units, 1 is a compressor, 2
Is a switching valve, 3 is a heat exchanger on the heat source side, and 4 is an accumulator.
And 5 are oil return holes of the accumulator 4, 6 is a second expansion device, 7b, 7c and 7d are indoor unit side heat exchangers, 8b and 8
c and 8d are first expansion devices, 9 is a liquid side connection refrigerant pipe, 1
Reference numeral 0 denotes a gas-side connection refrigerant pipe, which is the same as the conventional example shown in FIG.

【0041】15は第2の絞り装置6と液側接続冷媒配
管9との間から分岐し、他端が切換弁2と圧縮機1との
間の冷媒配管に接続するバイパス回路、16はバイパス
回路15の配管途中に設けられたドライヤ、17はバイ
パス回路15の配管途中のドライヤ16の下流に設けら
れた第3の絞り装置、18はバイパス回路15のドライ
ヤ16より上流の部分と切換弁2とアキュムレ−タ4と
の間の部分とが熱交換するバイパス熱交換器、19はバ
イパス回路15の配管途中の絞り装置17より上流の部
分に設けられた第1の温度検出手段、20はバイパス回
路15の配管途中の絞り装置17より下流に設けられた
第2の温度検出手段、21は切換弁2と圧縮機1との間
の部分に設けられた吸入圧力検出手段である。
Reference numeral 15 denotes a bypass circuit which branches from the second throttle device 6 and the liquid-side connection refrigerant pipe 9, and the other end is connected to a refrigerant pipe between the switching valve 2 and the compressor 1. A dryer 17 provided in the piping of the circuit 15, a third throttle device provided downstream of the dryer 16 in the piping of the bypass circuit 15, a portion upstream of the dryer 16 in the bypass circuit 15 and the switching valve 2. A bypass heat exchanger for exchanging heat between the heat exchanger and the accumulator 4; 19, a first temperature detecting means provided at a portion of the bypass circuit 15 upstream of the expansion device 17 in the piping; A second temperature detecting means 21 provided downstream of the expansion device 17 in the piping of the circuit 15 is a suction pressure detecting means provided at a portion between the switching valve 2 and the compressor 1.

【0042】次に、冷媒の流れを図によって説明する。
圧縮機1、切換弁2、熱源機側熱交換器3、第2の絞り
装置6、第1の絞り装置8b、8c、8d、及び室内機
側熱交換器7b、7c、7dからなる主冷媒回路の冷房
時、暖房時の冷媒の流れは実施の形態1と全く同様なの
で説明を省略し、バイパス回路15における冷媒の流れ
を説明する。
Next, the flow of the refrigerant will be described with reference to the drawings.
Main refrigerant comprising compressor 1, switching valve 2, heat source unit side heat exchanger 3, second expansion unit 6, first expansion units 8b, 8c, 8d, and indoor unit side heat exchangers 7b, 7c, 7d The flow of the refrigerant at the time of cooling and heating of the circuit is completely the same as that of the first embodiment, and therefore the description is omitted, and the flow of the refrigerant in the bypass circuit 15 will be described.

【0043】冷房時に熱源機側熱交換器3から全開状態
の第2の絞り装置6を通過し、暖房時に室内機側熱交換
器7b、7c、7dから全開状態の第1の絞り装置8
a、8b、8c、液側接続冷媒配管9を通過した液冷媒
一部がバイパス回路15に流入する。バイパス回路15
に流入した液冷媒は、バイパス熱交換器18で切換弁2
を経た低温低圧の冷媒と熱交換して温度が低下し、ドラ
イヤ16を経て、第3の絞り装置17で低圧まで減圧さ
れ低温低圧の気液ニ相冷媒となる。この低温低圧の気液
ニ相冷媒は切換弁2とアキュムレータ4との間で切換弁
2を経た主冷媒回路の冷媒と合流し、アキュムレータ4
で気液分離して圧縮機1へ戻る。
During cooling, the heat passes from the heat source unit side heat exchanger 3 to the fully expanded second expansion device 6, and during heating, the indoor unit side heat exchangers 7b, 7c, 7d open to the fully expanded first expansion device 8.
a, 8b, 8c, and a part of the liquid refrigerant that has passed through the liquid side connection refrigerant pipe 9 flows into the bypass circuit 15. Bypass circuit 15
Liquid refrigerant flowing into the switching valve 2 by the bypass heat exchanger 18
The heat is exchanged with the low-temperature and low-pressure refrigerant that has passed through, and the temperature of the refrigerant is reduced. The low-temperature, low-pressure gas-liquid two-phase refrigerant joins the refrigerant in the main refrigerant circuit that has passed through the switching valve 2 between the switching valve 2 and the accumulator 4, and
To return to the compressor 1.

【0044】次に、ドライヤ16の作用について説明す
る。圧縮機1を吐出した冷媒・冷凍機油中に含まれる水
分は、飽和上限以下であればバイパス回路15の起点に
達するまで変化しない。この点から冷房時には室内側熱
交換器7b、7c、7dを、暖房時には熱源機側熱交換
器3を経由して、切換弁2をへてバイパス回路15との
合流点にいたる主冷媒回路では、それ以後も冷媒・冷凍
機油中に含まれる水分は変化しない。一方、バイパス回
路15では、冷媒・冷凍機油がドライヤ16に流入する
とそこで吸湿され、ドライヤ16の下流では冷媒・冷凍
機油中の水分量は低下する。切換弁2と圧縮機1との間
のバイパス回路15を流れる冷媒・冷凍機油と主冷媒回
路を流れる冷媒・冷凍機油とが合流する点で、それまで
主冷媒回路を流れる冷媒・冷凍機油中に含まれていた水
分とバイパス回路15を流れる冷媒・冷凍機油中に含ま
れていた水分とが混合し、主冷媒回路を流れる冷媒・冷
凍機油中に含まれていた水分量よりも合流後の水分量は
その濃度では低下する。即ち、バイパス回路15にある
ドライヤ16により水分は吸収され冷媒回路中の含有水
分量は低下する。
Next, the operation of the dryer 16 will be described. The moisture contained in the refrigerant / refrigerant oil discharged from the compressor 1 does not change until it reaches the starting point of the bypass circuit 15 if it is equal to or lower than the saturation upper limit. From this point, in the main refrigerant circuit reaching the junction with the bypass circuit 15 via the switching valve 2 through the indoor heat exchangers 7b, 7c and 7d during cooling, and via the heat source unit side heat exchanger 3 during heating during heating. After that, the moisture contained in the refrigerant / refrigeration oil does not change. On the other hand, in the bypass circuit 15, when the refrigerant / refrigeration oil flows into the dryer 16, the moisture is absorbed there, and the water content in the refrigerant / refrigeration oil decreases downstream of the dryer 16. At the point where the refrigerant / refrigerant oil flowing through the bypass circuit 15 between the switching valve 2 and the compressor 1 and the refrigerant / refrigerant oil flowing through the main refrigerant circuit merge, the refrigerant / refrigerant oil flowing through the main refrigerant circuit up to that point The moisture contained and the moisture contained in the refrigerant / refrigeration oil flowing through the bypass circuit 15 are mixed, and the moisture after merging is smaller than the water content contained in the refrigerant / refrigeration oil flowing through the main refrigerant circuit. The amount decreases at that concentration. That is, moisture is absorbed by the dryer 16 in the bypass circuit 15, and the moisture content in the refrigerant circuit decreases.

【0045】この実施の形態でも、主冷媒回路中にドラ
イヤを設ける場合と比べて水分吸着速度は遅くなるが、
ポリエステル油の加水分解劣化の速度も遅いので、バイ
パス回路15の配管途中にあるドライヤ16の水分吸着
能力により加水分解は充分抑制され、圧縮機1でのスラ
ッジ成分生成を抑制することができる。また、ドライヤ
16をバイパス回路15の配管途中に設けることでドラ
イヤ16を流れる冷媒流れの衝撃を低下させることがで
き、ドライヤ16が粉砕しにくくなる。さらに、バイパ
ス熱交換器18によりドライヤ16に流入する冷媒を冷
却するため、圧縮機1の起動時やデフロストなどの過渡
的な運転時にあっても、ドライヤ16に流入する冷媒を
液状態としやすく、ドライヤ16がさらに粉砕しにくく
なる。また、冷媒は温度が低いと冷媒への水分飽和溶解
度が低く、ドライヤとの共存下では、相対的に冷媒中よ
りもドライヤに水分は移動しやすく、ドライヤの水分吸
着能力は高くなる。よって、ドライヤ16に流入する冷
媒の温度が低くなると、それだけドライヤ16の水分吸
着量が増え、冷凍機油の加水分解を抑えることができ
る。
In this embodiment as well, the moisture adsorption speed is lower than when a dryer is provided in the main refrigerant circuit.
Since the rate of hydrolysis and degradation of the polyester oil is low, hydrolysis is sufficiently suppressed by the moisture adsorption ability of the dryer 16 in the piping of the bypass circuit 15, and the generation of sludge components in the compressor 1 can be suppressed. Further, by providing the dryer 16 in the middle of the piping of the bypass circuit 15, the impact of the refrigerant flow flowing through the dryer 16 can be reduced, and the dryer 16 is less likely to be crushed. Further, since the refrigerant flowing into the dryer 16 is cooled by the bypass heat exchanger 18, the refrigerant flowing into the dryer 16 can be easily changed to a liquid state even at the time of starting the compressor 1 or during a transient operation such as defrost. The dryer 16 is more difficult to pulverize. Further, when the temperature of the refrigerant is low, the water has a low saturation of water solubility in the refrigerant, and in the coexistence with the dryer, the water moves relatively easily to the dryer than in the refrigerant, and the moisture adsorption capacity of the dryer increases. Therefore, as the temperature of the refrigerant flowing into the dryer 16 decreases, the amount of water adsorbed by the dryer 16 increases accordingly, and hydrolysis of the refrigerating machine oil can be suppressed.

【0046】実施の形態3.以下、この発明の実施の形
態3を図3によって説明する。図3はこの実施の形態3
にかかる空気調和装置の冷媒回路図である。図におい
て、Aは熱源機、B、C、Dは室内機、1は圧縮機、2
は切換弁、3は熱源機側熱交換器、4はアキュムレ−
タ、5はアキュムレ−タ4の油戻し穴、6は第2の絞り
装置、7b、7c、7dは室内機側熱交換器、8b、8
c、8dは第1の絞り装置、9は液側接続冷媒配管、1
0はガス側接続冷媒配管で、以上は図28に示す従来例
と同様のものである。
Embodiment 3 Hereinafter, a third embodiment of the present invention will be described with reference to FIG. FIG. 3 shows the third embodiment.
FIG. 2 is a refrigerant circuit diagram of the air conditioner according to FIG. In the figure, A is a heat source unit, B, C, D are indoor units, 1 is a compressor, 2
Is a switching valve, 3 is a heat exchanger on the heat source side, and 4 is an accumulator.
And 5 are oil return holes of the accumulator 4, 6 is a second expansion device, 7b, 7c and 7d are indoor unit side heat exchangers, 8b and 8
c and 8d are first expansion devices, 9 is a liquid side connection refrigerant pipe, 1
Reference numeral 0 denotes a gas-side connection refrigerant pipe, which is the same as the conventional example shown in FIG.

【0047】15は第2の絞り装置6と液側接続冷媒配
管9との間から分岐し、他端が切換弁2と圧縮機1との
間の冷媒配管に接続するバイパス回路、16はバイパス
回路15の配管途中に設けられたドライヤ、17はバイ
パス回路15の配管途中のドライヤ16の下流に設けら
れた第3の絞り装置、18は、バイパス回路15のドラ
イヤ16より上流の部分と熱源機側熱交換器3の最も下
の部分に流入する空気の一部とが熱交換するバイパス熱
交換器、19はバイパス回路15の配管途中の絞り装置
17より上流の部分に設けられた第1の温度検出手段、
20はバイパス回路15の配管途中の絞り装置17より
下流に設けられた第2の温度検出手段、21は切換弁2
と圧縮機1との間の部分に設けられた吸入圧力検出手段
である。
A bypass circuit 15 branches from the second throttle device 6 to the liquid side connection refrigerant pipe 9, and the other end is connected to a refrigerant pipe between the switching valve 2 and the compressor 1. A dryer 17 provided in the middle of the piping of the circuit 15 is a third expansion device provided downstream of the dryer 16 in the middle of the piping of the bypass circuit 15, and a portion upstream of the dryer 16 in the bypass circuit 15 is connected to a heat source device. A bypass heat exchanger for exchanging heat with a part of the air flowing into the lowermost portion of the side heat exchanger 3, a first heat exchanger 19 provided at a portion upstream of the expansion device 17 in the piping of the bypass circuit 15. Temperature detection means,
Reference numeral 20 denotes a second temperature detecting means provided downstream of the expansion device 17 in the middle of the piping of the bypass circuit 15, and reference numeral 21 denotes a switching valve 2.
Suction pressure detecting means provided at a portion between the compressor and the compressor 1.

【0048】次に、冷媒の流れを図によって説明する。
圧縮機1、切換弁2、熱源機側熱交換器3、第2の絞り
装置6、第1の絞り装置8b、8c、8d、及び室内機
側熱交換器7b、7c、7dからなる主冷媒回路の冷房
時、暖房時の冷媒の流れは実施の形態1と全く同様なの
で説明を省略し、バイパス回路15における冷媒の流れ
を説明する。
Next, the flow of the refrigerant will be described with reference to the drawings.
Main refrigerant comprising compressor 1, switching valve 2, heat source unit side heat exchanger 3, second expansion unit 6, first expansion units 8b, 8c, 8d, and indoor unit side heat exchangers 7b, 7c, 7d The flow of the refrigerant at the time of cooling and heating of the circuit is completely the same as that of the first embodiment, and therefore the description is omitted, and the flow of the refrigerant in the bypass circuit 15 will be described.

【0049】冷房時に熱源機側熱交換器3から全開状態
の第2の絞り装置6を通過し、暖房時に室内機側熱交換
器7b、7c、7dから全開状態の第1の絞り装置8
a、8b、8c、液側接続冷媒配管9を通過した液冷媒
一部がバイパス回路15に流入する。バイパス回路15
に流入した液冷媒は、バイパス熱交換器18で熱源機側
熱交換器3の最下部に流入する空気の一部と熱交換して
温度が低下し、ドライヤ16を経て、第3の絞り装置1
7で低圧まで減圧され低温低圧の気液ニ相冷媒となる。
この低温低圧の気液ニ相冷媒は切換弁2とアキュムレー
タ4との間で切換弁2を経た主冷媒回路の冷媒と合流
し、アキュムレータ4で気液分離して圧縮機1へ戻る。
なお、暖房時において蒸発器となる、バイパス熱交換器
18が設けられる熱源機側熱交換器3の最下部において
は、上部からのドレンの流れで風が通りにくく霜が発生
し成長しやすいが、バイパス熱交換器18により暖めら
れ、着霜しにくくなる。
During cooling, the heat passes from the heat source unit side heat exchanger 3 to the second expansion unit 6 which is fully opened, and during heating, the indoor unit side heat exchangers 7b, 7c, 7d open the first expansion unit 8 which is fully opened.
a, 8b, 8c, and a part of the liquid refrigerant that has passed through the liquid side connection refrigerant pipe 9 flows into the bypass circuit 15. Bypass circuit 15
Is cooled by the bypass heat exchanger 18 with a part of the air flowing into the lowermost portion of the heat source device side heat exchanger 3, the temperature of the liquid refrigerant is reduced, and the liquid refrigerant passes through the dryer 16 to the third expansion device. 1
At 7, the pressure is reduced to a low pressure and becomes a low-temperature low-pressure gas-liquid two-phase refrigerant.
The low-temperature and low-pressure gas-liquid two-phase refrigerant joins the refrigerant of the main refrigerant circuit that has passed through the switching valve 2 between the switching valve 2 and the accumulator 4, separates gas and liquid by the accumulator 4, and returns to the compressor 1.
In the lowermost part of the heat source device side heat exchanger 3 provided with the bypass heat exchanger 18 which becomes an evaporator at the time of heating, the flow of the drain from the upper part makes it difficult for the wind to pass through, and frost is easily generated and grows. The frost is heated by the bypass heat exchanger 18 and frost formation is less likely.

【0050】この実施の形態3においても、バイパス回
路15中に水分を吸収するドライヤ16が設けられ、そ
れに流入する冷媒がバイパス熱交換器18により冷され
るので、実施の形態1,2と同様に冷媒回路中の含有水
分量は低下し、冷凍機油の加水分解を抑えることができ
るとともに、冷媒流によるドライヤ16の粉砕が防止で
きる。
In the third embodiment as well, a dryer 16 for absorbing moisture is provided in the bypass circuit 15, and the refrigerant flowing into the dryer 16 is cooled by the bypass heat exchanger 18, which is the same as in the first and second embodiments. In addition, the water content in the refrigerant circuit is reduced, so that the hydrolysis of the refrigerating machine oil can be suppressed, and the dryer 16 can be prevented from being crushed by the refrigerant flow.

【0051】実施の形態4.以下、この発明の実施の形
態4を図4によって説明する。図4はこの実施の形態4
にかかる空気調和装置の冷媒回路図である。図におい
て、Aは熱源機、B、C、Dは室内機、1は圧縮機、2
は切換弁、3は熱源機側熱交換器、4はアキュムレ−
タ、5はアキュムレ−タ4の油戻し穴、6は第2の絞り
装置、7b、7c、7dは室内機側熱交換器、8b、8
c、8dは第1の絞り装置、9は液側接続冷媒配管、1
0はガス側接続冷媒配管で、以上は図28に示す従来例
と同様のものである。
Embodiment 4 FIG. Hereinafter, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 4 shows the fourth embodiment.
FIG. 2 is a refrigerant circuit diagram of the air conditioner according to FIG. In the figure, A is a heat source unit, B, C, D are indoor units, 1 is a compressor, 2
Is a switching valve, 3 is a heat exchanger on the heat source side, and 4 is an accumulator.
And 5 are oil return holes of the accumulator 4, 6 is a second expansion device, 7b, 7c and 7d are indoor unit side heat exchangers, 8b and 8
c and 8d are first expansion devices, 9 is a liquid side connection refrigerant pipe, 1
Reference numeral 0 denotes a gas-side connection refrigerant pipe, which is the same as the conventional example shown in FIG.

【0052】15は圧縮機1の吐出部と切換弁2との間
から分岐し、他端が切換弁2と圧縮機1との間の冷媒配
管に接続するバイパス回路、16はバイパス回路15の
配管途中に設けられたドライヤ、17はバイパス回路1
5の配管途中のドライヤ16の下流に設けられた第3の
絞り装置、18は、バイパス回路15のドライヤ16よ
り上流の部分とバイパス回路15の第3の絞り装置17
より下流の部分とが熱交換するバイパス熱交換器、19
はバイパス回路15の配管途中の絞り装置17より上流
の部分に設けられた第1の温度検出手段、20はバイパ
ス回路15の配管途中の絞り装置17より下流に設けら
れた第2の温度検出手段、21は切換弁2と圧縮機1と
の間の部分に設けられた第2の圧力検出手段である。
Reference numeral 15 denotes a bypass circuit which branches from the discharge section of the compressor 1 and the switching valve 2, and the other end is connected to a refrigerant pipe between the switching valve 2 and the compressor 1. The dryer provided in the middle of the piping, 17 is the bypass circuit 1
The third throttle device 18 provided downstream of the dryer 16 in the middle of the pipe 5 includes a portion upstream of the dryer 16 of the bypass circuit 15 and a third throttle device 17 of the bypass circuit 15.
A bypass heat exchanger for exchanging heat with a downstream portion, 19
Reference numeral 20 denotes a first temperature detecting means provided in a portion of the bypass circuit 15 upstream of the expansion device 17 in the piping, and reference numeral 20 denotes a second temperature detection device provided downstream of the expansion device 17 of the bypass circuit 15 in the piping. , 21 are second pressure detecting means provided in a portion between the switching valve 2 and the compressor 1.

【0053】次に、冷媒の流れを図によって説明する。
圧縮機1、切換弁2、熱源機側熱交換器3、第2の絞り
装置6、第1の絞り装置8b、8c、8d、及び室内機
側熱交換器7b、7c、7dからなる主冷媒回路の冷房
時、暖房時の冷媒の流れは実施の形態1と全く同様なの
で説明を省略し、バイパス回路15における冷媒の流れ
を説明する。
Next, the flow of the refrigerant will be described with reference to the drawings.
Main refrigerant comprising compressor 1, switching valve 2, heat source unit side heat exchanger 3, second expansion unit 6, first expansion units 8b, 8c, 8d, and indoor unit side heat exchangers 7b, 7c, 7d The flow of the refrigerant at the time of cooling and heating of the circuit is completely the same as that of the first embodiment, and therefore the description is omitted, and the flow of the refrigerant in the bypass circuit 15 will be described.

【0054】冷房時、暖房時何れの場合においても、圧
縮機1を吐出された高温・高圧のガス冷媒の一部がバイ
パス回路15に流入する。バイパス回路15に流入した
高温・高圧のガス冷媒は、バイパス熱交換器18で下流
の低圧側の冷媒と熱交換して温度が低下して液化し、ド
ライヤ16を経て、第3の絞り装置17で低圧まで減圧
され低温低圧の気液ニ相冷媒となり、バイパス熱交換器
18で高圧側の冷媒と熱交換してガス化する。この低温
低圧のガス冷媒は切換弁2とアキュムレータ4との間で
切換弁2を経た主冷媒回路の冷媒と合流し、アキュムレ
ータ4で気液分離して圧縮機1へ戻る。
In both cooling and heating, a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the bypass circuit 15. The high-temperature and high-pressure gas refrigerant that has flowed into the bypass circuit 15 exchanges heat with the downstream low-pressure refrigerant in the bypass heat exchanger 18 to lower the temperature and liquefy, and passes through the dryer 16 to the third expansion device 17. The refrigerant is decompressed to a low pressure to become a low-temperature low-pressure gas-liquid two-phase refrigerant, and is gasified by exchanging heat with the high-pressure refrigerant in the bypass heat exchanger 18. The low-temperature and low-pressure gas refrigerant merges with the refrigerant in the main refrigerant circuit that has passed through the switching valve 2 between the switching valve 2 and the accumulator 4, performs gas-liquid separation in the accumulator 4, and returns to the compressor 1.

【0055】この実施の形態4においても、バイパス回
路15中に水分を吸収するドライヤ16が設けられ、そ
れに流入する冷媒がバイパス熱交換器18により冷され
るので、実施の形態1,2及び3と同様に冷媒回路中の
含有水分量は低下し、冷凍機油の加水分解を抑えること
ができるとともに、冷媒流によるドライヤ16の粉砕が
防止できる。また、この実施の形態4では、圧縮機1か
らバイパス回路15をへて圧縮機1に戻るサイクルが非
常に短いため、応答性がよく、ドライヤに液が供給され
ない過渡的な状態となる時間が非常に短く、ドライヤ1
6が粉砕しにくい。さらに、このサイクルには液側接続
冷媒配管9やガス側接続冷媒配管10が含まれないの
で、これら配管9,10の施工時に充分な無酸化ロウ付
けを実施しないような場合などに発生する酸化スケ−ル
がバイパス回路15中のドライヤ16に流入することが
なく、それにより流路を閉塞したり、ドライヤを粉砕し
たりする危険性もなくなる。
Also in the fourth embodiment, a dryer 16 for absorbing moisture is provided in the bypass circuit 15, and the refrigerant flowing into the dryer 16 is cooled by the bypass heat exchanger 18, so that the first, second and third embodiments are performed. Similarly to the case described above, the water content in the refrigerant circuit is reduced, the hydrolysis of the refrigerating machine oil can be suppressed, and the pulverization of the dryer 16 by the refrigerant flow can be prevented. Further, in the fourth embodiment, since the cycle of returning from the compressor 1 to the compressor 1 through the bypass circuit 15 is very short, the responsiveness is good, and the transient state in which the liquid is not supplied to the dryer is obtained. Very short, dryer 1
6 is hard to crush. Further, since this cycle does not include the liquid-side connection refrigerant pipe 9 and the gas-side connection refrigerant pipe 10, oxidation that occurs when sufficient non-oxidation brazing is not performed when these pipes 9 and 10 are constructed. The scale does not flow into the dryer 16 in the bypass circuit 15, thereby eliminating the risk of blocking the flow path and crushing the dryer.

【0056】実施の形態5.以下、この発明の実施の形
態5を図5によって説明する。図5はこの実施の形態5
にかかる空気調和装置の冷媒回路図である。図におい
て、Aは熱源機、B、C、Dは室内機、1は圧縮機、2
は切換弁、3は熱源機側熱交換器、4はアキュムレ−
タ、5はアキュムレ−タ4の油戻し穴、6は第2の絞り
装置、7b、7c、7dは室内機側熱交換器、8b、8
c、8dは第1の絞り装置、9は液側接続冷媒配管、1
0はガス側接続冷媒配管で、以上は図28に示す従来例
と同様のものである。
Embodiment 5 Hereinafter, a fifth embodiment of the present invention will be described with reference to FIG. FIG. 5 shows the fifth embodiment.
FIG. 2 is a refrigerant circuit diagram of the air conditioner according to FIG. In the figure, A is a heat source unit, B, C, D are indoor units, 1 is a compressor, 2
Is a switching valve, 3 is a heat exchanger on the heat source side, and 4 is an accumulator.
And 5 are oil return holes of the accumulator 4, 6 is a second expansion device, 7b, 7c and 7d are indoor unit side heat exchangers, 8b and 8
c and 8d are first expansion devices, 9 is a liquid side connection refrigerant pipe, 1
Reference numeral 0 denotes a gas-side connection refrigerant pipe, which is the same as the conventional example shown in FIG.

【0057】15は圧縮機1と切換弁2との間から分岐
し、他端が切換弁2と圧縮機1との間の冷媒配管に接続
するバイパス回路、16はバイパス回路15の配管途中
に設けられたドライヤ、17はバイパス回路15の配管
途中のドライヤ16の下流に設けられた第3の絞り装
置、18は、バイパス回路15のドライヤ16より上流
の部分と熱源機側熱交換器3の最も下の部分に流入する
空気の一部とが熱交換するバイパス熱交換器、19はバ
イパス回路15の配管途中の絞り装置17より上流の部
分に設けられた第1の温度検出手段、20はバイパス回
路15の配管途中の絞り装置17より下流に設けられた
第2の温度検出手段、21は切換弁2と圧縮機1との間
の部分に設けられた第2の圧力検出手段である。
A bypass circuit 15 branches from between the compressor 1 and the switching valve 2, and the other end is connected to a refrigerant pipe between the switching valve 2 and the compressor 1. The dryer 17 provided is a third expansion device provided downstream of the dryer 16 in the middle of the piping of the bypass circuit 15, and the portion 18 upstream of the dryer 16 of the bypass circuit 15 and the heat exchanger 3 A bypass heat exchanger for exchanging heat with a part of the air flowing into the lowermost portion; 19, a first temperature detecting means provided at a portion upstream of the expansion device 17 in the piping of the bypass circuit 15; A second temperature detecting means 21 provided downstream of the expansion device 17 in the middle of the piping of the bypass circuit 15 is a second pressure detecting means provided at a portion between the switching valve 2 and the compressor 1.

【0058】次に、冷媒の流れを図によって説明する。
圧縮機1、切換弁2、熱源機側熱交換器3、第2の絞り
装置6、第1の絞り装置8b、8c、8d、及び室内機
側熱交換器7b、7c、7dからなる主冷媒回路の冷房
時、暖房時の冷媒の流れは実施の形態1と全く同様なの
で説明を省略し、バイパス回路15における冷媒の流れ
を説明する。
Next, the flow of the refrigerant will be described with reference to the drawings.
Main refrigerant comprising compressor 1, switching valve 2, heat source unit side heat exchanger 3, second expansion unit 6, first expansion units 8b, 8c, 8d, and indoor unit side heat exchangers 7b, 7c, 7d The flow of the refrigerant at the time of cooling and heating of the circuit is completely the same as that of the first embodiment, and therefore the description is omitted, and the flow of the refrigerant in the bypass circuit 15 will be described.

【0059】冷房時、暖房時何れの場合においても、圧
縮機1を吐出された高温・高圧のガス冷媒の一部がバイ
パス回路15に流入する。バイパス回路15に流入した
高温・高圧のガス冷媒は、バイパス熱交換器18で熱源
機側熱交換器3の最下部に流入する空気の一部と熱交換
して温度が低下して液化し、ドライヤ16を経て、第3
の絞り装置17で低圧まで減圧されて切換弁2とアキュ
ムレータ4との間で切換弁2を経た主冷媒回路の冷媒と
合流し、アキュムレータ4で気液分離して圧縮機1へ戻
る。なお、この実施の形態5でも実施の形態3と同様、
暖房時において蒸発器となる、バイパス熱交換器18が
設けられる熱源機側熱交換器3の最下部においては、上
部からのドレンの流れで風が通りにくく霜が発生し成長
しやすいが、バイパス熱交換器18により暖められ、着
霜しにくくなる。
In both cases of cooling and heating, a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the bypass circuit 15. The high-temperature and high-pressure gas refrigerant that has flowed into the bypass circuit 15 exchanges heat with a part of the air that flows into the lowermost part of the heat source unit side heat exchanger 3 in the bypass heat exchanger 18 so that the temperature is reduced and liquefied. After the dryer 16, the third
The pressure is reduced to a low pressure by the throttle device 17, and the refrigerant merges with the refrigerant in the main refrigerant circuit passing through the switching valve 2 between the switching valve 2 and the accumulator 4, and is separated into gas and liquid by the accumulator 4 and returns to the compressor 1. In addition, also in this Embodiment 5, similarly to Embodiment 3,
At the bottom of the heat-source-unit-side heat exchanger 3 provided with the bypass heat exchanger 18 serving as an evaporator at the time of heating, the flow of the drain from the top makes it difficult for the wind to pass through, and frost is easily generated and grows. It is heated by the heat exchanger 18 and hardly forms frost.

【0060】この実施の形態5においても、バイパス回
路15中に水分を吸収するドライヤ16が設けられ、そ
れに流入する冷媒がバイパス熱交換器18により冷され
るので、実施の形態1〜4と同様に冷媒回路中の含有水
分量は低下し、冷凍機油の加水分解を抑えることができ
るとともに、冷媒流によるドライヤ16の粉砕が防止で
きる。また、実施の形態4と同様、圧縮機1からバイパ
ス回路15をへて圧縮機1に戻るサイクルが非常に短い
ため、応答性がよく、ドライヤに液が供給されない過渡
的な状態となる時間が非常に短く、ドライヤ16が粉砕
しにくい。さらに、このサイクルには液側接続冷媒配管
9やガス側接続冷媒配管10が含まれないので、これら
配管9,10の施工時に充分な無酸化ロウ付けを実施し
ないような場合などに発生する酸化スケ−ルがバイパス
回路15中のドライヤ16に流入することがなく、それ
により流路を閉塞したり、ドライヤを粉砕したりする危
険性もなくなる。
Also in the fifth embodiment, a dryer 16 for absorbing moisture is provided in the bypass circuit 15, and the refrigerant flowing into the bypass circuit 15 is cooled by the bypass heat exchanger 18, which is the same as in the first to fourth embodiments. In addition, the amount of water contained in the refrigerant circuit is reduced, so that hydrolysis of the refrigerating machine oil can be suppressed, and pulverization of the dryer 16 by the refrigerant flow can be prevented. Further, similarly to the fourth embodiment, since the cycle of returning from the compressor 1 to the compressor 1 through the bypass circuit 15 is very short, the responsiveness is good, and the time required for a transient state in which the liquid is not supplied to the dryer is obtained. It is very short and the dryer 16 is hard to be crushed. Further, since this cycle does not include the liquid-side connection refrigerant pipe 9 and the gas-side connection refrigerant pipe 10, oxidation that occurs when sufficient non-oxidation brazing is not performed when these pipes 9 and 10 are constructed. The scale does not flow into the dryer 16 in the bypass circuit 15, thereby eliminating the risk of blocking the flow path and crushing the dryer.

【0061】実施の形態6.以下、この発明の実施の形
態6を図6によって説明する。図6はこの実施の形態6
にかかる空気調和装置の冷媒回路図である。図におい
て、Aは熱源機、B、C、Dは室内機、1は圧縮機、2
は切換弁、3は熱源機側熱交換器、4はアキュムレ−
タ、5はアキュムレ−タ4の油戻し穴、6は第2の絞り
装置、7b、7c、7dは室内機側熱交換器、8b、8
c、8dは第1の絞り装置、9は液側接続冷媒配管、1
0はガス側接続冷媒配管で、以上は図28に示す従来例
と同様のものである。
Embodiment 6 FIG. Hereinafter, a sixth embodiment of the present invention will be described with reference to FIG. FIG. 6 shows the sixth embodiment.
FIG. 2 is a refrigerant circuit diagram of the air conditioner according to FIG. In the figure, A is a heat source unit, B, C, D are indoor units, 1 is a compressor, 2
Is a switching valve, 3 is a heat exchanger on the heat source side, and 4 is an accumulator.
And 5 are oil return holes of the accumulator 4, 6 is a second expansion device, 7b, 7c and 7d are indoor unit side heat exchangers, 8b and 8
c and 8d are first expansion devices, 9 is a liquid side connection refrigerant pipe, 1
Reference numeral 0 denotes a gas-side connection refrigerant pipe, which is the same as the conventional example shown in FIG.

【0062】15は圧縮機1と切換弁2との間から分岐
し、他端が切換弁2と圧縮機1との間の冷媒配管に接続
するバイパス回路、16はバイパス回路15の配管途中
に設けられたドライヤ、17はバイパス回路15の配管
途中のドライヤ16の下流に設けられた第3の絞り装
置、18aは、バイパス回路15のドライヤ16より上
流の部分と熱源機側熱交換器3の最も下の部分に流入す
る空気の一部とが熱交換する第1のバイパス熱交換器、
18bは、バイパス回路15の第1のバイパス熱交換器
18aとドライヤ16との間の部分と、第3の絞り装置
17より下流の部分とが熱交換する第2のバイパス熱交
換器、19はバイパス回路15の配管途中の絞り装置1
7より上流の部分に設けられた第1の温度検出手段、2
0はバイパス回路15の配管途中の絞り装置17より下
流に設けられた第2の温度検出手段、21は切換弁2と
圧縮機1との間の部分に設けられた第2の圧力検出手段
である。
A bypass circuit 15 branches from between the compressor 1 and the switching valve 2, and the other end is connected to a refrigerant pipe between the switching valve 2 and the compressor 1. The provided dryer, 17 is a third expansion device provided downstream of the dryer 16 in the middle of the piping of the bypass circuit 15, and 18a is a portion of the bypass circuit 15 upstream of the dryer 16 and the heat source unit side heat exchanger 3. A first bypass heat exchanger in which a part of the air flowing into the lowermost part exchanges heat;
Reference numeral 18b denotes a second bypass heat exchanger in which a portion of the bypass circuit 15 between the first bypass heat exchanger 18a and the dryer 16 and a portion downstream of the third expansion device 17 exchange heat. Throttling device 1 in piping of bypass circuit 15
First temperature detecting means provided at a portion upstream of 7;
Reference numeral 0 denotes second temperature detecting means provided downstream of the expansion device 17 in the piping of the bypass circuit 15, and reference numeral 21 denotes second pressure detecting means provided at a portion between the switching valve 2 and the compressor 1. is there.

【0063】次に、冷媒の流れを図によって説明する。
圧縮機1、切換弁2、熱源機側熱交換器3、第2の絞り
装置6、第1の絞り装置8b、8c、8d、及び室内機
側熱交換器7b、7c、7dからなる主冷媒回路の冷房
時、暖房時の冷媒の流れは実施の形態1と全く同様なの
で説明を省略し、バイパス回路15における冷媒の流れ
を説明する。
Next, the flow of the refrigerant will be described with reference to the drawings.
Main refrigerant comprising compressor 1, switching valve 2, heat source unit side heat exchanger 3, second expansion unit 6, first expansion units 8b, 8c, 8d, and indoor unit side heat exchangers 7b, 7c, 7d The flow of the refrigerant at the time of cooling and heating of the circuit is completely the same as that of the first embodiment, and therefore the description is omitted, and the flow of the refrigerant in the bypass circuit 15 will be described.

【0064】冷房時、暖房時何れの場合においても、圧
縮機1を吐出された高温・高圧のガス冷媒の一部がバイ
パス回路15に流入する。バイパス回路15に流入した
高温・高圧のガス冷媒は、第1のバイパス熱交換器18
aで熱源機側熱交換器3の最下部に流入する空気の一部
と熱交換して温度が低下して液化し、第2のバイパス熱
交換器18bで下流の低圧側の冷媒と熱交換して冷媒の
温度がさらに低下する。その後、ドライヤ16を経て、
第3の絞り装置17で低圧まで減圧され低温低圧の気液
ニ相冷媒となり、バイパス熱交換器18で高圧側の冷媒
と熱交換してガス化し、切換弁2とアキュムレータ4と
の間で切換弁2を経た主冷媒回路の冷媒と合流し、アキ
ュムレータ4で気液分離して圧縮機1へ戻る。なお、こ
の実施の形態6でも実施の形態3と同様、暖房時におい
て蒸発器となる、第1のバイパス熱交換器18aが設け
られる熱源機側熱交換器3の最下部においては、上部か
らのドレンの流れで風が通りにくく霜が発生し成長しや
すいが、バイパス熱交換器18により暖められ、着霜し
にくくなる。
In both cases of cooling and heating, a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the bypass circuit 15. The high-temperature and high-pressure gas refrigerant flowing into the bypass circuit 15 is supplied to the first bypass heat exchanger 18.
In (a), heat exchange occurs with a part of the air flowing into the lowermost portion of the heat source unit side heat exchanger 3 to lower the temperature and liquefy, and the second bypass heat exchanger 18b exchanges heat with the downstream low pressure side refrigerant. As a result, the temperature of the refrigerant further decreases. After that, through the dryer 16,
The pressure is reduced to a low pressure by the third expansion device 17 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant. The refrigerant merges with the refrigerant in the main refrigerant circuit passing through the valve 2, is separated into gas and liquid by the accumulator 4, and returns to the compressor 1. In the sixth embodiment, as in the third embodiment, the lowermost part of the heat source unit side heat exchanger 3 provided with the first bypass heat exchanger 18a, which serves as an evaporator at the time of heating, is provided from above. The flow of the drain makes it difficult for the wind to pass through, and frost is generated and grows easily. However, it is heated by the bypass heat exchanger 18 and hardly formed.

【0065】この実施の形態6においても、バイパス回
路15中に水分を吸収するドライヤ16が設けられ、そ
れに流入する冷媒がバイパス熱交換器18a,18bに
より冷されるので、実施の形態1〜5と同様に冷媒回路
中の含有水分量は低下し、冷凍機油の加水分解を抑える
ことができるとともに、冷媒流によるドライヤ16の粉
砕が防止できる。また、実施の形態4,5と同様、圧縮
機1からバイパス回路15をへて圧縮機1に戻るサイク
ルが非常に短いため、応答性がよく、ドライヤに液が供
給されない過渡的な状態となる時間が非常に短く、ドラ
イヤ16が粉砕しにくい。さらに、このサイクルには液
側接続冷媒配管9やガス側接続冷媒配管10が含まれな
いので、これら配管9,10の施工時に充分な無酸化ロ
ウ付けを実施しないような場合などに発生する酸化スケ
−ルがバイパス回路15中のドライヤ16に流入するこ
とがなく、それにより流路を閉塞したり、ドライヤを粉
砕したりする危険性もなくなる。
In the sixth embodiment as well, a dryer 16 for absorbing moisture is provided in the bypass circuit 15, and the refrigerant flowing into the dryer 16 is cooled by the bypass heat exchangers 18a and 18b. Similarly to the case described above, the water content in the refrigerant circuit is reduced, the hydrolysis of the refrigerating machine oil can be suppressed, and the pulverization of the dryer 16 by the refrigerant flow can be prevented. Further, similarly to the fourth and fifth embodiments, the cycle of returning from the compressor 1 to the compressor 1 through the bypass circuit 15 is very short, so that the responsiveness is good and a transient state occurs in which the liquid is not supplied to the dryer. The time is very short, and the dryer 16 is hard to be crushed. Further, since this cycle does not include the liquid-side connection refrigerant pipe 9 and the gas-side connection refrigerant pipe 10, oxidation that occurs when sufficient non-oxidation brazing is not performed when these pipes 9 and 10 are constructed. The scale does not flow into the dryer 16 in the bypass circuit 15, thereby eliminating the risk of blocking the flow path and crushing the dryer.

【0066】実施の形態7.以下、この発明の実施の形
態7を図1、図7及び図8によって説明する。図1はこ
の実施の形態7にかかる空気調和装置の冷媒回路図、図
7はこの実施の形態7にかかる空気調和装置の組成演算
に関するブロック線図、図8はその組成演算手段の動作
を示すフロ−チャ−トである。なお、図2〜図6はバイ
パス回路15の位置・構成・冷媒の流れが異なるが、図
1と同様この実施の形態7が適用される。また、この実
施の形態における作動媒体としてハイドロフルオロカ−
ボン系の混合冷媒を用いるものである。
Embodiment 7 Hereinafter, a seventh embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a refrigerant circuit diagram of an air conditioner according to the seventh embodiment, FIG. 7 is a block diagram relating to composition calculation of the air conditioner according to the seventh embodiment, and FIG. This is a flowchart. 2 to 6 differ from each other in the position, configuration, and refrigerant flow of the bypass circuit 15, but the seventh embodiment is applied similarly to FIG. Further, as a working medium in this embodiment, hydrofluorocarbon is used.
A Bonn-based mixed refrigerant is used.

【0067】図において、19はバイパス回路15の配
管途中の絞り装置17より上流の部分に設けられ、第3
の絞り装置17の入口の高温高圧の液冷媒の温度を検出
する第1の温度検出手段、20はバイパス回路15の配
管途中の絞り装置17より下流でかつ第1、第2のバイ
パス熱交換器18a、18bの上流の部分に設けられ、
第3の絞り装置17の出口の低温低圧の気液二相冷媒の
温度を検出する第2の温度検出手段、21は切換弁2と
圧縮機1との間の部分に設けられた第2の圧力検出手
段、22は、第1の温度検出手段19、第2の温度検出
手段20、及び第2の圧力検出手段21の検出値に基づ
いて、混合冷媒の組成を演算する組成演算手段である。
In the figure, reference numeral 19 designates a portion provided upstream of the expansion device 17 in the piping of the bypass circuit 15,
A first temperature detecting means 20 for detecting the temperature of the high-temperature and high-pressure liquid refrigerant at the inlet of the expansion device 17; 18a, 18b provided in the upstream portion,
A second temperature detecting means 21 for detecting the temperature of the low-temperature low-pressure gas-liquid two-phase refrigerant at the outlet of the third expansion device 17 is provided at a portion between the switching valve 2 and the compressor 1. The pressure detecting means 22 is a composition calculating means for calculating the composition of the mixed refrigerant based on the detection values of the first temperature detecting means 19, the second temperature detecting means 20, and the second pressure detecting means 21. .

【0068】次にその組成演算動作を図8によって説明
する。まず、ステップ100で、混合冷媒の各成分につ
いて、その組成Xiが仮定される。ステップ101で
は、第1の温度検出手段19、第2の温度検出手段2
0、吸入圧力検出手段21から各々の検出値T1、T
2、P2が検出される。ステップ102では、ステップ
100で仮定した循環組成Xiと上記第1の温度検出手
段19の検出値T1から、高圧の液エンタルピH1が演
算される。ステップ103では、循環組成Xiと上記第
2の温度検出手段20の検出値T2及び吸入圧力検出手
段21の検出値P2から、低圧の二相エンタルピH2が
演算される。ステップ104では、上記H1とH2の比
較が行われ、等しくなるまで循環組成の仮定が繰り返さ
れる。この結果、上記H1とH2が等しくなった時点で
のXiの値が循環組成として算出される。ここで、添字
iは、i種の成分が混合された冷媒であることを示して
いる。
Next, the composition calculation operation will be described with reference to FIG. First, in step 100, the composition Xi of each component of the mixed refrigerant is assumed. In step 101, the first temperature detecting means 19 and the second temperature detecting means 2
0, the respective detected values T1, T
2, P2 is detected. In step 102, the high-pressure liquid enthalpy H1 is calculated from the circulation composition Xi assumed in step 100 and the detection value T1 of the first temperature detecting means 19 described above. In step 103, a low-pressure two-phase enthalpy H2 is calculated from the circulation composition Xi, the detected value T2 of the second temperature detecting means 20, and the detected value P2 of the suction pressure detecting means 21. In step 104, the above H1 and H2 are compared, and the assumption of the circulation composition is repeated until they are equal. As a result, the value of Xi at the time when H1 and H2 become equal is calculated as the circulation composition. Here, the subscript i indicates that the refrigerant is a mixture of i kinds of components.

【0069】実施の形態8.以下、この発明の実施の形
態8を図9によって説明する。図9はこの実施の形態8
にかかる空気調和装置の冷媒回路図である。図におい
て、Aは熱源機、B、C、Dは室内機、1は圧縮機、2
は切換弁、3は熱源機側熱交換器、4はアキュムレ−
タ、5はアキュムレ−タ4の油戻し穴、7b、7c、7
dは室内機側熱交換器、8b、8c、8dは第1の絞り
装置、9は液側接続冷媒配管、10はガス側接続冷媒配
管で、以上は図28に示す従来例と同様のものである。
23は圧縮機1の吐出部と切換弁2との間に設けられ、
圧縮機1から冷媒と共に吐出された冷凍機油をガス冷媒
から分離する油分離器、24は油分離器23の底部と切
換弁2、圧縮機1の吸入部間を接続する、分離された冷
凍機油を圧縮機1の吸入部に戻す返油バイパス回路、2
5は返油バイパス回路24の配管途中に設けられた第4
の絞り装置である。
Embodiment 8 FIG. Hereinafter, an eighth embodiment of the present invention will be described with reference to FIG. FIG. 9 shows this eighth embodiment.
FIG. 2 is a refrigerant circuit diagram of the air conditioner according to FIG. In the figure, A is a heat source unit, B, C, D are indoor units, 1 is a compressor, 2
Is a switching valve, 3 is a heat exchanger on the heat source side, and 4 is an accumulator.
And 5 are oil return holes of the accumulator 4, 7b, 7c, 7
d is an indoor unit side heat exchanger, 8b, 8c and 8d are first expansion devices, 9 is a liquid side connection refrigerant pipe, 10 is a gas side connection refrigerant pipe, and the above is the same as the conventional example shown in FIG. It is.
23 is provided between the discharge part of the compressor 1 and the switching valve 2,
An oil separator that separates the refrigerating machine oil discharged together with the refrigerant from the compressor 1 from the gas refrigerant; Oil return bypass circuit for returning oil to the suction section of the compressor 1, 2
5 is a fourth oil pump provided in the middle of the piping of the oil return bypass circuit 24.
Of the diaphragm device.

【0070】次に、冷媒の流れを図によって説明する。
まず、冷房時においては、圧縮機1で高温高圧まで圧縮
されたガス冷媒は切換弁2を経て熱源機側熱交換器3に
流入し、空気などと熱交換して凝縮し、高温高圧の液冷
媒となる。さらに、液側接続冷媒配管9をへて、室内機
B、C、Dに達し、室内機側熱交換器7b、7c、7d
の出口の過熱度が一定範囲になるように制御される第1
の絞り装置8b、8c、8dによって、低圧の気液ニ相
状態まで絞られる。低圧の気液ニ相冷媒は室内機側熱交
換器7b、7c、7dに流入して、室内の空気と熱交換
してガス化し、ガス側接続冷媒配管10、切換弁2、ア
キュムレ−タ4を経て圧縮機1へ戻る。アキュムレ−タ
4内部の冷凍機油は液冷媒とともに油戻し穴5より圧縮
機1へ戻る。
Next, the flow of the refrigerant will be described with reference to the drawings.
First, during cooling, the gas refrigerant compressed to a high temperature and a high pressure by the compressor 1 flows into the heat source device side heat exchanger 3 through the switching valve 2 and exchanges heat with air or the like to be condensed. It becomes a refrigerant. Further, the refrigerant flows through the liquid-side connection refrigerant pipe 9 to reach the indoor units B, C, and D, and the indoor-unit-side heat exchangers 7b, 7c, 7d
Is controlled so that the degree of superheat at the outlet of the tank is within a certain range.
Are narrowed down to a low-pressure gas-liquid two-phase state by the throttle devices 8b, 8c, 8d. The low-pressure gas-liquid two-phase refrigerant flows into the indoor unit-side heat exchangers 7b, 7c, 7d, exchanges heat with indoor air and gasifies, and connects the gas-side connecting refrigerant pipe 10, the switching valve 2, the accumulator 4, and the like. And returns to the compressor 1. The refrigerating machine oil inside the accumulator 4 returns to the compressor 1 through the oil return hole 5 together with the liquid refrigerant.

【0071】暖房時においては、圧縮機1で高温高圧ま
で圧縮されたガス冷媒は切換弁2、ガス側接続冷媒配管
10を経て、室内機B、C、Dに達し、室内機側熱交換
器7b、7c、7dに流入し、室内の空気と熱交換して
凝縮し、高温高圧の液冷媒となる。室内側熱交換器7
b、7c、7dを出た液冷媒は第1の絞り装置8b、8
c、8dで低圧の気液ニ相状態まで絞られ、この低圧の
気液ニ相冷媒は液側接続冷媒配管9をへて熱源機側熱交
換器3に流入し、空気などと熱交換してガス化し、切換
弁2、アキュムレ−タ4を経て圧縮機1へ戻る。アキュ
ムレ−タ4内部の冷凍機油は液冷媒とともに油戻し穴5
より圧縮機1へ戻る。
At the time of heating, the gas refrigerant compressed to a high temperature and a high pressure by the compressor 1 reaches the indoor units B, C and D via the switching valve 2 and the gas side connection refrigerant pipe 10, and the indoor unit side heat exchanger. It flows into 7b, 7c, 7d, exchanges heat with indoor air and condenses, and becomes a high-temperature and high-pressure liquid refrigerant. Indoor heat exchanger 7
The liquid refrigerant that has exited b, 7c, 7d is supplied to the first throttle device 8b, 8
The low-pressure gas-liquid two-phase refrigerant is throttled to the low-pressure gas-liquid two-phase state at c and 8d. The gas returns to the compressor 1 via the switching valve 2 and the accumulator 4. The refrigerating machine oil inside the accumulator 4 is returned to the oil return hole 5 together with the liquid refrigerant.
Return to the compressor 1.

【0072】冷房時、暖房時何れの場合においても、圧
縮機1に吸入された低温低圧のガス冷媒は圧縮されて高
温高圧のガス冷媒となり圧縮機1より吐出される。この
時、圧縮機1内部にある冷凍機油も一部吐出され、ガス
冷媒とともに油分離器23に流入し、ここでガス冷媒と
分離される。油分離器23により分離されたガス冷媒は
切換弁2へ流れ、冷凍機油は返油バイパス回路24に流
入する。返油バイパス回路24に流入した冷凍機油は第
4の絞り装置25で低圧まで減圧されて、切換弁2とア
キュムレータ4との間で切換弁2を経た主冷媒回路の冷
媒と合流する。このように圧縮機1の吐出部で冷凍機油
を分離するので、主冷媒回路中の冷凍機油の循環流量比
率は非常に低く、室内機B、C、D内にある第1の絞り
装置8b、8c、8dを流れる冷凍機油の流量は著しく
低下する。
In both cases of cooling and heating, the low-temperature and low-pressure gas refrigerant sucked into the compressor 1 is compressed into a high-temperature and high-pressure gas refrigerant and discharged from the compressor 1. At this time, a part of the refrigerating machine oil inside the compressor 1 is also discharged and flows into the oil separator 23 together with the gas refrigerant, where it is separated from the gas refrigerant. The gas refrigerant separated by the oil separator 23 flows to the switching valve 2, and the refrigeration oil flows into the oil return bypass circuit 24. The refrigerating machine oil that has flowed into the oil return bypass circuit 24 is reduced in pressure to a low pressure by the fourth expansion device 25, and merges with the refrigerant in the main refrigerant circuit that has passed through the switching valve 2 between the switching valve 2 and the accumulator 4. Since the refrigerating machine oil is separated at the discharge part of the compressor 1 in this manner, the circulating flow ratio of the refrigerating machine oil in the main refrigerant circuit is very low, and the first expansion devices 8b, 8b, The flow rate of the refrigerating machine oil flowing through 8c and 8d is significantly reduced.

【0073】また、圧縮機1の摺動部で生成される冷凍
機油劣化物は、冷凍機油中に固体として存在するか、溶
け込んで存在する。これらは、冷媒が圧縮機1から吐出
されると冷凍機油と共に吐出ガスに混ざって吐出される
が油分離器23により分離されて主冷媒回路中には流入
されないので、室内機B、C、D内にある第1の絞り装
置8b、8c、8dを流れる冷凍機油の流量は著しく低
下し、冷凍機油と共に循環する冷凍機油劣化物の積算流
量も低下する。これにより、冷凍機油劣化物がスラッジ
となって第1の絞り装置8b、8c、8dに付着する量
が減少し、それによる第1の絞り装置8b、8c、8d
の流量不足が回避でき、空調能力の不足はなくなり、信
頼性が著しく向上する。
The refrigerating machine oil degraded product generated in the sliding part of the compressor 1 exists as a solid or is dissolved in the refrigerating machine oil. When the refrigerant is discharged from the compressor 1, the refrigerant is discharged together with the refrigerating machine oil in the discharge gas, but is separated by the oil separator 23 and does not flow into the main refrigerant circuit. The flow rate of the refrigerating machine oil flowing through the first expansion devices 8b, 8c, and 8d inside the refrigerating machine significantly decreases, and the integrated flow rate of the refrigerating machine oil degraded material circulating together with the refrigerating machine oil also decreases. As a result, the amount of the deteriorated refrigerating machine oil that becomes sludge and adheres to the first expansion devices 8b, 8c, 8d is reduced, and accordingly, the first expansion devices 8b, 8c, 8d are reduced.
Insufficient flow rate can be avoided, air conditioning capacity can be avoided, and reliability can be significantly improved.

【0074】実施の形態9.以下、この発明の実施の形
態9を図10によって説明する。図10はこの実施の形
態9にかかる空気調和装置の冷媒回路図である。図にお
いて、Aは熱源機、B、C、Dは室内機、1は圧縮機、
2は切換弁、3は熱源機側熱交換器、4はアキュムレ−
タ、5はアキュムレ−タ4の油戻し穴、7b、7c、7
dは室内機側熱交換器、8b、8c、8dは第1の絞り
装置、9は液側接続冷媒配管、10はガス側接続冷媒配
管、23は油分離器、24は返油バイパス回路、25は
第4の絞り装置で、以上は図9に示した実施の形態8と
同様のものである。26は返油バイパス回路24の配管
途中の第4の絞り装置25の上流部に設けられたスラッ
ジフィルタである。
Embodiment 9 Hereinafter, a ninth embodiment of the present invention will be described with reference to FIG. FIG. 10 is a refrigerant circuit diagram of an air conditioner according to the ninth embodiment. In the figure, A is a heat source unit, B, C, and D are indoor units, 1 is a compressor,
2 is a switching valve, 3 is a heat source side heat exchanger, and 4 is an accumulator.
And 5 are oil return holes of the accumulator 4, 7b, 7c, 7
d is an indoor unit side heat exchanger, 8b, 8c and 8d are first expansion devices, 9 is a liquid side connection refrigerant pipe, 10 is a gas side connection refrigerant pipe, 23 is an oil separator, 24 is an oil return bypass circuit, Reference numeral 25 denotes a fourth diaphragm device, which is the same as that of the eighth embodiment shown in FIG. Reference numeral 26 denotes a sludge filter provided upstream of the fourth expansion device 25 in the piping of the oil return bypass circuit 24.

【0075】次に、冷媒及び冷凍機油の流れを図によっ
て説明する。圧縮機1、切換弁2、熱源機側熱交換器
3、第1の絞り装置8b、8c、8d、及び室内機側熱
交換器7b、7c、7dからなる主冷媒回路の冷房時、
暖房時の冷媒の流れ、及び油分離器23の動作は実施の
形態8と全く同様なので説明を省略し、返油バイパス回
路24における冷凍機油の流れを説明する。油分離器2
3で分離された冷凍機油は返油バイパス回路24に流入
し、スラッジフィルタ26を経て、第4の絞り装置25
で低圧まで減圧されて、切換弁2とアキュムレータ4と
の間で切換弁2を経た主冷媒回路の冷媒と合流する。
Next, the flow of the refrigerant and the refrigerating machine oil will be described with reference to the drawings. At the time of cooling of the main refrigerant circuit including the compressor 1, the switching valve 2, the heat source unit side heat exchanger 3, the first expansion devices 8b, 8c, 8d, and the indoor unit side heat exchangers 7b, 7c, 7d,
The flow of the refrigerant at the time of heating and the operation of the oil separator 23 are exactly the same as those in the eighth embodiment, and therefore the description is omitted, and the flow of the refrigerating machine oil in the oil return bypass circuit 24 will be described. Oil separator 2
The refrigerating machine oil separated in 3 flows into the oil return bypass circuit 24, passes through the sludge filter 26, and passes through the fourth expansion device 25.
The pressure in the main refrigerant circuit passes through the switching valve 2 and merges between the switching valve 2 and the accumulator 4.

【0076】また、圧縮機1の摺動部で生成される冷凍
機油劣化物は、冷凍機油とともに吐出ガスに混ざって冷
媒回路中に吐出され、油分離器23で冷凍機油とともに
分離され、返油バイパス回路24においてスラッジフィ
ルタ26で捕捉される。したがって、アキュムレータ4
に流入し、圧縮機1に戻る冷凍機油中の冷凍機油劣化物
含有率は低下し、油戻し穴5に付着するスラッジの量は
低下する。それにより、圧縮機1内部の冷凍機油が枯渇
することがなくなり、異常な高圧上昇・低圧低下・それ
による吐出ガス温度上昇も回避でき、信頼性が著しく向
上する。また、圧縮機1から吐出された冷媒などが返油
バイパス回路24を経て圧縮機1へ戻るサイクルは途中
で液側接続冷媒配管9、ガス側接続冷媒配管10を経由
しない。したがって、液側接続冷媒配管9やガス側接続
冷媒配管10の施工時に十分な無酸化ロウ付けを実施し
ないような場合などに発生する酸化スケ−ルが運転中に
スラッジフィルタ26に流入することがなく、流路を閉
塞したり、スラッジフィルタを変形・破壊したりする危
険性がない。
The deteriorated refrigerating machine oil produced in the sliding portion of the compressor 1 is mixed with the refrigerating machine oil in the discharge gas and discharged into the refrigerant circuit, separated by the oil separator 23 together with the refrigerating machine oil, and returned. In the bypass circuit 24, it is captured by the sludge filter 26. Therefore, accumulator 4
To the compressor 1 and returns to the compressor 1, the content of the refrigerating machine oil deteriorated in the refrigerating machine oil decreases, and the amount of sludge adhering to the oil return hole 5 decreases. As a result, the refrigerating machine oil inside the compressor 1 is not depleted, and abnormal high pressure rise, low pressure fall, and discharge gas temperature rise due to the abnormal rise can be avoided, and the reliability is remarkably improved. Further, the cycle in which the refrigerant discharged from the compressor 1 returns to the compressor 1 via the oil return bypass circuit 24 does not pass through the liquid side connection refrigerant pipe 9 and the gas side connection refrigerant pipe 10 on the way. Therefore, the oxidized scale generated when the sufficient non-oxidation brazing is not performed when the liquid-side connection refrigerant pipe 9 or the gas-side connection refrigerant pipe 10 is installed may flow into the sludge filter 26 during operation. Therefore, there is no danger of blocking the flow path or deforming or breaking the sludge filter.

【0077】実施の形態10.以下、この発明の実施の
形態10を図11によって説明する。図11はこの実施
の形態10にかかる空気調和装置の冷媒回路図である。
図において、Aは熱源機、B、C、Dは室内機、1は圧
縮機、2は切換弁、3は熱源機側熱交換器、4はアキュ
ムレ−タ、5はアキュムレ−タ4の油戻し穴、7b、7
c、7dは室内機側熱交換器、8b、8c、8dは第1
の絞り装置、9は液側接続冷媒配管、10はガス側接続
冷媒配管、23は油分離器、24は返油バイパス回路、
25は第4の絞り装置、26はスラッジフィルタで、以
上は図10に示した実施の形態9と同様のものである。
27は、返油バイパス回路24のスラッジフィルタ26
より上流の部分と熱源機側熱交換器3の最も下の部分に
流入する空気の一部とが熱交換するバイパス熱交換器で
ある。
Embodiment 10 FIG. Hereinafter, a tenth embodiment of the present invention will be described with reference to FIG. FIG. 11 is a refrigerant circuit diagram of an air conditioner according to the tenth embodiment.
In the figure, A is a heat source unit, B, C and D are indoor units, 1 is a compressor, 2 is a switching valve, 3 is a heat source unit side heat exchanger, 4 is an accumulator, and 5 is an oil of the accumulator 4. Return hole, 7b, 7
c and 7d are indoor unit side heat exchangers, and 8b, 8c and 8d are first heat exchangers.
9 is a liquid side connection refrigerant pipe, 10 is a gas side connection refrigerant pipe, 23 is an oil separator, 24 is an oil return bypass circuit,
25 is a fourth diaphragm device, 26 is a sludge filter, which is the same as that of the ninth embodiment shown in FIG.
27 is a sludge filter 26 of the oil return bypass circuit 24
This is a bypass heat exchanger in which the upstream portion and a part of the air flowing into the lowermost portion of the heat source device side heat exchanger 3 exchange heat.

【0078】次に、冷媒及び冷凍機油の流れを図によっ
て説明する。圧縮機1、切換弁2、熱源機側熱交換器
3、第1の絞り装置8b、8c、8d、及び室内機側熱
交換器7b、7c、7dからなる主冷媒回路の冷房時、
暖房時の冷媒の流れ、及び油分離器23の動作は実施の
形態8と全く同様なので説明を省略し、返油バイパス回
路24における冷凍機油の流れを説明する。油分離器2
3で分離された冷凍機油は返油バイパス回路24に流入
し、バイパス熱交換器27で熱源機側熱交換器3の最下
部に流入する空気の一部と熱交換して温度が低下して、
スラッジフィルタ26を経て、第4の絞り装置25で低
圧まで減圧されて、切換弁2とアキュムレータ4との間
で切換弁2を経た主冷媒回路の冷媒と合流する。なお、
この実施の形態10でも実施の形態3,5及び6と同
様、暖房時において蒸発器となる、バイパス熱交換器1
8が設けられる熱源機側熱交換器3の最下部において
は、上部からのドレンの流れで風が通りにくく霜が発生
し成長しやすいが、バイパス熱交換器18により暖めら
れ、着霜しにくくなる。
Next, the flow of the refrigerant and the refrigerating machine oil will be described with reference to the drawings. At the time of cooling of the main refrigerant circuit including the compressor 1, the switching valve 2, the heat source unit side heat exchanger 3, the first expansion devices 8b, 8c, 8d, and the indoor unit side heat exchangers 7b, 7c, 7d,
The flow of the refrigerant at the time of heating and the operation of the oil separator 23 are exactly the same as those in the eighth embodiment, and therefore the description is omitted, and the flow of the refrigerating machine oil in the oil return bypass circuit 24 will be described. Oil separator 2
The refrigerating machine oil separated in 3 flows into the oil return bypass circuit 24, and exchanges heat with a part of the air flowing into the lowermost portion of the heat source device side heat exchanger 3 in the bypass heat exchanger 27 to lower the temperature. ,
The pressure is reduced to a low pressure by the fourth expansion device 25 through the sludge filter 26, and merges with the refrigerant in the main refrigerant circuit that has passed through the switching valve 2 between the switching valve 2 and the accumulator 4. In addition,
In the tenth embodiment, as in the third, fifth, and sixth embodiments, the bypass heat exchanger 1 that serves as an evaporator during heating.
At the lowermost part of the heat source device side heat exchanger 3 provided with 8, the flow of the drain from the upper part makes it difficult for the wind to pass and frost is easily generated and grows. However, it is heated by the bypass heat exchanger 18 and hardly forms frost. Become.

【0079】また、圧縮機1の摺動部で生成される冷凍
機油劣化物は、冷凍機油とともに吐出ガスに混ざって冷
媒回路中に吐出され、油分離器23で冷凍機油とともに
分離され、返油バイパス回路24においてスラッジフィ
ルタ26で捕捉される。しかも、バイパス熱交換器27
を通過することで、冷凍機油の温度が低下し、冷凍機油
中の冷媒の濃度が高まる。これにより、冷凍機油中に溶
け込んでいた冷凍機油劣化物が析出され、スラッジフィ
ルタ26では元々冷凍機油に溶け込んでいたものをも捕
捉することができる。したがって、アキュムレータ4に
流入し、圧縮機1に戻る冷凍機油中の冷凍機油劣化物含
有率はさらに低下し、油戻し穴5に付着するスラッジの
量は低下する。それにより、圧縮機1内部の冷凍機油が
枯渇することがなくなり、異常な高圧上昇・低圧低下・
それによる吐出ガス温度上昇も回避でき、信頼性が著し
く向上する。また、圧縮機1から吐出された冷媒などが
返油バイパス回路24を経て圧縮機1へ戻るサイクルは
途中で液側接続冷媒配管9、ガス側接続冷媒配管10を
経由しない。したがって、液側接続冷媒配管9やガス側
接続冷媒配管10の施工時に十分な無酸化ロウ付けを実
施しないような場合などに発生する酸化スケ−ルが運転
中にスラッジフィルタ26に流入することがなく、流路
を閉塞したり、スラッジフィルタを変形・破壊したりす
る危険性がない。
The deteriorated refrigerating machine oil produced in the sliding portion of the compressor 1 is mixed with the refrigerating machine oil in the discharge gas and discharged into the refrigerant circuit, separated by the oil separator 23 together with the refrigerating machine oil, and returned. In the bypass circuit 24, it is captured by the sludge filter 26. Moreover, the bypass heat exchanger 27
, The temperature of the refrigerating machine oil decreases, and the concentration of the refrigerant in the refrigerating machine oil increases. As a result, the refrigerating machine oil deteriorated in the refrigerating machine oil is precipitated, and the sludge filter 26 can also capture what was originally dissolved in the refrigerating machine oil. Therefore, the content of degraded refrigerating machine oil in the refrigerating machine oil that flows into the accumulator 4 and returns to the compressor 1 further decreases, and the amount of sludge adhering to the oil return hole 5 decreases. Thereby, the refrigerating machine oil inside the compressor 1 is not depleted, and abnormal high pressure rise, low pressure drop,
As a result, a rise in the discharge gas temperature can be avoided, and the reliability is significantly improved. Further, the cycle in which the refrigerant discharged from the compressor 1 returns to the compressor 1 via the oil return bypass circuit 24 does not pass through the liquid side connection refrigerant pipe 9 and the gas side connection refrigerant pipe 10 on the way. Therefore, the oxidized scale generated when the sufficient non-oxidation brazing is not performed when the liquid-side connection refrigerant pipe 9 or the gas-side connection refrigerant pipe 10 is installed may flow into the sludge filter 26 during operation. Therefore, there is no danger of blocking the flow path or deforming or breaking the sludge filter.

【0080】実施の形態11.以下、この発明の実施の
形態11を図12によって説明する。図12はこの実施
の形態11にかかる空気調和装置の冷媒回路図である。
図において、Aは熱源機、B、C、Dは室内機、1は圧
縮機、2は切換弁、3は熱源機側熱交換器、4はアキュ
ムレ−タ、5はアキュムレ−タ4の油戻し穴、7b、7
c、7dは室内機側熱交換器、8b、8c、8dは第1
の絞り装置、9は液側接続冷媒配管、10はガス側接続
冷媒配管、23は油分離器、24は返油バイパス回路、
25は第4の絞り装置、26はスラッジフィルタで、以
上は図10に示した実施の形態9と同様のものである。
27は、返油バイパス回路24のスラッジフィルタ26
より上流の部分と切換弁2とアキュムレ−タ4との間の
部分とが熱交換するバイパス熱交換器である。
Embodiment 11 FIG. Hereinafter, an eleventh embodiment of the present invention will be described with reference to FIG. FIG. 12 is a refrigerant circuit diagram of an air conditioner according to the eleventh embodiment.
In the figure, A is a heat source unit, B, C and D are indoor units, 1 is a compressor, 2 is a switching valve, 3 is a heat source unit side heat exchanger, 4 is an accumulator, and 5 is an oil of the accumulator 4. Return hole, 7b, 7
c and 7d are indoor unit side heat exchangers, and 8b, 8c and 8d are first heat exchangers.
9 is a liquid side connection refrigerant pipe, 10 is a gas side connection refrigerant pipe, 23 is an oil separator, 24 is an oil return bypass circuit,
25 is a fourth diaphragm device, 26 is a sludge filter, which is the same as that of the ninth embodiment shown in FIG.
27 is a sludge filter 26 of the oil return bypass circuit 24
The upstream portion and the portion between the switching valve 2 and the accumulator 4 constitute a bypass heat exchanger for exchanging heat.

【0081】次に、冷媒及び冷凍機油の流れを図によっ
て説明する。圧縮機1、切換弁2、熱源機側熱交換器
3、第1の絞り装置8b、8c、8d、及び室内機側熱
交換器7b、7c、7dからなる主冷媒回路の冷房時、
暖房時の冷媒の流れ、及び油分離器23の動作は実施の
形態8と全く同様なので説明を省略し、返油バイパス回
路24における冷凍機油の流れを説明する。油分離器2
3で分離された冷凍機油は返油バイパス回路24に流入
し、バイパス熱交換器27で切換弁2を経て圧縮機1へ
戻る低温低圧の冷媒と熱交換して温度が低下して、スラ
ッジフィルタ26を経て、第4の絞り装置25で低圧ま
で減圧されて、切換弁2とアキュムレータ4との間で切
換弁2を経た主冷媒回路の冷媒と合流する。
Next, the flow of the refrigerant and the refrigerating machine oil will be described with reference to the drawings. At the time of cooling of the main refrigerant circuit including the compressor 1, the switching valve 2, the heat source unit side heat exchanger 3, the first expansion devices 8b, 8c, 8d, and the indoor unit side heat exchangers 7b, 7c, 7d,
The flow of the refrigerant at the time of heating and the operation of the oil separator 23 are exactly the same as those in the eighth embodiment, and therefore the description is omitted, and the flow of the refrigerating machine oil in the oil return bypass circuit 24 will be described. Oil separator 2
The refrigerating machine oil separated in 3 flows into the oil return bypass circuit 24, and exchanges heat with the low-temperature and low-pressure refrigerant returning to the compressor 1 via the switching valve 2 in the bypass heat exchanger 27, whereby the temperature is reduced and the sludge filter is reduced. The pressure is reduced to a low pressure by the fourth expansion device 25 through 26, and merges with the refrigerant in the main refrigerant circuit passing through the switching valve 2 between the switching valve 2 and the accumulator 4.

【0082】また、圧縮機1の摺動部で生成される冷凍
機油劣化物は、冷凍機油とともに吐出ガスに混ざって冷
媒回路中に吐出され、油分離器23で冷凍機油とともに
分離され、返油バイパス回路24においてスラッジフィ
ルタ26で捕捉される。しかも、バイパス熱交換器27
を通過することで、冷凍機油の温度が低下し、冷凍機油
中の冷媒の濃度が高まる。これにより、冷凍機油中に溶
け込んでいた冷凍機油劣化物が析出され、スラッジフィ
ルタ26では元々冷凍機油に溶け込んでいたものをも捕
捉することができる。したがって、アキュムレータ4に
流入し、圧縮機1に戻る冷凍機油中の冷凍機油劣化物含
有率はさらに低下し、油戻し穴5に付着するスラッジの
量は低下する。それにより、圧縮機1内部の冷凍機油が
枯渇することがなくなり、異常な高圧上昇・低圧低下・
それによる吐出ガス温度上昇も回避でき、信頼性が著し
く向上する。また、圧縮機1から吐出された冷媒などが
返油バイパス回路24を経て圧縮機1へ戻るサイクルは
途中で液側接続冷媒配管9、ガス側接続冷媒配管10を
経由しない。したがって、液側接続冷媒配管9やガス側
接続冷媒配管10の施工時に十分な無酸化ロウ付けを実
施しないような場合などに発生する酸化スケ−ルが運転
中にスラッジフィルタ26に流入することがなく、流路
を閉塞したり、スラッジフィルタを変形・破壊したりす
る危険性がない。
The refrigerating machine oil degraded product generated in the sliding portion of the compressor 1 is mixed with the refrigerating machine oil in the discharge gas and discharged into the refrigerant circuit, separated by the oil separator 23 together with the refrigerating machine oil, and returned. In the bypass circuit 24, it is captured by the sludge filter 26. Moreover, the bypass heat exchanger 27
, The temperature of the refrigerating machine oil decreases, and the concentration of the refrigerant in the refrigerating machine oil increases. As a result, the refrigerating machine oil deteriorated in the refrigerating machine oil is precipitated, and the sludge filter 26 can also capture what was originally dissolved in the refrigerating machine oil. Therefore, the content of degraded refrigerating machine oil in the refrigerating machine oil that flows into the accumulator 4 and returns to the compressor 1 further decreases, and the amount of sludge adhering to the oil return hole 5 decreases. Thereby, the refrigerating machine oil inside the compressor 1 is not depleted, and abnormal high pressure rise, low pressure drop,
As a result, a rise in the discharge gas temperature can be avoided, and the reliability is significantly improved. Further, the cycle in which the refrigerant discharged from the compressor 1 returns to the compressor 1 via the oil return bypass circuit 24 does not pass through the liquid side connection refrigerant pipe 9 and the gas side connection refrigerant pipe 10 on the way. Therefore, the oxidized scale generated when the sufficient non-oxidation brazing is not performed when the liquid-side connection refrigerant pipe 9 or the gas-side connection refrigerant pipe 10 is installed may flow into the sludge filter 26 during operation. Therefore, there is no danger of blocking the flow path or deforming or breaking the sludge filter.

【0083】実施の形態12.以下、この発明の実施の
形態12を図13によって説明する。図13はこの実施
の形態12にかかる空気調和装置の冷媒回路図である。
図において、Aは熱源機、B、C、Dは室内機、1は圧
縮機、2は切換弁、3は熱源機側熱交換器、4はアキュ
ムレ−タ、5はアキュムレ−タ4の油戻し穴、7b、7
c、7dは室内機側熱交換器、8b、8c、8dは第1
の絞り装置、9は液側接続冷媒配管、10はガス側接続
冷媒配管、23は油分離器、24は返油バイパス回路、
25は第4の絞り装置、26はスラッジフィルタで、以
上は図10に示した実施の形態9と同様のものである。
28は油分離器23と切換弁2の間から分岐し、返油バ
イパス回路24のスラッジフィルタ26の上流部分に合
流する液冷媒注入回路、29は、液冷媒注入回路28の
配管と熱源機側熱交換器3の最も下の部分に流入する空
気の一部とが熱交換する液注入回路熱交換器である。
Embodiment 12 FIG. Hereinafter, a twelfth embodiment of the present invention will be described with reference to FIG. FIG. 13 is a refrigerant circuit diagram of an air conditioner according to the twelfth embodiment.
In the figure, A is a heat source unit, B, C and D are indoor units, 1 is a compressor, 2 is a switching valve, 3 is a heat source unit side heat exchanger, 4 is an accumulator, and 5 is an oil of the accumulator 4. Return hole, 7b, 7
c and 7d are indoor unit side heat exchangers, and 8b, 8c and 8d are first heat exchangers.
9 is a liquid side connection refrigerant pipe, 10 is a gas side connection refrigerant pipe, 23 is an oil separator, 24 is an oil return bypass circuit,
25 is a fourth diaphragm device, 26 is a sludge filter, which is the same as that of the ninth embodiment shown in FIG.
Reference numeral 28 denotes a liquid refrigerant injection circuit which branches from between the oil separator 23 and the switching valve 2 and joins an upstream portion of the sludge filter 26 of the oil return bypass circuit 24. Reference numeral 29 denotes a pipe of the liquid refrigerant injection circuit 28 and a heat source side This is a liquid injection circuit heat exchanger that exchanges heat with a part of the air flowing into the lowermost part of the heat exchanger 3.

【0084】次に、冷媒及び冷凍機油の流れを図によっ
て説明する。圧縮機1、切換弁2、熱源機側熱交換器
3、第1の絞り装置8b、8c、8d、及び室内機側熱
交換器7b、7c、7dからなる主冷媒回路の冷房時、
暖房時の冷媒の流れ、及び油分離器23の動作は実施の
形態8と全く同様なので説明を省略し、返油バイパス回
路24及び液冷媒注入回路28の冷媒及び冷凍機油の流
れを説明する。油分離器23により冷凍機油が分離され
た高温高圧のガス冷媒の一部は液冷媒注入回路28へ流
入し、液注入回路熱交換器29で熱源機側熱交換器3の
最下部に流入する空気の一部と熱交換して温度が低下し
て液化し、油分離器23で分離され返油バイパス回路2
4に流入した冷凍機油と合流する。この合流した液冷媒
及び冷凍機油はスラッジフィルタ26を経て、第4の絞
り装置25で低圧まで減圧されて、切換弁2とアキュム
レータ4との間で切換弁2を経た主冷媒回路の冷媒と合
流する。なお、この実施の形態12でも実施の形態3,
5、6及び10と同様、暖房時において蒸発器となる、
液注入回路熱交換器29が設けられる熱源機側熱交換器
3の最下部においては、上部からのドレンの流れで風が
通りにくく霜が発生し成長しやすいが、液注入回路熱交
換器29により暖められ、着霜しにくくなる。
Next, the flow of the refrigerant and the refrigerating machine oil will be described with reference to the drawings. At the time of cooling of the main refrigerant circuit including the compressor 1, the switching valve 2, the heat source unit side heat exchanger 3, the first expansion devices 8b, 8c, 8d, and the indoor unit side heat exchangers 7b, 7c, 7d,
The flow of the refrigerant at the time of heating and the operation of the oil separator 23 are completely the same as those in the eighth embodiment, and thus the description thereof will be omitted, and the flow of the refrigerant and the refrigerating machine oil in the oil return bypass circuit 24 and the liquid refrigerant injection circuit 28 will be described. Part of the high-temperature and high-pressure gas refrigerant from which the refrigerating machine oil has been separated by the oil separator 23 flows into the liquid refrigerant injection circuit 28, and flows into the lowermost part of the heat source device side heat exchanger 3 by the liquid injection circuit heat exchanger 29. It exchanges heat with part of the air to lower the temperature and liquefies, and is separated by the oil separator 23 and returned to the oil return bypass circuit 2.
4. Merge with the refrigeration oil flowing into 4. The combined liquid refrigerant and refrigerating machine oil are reduced to a low pressure by the fourth expansion device 25 through the sludge filter 26, and merge with the refrigerant of the main refrigerant circuit passing through the switching valve 2 between the switching valve 2 and the accumulator 4. I do. In the twelfth embodiment, the third and third embodiments are used.
Like 5, 6, and 10, it becomes an evaporator during heating.
At the lowermost part of the heat source device side heat exchanger 3 where the liquid injection circuit heat exchanger 29 is provided, the flow of the drain from the upper part makes it difficult for the wind to pass through, and frost is easily generated and grows. It is warmed and hard to frost.

【0085】また、圧縮機1の摺動部で生成される冷凍
機油劣化物は、冷凍機油とともに吐出ガスに混ざって冷
媒回路中に吐出され、油分離器23で冷凍機油とともに
分離され返油バイパス回路24に流入し、液冷媒注入回
路28の液注入回路熱交換器29から流出する液冷媒と
合流することにより、冷凍機油中の冷媒濃度を高くして
スラッジフィルタ26に流入し捕捉される。これによ
り、冷凍機油中に溶け込んでいた冷凍機油劣化物は析出
するため、スラッジフィルタ26では固体として存在す
るスラッジとともに元々冷凍機油に溶け込んでいたもの
も捕捉することができる。したがって、アキュムレータ
4に流入し、圧縮機1に戻る冷凍機油中の冷凍機油劣化
物含有率はさらに低下し、油戻し穴5に付着するスラッ
ジの量は低下する。それにより、圧縮機1内部の冷凍機
油が枯渇することがなくなり、異常な高圧上昇・低圧低
下・それによる吐出ガス温度上昇も回避でき、信頼性が
著しく向上する。また、圧縮機1から吐出された冷媒な
どが返油バイパス回路24を経て圧縮機1へ戻るサイク
ルは途中で液側接続冷媒配管9、ガス側接続冷媒配管1
0を経由しない。したがって、液側接続冷媒配管9やガ
ス側接続冷媒配管10の施工時に十分な無酸化ロウ付け
を実施しないような場合などに発生する酸化スケ−ルが
運転中にスラッジフィルタ26に流入することがなく、
流路を閉塞したり、スラッジフィルタを変形・破壊した
りする危険性がない。
The refrigerating machine oil degraded product generated in the sliding portion of the compressor 1 is mixed with the refrigerating machine oil in the discharge gas and discharged into the refrigerant circuit. By flowing into the circuit 24 and joining the liquid refrigerant flowing out of the liquid injection circuit heat exchanger 29 of the liquid refrigerant injection circuit 28, the concentration of the refrigerant in the refrigerating machine oil is increased and the refrigerant flows into the sludge filter 26 and is captured. As a result, the refrigerating machine oil deteriorated in the refrigerating machine oil precipitates out, so that the sludge filter 26 can capture not only sludge existing as a solid but also what was originally dissolved in the refrigerating machine oil. Therefore, the content of degraded refrigerating machine oil in the refrigerating machine oil that flows into the accumulator 4 and returns to the compressor 1 further decreases, and the amount of sludge adhering to the oil return hole 5 decreases. As a result, the refrigerating machine oil inside the compressor 1 is not depleted, and abnormal high pressure rise, low pressure fall, and discharge gas temperature rise due to the abnormal rise can be avoided, and the reliability is remarkably improved. In the cycle in which the refrigerant and the like discharged from the compressor 1 return to the compressor 1 via the oil return bypass circuit 24, the liquid side connection refrigerant pipe 9 and the gas side connection refrigerant pipe 1
Do not go through 0. Therefore, the oxidized scale generated when the sufficient non-oxidation brazing is not performed when the liquid-side connection refrigerant pipe 9 or the gas-side connection refrigerant pipe 10 is installed may flow into the sludge filter 26 during operation. Not
There is no danger of blocking the flow path or deforming or breaking the sludge filter.

【0086】実施の形態13.以下、この発明の実施の
形態13を図14によって説明する。図14はこの実施
の形態13にかかる空気調和装置の冷媒回路図である。
図において、Aは熱源機、B、C、Dは室内機、1は圧
縮機、2は切換弁、3は熱源機側熱交換器、4はアキュ
ムレ−タ、5はアキュムレ−タ4の油戻し穴、7b、7
c、7dは室内機側熱交換器、8b、8c、8dは第1
の絞り装置、9は液側接続冷媒配管、10はガス側接続
冷媒配管、23は油分離器、24は返油バイパス回路、
25は第4の絞り装置、26はスラッジフィルタ、28
は液冷媒注入回路で、以上は図13に示した実施の形態
12と同様のものである、29は、液冷媒注入回路28
の配管と切換弁2とアキュムレ−タ4との間の部分とが
熱交換する液注入回路熱交換器である。
Embodiment 13 FIG. Hereinafter, a thirteenth embodiment of the present invention will be described with reference to FIG. FIG. 14 is a refrigerant circuit diagram of an air conditioner according to Embodiment 13 of the present invention.
In the figure, A is a heat source unit, B, C and D are indoor units, 1 is a compressor, 2 is a switching valve, 3 is a heat source unit side heat exchanger, 4 is an accumulator, and 5 is an oil of the accumulator 4. Return hole, 7b, 7
c and 7d are indoor unit side heat exchangers, and 8b, 8c and 8d are first heat exchangers.
9 is a liquid side connection refrigerant pipe, 10 is a gas side connection refrigerant pipe, 23 is an oil separator, 24 is an oil return bypass circuit,
25 is a fourth throttle device, 26 is a sludge filter, 28
Is a liquid refrigerant injection circuit, which is the same as that of the twelfth embodiment shown in FIG.
Is a liquid injection circuit heat exchanger in which heat is exchanged between the piping and the portion between the switching valve 2 and the accumulator 4.

【0087】次に、冷媒及び冷凍機油の流れを図によっ
て説明する。圧縮機1、切換弁2、熱源機側熱交換器
3、第1の絞り装置8b、8c、8d、及び室内機側熱
交換器7b、7c、7dからなる主冷媒回路の冷房時、
暖房時の冷媒の流れ、及び油分離器23の動作は実施の
形態8と全く同様なので説明を省略し、返油バイパス回
路24及び液冷媒注入回路28の冷媒及び冷凍機油の流
れを説明する。油分離器23により冷凍機油が分離され
た高温高圧のガス冷媒の一部は液冷媒注入回路28へ流
入し、液注入回路熱交換器29で切換弁2を経て圧縮機
1へ戻る低温低圧の冷媒と熱交換して温度が低下して液
化し、油分離器23で分離され返油バイパス回路24に
流入した冷凍機油と合流する。この合流した液冷媒及び
冷凍機油はスラッジフィルタ26を経て、第4の絞り装
置25で低圧まで減圧されて、切換弁2とアキュムレー
タ4との間で切換弁2を経た主冷媒回路の冷媒と合流す
る。
Next, the flow of the refrigerant and the refrigerating machine oil will be described with reference to the drawings. At the time of cooling of the main refrigerant circuit including the compressor 1, the switching valve 2, the heat source unit side heat exchanger 3, the first expansion devices 8b, 8c, 8d, and the indoor unit side heat exchangers 7b, 7c, 7d,
The flow of the refrigerant at the time of heating and the operation of the oil separator 23 are completely the same as those in the eighth embodiment, and thus the description thereof will be omitted, and the flow of the refrigerant and the refrigerating machine oil in the oil return bypass circuit 24 and the liquid refrigerant injection circuit 28 will be described. A part of the high-temperature and high-pressure gas refrigerant from which the refrigerating machine oil has been separated by the oil separator 23 flows into the liquid refrigerant injection circuit 28 and returns to the compressor 1 via the switching valve 2 in the liquid injection circuit heat exchanger 29 via the low-temperature and low-pressure gas refrigerant. The refrigerant exchanges heat with the refrigerant to lower the temperature and liquefy, and joins with the refrigerating machine oil separated by the oil separator 23 and flowing into the oil return bypass circuit 24. The combined liquid refrigerant and refrigerating machine oil are reduced to a low pressure by the fourth expansion device 25 through the sludge filter 26, and merge with the refrigerant of the main refrigerant circuit passing through the switching valve 2 between the switching valve 2 and the accumulator 4. I do.

【0088】また、圧縮機1の摺動部で生成される冷凍
機油劣化物は、冷凍機油とともに吐出ガスに混ざって冷
媒回路中に吐出され、油分離器23で冷凍機油とともに
分離され返油バイパス回路24に流入し、液冷媒注入回
路28の液注入回路熱交換器29から流出する液冷媒と
合流することにより、冷凍機油中の冷媒濃度を高くして
スラッジフィルタ26に流入し捕捉される。これによ
り、冷凍機油中に溶け込んでいた冷凍機油劣化物が析出
するため、スラッジフィルタ26では固体として存在す
るスラッジとともに元々冷凍機油に溶け込んでいたもの
も捕捉することができる。したがって、アキュムレータ
4に流入し、圧縮機1に戻る冷凍機油中の冷凍機油劣化
物含有率はさらに低下し、油戻し穴5に付着するスラッ
ジの量は低下する。それにより、圧縮機1内部の冷凍機
油が枯渇することがなくなり、異常な高圧上昇・低圧低
下・それによる吐出ガス温度上昇も回避でき、信頼性が
著しく向上する。また、圧縮機1から吐出された冷媒な
どが返油バイパス回路24を経て圧縮機1へ戻るサイク
ルは途中で液側接続冷媒配管9、ガス側接続冷媒配管1
0を経由しない。したがって、液側接続冷媒配管9やガ
ス側接続冷媒配管10の施工時に十分な無酸化ロウ付け
を実施しないような場合などに発生する酸化スケ−ルが
運転中にスラッジフィルタ26に流入することがなく、
流路を閉塞したり、スラッジフィルタを変形・破壊した
りする危険性がない。
The degraded refrigerating machine oil generated in the sliding portion of the compressor 1 is mixed with the refrigerating machine oil in the discharge gas and discharged into the refrigerant circuit, separated by the oil separator 23 together with the refrigerating machine oil, and returned to the oil return bypass. By flowing into the circuit 24 and joining the liquid refrigerant flowing out of the liquid injection circuit heat exchanger 29 of the liquid refrigerant injection circuit 28, the concentration of the refrigerant in the refrigerating machine oil is increased and the refrigerant flows into the sludge filter 26 and is captured. As a result, the deteriorated refrigerating machine oil dissolved in the refrigerating machine oil precipitates, so that the sludge filter 26 can capture not only sludge existing as a solid but also the substance originally dissolved in the refrigerating machine oil. Therefore, the content of degraded refrigerating machine oil in the refrigerating machine oil that flows into the accumulator 4 and returns to the compressor 1 further decreases, and the amount of sludge adhering to the oil return hole 5 decreases. As a result, the refrigerating machine oil inside the compressor 1 is not depleted, and abnormal high pressure rise, low pressure fall, and discharge gas temperature rise due to the abnormal rise can be avoided, and the reliability is remarkably improved. In the cycle in which the refrigerant and the like discharged from the compressor 1 return to the compressor 1 via the oil return bypass circuit 24, the liquid side connection refrigerant pipe 9 and the gas side connection refrigerant pipe 1
Do not go through 0. Therefore, the oxidized scale generated when the sufficient non-oxidation brazing is not performed when the liquid-side connection refrigerant pipe 9 or the gas-side connection refrigerant pipe 10 is installed may flow into the sludge filter 26 during operation. Not
There is no danger of blocking the flow path or deforming or breaking the sludge filter.

【0089】実施の形態14.以下、この発明の実施の
形態14を図15によって説明する。図15はこの実施
の形態14にかかる空気調和装置の冷媒回路図である。
図において、Aは熱源機、B、C、Dは室内機、1は圧
縮機、2は切換弁、3は熱源機側熱交換器、4はアキュ
ムレ−タ、5はアキュムレ−タ4の油戻し穴、6は第2
の絞り装置、7b、7c、7dは室内機側熱交換器、8
b、8c、8dは第1の絞り装置、9は液側接続冷媒配
管、10はガス側接続冷媒配管で以上は図1に示した実
施の形態1と同様のもので、23は油分離器、24は返
油バイパス回路、25は第4の絞り装置、26はスラッ
ジフィルタで、これらは図13に示した実施の形態12
と同様のものである、28は第2の絞り装置6と液側接
続冷媒配管9との間から分岐し、返油バイパス回路24
のスラッジフィルタ26の上流部分に合流する液冷媒注
入回路である。
Embodiment 14 FIG. Hereinafter, a fourteenth embodiment of the present invention will be described with reference to FIG. FIG. 15 is a refrigerant circuit diagram of an air conditioner according to Embodiment 14 of the present invention.
In the figure, A is a heat source unit, B, C and D are indoor units, 1 is a compressor, 2 is a switching valve, 3 is a heat source unit side heat exchanger, 4 is an accumulator, and 5 is an accumulator 4 oil. Return hole, 6 is second
7b, 7c, 7d are indoor unit side heat exchangers, 8
Reference numerals b, 8c, and 8d denote first expansion devices, 9 denotes a liquid-side connection refrigerant pipe, 10 denotes a gas-side connection refrigerant pipe, which is the same as in the first embodiment shown in FIG. 1, and 23 denotes an oil separator. , 24 are an oil return bypass circuit, 25 is a fourth throttle device, and 26 is a sludge filter, which are used in the twelfth embodiment shown in FIG.
28 is branched from between the second expansion device 6 and the liquid-side connection refrigerant pipe 9 and is connected to the oil return bypass circuit 24.
Is a liquid refrigerant injection circuit that joins the upstream portion of the sludge filter 26 of FIG.

【0090】次に、冷媒及び冷凍機油の流れを図によっ
て説明する。圧縮機1、切換弁2、熱源機側熱交換器
3、第2の絞り装置6、第1の絞り装置8b、8c、8
d、及び室内機側熱交換器7b、7c、7dからなる主
冷媒回路の冷房時、暖房時の冷媒の流れは実施の形態1
と全く同様であり、油分離器23の動作は実施の形態8
と同様なので説明を省略し、返油バイパス回路24及び
液冷媒注入回路28の冷媒及び冷凍機油の流れを説明す
る。油分離器23で分離された冷凍機油は返油バイパス
回路24に流入する。また、冷房時には熱源機側熱交換
器3にて空気と熱交換して凝縮・液化し全開状態の第2
の絞り装置6を通過した液冷媒が、暖房時には室内機側
熱交換器7b、7c、7dにて空気と熱交換して凝縮・
液化し全開状態の第1の絞り装置8a、8b、8c、液
側接続冷媒配管9を経た液冷媒が、一部液冷媒注入回路
28に流入し、返油バイパス回路24に流入した冷凍機
油と合流する。この合流した液冷媒及び冷凍機油はスラ
ッジフィルタ26を経て、第4の絞り装置25で低圧ま
で減圧されて、切換弁2とアキュムレータ4との間で切
換弁2を経た主冷媒回路の冷媒と合流する。
Next, the flow of the refrigerant and the refrigerating machine oil will be described with reference to the drawings. Compressor 1, switching valve 2, heat source device side heat exchanger 3, second expansion device 6, first expansion device 8b, 8c, 8
d, and the flow of the refrigerant at the time of cooling and at the time of heating of the main refrigerant circuit including the indoor unit-side heat exchangers 7b, 7c, and 7d according to the first embodiment.
The operation of the oil separator 23 is exactly the same as that of the eighth embodiment.
Therefore, the description is omitted, and the flow of the refrigerant and the refrigerating machine oil in the oil return bypass circuit 24 and the liquid refrigerant injection circuit 28 will be described. The refrigerating machine oil separated by the oil separator 23 flows into the oil return bypass circuit 24. During cooling, the heat exchanger 3 exchanges heat with air to condense and liquefy, and the second heat exchanger 3 is fully opened.
The liquid refrigerant that has passed through the expansion device 6 is condensed by exchanging heat with air in the indoor unit side heat exchangers 7b, 7c and 7d during heating.
The liquid refrigerant that has passed through the first expansion devices 8a, 8b, and 8c and the liquid-side connection refrigerant pipe 9 that has liquefied and is fully open partially flows into the liquid refrigerant injection circuit 28, and refrigerating machine oil that flows into the oil return bypass circuit 24. Join. The combined liquid refrigerant and refrigerating machine oil are reduced to a low pressure by the fourth expansion device 25 through the sludge filter 26, and merge with the refrigerant of the main refrigerant circuit passing through the switching valve 2 between the switching valve 2 and the accumulator 4. I do.

【0091】また、圧縮機1の摺動部で生成される冷凍
機油劣化物は、冷凍機油とともに吐出ガスに混ざって冷
媒回路中に吐出され、油分離器23で冷凍機油とともに
分離され返油バイパス回路24に流入し、液冷媒注入回
路28に流入した液冷媒と合流することにより、冷凍機
油中の冷媒濃度を高くしてスラッジフィルタ26に流入
し捕捉される。これにより、冷凍機油中に溶け込んでい
た冷凍機油劣化物が析出するため、スラッジフィルタ2
6では固体として存在するスラッジとともに元々冷凍機
油に溶け込んでいたものも捕捉することができる。した
がって、アキュムレータ4に流入し、圧縮機1に戻る冷
凍機油中の冷凍機油劣化物含有率はさらに低下し、油戻
し穴5に付着するスラッジの量は低下する。それによ
り、圧縮機1内部の冷凍機油が枯渇することがなくな
り、異常な高圧上昇・低圧低下・それによる吐出ガス温
度上昇も回避でき、信頼性が著しく向上する。また、圧
縮機1から吐出された冷媒などが返油バイパス回路24
を経て圧縮機1へ戻るサイクルは途中で液側接続冷媒配
管9、ガス側接続冷媒配管10を経由しない。したがっ
て、液側接続冷媒配管9やガス側接続冷媒配管10の施
工時に十分な無酸化ロウ付けを実施しないような場合な
どに発生する酸化スケ−ルが運転中にスラッジフィルタ
26に流入することがなく、流路を閉塞したり、スラッ
ジフィルタを変形・破壊したりする危険性がない。
The refrigerating machine oil degraded product generated in the sliding portion of the compressor 1 is mixed with the refrigerating machine oil in the discharge gas and discharged into the refrigerant circuit. By flowing into the circuit 24 and merging with the liquid refrigerant flowing into the liquid refrigerant injection circuit 28, the concentration of the refrigerant in the refrigerating machine oil is increased and flows into the sludge filter 26 to be captured. As a result, the refrigerating machine oil degraded material that has dissolved in the refrigerating machine oil precipitates.
In No. 6, together with the sludge existing as a solid, what was originally dissolved in the refrigerating machine oil can also be captured. Therefore, the content of degraded refrigerating machine oil in the refrigerating machine oil that flows into the accumulator 4 and returns to the compressor 1 further decreases, and the amount of sludge adhering to the oil return hole 5 decreases. As a result, the refrigerating machine oil inside the compressor 1 is not depleted, and abnormal high pressure rise, low pressure fall, and discharge gas temperature rise due to the abnormal rise can be avoided, and the reliability is remarkably improved. The refrigerant discharged from the compressor 1 is returned to the oil return bypass circuit 24.
The cycle of returning to the compressor 1 via the above does not pass through the liquid side connection refrigerant pipe 9 and the gas side connection refrigerant pipe 10 on the way. Therefore, the oxidized scale generated when the sufficient non-oxidation brazing is not performed when the liquid-side connection refrigerant pipe 9 or the gas-side connection refrigerant pipe 10 is installed may flow into the sludge filter 26 during operation. Therefore, there is no danger of blocking the flow path or deforming or breaking the sludge filter.

【0092】実施の形態15.以下、この発明の実施の
形態15を図16によって説明する。図15はこの実施
の形態15にかかる空気調和装置の冷媒回路図である。
図において、Aは熱源機、B、C、Dは室内機、1は圧
縮機、2は切換弁、3は熱源機側熱交換器、4はアキュ
ムレ−タ、5はアキュムレ−タ4の油戻し穴、7b、7
c、7dは室内機側熱交換器、8b、8c、8dは第1
の絞り装置、9は液側接続冷媒配管、10はガス側接続
冷媒配管、23は油分離器、24は返油バイパス回路、
25は第4の絞り装置、26はスラッジフィルタで、以
上は図13に示した実施の形態12と同様のものであ
る。28は油分離器23と切換弁2の間から分岐し、他
端が切換弁2と圧縮機1との間の冷媒配管に接続する液
冷媒注入回路、30は液冷媒注入回路28途中にある第
5の絞り装置、29は、液冷媒注入回路28の第5の絞
り装置30の上流部と下流部との間で熱交換する液注入
回路熱交換器である。また、返油バイパス回路24のス
ラッジフィルタ26の上流部分と、液冷媒注入回路28
の第5の絞り装置30の上流部分とは配管で接続されて
いる。
Embodiment 15 FIG. Hereinafter, a fifteenth embodiment of the present invention will be described with reference to FIG. FIG. 15 is a refrigerant circuit diagram of an air conditioner according to Embodiment 15 of the present invention.
In the figure, A is a heat source unit, B, C and D are indoor units, 1 is a compressor, 2 is a switching valve, 3 is a heat source unit side heat exchanger, 4 is an accumulator, and 5 is an oil of the accumulator 4. Return hole, 7b, 7
c and 7d are indoor unit side heat exchangers, and 8b, 8c and 8d are first heat exchangers.
9 is a liquid side connection refrigerant pipe, 10 is a gas side connection refrigerant pipe, 23 is an oil separator, 24 is an oil return bypass circuit,
Reference numeral 25 denotes a fourth expansion device, and reference numeral 26 denotes a sludge filter, which is the same as that of the twelfth embodiment shown in FIG. 28 is a liquid refrigerant injection circuit which branches from between the oil separator 23 and the switching valve 2 and the other end is connected to a refrigerant pipe between the switching valve 2 and the compressor 1, and 30 is in the liquid refrigerant injection circuit 28 The fifth expansion device 29 is a liquid injection circuit heat exchanger that exchanges heat between the upstream portion and the downstream portion of the fifth expansion device 30 of the liquid refrigerant injection circuit 28. Further, an upstream portion of the sludge filter 26 of the oil return bypass circuit 24 and a liquid refrigerant injection circuit 28
And an upstream portion of the fifth throttle device 30.

【0093】次に、冷媒及び冷凍機油の流れを図によっ
て説明する。圧縮機1、切換弁2、熱源機側熱交換器
3、第1の絞り装置8b、8c、8d、及び室内機側熱
交換器7b、7c、7dからなる主冷媒回路の冷房時、
暖房時の冷媒の流れ、及び油分離器23の動作は実施の
形態8と全く同様なので説明を省略し、返油バイパス回
路24及び液冷媒注入回路28の冷媒及び冷凍機油の流
れを説明する。油分離器23により冷凍機油が分離され
た高温高圧のガス冷媒の一部は液冷媒注入回路28へ流
入し、液注入回路熱交換器29で液冷媒注入回路28低
圧側の冷媒と熱交換して温度が低下して液化し、その一
部が第5の絞り装置30へ流入して低圧まで減圧され、
液注入回路熱交換器29で高圧側の冷媒により加熱され
ガス化して、切換弁2とアキュムレータ4との間で切換
弁2を経た主冷媒回路の冷媒と合流する。また、液注入
回路熱交換器29高圧側で液化した冷媒の残部は、油分
離器23で分離され返油バイパス回路24に流入した冷
凍機油と合流する。この合流した液冷媒及び冷凍機油は
スラッジフィルタ26を経て、第4の絞り装置25で低
圧まで減圧されて、切換弁2とアキュムレータ4との間
で切換弁2を経た主冷媒回路の冷媒と合流する。
Next, the flow of the refrigerant and the refrigerating machine oil will be described with reference to the drawings. At the time of cooling of the main refrigerant circuit including the compressor 1, the switching valve 2, the heat source unit side heat exchanger 3, the first expansion devices 8b, 8c, 8d, and the indoor unit side heat exchangers 7b, 7c, 7d,
The flow of the refrigerant at the time of heating and the operation of the oil separator 23 are completely the same as those in the eighth embodiment, and thus the description thereof will be omitted, and the flow of the refrigerant and the refrigerating machine oil in the oil return bypass circuit 24 and the liquid refrigerant injection circuit 28 will be described. Part of the high-temperature and high-pressure gas refrigerant from which the refrigerating machine oil has been separated by the oil separator 23 flows into the liquid refrigerant injection circuit 28 and exchanges heat with the refrigerant on the low pressure side of the liquid refrigerant injection circuit 28 in the liquid injection circuit heat exchanger 29. The temperature is lowered and liquefied, a part of which flows into the fifth expansion device 30 and is reduced to a low pressure,
The refrigerant is heated and gasified by the high-pressure side refrigerant in the liquid injection circuit heat exchanger 29, and merges with the refrigerant in the main refrigerant circuit passing through the switching valve 2 between the switching valve 2 and the accumulator 4. The remaining portion of the refrigerant liquefied on the high pressure side of the liquid injection circuit heat exchanger 29 joins the refrigerating machine oil separated by the oil separator 23 and flowing into the oil return bypass circuit 24. The combined liquid refrigerant and refrigerating machine oil are reduced to a low pressure by the fourth expansion device 25 through the sludge filter 26, and merge with the refrigerant of the main refrigerant circuit passing through the switching valve 2 between the switching valve 2 and the accumulator 4. I do.

【0094】また、圧縮機1の摺動部で生成される冷凍
機油劣化物は、冷凍機油とともに吐出ガスに混ざって冷
媒回路中に吐出され、油分離器23で冷凍機油とともに
分離され返油バイパス回路24に流入し、液冷媒注入回
路28の液注入回路熱交換器29の高圧側から流出する
一部の液冷媒と合流することにより、冷凍機油中の冷媒
濃度を高くしてスラッジフィルタ26に流入し捕捉され
る。これにより、冷凍機油中に溶け込んでいた冷凍機油
劣化物が析出するため、スラッジフィルタ26では固体
として存在するスラッジとともに元々冷凍機油に溶け込
んでいたものも捕捉することができる。したがって、ア
キュムレータ4に流入し、圧縮機1に戻る冷凍機油中の
冷凍機油劣化物含有率はさらに低下し、油戻し穴5に付
着するスラッジの量は低下する。それにより、圧縮機1
内部の冷凍機油が枯渇することがなくなり、異常な高圧
上昇・低圧低下・それによる吐出ガス温度上昇も回避で
き、信頼性が著しく向上する。また、圧縮機1から吐出
された冷媒などが返油バイパス回路24を経て圧縮機1
へ戻るサイクルは途中で液側接続冷媒配管9、ガス側接
続冷媒配管10を経由しない。したがって、液側接続冷
媒配管9やガス側接続冷媒配管10の施工時に十分な無
酸化ロウ付けを実施しないような場合などに発生する酸
化スケ−ルが運転中にスラッジフィルタ26に流入する
ことがなく、流路を閉塞したり、スラッジフィルタを変
形・破壊したりする危険性がない。
The refrigerating machine oil degraded products generated in the sliding portion of the compressor 1 are mixed with the refrigerating machine oil in the discharge gas and discharged into the refrigerant circuit. The refrigerant flows into the circuit 24 and joins a part of the liquid refrigerant flowing out from the high pressure side of the liquid injection circuit heat exchanger 29 of the liquid refrigerant injection circuit 28 to increase the refrigerant concentration in the refrigerating machine oil and to the sludge filter 26. Inflow and capture. As a result, the deteriorated refrigerating machine oil dissolved in the refrigerating machine oil precipitates, so that the sludge filter 26 can capture not only sludge existing as a solid but also the substance originally dissolved in the refrigerating machine oil. Therefore, the content of degraded refrigerating machine oil in the refrigerating machine oil that flows into the accumulator 4 and returns to the compressor 1 further decreases, and the amount of sludge adhering to the oil return hole 5 decreases. Thereby, the compressor 1
The internal refrigerating machine oil is not depleted, and abnormally high pressure rise, low pressure fall, and discharge gas temperature rise due to the abnormal rise can be avoided, and the reliability is remarkably improved. Further, the refrigerant and the like discharged from the compressor 1 pass through the oil return bypass circuit 24 and the compressor 1
The cycle to return to does not pass through the liquid side connection refrigerant pipe 9 and the gas side connection refrigerant pipe 10 on the way. Therefore, the oxidized scale generated when the sufficient non-oxidation brazing is not performed when the liquid-side connection refrigerant pipe 9 or the gas-side connection refrigerant pipe 10 is installed may flow into the sludge filter 26 during operation. Therefore, there is no danger of blocking the flow path or deforming or breaking the sludge filter.

【0095】実施の形態16.図17は実施の形態1〜
6において使用されるドライヤ16の一実施の形態16
を示す縦断面図で、同図(a)は冷媒の流れ方向が左か
ら右になるよう、同図(b)は冷媒の流れ方向が下から
上にになるよう、同図(c)は冷媒の流れ方向が上から
下にになるようドライヤを配設した場合をそれぞれ示し
ている。図において、50は円筒状の容器、51は容器
50の一端に設けられた流入配管、52は容器50の他
端に設けられた流出配管、53は合成ゼオライトを主成
分とし、活性アルミナなどを配合し、接着剤などのバイ
ンダで固めたドライヤコア、54は冷凍機油である。
Embodiment 16 FIG. FIG. 17 is Embodiment 1
Embodiment 16 of Dryer 16 Used in 6
FIG. 4A is a longitudinal sectional view showing a state in which the flow direction of the refrigerant is from left to right, FIG. 4B is a view in which the flow direction of the refrigerant is from bottom to top, and FIG. Each of the figures shows a case where a dryer is provided so that the flow direction of the refrigerant is from top to bottom. In the figure, 50 is a cylindrical vessel, 51 is an inflow pipe provided at one end of the vessel 50, 52 is an outflow pipe provided at the other end of the vessel 50, 53 is a synthetic zeolite as a main component, and activated alumina or the like. A dryer core compounded and hardened with a binder such as an adhesive is a refrigerating machine oil.

【0096】流入配管51から流入した冷媒はドライヤ
コア53によって冷媒中に含まれている水分が吸収され
るが、冷媒の流路としては非常に細かなドライヤコアの
目を通るため、それよりも大きいものはここで捕捉され
る。また、ドライヤによっては、ドライヤコア53の上
流側又は下流側にフィルタを備えた構成のものがある
が、そのフィルタ部でも異物は捕捉される。したがっ
て、実施の形態9〜15におけるスラッジフィルタ26
としてこの構成のドライヤを用いることができる。この
ようにスラッジフィルタ26としてドライヤを使用する
ことで、返油バイパス回路24を流れる冷凍機油より直
接水分を吸収することができ、スラッジフィルタ機能と
水分捕捉機能をも合わせ持つことができる。これによ
り、冷凍機油の加水分解を抑制しつつ、冷凍機油中の冷
凍機油劣化物含有率も低減でき、結果として主冷媒回路
中の含有水分量も冷凍機油劣化物含有率も低減し、第1
の絞り装置8b、8c、8d、油戻し穴5等に付着する
スラッジの量は低下する。
The refrigerant flowing from the inflow pipe 51 absorbs the moisture contained in the refrigerant by the dryer core 53. However, since the flow path of the refrigerant passes through the very fine eyes of the dryer core, it is larger than that. Is captured here. Further, some dryers have a configuration in which a filter is provided on the upstream side or the downstream side of the dryer core 53, but foreign matter is also captured in the filter portion. Therefore, the sludge filter 26 according to Embodiments 9 to 15
As such, a dryer having this configuration can be used. By using a dryer as the sludge filter 26 in this way, moisture can be directly absorbed from the refrigerating machine oil flowing through the oil return bypass circuit 24, and the sludge filter function and the moisture capturing function can be combined. As a result, while suppressing hydrolysis of the refrigerating machine oil, the content of degraded refrigerating machine oil in the refrigerating machine oil can be reduced.
The amount of sludge adhering to the squeezing devices 8b, 8c, 8d, the oil return hole 5, and the like is reduced.

【0097】また、実施の形態1〜6においてドライヤ
16として、実施の形態9〜15においてスラッジフィ
ルタ26として、図17に示す構成のものを使用する場
合、同図(a)や(b)のように設置すると、過渡状態
においてドライヤ容器50内に液冷媒又は冷凍機油が充
分たまらないと、容器50からは液冷媒又は冷凍機油が
流出することができない。これに対し、同図(c)に示
すように冷媒の流れ方向が上から下にになるよう配設さ
れると、容器50に流入した液冷媒又は冷凍機油は速や
かに流出するため、すばやく安定した運転になることが
でき、また、冷凍機油が圧縮機より枯渇することがな
い。
In the case where the dryer 16 in the first to sixth embodiments and the sludge filter 26 in the ninth to fifteenth embodiments are used as shown in FIG. When the liquid refrigerant or the refrigerating machine oil is not sufficiently accumulated in the dryer container 50 in the transient state, the liquid refrigerant or the refrigerating machine oil cannot flow out of the container 50. On the other hand, when the refrigerant is arranged so that the flow direction of the refrigerant is from top to bottom, as shown in FIG. Operation of the compressor, and the refrigerating machine oil is not depleted than the compressor.

【0097】実施の形態17.図18は以上の各実施の
形態において使用される実施の形態17にかかるアキュ
ムレータ4の一例を示す縦断面図で、図において、60
はアキュムレ−タ容器、61は容器60の底より容器内
の上部まで挿入された流入配管、62は容器60の底よ
り容器内の上部まで挿入され、その下部に冷凍機油を戻
すための油戻し穴5を備えた流出配管、63は容器60
内の下部に溜まっている液冷媒と冷凍機油との混合液、
64は容器60内部の下部空間と流出配管62の上部管
端部とを接続する返油配管、65は返油配管64の、容
器60内部の下部空間側の一端に設けられたオリフィス
である。
Embodiment 17 FIG. FIG. 18 is a longitudinal sectional view showing an example of the accumulator 4 according to the seventeenth embodiment used in each of the above embodiments.
Is an accumulator container, 61 is an inflow pipe inserted from the bottom of the container 60 to the upper portion of the container, 62 is an oil return inserted from the bottom of the container 60 to the upper portion of the container, and returns refrigeration oil to the lower portion. Outflow pipe with hole 5, 63 is vessel 60
Liquid mixture of liquid refrigerant and refrigerating machine oil stored in the lower part of the inside,
Numeral 64 denotes an oil return pipe connecting the lower space inside the container 60 and the upper pipe end of the outflow pipe 62, and numeral 65 denotes an orifice provided at one end of the oil return pipe 64 on the lower space side inside the container 60.

【0098】次に、アキュムレ−タ4の返油動作につい
て説明する。アキュムレ−タ内の混合液63の液面と流
出配管62の管端部との高さの差をh、流出配管内部の
冷媒の流速をu、流出配管より流出する冷媒の密度をρ
g、混合液63の密度をρlとすると、オリフィス65
の入口圧力から出口圧力を引いた、オリフィス65の前
後に発生する差圧ΔPは ΔP=k1・ρg・u2/2−k2・ρl・h で表わされる(ここにk1、k2は正の定数)。ただし、
返油配管64は充分太くなされているので、ここでの圧
力損失は無視される。ΔPが正であれば返油可能、負で
あらば返油不能であることを意味する。また、ΔPが正
で大きい程返油流量は多くなる。
Next, the oil return operation of the accumulator 4 will be described. The height difference between the liquid level of the mixture 63 in the accumulator and the pipe end of the outflow pipe 62 is h, the flow velocity of the refrigerant in the outflow pipe is u, and the density of the refrigerant flowing out of the outflow pipe is ρ.
g, the density of the mixture 63 is ρ l , and the orifice 65
The differential pressure ΔP generated before and after the orifice 65, which is obtained by subtracting the outlet pressure from the inlet pressure, is expressed by ΔP = k 1 · ρ g · u 2 / 2-k 2 · ρ l · h (where k 1 , k 2 is a positive constant). However,
Since the oil return pipe 64 is made sufficiently thick, the pressure loss here is ignored. If ΔP is positive, it means that the oil can be returned; if it is negative, it means that the oil cannot be returned. In addition, the larger the ΔP is, the larger the oil return flow rate is.

【0099】この式から明らかなように、冷媒流速uが
大きいと右辺第2項に比して第1項が大きく、たとえ液
面が低くても返油可能である。一方、冷媒流速uが小さ
いと多少液面が高くても第2項の負量が大きく、混合液
が流出配管64に流出する流量は少ない。冷媒流量が多
い場合には圧縮機から吐出される冷凍機油の比率が大き
いが、冷媒流量が少ない場合には圧縮機から吐出される
冷凍機油の比率は小さい。したがって、冷凍機油劣化成
分が油戻し穴5に付着した場合に返油不足となるのは、
冷媒流量が多い場合である。油戻し穴5を大きくする
と、冷媒流量が多い場合には充分に油が戻るが、冷媒流
量が少なくかつアキュムレ−タ4の液面が高い場合には
液バックが多くなり圧縮機の潤滑性が低下する。
As is clear from this equation, when the refrigerant flow velocity u is large, the first term is larger than the second term on the right side, and even if the liquid level is low, oil can be returned. On the other hand, when the refrigerant flow velocity u is small, the negative amount of the second term is large even if the liquid level is somewhat high, and the flow rate of the mixed liquid flowing out to the outflow pipe 64 is small. When the refrigerant flow rate is large, the ratio of the refrigerating machine oil discharged from the compressor is large, but when the refrigerant flow rate is small, the ratio of the refrigerating machine oil discharged from the compressor is small. Therefore, when the refrigerating machine oil-deteriorated component adheres to the oil return hole 5, the oil return is insufficient.
This is the case when the flow rate of the refrigerant is large. When the oil return hole 5 is enlarged, the oil returns sufficiently when the refrigerant flow rate is high, but when the refrigerant flow rate is low and the liquid level of the accumulator 4 is high, the liquid back increases and lubricity of the compressor increases. descend.

【0100】ところが、図18に示すように、油戻し穴
5とともに返油配管64を設けると、スラッジの付着に
より返油流量が問題となる、冷媒流量の多い場合には返
油配管64より返油可能で、スラッジ付着による返油不
足分を補うことができる。また、冷媒流量が少なくかつ
アキュムレ−タ4の液面が高い場合にも返油配管64よ
りの液バックは小さいため、液バック過多による圧縮機
の潤滑性低下にはつながらない。このように、アキュム
レ−タ4内に返油配管64を設けることにより、スラッ
ジが油戻し穴5に付着しても返油不足に陥ることもな
く、液バック過多になることもない信頼性の高い空気調
和装置を得ることができる。
However, as shown in FIG. 18, when the oil return pipe 64 is provided together with the oil return hole 5, the flow rate of the oil return becomes a problem due to the adhesion of the sludge. Oil can be used to compensate for the shortage of oil returned due to sludge adhesion. Further, even when the flow rate of the refrigerant is small and the liquid level of the accumulator 4 is high, the liquid back from the oil return pipe 64 is small. By providing the oil return pipe 64 in the accumulator 4 in this manner, even if the sludge adheres to the oil return hole 5, the oil return will not be insufficient, and the reliability will not be excessive. A high air conditioner can be obtained.

【0101】なお、図19に示すように返油配管64の
オリフィス65を返油配管64の流出配管62側の一端
に設けた場合、図20のように返油配管64を毛細管6
6で構成し、返油配管64の機能とオリフィス65の機
能を併せ持たせた場合、図21に示すように、流出配管
62を容器60の上方から挿入し、返油配管64を容器
60の外側に設け、油戻し穴5の代わりに油戻し配管及
びオリフィス67を設けた場合、図22に示すように流
出配管62がU字形状となっている場合にも、実施の形
態17と同様の効果を有するものである。
When the orifice 65 of the oil return pipe 64 is provided at one end of the oil return pipe 64 on the outflow pipe 62 side as shown in FIG. 19, the oil return pipe 64 is connected to the capillary 6 as shown in FIG.
6, when the function of the oil return pipe 64 and the function of the orifice 65 are combined, the outflow pipe 62 is inserted from above the container 60, and the oil return pipe 64 is connected to the container 60 as shown in FIG. When the oil return pipe 5 and the orifice 67 are provided instead of the oil return hole 5 provided on the outside, and the outflow pipe 62 is U-shaped as shown in FIG. It has an effect.

【0102】実施の形態18.以下、この発明の実施の
形態18を図23、図24及び図25によって説明す
る。図23はこの実施の形態18にかかる空気調和装置
の冷媒回路及び制御回路を示す構成図、図24はこの実
施の形態22にかかる絞り装置制御装置を示すブロック
線図、図25はこれの絞り装置制御動作を説明するフロ
ーチャートである。図において、Aは熱源機、B、C、
Dは室内機、1は圧縮機、2は切換弁、3は熱源機側熱
交換器、4はアキュムレ−タ、5は油戻し穴、7b、7
c、7dは室内機側熱交換器、8b、8c、8dは第1
の絞り装置、9は液側接続冷媒配管、10はガス側接続
冷媒配管で、以上は図28に示す従来例と同様のもので
ある。
Embodiment 18 FIG. Hereinafter, an eighteenth embodiment of the present invention will be described with reference to FIGS. 23, 24, and 25. FIG. 23 is a block diagram showing a refrigerant circuit and a control circuit of an air conditioner according to the eighteenth embodiment, FIG. 24 is a block diagram showing a throttling device control device according to the twenty-second embodiment, and FIG. It is a flowchart explaining an apparatus control operation. In the figure, A is a heat source device, B, C,
D is an indoor unit, 1 is a compressor, 2 is a switching valve, 3 is a heat source unit side heat exchanger, 4 is an accumulator, 5 is an oil return hole, 7b, 7
c and 7d are indoor unit side heat exchangers, and 8b, 8c and 8d are first heat exchangers.
Reference numeral 9 denotes a liquid side connection refrigerant pipe, and 10 denotes a gas side connection refrigerant pipe. The above is the same as the conventional example shown in FIG.

【0103】31は圧縮機1の吐出部と切換弁2との間
に設けられた吐出圧力検出手段、32は熱源機側熱交換
器3と液側接続冷媒配管9との間に設けられた第3の温
度検出手段、33b、33c、33dは室内機B、C、
D内の第1の絞り装置8b、8c、8dと室内側熱交換
器7b、7c、7dとの間に設けられた第4の温度検出
手段、34b、34c、34dは室内機B、C、D内の
室内側熱交換器7b、7c、7dのガス側接続冷媒配管
10側一端に設けられた第5の温度検出手段、35は絞
り装置制御装置、36は第3の温度検出手段32の検出
値、第1の圧力検出手段31の検出値、そして混合冷媒
の組成演算手段22の演算結果から第3の温度検出手段
32の設置部分の過冷却度を演算するSC演算手段、3
7は第4の温度検出手段33b、33c、33dの検出
値、第5の温度検出手段34b、34c、34dの検出
値から室内側熱交換器出口部の過熱度を演算するSH演
算手段、38はSC演算手段36、SH演算手段37の
演算結果から第1の絞り装置8b、8c、8dの開度を
制御する第1の絞り装置制御手段、39b、39c、3
9dは各室内機B、C、Dに設けられた送風機、40
b、40c、40dは各室内機B、C、Dに設けられた
ドレンポンプ、41b、41c、41dは除霜制御装置
である。
Reference numeral 31 denotes a discharge pressure detecting means provided between the discharge part of the compressor 1 and the switching valve 2, and 32 denotes a means provided between the heat source unit side heat exchanger 3 and the liquid side connection refrigerant pipe 9. The third temperature detecting means, 33b, 33c, 33d are indoor units B, C,
The fourth temperature detecting means 34b, 34c, 34d provided between the first expansion devices 8b, 8c, 8d in D and the indoor heat exchangers 7b, 7c, 7d are indoor units B, C, F is a fifth temperature detecting means provided at one end of the indoor side heat exchangers 7b, 7c, 7d on the gas side connection refrigerant pipe 10 side, D is a throttling device control device, and 36 is a third temperature detecting means 32. SC calculation means for calculating the degree of supercooling of the installation part of the third temperature detection means 32 from the detected value, the detection value of the first pressure detection means 31 and the calculation result of the composition calculation means 22 of the mixed refrigerant;
7 is an SH calculating means for calculating the degree of superheat at the outlet of the indoor heat exchanger from the detected values of the fourth temperature detecting means 33b, 33c, 33d and the detected values of the fifth temperature detecting means 34b, 34c, 34d, 38 Are first throttle device control means 39b, 39c, 3c for controlling the degree of opening of the first throttle devices 8b, 8c, 8d based on the calculation results of the SC calculation means 36 and the SH calculation means 37.
9d is a blower provided in each indoor unit B, C, D, 40
b, 40c, and 40d are drain pumps provided in the indoor units B, C, and D, and 41b, 41c, and 41d are defrost control devices.

【0104】圧縮機1、切換弁2、熱源機側熱交換器
3、第1の絞り装置8b、8c、8d、及び室内機側熱
交換器7b、7c、7dからなる主冷媒回路の冷房時、
暖房時の冷媒の流れは従来例と全く同様なので説明を省
略し、絞り装置制御装置による第1の絞り装置8b、8
c、8dの制御動作を図25のフロ−チャ−トによって
説明する。ステップ105で、第4の温度検出手段33
b、33c、33dの検出値及び第5の温度検出手段3
4b、34c、34dの検出値からSH演算手段37に
よって演算された演算結果SHと、予め設定されたSH
の上限値SHHとが比較され、SH≦SHHであればス
テップ106に進み、SH>SHHであればステップ1
08に進む。ステップ106では、SH演算手段36の
演算結果SHと、予め設定されたSHの下限値SHLと
が比較され、SH≧SHLであればステップ107に進
んで第1の絞り装置8b、8c、8dの開度が減少さ
れ、SH<SHLであればそのまま何もしない。ステッ
プ108では第1の絞り装置8b、c、dの開度Sj
と、予め設定された上限開度MAXとが比較され、Sj
≦MAXであればステップ109へ進んで第1の絞り装
置8b、8c、8dの開度が増加され、Sj>MAXで
あればステップ110へ進む。
During cooling of the main refrigerant circuit including the compressor 1, the switching valve 2, the heat source unit side heat exchanger 3, the first expansion devices 8b, 8c, 8d, and the indoor unit side heat exchangers 7b, 7c, 7d. ,
Since the flow of the refrigerant at the time of heating is completely the same as that of the conventional example, the description is omitted, and the first expansion devices 8b and 8
The control operations c and 8d will be described with reference to the flowchart of FIG. In step 105, the fourth temperature detecting means 33
b, 33c, 33d and the fifth temperature detecting means 3
4b, 34c and 34d, and a calculation result SH calculated by the SH calculation means 37 from the detected values.
Is compared with the upper limit value SHH. If SH ≦ SHH, the process proceeds to step 106, and if SH> SHH, the process proceeds to step 1.
Proceed to 08. In step 106, the calculation result SH of the SH calculation means 36 is compared with a preset lower limit value SHL of SH, and if SH ≧ SHL, the routine proceeds to step 107, where the first throttle device 8b, 8c, 8d The opening is reduced, and if SH <SHL, nothing is performed. In step 108, the opening degree Sj of the first throttle device 8b, c, d
Is compared with a preset upper limit opening MAX.
If ≦ MAX, the routine proceeds to step 109, where the opening degree of the first expansion devices 8b, 8c, 8d is increased. If Sj> MAX, the routine proceeds to step 110.

【0105】ステップ110で、第3の温度検出手段3
2の検出値、第1の圧力検出手段31の検出値、及び混
合冷媒の組成演算手段22の演算結果からSC演算手段
36によって演算された演算結果と、予め設定されたS
Cの下限値SCLとが比較され、SC>SCLであれば
ステップ111に進んで上限開度MAXが大きく設定し
直され、SC≦SCLであれば何もしない。このよう
に、第1の絞り装置8b、8c、8dが、スラッジ付着
により流量不足に陥った場合において、第3の温度検出
手段32のある部分で十分に過冷却が確保されていて制
御が発散しない場合には、最大開度を大きく設定するた
め、流量不足は解消される。
In step 110, the third temperature detecting means 3
2, a calculation result calculated by the SC calculation means 36 from the detection value of the first pressure detection means 31 and a calculation result of the composition calculation means 22 of the mixed refrigerant, and a predetermined S
The lower limit value C of C is compared with the lower limit value SCL. If SC> SCL, the routine proceeds to step 111, where the upper limit opening MAX is reset to a large value, and if SC ≦ SCL, nothing is performed. As described above, when the first expansion devices 8b, 8c, and 8d fall short of the flow rate due to the sludge adhesion, the control is diverged because the subcooling is sufficiently ensured in a portion of the third temperature detection means 32. If not, the maximum opening is set to be large, so that the shortage of the flow rate is resolved.

【0106】実施の形態19.以下、この発明の実施の
形態19を図23、図26及び図27によって説明す
る。図26はこの実施の形態19にかかる除霜制御装置
を示すブロック線図、図27はこれの除霜制御動作を説
明するフローチャートである。図26において、34
b、34c、34dは室内機B、C、D内の室内側熱交
換器7b、7c、7dのガス側接続冷媒配管10側一端
に設けられた第5の温度検出手段、39b、39c、3
9dは各室内機B、C、Dに設けられた送風機、40
b、40c、40dは各室内機B、C、Dに設けられた
ドレンポンプ、41b、41c、41dは除霜制御装
置、42はシステムモ−ドが冷房か否かを判定するシス
テムモ−ド判定手段、43b、43c、43dは各室内
機B、C、Dのモ−ドが冷房か否かを判定する室内機モ
−ド判定手段、44b、44c、44dは各室内機B、
C、Dの計時手段、45は冷房していない室内機の熱交
換器の霜を解かすための運転を制御する室内機除霜運転
制御手段である。
Embodiment 19 FIG. Hereinafter, a nineteenth embodiment of the present invention will be described with reference to FIGS. 23, 26, and 27. FIG. 26 is a block diagram showing a defrost control device according to the nineteenth embodiment, and FIG. 27 is a flowchart for explaining the defrost control operation. In FIG. 26, 34
b, 34c, and 34d are fifth temperature detecting means provided at one end of the indoor heat exchangers 7b, 7c, and 7d in the indoor units B, C, and D on the gas-side connection refrigerant pipe 10 side;
9d is a blower provided in each indoor unit B, C, D, 40
Reference numerals b, 40c, and 40d denote drain pumps provided in the indoor units B, C, and D, 41b, 41c, and 41d defrost control devices, and 42, a system mode for determining whether the system mode is cooling. Judging means 43b, 43c and 43d are indoor unit mode judging means for judging whether the mode of each of the indoor units B, C and D is cooling, and 44b, 44c and 44d are each indoor unit B and
C and D time measuring means, and 45, an indoor unit defrosting operation control means for controlling an operation for defrosting the heat exchanger of the uncooled indoor unit.

【0107】一部の室内機例えばBが冷房運転しかつ室
温及び外気温度も低く、残りの室内機C、Dが停止して
いる場合に、停止中の室内機C、Dの第1の絞り装置8
dが付着したスラッジによって完全な閉止状態とならず
に、微小流量の冷媒が流れる場合がある。この場合、こ
の微小流量の冷媒をガス化する熱がなくかつ室温・外気
温度が低いため、停止中の室内機C、Dの室内側熱交換
器7dは着霜する。このような状態に陥ると、室内機
C、Dの第5の温度検出手段34c、34dの温度は低
温となる。このような室内機C、Dの第5の温度検出手
段34c、34dの検出値T5が予め設定された第1の
所定温度TLより低い状態が第1の所定時間τ1B続く
と、これが第5の温度検出手段34c、34d、システ
ムモ−ド判定手段42、室内機モ−ド判定手段43c、
43d及び計時手段44c、44dによって検出され、
室内機除霜運転制御手段45によって、送風機39c、
39dが運転され室内側熱交換器C、Dの霜を解かし、
同時にドレンポンプ40c、40dも運転されこの時生
ずるドレン水を排水するよう制御される。
When some of the indoor units, for example, B perform a cooling operation, the room temperature and the outside air temperature are low, and the remaining indoor units C and D are stopped, the first throttle of the stopped indoor units C and D is stopped. Device 8
There is a case where a small flow rate of the refrigerant flows without being completely closed due to the sludge to which d adheres. In this case, since there is no heat for gasifying the small flow rate refrigerant and the room temperature and the outside air temperature are low, the indoor heat exchanger 7d of the stopped indoor units C and D is frosted. In such a state, the temperatures of the fifth temperature detecting means 34c and 34d of the indoor units C and D become low. Such indoor unit C, a fifth temperature detecting means 34c and D, first the predetermined temperature T L lower condition continues a first predetermined time tau 1B which 34d is detected values T 5 of the preset, which Fifth temperature detecting means 34c, 34d, system mode determining means 42, indoor unit mode determining means 43c,
43d and timing means 44c and 44d,
By the indoor unit defrosting operation control means 45, the blower 39c,
39d is operated to defrost the indoor heat exchangers C and D,
At the same time, the drain pumps 40c and 40d are also operated to control drainage of drain water generated at this time.

【0108】また、送風機39c、39dの運転開始後
第2の所定時間τ2B経過後に、室内機C、Dの第5の温
度検出手段34c、34dの検出値T5がTLより高めに
予め設定された第2の所定温度THより高くなっている
と送風機39c、39dを停止させ、送風機39c、3
9d停止後もしばらくの間はドレン水発生が続くため、
送風機39c、39d停止後第3の所定時間τ3B経過後
にドレンポンプ40c、40dを停止させるよう制御さ
れる。以上により、停止中の室内機の第1の絞り装置が
付着したスラッジによって完全な閉止状態とすることが
できない場合にも停止中の室内機の室内側熱交換器の霜
が成長し続けることはなく、不具合は発生しない。
After the second predetermined time τ 2B has elapsed after the operation of the blowers 39c and 39d has started, the detection value T 5 of the fifth temperature detecting means 34c and 34d of the indoor units C and D is set higher than TL in advance. the second predetermined temperature T H higher than going on a blower 39c which is set to stop the 39d, blower 39c, 3
Since the drain water continues to be generated for a while after the 9d stop,
The control is performed so as to stop the drain pumps 40c and 40d after a lapse of a third predetermined time τ 3B after stopping the blowers 39c and 39d. As described above, even when the first throttle device of the stopped indoor unit cannot be completely closed due to the attached sludge, frost of the indoor heat exchanger of the stopped indoor unit does not continue to grow. No problem occurs.

【0109】次に、室内機除霜運転制御手段45の制御
動作を図27のフロ−チャ−トによって説明する。シス
テムモ−ド判定手段42の判定の結果、システムモ−ド
が冷房で、室内機モ−ド判定手段43b、43c、43
dの判定の結果、室内機モ−ドが冷房でなく、計時手段
44b、44c、44dによる第1の計時τ1が第1の
所定時間τ1B経過し、かつ、第5の温度検出手段34
b、34c、34dの検出値T5が第1の所定温度TL
下であると、ステップ112からステップ113、11
4、115を経てステップ116に進み、計時手段44
b、44c、44dによる第2の計時τ2が0にクリア
されステップ117に進み、送風機39b、39c、3
9d及びドレンポンプ40b、40c、40dの運転が
開始される。
Next, the control operation of the indoor unit defrosting operation control means 45 will be described with reference to the flowchart of FIG. As a result of the determination by the system mode determining means 42, the system mode is cooling and the indoor unit mode determining means 43b, 43c, 43
Results of the determination of d, indoor mode - de is not cooling, timing means 44b, 44c, 44d first timing tau 1 has passed the first predetermined time tau 1B by, and, fifth temperature detection means 34
b, 34c, when the detection value T 5 of 34d is below a first predetermined temperature T L, step from step 112 113,11
The process proceeds to step 116 through steps 4 and 115,
The second timekeeping τ 2 by b, 44c, 44d is cleared to 0, and the routine proceeds to step 117, where the blowers 39b, 39c, 3
The operation of the 9d and the drain pumps 40b, 40c, 40d is started.

【0110】その後ステップ118に進み第2の計時τ
2が第2の所定時間τ2B経過したかが、ステップ119
に進み第5の温度検出手段34b、34c、34dの検
出値T5が第2の所定温度THより高くなったかが判定さ
れ、これら条件が満足される迄この判定が続けられ、満
足された時点でステップ120に進み、送風機39b、
39c、39dの運転が停止され、ステップ121で計
時手段44b、44c、44dによる第3の計時τ3
0にクリアされステップ122に進み、第3の計時τ3
が第3の所定時間τ3B経過した後ステップ123に進
み、ドレンポンプ40b、40c、40dの運転が停止
される。
Thereafter, the flow proceeds to step 118, where the second time measurement τ
Or 2 has passed the second predetermined time tau 2B is step 119
When the process proceeds fifth temperature detection means 34b, 34c, the detected value T 5 of 34d or becomes higher than the second predetermined temperature T H is determined, until they conditions are satisfied the determination is continued, is satisfied Then, the process proceeds to step 120, where the blower 39b
The operations of 39c and 39d are stopped, the third time measurement τ 3 by the time measurement means 44b, 44c and 44d is cleared to 0 in step 121, the process proceeds to step 122, and the third time measurement τ 3
Proceeds to step 123 after the third predetermined time τ 3B has elapsed, and the operation of the drain pumps 40b, 40c, and 40d is stopped.

【0111】[0111]

【発明の効果】以上のようにこの発明の請求項1によれ
ば、凝縮器と絞り装置との間の冷媒配管より分岐し、水
分を吸収するドライヤ及びバイパス絞り装置を介し、主
冷媒回路の絞り装置と圧縮機との間の冷媒配管に接続さ
れるバイパス回路を設けたので、バイパス回路にあるド
ライヤより吸湿され、ドライヤの下流では冷媒・冷凍機
油中の水分量は低下する。この速度はポリエステル油の
加水分解劣化の速度と比べて充分速く、加水分解を抑制
し、圧縮機でのスラッジ成分生成を抑制する効果があ
る。また、ドライヤをバイパス回路の配管途中に設ける
ことでドライヤを流れる流れの衝撃を低下させることが
でき、ドライヤが粉砕しにくくなるという効果もある。
As described above, according to the first aspect of the present invention, the main refrigerant circuit is branched from the refrigerant pipe between the condenser and the throttling device, via the dryer for absorbing moisture and the bypass throttling device. Since the bypass circuit connected to the refrigerant pipe between the expansion device and the compressor is provided, moisture is absorbed by the dryer in the bypass circuit, and the amount of water in the refrigerant and the refrigerating machine oil decreases downstream of the dryer. This rate is sufficiently faster than the rate of hydrolysis and degradation of the polyester oil, and has the effect of suppressing hydrolysis and suppressing the generation of sludge components in the compressor. Further, by providing the dryer in the middle of the piping of the bypass circuit, the impact of the flow flowing through the dryer can be reduced, and there is also an effect that the dryer is hardly crushed.

【0112】この発明の請求項2によれば、圧縮機の吐
出側の冷媒配管より分岐し、水分を吸収するドライヤ及
びバイパス絞り装置を介し、圧縮機の吸入側の冷媒配管
に接続されるバイパス回路を設けたので、請求項1の発
明の効果の外に、圧縮機から吐出された冷媒がバイパス
を経て圧縮機に戻るサイクルには、途中で熱源機側熱交
換器、室内機側熱交換器、液側接続冷媒配管、ガス側接
続冷媒配管を経由していない非常に短いサイクルである
ため、応答性がよく、ドライヤに液が供給されない過渡
的な状態となる時間が非常に短く、ドライヤが粉砕しに
くくなるとともに、液側接続冷媒配管やガス側接続冷媒
配管の施工時に十分な無酸化ロウ付けを実施しないよう
な場合などに発生する酸化スケ−ルが運転時にドライヤ
に流入することがなく、流路を閉塞したり、ドライヤを
粉砕したりする危険性もなくなるという効果がある。
According to the second aspect of the present invention, the bypass is branched from the refrigerant pipe on the discharge side of the compressor, and is connected to the refrigerant pipe on the suction side of the compressor via the dryer and the bypass throttle device for absorbing moisture. Since the circuit is provided, in addition to the effects of the first aspect of the present invention, in the cycle in which the refrigerant discharged from the compressor returns to the compressor through the bypass, the heat source unit side heat exchanger and the indoor unit side heat exchange This is a very short cycle that does not pass through the vessel, the liquid side connection refrigerant pipe, and the gas side connection refrigerant pipe, so it has good responsiveness, and the transition time in which the liquid is not supplied to the dryer is very short. Is not easily crushed, and oxidized scale generated when the non-oxidizing brazing is not performed sufficiently when constructing the liquid-side connecting refrigerant pipe or the gas-side connecting refrigerant pipe may flow into the dryer during operation. Ku, or close the flow path, there is an effect that also eliminates the risk of or crushing the dryer.

【0113】この発明の請求項3によれば、請求項1ま
たは2記載の発明において、ドライヤに流入する冷媒を
冷却するバイパス熱交換器をバイパス途中に設けたの
で、請求項1または2記載の発明の効果の外に、さら
に、バイパス熱交換器によりドライヤに流入する冷媒が
冷却され、圧縮機の起動時やデフロストなどの過渡的な
運転時にあっても、ドライヤに流入する冷媒を液状態と
しやすく、ドライヤが粉砕しにくくなるとともに、冷媒
は温度が低いので冷媒への水分飽和溶解度が低く、ドラ
イヤとの共存下では、相対的に冷媒中よりもドライヤに
水分は移動しやすく、それだけドライヤの水分吸着量が
増え、冷凍機油の加水分解を抑えることができるとうい
う効果がある。
According to the third aspect of the present invention, in the first or second aspect of the present invention, the bypass heat exchanger for cooling the refrigerant flowing into the dryer is provided in the middle of the bypass. In addition to the effects of the present invention, the refrigerant flowing into the dryer is further cooled by the bypass heat exchanger, so that the refrigerant flowing into the dryer is in a liquid state even at the time of starting the compressor or during a transient operation such as defrost. As the temperature of the refrigerant is low, the moisture saturation solubility in the refrigerant is low. This has the effect of increasing the amount of adsorbed moisture and suppressing the hydrolysis of refrigerator oil.

【0114】この発明の請求項4によれば、液側接続冷
媒配管より分岐し、水分を吸収するドライヤ、バイパス
絞り装置及び上記ドライヤに流入する冷媒を冷却するバ
イパス熱交換器を有し、圧縮機吸入部と切換弁との間の
冷媒配管に接続されるバイパス回路を設けたので、請求
項1及び3と同様の効果がある。
According to a fourth aspect of the present invention, the compressor includes a dryer branched from the liquid-side connecting refrigerant pipe, absorbing moisture, a bypass expansion device, and a bypass heat exchanger for cooling the refrigerant flowing into the dryer. Since the bypass circuit connected to the refrigerant pipe between the suction unit and the switching valve is provided, the same effects as those of the first and third aspects are obtained.

【0115】この発明の請求項5によれば、圧縮機吐出
部と切換弁との間の冷媒配管より分岐し、冷媒を冷却す
るバイパス熱交換器、水分を吸収するドライヤ及びバイ
パス絞り装置を介し、圧縮機吸入部と上記切換弁との間
の冷媒配管に接続されるバイパス回路を設けたので、請
求項2及び3と同様の効果がある。
According to the fifth aspect of the present invention, the refrigerant is branched from the refrigerant pipe between the compressor discharge part and the switching valve, and passes through the bypass heat exchanger for cooling the refrigerant, the dryer for absorbing moisture, and the bypass throttle device. Since the bypass circuit connected to the refrigerant pipe between the compressor suction portion and the switching valve is provided, the same effects as those of the second and third aspects are obtained.

【0116】この発明の請求項6によれば、請求項1〜
5の何れかに記載の発明において、作動媒体としてハイ
ドロフルオロカ−ボン系の混合冷媒を用い、バイパス絞
り装置の入口部に設けられた第1の温度検出手段と、バ
イパス途中のバイパス絞り装置の下流に設けられた第2
の温度検出手段と、圧縮機吸入部に設けられた吸入圧力
検出手段と、上記第1、第2の温度検出手段及び上記吸
入圧力検出手段の検出値により冷媒の組成を演算する組
成演算手段とを備えたので、請求項1〜5の何れかに記
載の発明の効果の外に、さらに、ドライヤで充分に水分
を吸収しつつ、非共沸混合冷媒の循環組成を検出するこ
とができ、かつひとつのバイパスでこのふたつの目的達
成ができ冷媒回路が簡素化でき、小形化かつ高信頼性化
を得ることができるという効果がある
According to claim 6 of the present invention, claims 1 to
5. In the invention according to any one of the first to fifth aspects, a hydrofluorocarbon-based mixed refrigerant is used as a working medium, the first temperature detecting means provided at an inlet of the bypass throttle device, and a bypass throttle device in the middle of the bypass. The second provided downstream
Temperature detecting means, suction pressure detecting means provided in the compressor suction portion, and composition calculating means for calculating the composition of the refrigerant based on detection values of the first and second temperature detecting means and the suction pressure detecting means. Therefore, in addition to the effects of the invention according to any one of claims 1 to 5, it is possible to detect the circulating composition of the non-azeotropic refrigerant mixture while sufficiently absorbing moisture with a dryer, In addition, these two objectives can be achieved with one bypass, the refrigerant circuit can be simplified, and there is an effect that downsizing and high reliability can be obtained.

【0117】この発明の請求項7によれば、圧縮機吐出
部に油分離器を設け、分離した冷凍機油を圧縮機吸入部
に戻す返油バイパス回路を設けたので、主冷媒回路の絞
り装置を流れる冷凍機油の流量は著しく低下し、冷凍機
油と共に循環する冷凍機油劣化物の積算流量も低下す
る。これにより、冷凍機油劣化物がスラッジとなって主
冷媒回路の絞り装置に付着する量も減少する。以上によ
り、主冷媒回路の絞り装置の流量不足が回避でき、空調
能力の不足はなくなる。また、異常な高圧上昇・低圧低
下・それによる吐出ガス温度上昇を回避でき、信頼性が
著しく向上するという効果がある。
According to the seventh aspect of the present invention, the oil separator is provided at the compressor discharge part, and the oil return bypass circuit for returning the separated refrigerating machine oil to the compressor suction part is provided. The flow rate of the refrigerating machine oil flowing through the refrigerating machine drops remarkably, and the integrated flow rate of the refrigerating machine oil deteriorated circulating together with the refrigerating machine oil also decreases. As a result, the amount of the deteriorated refrigerating machine oil that becomes sludge and adheres to the expansion device of the main refrigerant circuit also decreases. As described above, the shortage of the flow rate of the expansion device of the main refrigerant circuit can be avoided, and the shortage of the air-conditioning capacity is eliminated. Further, an abnormal increase in high pressure, a decrease in low pressure, and an increase in the temperature of the discharge gas due to the abnormal increase can be avoided, and the reliability is significantly improved.

【0118】この発明の請求項8によれば、請求項7記
載の発明において、返油バイパス回路途中にスラッジフ
ィルタを設けたので、請求項7に記載の発明の効果の外
に、さらに、圧縮機内部で生成された冷凍機油劣化物は
返油バイパスにおいてスラッジフィルタで捕捉され、冷
凍機油中の冷凍機油劣化物含有率は低下し、主冷媒回路
の絞り装置、油戻し穴に付着するスラッジの量は低下
し、また、圧縮機から吐出された冷媒などが返油バイパ
スを経て圧縮機へ戻るサイクルは途中で液側接続冷媒配
管、ガス側接続冷媒配管を経由しないので、液側接続冷
媒配管やガス側接続冷媒配管の施工時に充分な無酸化ロ
ウ付けを実施しないような場合などに発生する酸化スケ
−ルが運転中にスラッジフィルタに流入することがな
く、流路を閉塞したり、スラッジフィルタを変形・破壊
したりする危険性がない等の効果がある。
According to the eighth aspect of the present invention, in the seventh aspect of the present invention, the sludge filter is provided in the middle of the oil return bypass circuit. The refrigerating machine oil degraded matter generated inside the machine is captured by the sludge filter in the recirculation bypass, the refrigerating machine oil degraded matter content in the refrigerating machine oil is reduced, and the sludge adhering to the main refrigerant circuit expansion device and the oil return hole is reduced. The amount of the refrigerant decreases, and the cycle in which the refrigerant discharged from the compressor returns to the compressor via the oil return bypass does not pass through the liquid-side connected refrigerant pipe and the gas-side connected refrigerant pipe on the way. Oxidation scale generated when sufficient non-oxidation brazing is not performed during the installation of the gas side connection refrigerant piping or the gas side connection refrigerant piping does not flow into the sludge filter during operation, and may block the flow path. There is an effect such as there is no danger or to deformation and destruction of the sludge filter.

【0119】この発明の請求項9によれば、請求項8記
載の発明において、返油バイパス回路途中のスラッジフ
ィルタ上流に冷凍機油を冷却するバイパス熱交換器を設
けたので、請求項8に記載の発明の効果の外に、スラッ
ジフィルタに流入する冷凍機油の温度が低下して冷凍機
油中の冷媒の濃度が高まることにより、冷凍機油中に溶
け込んでいた冷凍機油劣化物が析出されて元々冷凍機油
に溶け込んでいたものもスラッジフィルタにより捕捉さ
れ、主冷媒回路の冷凍機油中の冷凍機油劣化物含有率は
さらに低下するという効果がある。
According to a ninth aspect of the present invention, in the eighth aspect, a bypass heat exchanger for cooling the refrigerating machine oil is provided upstream of the sludge filter in the middle of the oil return bypass circuit. In addition to the effects of the invention, the temperature of the refrigerating machine oil flowing into the sludge filter is lowered and the concentration of the refrigerant in the refrigerating machine oil is increased. What has dissolved in the machine oil is also captured by the sludge filter, and there is an effect that the refrigerating machine oil deteriorating content in the refrigerating machine oil of the main refrigerant circuit is further reduced.

【0120】この発明の請求項10によれば、請求項8
記載の発明において、返油バイパス回路途中のスラッジ
フィルタ上流に液冷媒を注入する液冷媒注入回路を設け
たので、請求項8に記載の発明の効果の外に、返油バイ
パス回路中の冷凍機油が液注入回路から流出する液冷媒
と合流することにより、スラッジフィルタに流入する冷
凍機油中の冷媒濃度が高まり、冷凍機油中に溶け込んで
いた冷凍機油劣化物が析出されて元々冷凍機油に溶け込
んでいたものもスラッジフィルタにより捕捉され、主冷
媒回路の冷凍機油中の冷凍機油劣化物含有率はさらに低
下するという効果がある。
According to claim 10 of the present invention, claim 8
In the invention described in the above, the liquid refrigerant injection circuit for injecting the liquid refrigerant upstream of the sludge filter in the middle of the oil return bypass circuit is provided. Merges with the liquid refrigerant flowing out of the liquid injection circuit, the refrigerant concentration in the refrigerating machine oil flowing into the sludge filter increases, and the refrigerating machine oil degraded substances dissolved in the refrigerating machine oil are deposited and originally dissolved in the refrigerating machine oil. This is also trapped by the sludge filter, and the content of the refrigerating machine oil in the refrigerating machine oil of the main refrigerant circuit is further reduced.

【0121】この発明の請求項11によれば、請求項8
〜10の何れかに記載の発明において、返油バイパス途
中のスラッジフィルタを、水分を吸収しかつスラッジフ
ィルタ機能を有するドライヤとしたので、請求項8〜1
0の何れかに記載の発明の効果の外に、返油バイパスを
流れる冷凍機油より直接水分を吸収することにより、冷
凍機油の加水分解が抑制され、主冷媒回路の冷凍機油中
の冷凍機油劣化物含有率はさらに低下するという効果が
ある。
According to claim 11 of the present invention, claim 8
In the invention according to any one of claims 10 to 10, the sludge filter in the middle of the oil return bypass is a dryer that absorbs moisture and has a sludge filter function.
In addition to the effects of the invention according to any one of the above aspects, by directly absorbing moisture from the refrigerating machine oil flowing through the recirculation bypass, hydrolysis of the refrigerating machine oil is suppressed, and deterioration of the refrigerating machine oil in the refrigerating machine oil of the main refrigerant circuit is performed. There is an effect that the substance content further decreases.

【0122】この発明の請求項12によれば、請求項1
〜5及び11の何れかに記載の発明において、ドライヤ
の取付姿勢を流れ方向に対して下向きとしたので、請求
項1〜6及び11の何れかに記載の発明の効果の外に、
ドライヤに流入した液冷媒又は冷凍機油が速やかにドラ
イヤより流出し、すばやく安定した運転に入ることがで
きるという効果がある。
According to claim 12 of the present invention, claim 1
In any of the inventions according to any one of the first to fifth and eleventh aspects, the mounting posture of the dryer is set downward with respect to the flow direction.
The liquid refrigerant or the refrigerating machine oil that has flowed into the dryer quickly flows out of the dryer, so that the operation can be quickly and stably started.

【0123】この発明の請求項13によれば、請求項3
〜6,9,11及び12の何れかに記載の発明におい
て、バイパス熱交換器の全部または一部として熱源機側
熱交換器の最下部を通す構成としたので、請求項3〜
6,9,11及び12の何れかに記載の発明の効果の外
に、上部でのドレンの流れで風が通りにくく、着霜しや
すい熱交換器の最も下の部分が暖められ着霜しにくくな
るとういう効果がある。
According to claim 13 of the present invention, claim 3
In any of the inventions described in any one of the above-described items 6, 9, 11, and 12, the lowermost portion of the heat source device side heat exchanger is passed as all or a part of the bypass heat exchanger.
In addition to the effects of the invention described in any one of 6, 9, 11 and 12, the lower part of the heat exchanger which is difficult to wind due to the flow of the drain at the upper part and is liable to frost is heated and frosted. There is an effect that it becomes difficult.

【0124】この発明の請求項14によれば、アキュム
レ−タの底部に貯留する冷凍機油を、このアキュムレ−
タから上記圧縮機への冷媒流出配管の上下2個所に並列
に返油させる返油機構を設けたので、スラッジが付着し
ても返油不足に陥ることもなく、液バック過多になるこ
ともない信頼性の高い空気調和装置を得ることができる
効果がある。
According to the fourteenth aspect of the present invention, the refrigerating machine oil stored at the bottom of the accumulator is supplied to the accumulator.
Oil return mechanism provided in parallel at two locations above and below the refrigerant outflow pipe from the compressor to the compressor, so that even if sludge adheres, there is no shortage of oil return and there is no excess liquid back. There is an effect that a highly reliable air conditioner can be obtained.

【0125】この発明の請求項15によれば、絞り装置
を、蒸発器入口及び出口の媒体温度により算出された蒸
発器出口の過熱度が一定範囲となるように制御し、制御
上の発散による過度な開弁を抑止する上限開度が設けら
れるとともに、蒸発器出口の過熱度が一定範囲を超え、
この絞り装置の開度が上記上限開度に達する時、上記絞
り装置の入口側の冷媒温度、圧縮機の吐出側圧力及び冷
媒の組成により算出された上記絞り装置入口の過冷却度
が所定値以上であると、上記上限開度を大きく補正する
絞り装置制御装置を備えたので、絞り装置が、スラッジ
付着により流量不足に陥った場合においても、充分に過
冷却が確保されていて制御が発散しない場合には、最大
開度を大きく設定し、流量不足が解消される効果があ
る。
According to the fifteenth aspect of the present invention, the expansion device is controlled so that the degree of superheat at the outlet of the evaporator calculated from the medium temperatures at the inlet and outlet of the evaporator is within a certain range. An upper limit opening is provided to prevent excessive valve opening, and the degree of superheat at the evaporator outlet exceeds a certain range,
When the opening degree of the expansion device reaches the upper limit opening degree, the supercooling degree at the expansion device inlet calculated by the refrigerant temperature at the inlet side of the expansion device, the discharge pressure of the compressor, and the composition of the refrigerant is a predetermined value. With the above, since the throttle device control device that greatly corrects the upper limit opening degree is provided, even if the throttle device falls short of the flow rate due to sludge adhesion, sufficient supercooling is ensured and the control diverges. If not, the maximum opening is set to be large, and there is an effect that the shortage of the flow rate is resolved.

【0126】この発明の請求項16によれば、各室内機
に、除霜用の送風機と、一部の室内機のみ冷房運転して
いる場合に、冷房運転していない室内機の室内側熱交換
器出口側の媒体温度が所定時間連続して所定温度を下回
った場合に、上記送風機を運転させる除霜制御装置とを
設けたので、停止中の室内機の絞り装置が付着したスラ
ッジによって完全な閉止状態とされない場合でも、その
室内機の室内側熱交換器の霜の成長が除霜用の送風機の
運転によって防止できるという効果がある。
According to the sixteenth aspect of the present invention, each of the indoor units is provided with a blower for defrosting, and when only some of the indoor units are performing the cooling operation, the indoor heat of the indoor unit that is not performing the cooling operation is provided. When the medium temperature on the outlet side of the exchanger falls below the predetermined temperature for a predetermined time continuously, a defrost control device for operating the blower is provided. Even when the closed state is not set, there is an effect that the growth of frost in the indoor heat exchanger of the indoor unit can be prevented by the operation of the blower for defrosting.

【0127】この発明の請求項17によれば、請求項1
6記載の発明において、各室内機に、除霜用の送風機と
同時に運転が開始し、この送風機の運転停止から所定時
間経過後停止するよう除霜制御装置により制御される、
上記室内機で発生するドレンを排水するドレンポンプを
設けたので、請求項16に記載の発明の効果の外に、除
霜によるドレン水の排水による水漏れが発生しないとい
う効果がある。
According to claim 17 of the present invention, claim 1
In the invention described in 6, the operation of each indoor unit is started at the same time as the blower for defrosting, and is controlled by the defrosting control device to stop after a lapse of a predetermined time from the stoppage of the operation of the blower.
Since the drain pump for draining the drain generated in the indoor unit is provided, in addition to the effect of the invention described in claim 16, there is an effect that water leakage due to drain water drainage due to defrost does not occur.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1にかかる空気調和装
置の冷媒回路図。
FIG. 1 is a refrigerant circuit diagram of an air-conditioning apparatus according to Embodiment 1 of the present invention.

【図2】 実施の形態2にかかる空気調和装置の冷媒回
路図。
FIG. 2 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 2.

【図3】 実施の形態3にかかる空気調和装置の冷媒回
路図。
FIG. 3 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 3.

【図4】 実施の形態4にかかる空気調和装置の冷媒回
路図。
FIG. 4 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 4.

【図5】 実施の形態5にかかる空気調和装置の冷媒回
路図。
FIG. 5 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 5.

【図6】 実施の形態6にかかる空気調和装置の冷媒回
路図。
FIG. 6 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 6.

【図7】 実施の形態7にかかる空気調和装置の組成演
算に関するブロック線図。
FIG. 7 is a block diagram relating to a composition calculation of the air-conditioning apparatus according to Embodiment 7.

【図8】 実施の形態7にかかる空気調和装置の組成演
算手段の動作を示すフロ−チャ−ト。
FIG. 8 is a flowchart showing the operation of the composition calculation means of the air conditioner according to the seventh embodiment.

【図9】 実施の形態8にかかる空気調和装置の冷媒回
路図。
FIG. 9 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 8.

【図10】 実施の形態9にかかる空気調和装置の冷媒
回路図。
FIG. 10 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 9;

【図11】 実施の形態10にかかる空気調和装置の冷
媒回路図。
FIG. 11 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 10.

【図12】 実施の形態11にかかる空気調和装置の冷
媒回路図。
FIG. 12 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 11;

【図13】 実施の形態12にかかる空気調和装置の冷
媒回路図。
FIG. 13 is a refrigerant circuit diagram of an air conditioner according to a twelfth embodiment.

【図14】 実施の形態13にかかる空気調和装置の冷
媒回路図。
FIG. 14 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 13;

【図15】 実施の形態14にかかる空気調和装置の冷
媒回路図。
FIG. 15 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 14;

【図16】 実施の形態15にかかる空気調和装置の冷
媒回路図。
FIG. 16 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 15;

【図17】 実施の形態1〜6において使用されるドラ
イヤの一実施の形態16を示す縦断面図。
FIG. 17 is a longitudinal sectional view showing Embodiment 16 of the dryer used in Embodiments 1 to 6.

【図18】 各実施の形態において使用される実施の形
態17にかかるアキ態17を示す縦断面図。
FIG. 18 is a longitudinal sectional view showing a space 17 according to a seventeenth embodiment used in each embodiment.

【図19】 アキュムレータの一実施の形態18を示す
縦断面図。
FIG. 19 is a longitudinal sectional view showing an accumulator according to an eighteenth embodiment of the present invention.

【図20】 アキュムレータの一実施の形態19を示す
縦断面図。
FIG. 20 is a longitudinal sectional view showing an embodiment 19 of an accumulator.

【図21】 アキュムレータの一実施の形態20を示す
縦断面図。
FIG. 21 is a longitudinal sectional view showing an embodiment 20 of an accumulator.

【図22】 アキュムレータの一実施の形態21を示す
縦断面図。
FIG. 22 is a longitudinal sectional view showing an embodiment 21 of an accumulator.

【図23】 実施の形態22及び23にかかる空気調和
装置の冷媒回路及び制御回路を示す構成図。
FIG. 23 is a configuration diagram showing a refrigerant circuit and a control circuit of an air conditioner according to Embodiments 22 and 23.

【図24】 実施の形態22にかかる絞り装置制御装置
を示すブロック線図。
FIG. 24 is a block diagram showing a diaphragm device control device according to a twenty-second embodiment.

【図25】 実施の形態22にかかる絞り装置制御動作
を説明するフローチャート。
FIG. 25 is a flowchart illustrating a diaphragm device control operation according to the twenty-second embodiment.

【図26】 実施の形態23にかかる除霜制御装置を示
すブロック線図。
FIG. 26 is a block diagram showing a defrost control device according to a twenty-third embodiment.

【図27】 実施の形態23にかかる除霜制御動作を説
明するフローチャート。
FIG. 27 is a flowchart illustrating a defrost control operation according to the twenty-third embodiment;

【図28】 従来の空気調和装置の冷媒回路図。FIG. 28 is a refrigerant circuit diagram of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

A 熱源機、B、C、D 室内機、1 圧縮機、2 切
換弁、3 熱源機側熱交換器、4 アキュムレ−タ、5
アキュムレ−タ4の油戻し穴、6 第2の絞り装置
(暖房時絞り装置)、7b、7c、7d 室内機側熱交
換器、8b、8c、8d 第1の絞り装置(冷房時絞り
装置)、9 液側接続冷媒配管、10 ガス側接続冷媒
配管、15 バイパス回路、16 ドライヤ、17 第
3の絞り装置(バイパス絞り装置)、18、27 バイ
パス熱交換器、18a 第1のバイパス熱交換器、18
b 第2のバイパス熱交換器、19 第1の温度検出手
段、20 第2の温度検出手段、21 吸入圧力検出手
段、22 組成演算手段、23 油分離器、24 返油
バイパス回路、25 第4の絞り装置、26 スラッジ
フィルタ、28 液冷媒注入回路、29 液注入回路熱
交換器、30 第5の絞り装置、31 吐出圧力検出手
段、32 第3の温度検出手段、33b、33c、33
d 第4の温度検出手段、34b、34c、34d 第
5の温度検出手段、35 絞り装置制御装置、36 S
C演算手段、37 SH演算手段、38絞り装置制御手
段、39b、39c、39d 除霜用送風機、40b、
40c、40d ドレンポンプ、41b、41c、41
d 除霜制御装置、62 アキュムレ−タ流出配管、6
4 返油配管。
A heat source unit, B, C, D indoor unit, 1 compressor, 2 switching valve, 3 heat source unit side heat exchanger, 4 accumulator, 5
Oil return hole of accumulator 4, 6 Second expansion device (heating expansion device), 7b, 7c, 7d Indoor unit side heat exchanger, 8b, 8c, 8d First expansion device (cooling expansion device) , 9 liquid side connection refrigerant pipe, 10 gas side connection refrigerant pipe, 15 bypass circuit, 16 dryer, 17 third expansion device (bypass expansion device), 18, 27 bypass heat exchanger, 18a first bypass heat exchanger , 18
b second bypass heat exchanger, 19 first temperature detecting means, 20 second temperature detecting means, 21 suction pressure detecting means, 22 composition calculating means, 23 oil separator, 24 oil return bypass circuit, 25 fourth Throttle device, 26 sludge filter, 28 liquid refrigerant injection circuit, 29 liquid injection circuit heat exchanger, 30 fifth throttle device, 31 discharge pressure detecting means, 32 third temperature detecting means, 33b, 33c, 33
d Fourth temperature detecting means, 34b, 34c, 34d Fifth temperature detecting means, 35 Throttling device control device, 36 S
C calculating means, 37 SH calculating means, 38 throttle device controlling means, 39b, 39c, 39d blower for defrosting, 40b,
40c, 40d Drain pump, 41b, 41c, 41
d Defrosting control device, 62 Accumulator outflow pipe, 6
4 Oil return piping.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 関屋 慎 東京都千代田区丸ノ内二丁目2番3号 三 菱電機株式会社内 (72)発明者 飯島 等 東京都千代田区丸ノ内二丁目2番3号 三 菱電機株式会社内 (72)発明者 幸田 利秀 東京都千代田区丸ノ内二丁目2番3号 三 菱電機株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shin Sekiya 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Inventor Iijima et al. 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Inside Rishi Electric Co., Ltd. (72) Inventor Toshihide Koda 2-3-2 Marunouchi, Chiyoda-ku, Tokyo

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、絞り装置、蒸発器より
構成された主冷媒回路を備え、ハイドロフルオロカ−ボ
ン系の冷媒を作動媒体として用い、この冷媒と相溶性の
ある油を冷凍機油として用いる空気調和装置において、
上記凝縮器と上記絞り装置との間の冷媒配管より分岐
し、水分を吸収するドライヤ及びバイパス絞り装置を介
し、上記主冷媒回路の絞り装置と圧縮機との間の冷媒配
管に接続されるバイパス回路を設けたことを特徴とする
空気調和装置。
1. A main refrigerant circuit comprising a compressor, a condenser, a throttle device, and an evaporator, wherein a hydrofluorocarbon-based refrigerant is used as a working medium, and oil compatible with the refrigerant is refrigerated. In air conditioners used as machine oil,
A bypass branched from a refrigerant pipe between the condenser and the expansion device and connected to a refrigerant pipe between the expansion device and the compressor of the main refrigerant circuit via a dryer and a bypass expansion device that absorb moisture; An air conditioner comprising a circuit.
【請求項2】 圧縮機、凝縮器、絞り装置、蒸発器より
構成された主冷媒回路を備え、ハイドロフルオロカ−ボ
ン系の冷媒を作動媒体として用い、この冷媒と相溶性の
ある油を冷凍機油として用いる空気調和装置において、
上記圧縮機の吐出側の冷媒配管より分岐し、水分を吸収
するドライヤ及びバイパス絞り装置を介し、上記圧縮機
の吸入側の冷媒配管に接続されるバイパス回路を設けた
ことを特徴とする空気調和装置。
2. A main refrigerant circuit comprising a compressor, a condenser, a throttle device, and an evaporator, wherein a hydrofluorocarbon-based refrigerant is used as a working medium, and oil compatible with the refrigerant is refrigerated. In air conditioners used as machine oil,
An air conditioner comprising a bypass circuit branched from a refrigerant pipe on a discharge side of the compressor and connected to a refrigerant pipe on a suction side of the compressor via a dryer for absorbing moisture and a bypass throttle device. apparatus.
【請求項3】 ドライヤに流入する冷媒を冷却するバイ
パス熱交換器をバイパス途中に設けたことを特徴とする
請求項1または2記載の空気調和装置。
3. The air conditioner according to claim 1, wherein a bypass heat exchanger for cooling the refrigerant flowing into the dryer is provided in the middle of the bypass.
【請求項4】 圧縮機、切換弁、熱源機側熱交換器及び
暖房時絞り装置よりなる熱源機と、冷房時絞り装置及び
室内側熱交換器よりなる室内機と、上記熱源機の暖房時
絞り装置側の一端と上記室内機の冷房時絞り装置側の一
端とを接続する液側接続冷媒配管と、上記熱源機の切換
弁側の一端と上記室内機の室内側熱交換器側の一端とを
接続するガス側接続冷媒配管とを有する主冷媒回路を備
え、ハイドロフルオロカ−ボン系の冷媒を作動媒体とし
て用い、この冷媒と相溶性のある油を冷凍機油として用
いる空気調和装置において、上記液側接続冷媒配管より
分岐し、水分を吸収するドライヤ、バイパス絞り装置及
び上記ドライヤに流入する冷媒を冷却するバイパス熱交
換器を有し、上記圧縮機吸入部と上記切換弁との間の冷
媒配管に接続されるバイパス回路を設けたことを特徴と
する空気調和装置。
4. A heat source unit comprising a compressor, a switching valve, a heat source unit side heat exchanger and a heating throttle unit, an indoor unit comprising a cooling unit and an indoor heat exchanger, and heating the heat source unit. A liquid-side connecting refrigerant pipe for connecting one end of the expansion device to one end of the indoor unit at the time of the expansion device, and one end of the heat source unit on the switching valve side and one end of the indoor unit on the indoor heat exchanger side An air conditioner using a hydrofluorocarbon-based refrigerant as a working medium, and an oil compatible with the refrigerant as a refrigerating machine oil. A branch that is branched from the liquid-side connection refrigerant pipe, has a dryer that absorbs moisture, a bypass expansion device, and a bypass heat exchanger that cools the refrigerant flowing into the dryer, between the compressor suction part and the switching valve. Connected to refrigerant pipe An air conditioner comprising a bypass circuit.
【請求項5】 圧縮機、切換弁及び熱源機側熱交換器よ
りなる熱源機と、絞り装置及び室内側熱交換器よりなる
室内機と、上記熱源機の熱源機側熱交換器側の一端と上
記室内機の絞り装置側の一端とを接続する液側接続冷媒
配管と、上記熱源機の切換弁側の一端と上記室内機の室
内側熱交換器側の一端とを接続するガス側接続冷媒配管
とを有する主冷媒回路を備え、ハイドロフルオロカ−ボ
ン系の冷媒を作動媒体として用い、この冷媒と相溶性の
ある油を冷凍機油として用いる空気調和装置において、
上記圧縮機吐出部と上記切換弁との間の冷媒配管より分
岐し、冷媒を冷却するバイパス熱交換器、水分を吸収す
るドライヤ及びバイパス絞り装置を介し、上記圧縮機吸
入部と上記切換弁との間の冷媒配管に接続されるバイパ
ス回路を設けたことを特徴とする空気調和装置。
5. A heat source unit comprising a compressor, a switching valve and a heat source unit side heat exchanger, an indoor unit comprising a throttling device and an indoor side heat exchanger, and one end of the heat source unit on the heat source unit side heat exchanger side. And a liquid-side connection refrigerant pipe connecting one end of the indoor unit on the throttle device side, and a gas side connection connecting one end of the heat source unit on the switching valve side and one end of the indoor unit on the indoor heat exchanger side. An air conditioner including a main refrigerant circuit having a refrigerant pipe, using a hydrofluorocarbon-based refrigerant as a working medium, and using oil compatible with the refrigerant as refrigerating machine oil,
Branched from a refrigerant pipe between the compressor discharge portion and the switching valve, via a bypass heat exchanger that cools the refrigerant, a dryer that absorbs moisture and a bypass throttle device, the compressor suction portion and the switching valve An air conditioner comprising a bypass circuit connected to a refrigerant pipe between the air conditioners.
【請求項6】 作動媒体としてハイドロフルオロカ−ボ
ン系の混合冷媒を用い、バイパス絞り装置の入口部に設
けられた第1の温度検出手段と、バイパス途中のバイパ
ス絞り装置の下流に設けられた第2の温度検出手段と、
圧縮機吸入部に設けられた吸入圧力検出手段と、上記第
1、第2の温度検出手段及び上記吸入圧力検出手段の検
出値により冷媒の組成を演算する組成演算手段とを備え
たことを特徴とする請求項1〜5の何れかに記載の空気
調和装置。
6. A method according to claim 1, wherein a hydrofluorocarbon-based mixed refrigerant is used as a working medium. The first temperature detecting means is provided at an inlet of the bypass expansion device, and is provided downstream of the bypass expansion device in the middle of the bypass. Second temperature detecting means;
A suction pressure detecting means provided in the compressor suction portion; and a composition calculating means for calculating a composition of the refrigerant based on detection values of the first and second temperature detecting means and the suction pressure detecting means. The air conditioner according to any one of claims 1 to 5, wherein
【請求項7】 圧縮機、凝縮器、絞り装置、蒸発器より
構成された主冷媒回路を備え、ハイドロフルオロカ−ボ
ン系の冷媒を作動媒体として用い、この冷媒と相溶性の
ある油を冷凍機油として用いる空気調和装置において、
上記圧縮機吐出部に油分離器を設け、分離した冷凍機油
を圧縮機吸入部に戻す返油バイパス回路を設けたことを
特徴とする空気調和装置。
7. A main refrigerant circuit including a compressor, a condenser, a throttle device, and an evaporator, wherein a hydrofluorocarbon-based refrigerant is used as a working medium, and oil compatible with the refrigerant is refrigerated. In air conditioners used as machine oil,
An air conditioner comprising: an oil separator provided at the compressor discharge section; and an oil return bypass circuit for returning separated refrigeration oil to the compressor suction section.
【請求項8】 返油バイパス回路途中にスラッジフィル
タを設けたことを特徴とする請求項7記載の空気調和装
置。
8. The air conditioner according to claim 7, wherein a sludge filter is provided in the middle of the oil return bypass circuit.
【請求項9】 返油バイパス回路途中のスラッジフィル
タ上流に冷凍機油を冷却するバイパス熱交換器を設けた
ことを特徴とする請求項8記載の空気調和装置。
9. The air conditioner according to claim 8, wherein a bypass heat exchanger for cooling refrigerating machine oil is provided upstream of the sludge filter in the oil return bypass circuit.
【請求項10】 返油バイパス回路途中のスラッジフィ
ルタ上流に液冷媒を注入する液冷媒注入回路を設けたこ
とを特徴とする請求項8記載の空気調和装置。
10. The air conditioner according to claim 8, further comprising a liquid refrigerant injection circuit for injecting the liquid refrigerant upstream of the sludge filter in the middle of the oil return bypass circuit.
【請求項11】 返油バイパス途中のスラッジフィルタ
を、水分を吸収しかつスラッジフィルタ機能を有するド
ライヤとしたことを特徴とする請求項8〜10の何れか
に記載の空気調和装置。
11. The air conditioner according to claim 8, wherein the sludge filter in the middle of the oil return bypass is a dryer that absorbs moisture and has a sludge filter function.
【請求項12】 ドライヤの取付姿勢を流れ方向に対し
て下向きとしたことを特徴とする請求項1〜6及び11
の何れかに記載の空気調和装置。
12. The dryer according to claim 1, wherein the mounting posture of the dryer is downward with respect to the flow direction.
The air conditioner according to any one of the above.
【請求項13】 バイパス熱交換器の全部または一部と
して熱源機側熱交換器の最下部を通す構成としたことを
特徴とする請求項3〜6,9,11及び12の何れかに
記載の空気調和装置。
13. The heat exchanger according to claim 3, wherein all or a part of the bypass heat exchanger passes through a lowermost portion of the heat source device side heat exchanger. Air conditioner.
【請求項14】 圧縮機、凝縮器、絞り装置、蒸発器、
アキュムレ−タより構成された主冷媒回路を備え、ハイ
ドロフルオロカ−ボン系の冷媒を作動媒体として用い、
この冷媒と相溶性のある油を冷凍機油として用いる空気
調和装置において、上記アキュムレ−タの底部に貯留す
る冷凍機油を、このアキュムレ−タから上記圧縮機への
冷媒流出配管の上下2個所に並列に返油させる返油機構
を設けたことを特徴とする空気調和装置。
14. A compressor, a condenser, a throttle device, an evaporator,
Equipped with a main refrigerant circuit composed of an accumulator, using a hydrofluorocarbon-based refrigerant as a working medium,
In an air conditioner using an oil compatible with the refrigerant as the refrigerating machine oil, the refrigerating machine oil stored at the bottom of the accumulator is arranged in parallel at two locations above and below a refrigerant outlet pipe from the accumulator to the compressor. An air conditioner comprising an oil return mechanism for returning oil to the air conditioner.
【請求項15】圧縮機、凝縮器、絞り装置、蒸発器より
構成された主冷媒回路を備え、ハイドロフルオロカ−ボ
ン系の冷媒を作動媒体として用い、この冷媒と相溶性の
ある油を冷凍機油として用いる空気調和装置において、
上記絞り装置を、上記蒸発器入口及び出口の媒体温度に
より算出された上記蒸発器出口の過熱度が一定範囲とな
るように制御し、制御上の発散による過度な開弁を抑止
する上限開度が設けられるとともに、上記蒸発器出口の
過熱度が一定範囲を超え、この絞り装置の開度が上記上
限開度に達する時、上記絞り装置の入口側の冷媒温度、
上記圧縮機の吐出側圧力及び上記冷媒の組成により算出
された上記絞り装置入口の過冷却度が所定値以上である
と、上記上限開度を大きく補正する絞り装置制御装置を
備えたことを特徴とする空気調和装置。
15. A refrigerant circuit comprising a main refrigerant circuit comprising a compressor, a condenser, a throttle device, and an evaporator, using a hydrofluorocarbon-based refrigerant as a working medium, and refrigerating oil compatible with the refrigerant. In air conditioners used as machine oil,
An upper limit opening for controlling the expansion device so that the degree of superheat at the outlet of the evaporator calculated from the medium temperatures at the inlet and outlet of the evaporator is within a certain range, and suppressing excessive valve opening due to control divergence; Is provided, the superheat degree of the evaporator outlet exceeds a certain range, when the opening degree of the expansion device reaches the upper limit opening degree, the refrigerant temperature on the inlet side of the expansion device,
A throttle device control device that greatly corrects the upper limit opening when the degree of supercooling at the throttle device inlet calculated from the discharge side pressure of the compressor and the composition of the refrigerant is a predetermined value or more. And air conditioners.
【請求項16】 圧縮機、熱源機側熱交換器よりなる熱
源機と、絞り装置及び室内側熱交換器よりなる複数の室
内機とを有する主冷媒回路を備え、ハイドロフルオロカ
−ボン系の冷媒を作動媒体として用い、この冷媒と相溶
性のある油を冷凍機油として用いる空気調和装置におい
て、上記各室内機に、除霜用の送風機と、一部の室内機
のみ冷房運転している場合に、冷房運転していない室内
機の室内側熱交換器出口側の媒体温度が所定時間連続し
て所定温度を下回った場合に、上記送風機を運転させる
除霜制御装置とを設けたことを特徴とする空気調和装
置。
16. A hydrofluorocarbon system comprising a main refrigerant circuit having a heat source unit comprising a compressor, a heat source unit side heat exchanger, and a plurality of indoor units comprising a throttling device and an indoor side heat exchanger. In an air conditioner using a refrigerant as a working medium and an oil compatible with the refrigerant as a refrigerating machine oil, in each of the indoor units, a blower for defrosting, and when only some of the indoor units are performing a cooling operation. A defrost control device that operates the blower when the medium temperature at the outlet side of the indoor heat exchanger of the indoor unit that is not performing the cooling operation continuously falls below the predetermined temperature for a predetermined time. And air conditioners.
【請求項17】 各室内機に、除霜用の送風機と同時に
運転が開始し、この送風機の運転停止から所定時間経過
後停止するよう除霜制御装置により制御される、上記室
内機で発生するドレンを排水するドレンポンプを設けた
ことを特徴とする請求項19記載の空気調和装置。
17. An indoor unit that starts operating at the same time as a blower for defrosting and is controlled by a defrosting control device to stop after a lapse of a predetermined time from the stoppage of the operation of the blower. The air conditioner according to claim 19, further comprising a drain pump for draining the drain.
JP06305597A 1997-03-17 1997-03-17 Air conditioner Expired - Lifetime JP3866359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06305597A JP3866359B2 (en) 1997-03-17 1997-03-17 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06305597A JP3866359B2 (en) 1997-03-17 1997-03-17 Air conditioner

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2005200758A Division JP4331145B2 (en) 2005-07-08 2005-07-08 Air conditioner
JP2005200759A Division JP4566845B2 (en) 2005-07-08 2005-07-08 Air conditioner

Publications (2)

Publication Number Publication Date
JPH10253179A true JPH10253179A (en) 1998-09-25
JP3866359B2 JP3866359B2 (en) 2007-01-10

Family

ID=13218282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06305597A Expired - Lifetime JP3866359B2 (en) 1997-03-17 1997-03-17 Air conditioner

Country Status (1)

Country Link
JP (1) JP3866359B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2383529A1 (en) * 2009-01-27 2011-11-02 Mitsubishi Electric Corporation Air conditioner and method of returning refrigerating machine oil
WO2018020566A1 (en) * 2016-07-26 2018-02-01 三菱電機株式会社 Refrigeration cycle device
WO2024095339A1 (en) * 2022-10-31 2024-05-10 三菱電機株式会社 Refrigeration cycle device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2383529A1 (en) * 2009-01-27 2011-11-02 Mitsubishi Electric Corporation Air conditioner and method of returning refrigerating machine oil
EP2383529A4 (en) * 2009-01-27 2014-07-02 Mitsubishi Electric Corp Air conditioner and method of returning refrigerating machine oil
US9115917B2 (en) 2009-01-27 2015-08-25 Mitsubishi Electric Corporation Air-conditioner and method of returning and cooling compressor oil
WO2018020566A1 (en) * 2016-07-26 2018-02-01 三菱電機株式会社 Refrigeration cycle device
WO2024095339A1 (en) * 2022-10-31 2024-05-10 三菱電機株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JP3866359B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
JP4566845B2 (en) Air conditioner
KR100437946B1 (en) Refrigerator
CN104838219B (en) Conditioner
JP4812606B2 (en) Air conditioner
KR100332532B1 (en) Air conditioner
JP3671850B2 (en) Refrigeration cycle
US5953934A (en) Refrigerant circulating apparatus and method of assembling a refrigerant circuit
AU749518B2 (en) Refrigerating device
KR100743344B1 (en) Air conditioner
KR100658461B1 (en) Freezer
AU2013264087B2 (en) Refrigeration apparatus
JP3743861B2 (en) Refrigeration air conditioner
JP4331145B2 (en) Air conditioner
CN109515115B (en) Automobile air conditioning system using carbon dioxide as working medium and control method
JPWO2012104893A1 (en) Air conditioner
JP4905018B2 (en) Refrigeration equipment
WO2009150798A1 (en) Freezer device
US20100326125A1 (en) Refrigeration system
JP2012083010A (en) Refrigeration cycle device
JP2009287800A (en) Refrigerating device
JP2005214575A (en) Refrigerator
JP6758485B2 (en) Refrigeration cycle equipment
JP2006258418A (en) Refrigerating device
JP3866359B2 (en) Air conditioner
JP2001280763A (en) Refrigerating and air conditioning system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term