JPH10253101A - Air conditioner with external combustion type gas engine - Google Patents

Air conditioner with external combustion type gas engine

Info

Publication number
JPH10253101A
JPH10253101A JP7085097A JP7085097A JPH10253101A JP H10253101 A JPH10253101 A JP H10253101A JP 7085097 A JP7085097 A JP 7085097A JP 7085097 A JP7085097 A JP 7085097A JP H10253101 A JPH10253101 A JP H10253101A
Authority
JP
Japan
Prior art keywords
heat exchanger
medium
temperature
heat
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7085097A
Other languages
Japanese (ja)
Inventor
Hirokazu Izaki
博和 井崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7085097A priority Critical patent/JPH10253101A/en
Publication of JPH10253101A publication Critical patent/JPH10253101A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable both defrosting of an outdoor heat exchanger and comfort able feeling in an indoor heating to be attained concurrently. SOLUTION: In the case that a defrosting operation is carried out during a heating operation, a four-way valve 51 is changed over to cause a pipe passage 21 and a pipe passage 22 to be connected to each other and also a pipe passage 31 and a pipe passage 32 to be connected to each other and then a four-way valve 53 is changed over to cause a pipe passage 25 and a pipe passage 35 to be connected to each other and also a pipe passage 34 and a pipe passage 26 to be connected to each other. With such an arrangement as above, a closed circuit is constituted by middle temperature heat exchangers 5, 6, an indoor heat exchanger 301, a low temperature heat exchanger 8 and an outdoor heat exchanger 201. It is possible to supply liquid refrigerant having a higher temperature than that a attained during a heating operation to the outdoor heat exchanger 201 and in turn it is also possible to supply liquid refrigerant having a higher temperature than that attained during a cooling operation to the indoor heat exchanger 301.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷暖房装置や給湯
装置等の冷熱源として好適な外燃式熱ガス機関を用いた
空気調和装置に係り、詳しくは、除霜運転や媒体充填運
転を容易に行うことができるようにした空気調和装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using an external combustion type hot gas engine suitable as a cooling source for a cooling / heating device or a hot water supply device. The present invention relates to an air conditioner that can be used for air conditioning.

【0002】[0002]

【従来の技術】近年、冷暖房や給湯を行う装置として、
外燃式熱ガス機関たるヴェルミエサイクルを利用したヒ
ートポンプ(Vuilleumier Cycle Heat Pump 、以下「V
MHP」という)が開発されている。VMHPは、封入
媒体(作動ガス)としてのHe(ヘリウム)ガスの温度
分布変化のみにより圧力変化を引起し、ダイレクトに冷
暖房・給湯を可能とするものであり(例えば、特公平5
−65777号公報)、熱効率が高く、省エネに寄与す
ることができる。
2. Description of the Related Art In recent years, as a device for cooling, heating and hot water supply,
Vuilleumier Cycle Heat Pump (Vuilleumier Cycle Heat Pump)
MHP ”). The VMHP causes a pressure change only by a change in the temperature distribution of He (helium) gas as a sealing medium (working gas), thereby enabling direct cooling / heating / hot water supply (for example, Japanese Patent Publication No.
JP-A-65777), which has high thermal efficiency and can contribute to energy saving.

【0003】また、VMHPは熱搬送を行う媒体として
温水及び冷水を使用し、従来の一般的な空気調和装置と
異なり冷媒フロンを一切使用していないため、上述の省
エネと相俟って、環境に優しい次世代の空気調和装置で
あるといえる。VMHPは、装置内に放熱用熱源と吸熱
用熱源とを備え、前者の放熱用熱源と室内熱交換器とを
温水が循環する閉回路で連結する一方、後者の吸熱用熱
源と室外熱交換器とを冷水が循環する閉回路で連結する
ことにより、室内暖房を行う。そして、室内暖房を行う
ときには、上述の2つの閉回路を切替手段で選択的に切
り替える。すなわち、上述とは逆に、放熱用熱源と室外
熱交換器とで閉回路を構成し、また吸熱用電源と室内熱
交換器とによって閉回路を構成する。このようにVMH
Pは切替手段を切り替えることで、冷暖房運転の切替を
行っている。
Further, VMHP uses hot and cold water as a medium for heat transfer, and does not use refrigerant refrigerant at all unlike conventional air conditioners. It can be said that this is the next-generation air-conditioning device that is gentle on the environment. The VMHP includes a heat-dissipating heat source and a heat-absorbing heat source in the device, and connects the former heat-dissipating heat source and the indoor heat exchanger with a closed circuit through which hot water circulates, while the latter heat-absorbing heat source and the outdoor heat exchanger. Are connected by a closed circuit through which cold water circulates, thereby performing indoor heating. Then, when performing indoor heating, the above-mentioned two closed circuits are selectively switched by the switching means. That is, contrary to the above, a closed circuit is formed by the heat radiation source and the outdoor heat exchanger, and a closed circuit is formed by the heat absorbing power source and the indoor heat exchanger. Thus VMH
P switches the cooling / heating operation by switching the switching means.

【0004】上述のVMHPによると、暖房運転、冷房
運転のいずれの場合も、それぞれ独立に閉回路が形成さ
れるため、例えば、一方の室内熱交換器に温水を供給す
ると他方の室外熱交換器には冷水が、またこの逆に、一
方の室内熱交換器に冷水を供給すると他方の室外熱交換
器には温水が供給されてしまう。
According to the above-mentioned VMHP, a closed circuit is formed independently in each of the heating operation and the cooling operation. For example, when hot water is supplied to one indoor heat exchanger, the other outdoor heat exchanger is used. When cold water is supplied to one indoor heat exchanger, hot water is supplied to the other outdoor heat exchanger.

【0005】[0005]

【発明が解決しようとする課題】このため、除霜運転時
に第1の問題がある。即ち、除霜の方策として従来から
暖房運転中に一時的に冷房運転状態として、室外熱交換
器に温水を供給して除霜する方法や、暖房運転中の所定
時間ごとに、短時間の冷房運転を行うことで除霜する方
法が知られているが、これらは一時的ではあるにせよ、
室内に冷風が送り出されるため、ユーザにとって快適で
なくなるという問題がある。
Therefore, there is a first problem during the defrosting operation. That is, as a method of defrosting, conventionally, a method of temporarily setting the cooling operation state during the heating operation to supply hot water to the outdoor heat exchanger for defrosting, or for a predetermined time period during the heating operation, for a short time of cooling. There are known methods of defrosting by driving, but these are temporary,
Since the cold air is sent into the room, there is a problem that the user is not comfortable.

【0006】次に、第2の問題として、媒体回路に媒体
(上述では、水)を充填する場合、冷暖房のいずれの場
合も、2つの閉回路が形成されるため、2つの閉回路に
媒体を充填しなければならず、作業が煩雑になるという
問題がある。
Next, as a second problem, when the medium circuit is filled with a medium (in the above, water), in both cases of cooling and heating, two closed circuits are formed. Must be filled, and the operation becomes complicated.

【0007】そこで、本発明の第1の目的は、除霜運転
を良好に行えるようにし、第2の目的は、媒体回路中に
媒体を充填するための作業を簡素化できようにした外燃
式ガス機関を用いた空気調和装置を提供することにあ
る。
Accordingly, a first object of the present invention is to enable good defrosting operation, and a second object is to provide an external combustion system which can simplify the operation for filling a medium in a medium circuit. An object of the present invention is to provide an air conditioner using a gas engine.

【0008】[0008]

【課題を解決するための手段】請求項1に係る発明は、
外燃式熱ガス機関の放熱用熱源と吸熱用熱源とを媒体回
路を介して室内熱交換器と室外熱交換器とに接続し、前
記媒体回路には媒体流路切換弁を設け、この媒体流路切
換弁の切換により冷暖房運転を可能にした外燃式熱ガス
機関を用いた空気調和装置において、前記媒体流路切換
弁の切換により除霜運転時に放熱用熱源、室外熱交換
器、吸熱用熱源、及び室内熱交換器の順に媒体を循環さ
せる閉回路を備えたことを特徴とするものである。
The invention according to claim 1 is
A heat radiating heat source and a heat absorbing heat source of the external combustion type hot gas engine are connected to an indoor heat exchanger and an outdoor heat exchanger via a medium circuit, and the medium circuit is provided with a medium flow path switching valve. In an air conditioner using an external-combustion-type hot gas engine that enables cooling and heating operation by switching a flow path switching valve, a heat radiation source, an outdoor heat exchanger, and heat absorption during defrosting operation by switching the medium flow switching valve. A closed circuit for circulating the medium in the order of the heat source for use and the indoor heat exchanger is provided.

【0009】請求項1に係る発明によれば、除霜運転時
に、室外熱交換器に対しては、暖房運転時の冷水よりも
高い温度(ただし、冷房運転時の温水よりは低い温度)
の冷水を供給することができ、かつ室外熱交換器に対し
ては、暖房運転時の温水よりも低い温度(ただし、冷房
運転時の冷水よりも高い温度)の温水を供給することが
でき、除霜と暖房とを適宜に両立させることができる。
なお、ここで、適宜という意味は、従来に比べて除霜能
力については低下するが、その分暖房を犠牲にすること
がないといった意味である。
According to the first aspect of the invention, during the defrosting operation, the temperature of the outdoor heat exchanger is higher than that of the cold water during the heating operation (however, lower than the temperature of the hot water during the cooling operation).
Cold water can be supplied to the outdoor heat exchanger, and hot water having a lower temperature than the hot water during the heating operation (but higher than the cold water during the cooling operation) can be supplied to the outdoor heat exchanger. Defrosting and heating can be appropriately compatible.
Here, “appropriate” means that the defrosting ability is reduced as compared with the conventional case, but that heating is not sacrificed accordingly.

【0010】請求項2に係る発明は、外燃式熱ガス機関
の放熱用熱源と吸熱用熱源とを媒体回路を介して室内熱
交換器と室外熱交換器とに接続し、前記媒体回路には媒
体流路切換弁を設け、この媒体流路切換弁の切換により
冷暖房運転を可能にした外燃式熱ガス機関を用いた空気
調和装置において、前記媒体流路切換弁の切換により媒
体充填運転時に放熱用熱源、室内熱交換器、吸熱用熱
源、及び室外熱交換器の順に媒体を循環させる閉回路を
備え、この閉回路には媒体充填用タンクを接続したこと
を特徴とするものである。
According to a second aspect of the present invention, a heat radiating heat source and a heat absorbing heat source of an external combustion type heat gas engine are connected to an indoor heat exchanger and an outdoor heat exchanger via a medium circuit, and the medium circuit is connected to the heat circuit. Is provided with a medium flow path switching valve, and in an air conditioner using an external combustion type hot gas engine in which cooling and heating operation is enabled by switching the medium flow path switching valve, the medium charging operation is performed by switching the medium flow path switching valve. Sometimes, a closed circuit that circulates the medium in the order of a heat radiation source, an indoor heat exchanger, a heat absorption source, and an outdoor heat exchanger is provided, and a medium filling tank is connected to the closed circuit. .

【0011】請求項2に係る発明によれば、媒体流路切
換弁を切換ることにより、従来では2つの閉回路であっ
たものを、1つの閉回路として構成することができるの
で、閉回路への媒体に充填作業が容易となる。
According to the second aspect of the present invention, by switching the medium flow path switching valve, what has conventionally been two closed circuits can be configured as one closed circuit. Filling the medium into the medium becomes easy.

【0012】請求項3に係る発明は、請求項1または2
に記載のものにおいて、前記媒体流路切換弁は二つの四
方弁で構成されることを特徴とするものである。これに
よれば、構成が簡単であり、制御も簡素化される。
The invention according to claim 3 is the invention according to claim 1 or 2
Wherein the medium flow switching valve comprises two four-way valves. According to this, the configuration is simple and the control is also simplified.

【0013】[0013]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施の形態1)以下、本発明の実施形態を図1〜図4
に基づいて詳細に説明する。
(Embodiment 1) Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
It will be described in detail based on.

【0014】図1、図2、図3は、本発明に係る、外燃
式熱ガス機関を用いた空気調和装置(以下単に「空気調
和装置」という)100の回路図を示す。なお、これら
の図は、図1、図2、図3の順に、暖房運転時、冷房運
転時、除霜運転時の回路図を示すものである。また、図
4は、上述の空気調和装置に使用する外燃式ガス機関の
構成を示す一部破断斜視図である。
FIGS. 1, 2 and 3 are circuit diagrams of an air conditioner (hereinafter simply referred to as "air conditioner") 100 using an external combustion type hot gas engine according to the present invention. These figures show circuit diagrams during the heating operation, the cooling operation, and the defrosting operation in the order of FIG. 1, FIG. 2, and FIG. FIG. 4 is a partially cutaway perspective view showing a configuration of an external combustion gas engine used in the above-described air conditioner.

【0015】図1に示す空気調和装置100は、同図に
おいて破線で示すように、大きく3つのユニット、すな
わち、室外ユニット200と室内ユニット300とポン
プユニット400とに分けられている。室外ユニット2
00は、図1、図4に示すように、動力源として、ヴィ
ルミエサイクルの熱ガス機関1を備えている。熱ガス機
関1は、互いに直交配置された高温側ピストン2と低温
側ピストン3とを備えており、これらがヘリウム等の作
動ガスを封入した容器に収納されている。容器内部は高
温室12と、中温室13、14と、低温室15とに区画
されている。また、高温室12の端部には加熱器16が
設けられ、この加熱器16に対向するように加熱器16
を加熱するための燃焼器11が配設されている。
The air conditioner 100 shown in FIG. 1 is roughly divided into three units, ie, an outdoor unit 200, an indoor unit 300, and a pump unit 400, as indicated by broken lines in FIG. Outdoor unit 2
As shown in FIG. 1 and FIG. 4, 00 has a Vilmier cycle hot gas engine 1 as a power source. The hot gas engine 1 includes a high-temperature-side piston 2 and a low-temperature-side piston 3 arranged orthogonally to each other, and these are housed in a container in which a working gas such as helium is sealed. The inside of the container is divided into a high-temperature chamber 12, medium-temperature chambers 13 and 14, and a low-temperature chamber 15. A heater 16 is provided at an end of the high-temperature chamber 12, and the heater 16 is provided so as to face the heater 16.
Is provided with a combustor 11 for heating.

【0016】上述の高温側ピストン2と低温側ピストン
3とは、例えば前者の高温側ピストン2が上死点と下死
点との中間位置へ到達するときに、後者の低温側ピスト
ン3が上死点に位置するというように、互いに90°位
相がずれた状態で動作するように、クランク10によっ
て連結されている。このクランク10は、モータ9によ
って回転駆動される。高温側ピストン2と低温側ピスト
ン3とが動作すると、封入された作動ガスが、高温側に
おいては、高温再生器4を通過して高温室12と中温室
13との間を、また低温側においては、低温再生器7を
通過して中温室14と低温室15との間を移動するよう
に構成されている。そして、作動ガスは、高温再生器4
及び低温再生器7を通過する際に、加熱又は冷却される
ことになり、これにより、密閉容器内が昇圧又は減圧さ
れる。
The high temperature side piston 2 and the low temperature side piston 3 are connected to each other, for example, when the former high temperature side piston 2 reaches an intermediate position between the top dead center and the bottom dead center. They are connected by the crank 10 so as to operate in a state where they are 90 ° out of phase with each other, such as being located at a dead center. The crank 10 is driven to rotate by a motor 9. When the high-temperature-side piston 2 and the low-temperature-side piston 3 operate, the sealed working gas passes through the high-temperature regenerator 4 between the high-temperature chamber 12 and the medium-temperature chamber 13 on the high-temperature side, and on the low-temperature side. Is configured to move between the medium temperature chamber 14 and the low temperature chamber 15 through the low temperature regenerator 7. The working gas is supplied to the high-temperature regenerator 4
In addition, when passing through the low-temperature regenerator 7, heating or cooling is performed, whereby the pressure in the closed container is increased or reduced.

【0017】例えば、高温室12の作動ガスが高温再生
器4を通って中温室13に移動する際には、作動ガスの
熱エネルギが高温再生器4に蓄えられ、作動ガスの圧力
は低下する。逆に、作動ガスが中温室13から高温室1
2に環流する際には、高温再生器4に蓄えられた熱エネ
ルギが作動ガスに放出され、作動ガスの圧力は上昇す
る。また、低温室15の作動ガスが低温再生器7を通っ
て中温室14に移動する際には、作動ガスに低温再生器
7に熱エネルギが供給され、作動ガスの圧力も上昇す
る。逆に、作動ガスが中温室14から低温室15に環流
する際には、作動ガスの熱エネルギが低温再生器7に吸
収され、作動ガスの圧力は低下する。
For example, when the working gas in the high-temperature chamber 12 moves to the medium-temperature chamber 13 through the high-temperature regenerator 4, the heat energy of the working gas is stored in the high-temperature regenerator 4, and the pressure of the working gas decreases. . Conversely, the working gas flows from the medium temperature chamber 13 to the high temperature chamber 1
At the time of recirculation, the thermal energy stored in the high-temperature regenerator 4 is released to the working gas, and the pressure of the working gas rises. When the working gas in the low-temperature chamber 15 moves to the medium-temperature chamber 14 through the low-temperature regenerator 7, heat energy is supplied to the low-temperature regenerator 7, and the pressure of the working gas also increases. Conversely, when the working gas recirculates from the medium temperature chamber 14 to the low temperature chamber 15, the heat energy of the working gas is absorbed by the low temperature regenerator 7 and the pressure of the working gas decreases.

【0018】また、外部との熱エネルギのやり取りは、
中温室13、14と接続する中温熱交換器5、6及び低
温室15と接続する低温熱交換器8が行う。例えば、加
熱器16が高温室12の作動ガスに熱エネルギを与える
と、中温室13、14側の作動ガスが中温熱交換器5、
6を介して外部熱媒体に熱エネルギを放出するととも
に、低温室15側の作動ガスが低温熱交換器8を介して
外部熱媒体から熱エネルギを吸収する。
The exchange of heat energy with the outside is as follows:
The intermediate temperature heat exchangers 5 and 6 connected to the intermediate temperature chambers 13 and 14 and the low temperature heat exchanger 8 connected to the low temperature chamber 15 perform the operation. For example, when the heater 16 gives thermal energy to the working gas in the high temperature chamber 12, the working gas in the medium temperature chambers 13, 14 becomes
Heat energy is released to the external heat medium through the low-temperature heat exchanger 6 and the working gas on the low-temperature chamber 15 side absorbs heat energy from the external heat medium through the low-temperature heat exchanger 8.

【0019】すなわち、本実施の形態の熱ガス機関1で
は、低温熱交換器8と低温室15とが吸熱用熱源を構成
する一方で、中温熱交換器5、6と中温室13、14と
が放熱用熱源を構成し、熱ガス機関1の低温熱交換器
8、及び中温熱交換器5、6を用いた空気調和装置10
0が提供される。
That is, in the hot gas engine 1 of the present embodiment, the low-temperature heat exchanger 8 and the low-temperature chamber 15 constitute a heat source for absorbing heat, while the medium-temperature heat exchangers 5 and 6 and the medium-temperature chambers 13 and 14 Constitutes a heat source for heat radiation, and an air conditioner 10 using the low-temperature heat exchanger 8 and the medium-temperature heat exchangers 5 and 6 of the hot gas engine 1.
0 is provided.

【0020】室外ユニット200には、上述の熱ガス機
関1の外に、室外熱交換器201と室外ファン202と
を有する室外機203を備え、室内ユニット300は、
室内熱交換器301と室外ファン302とを有する室内
機303を備える。
The outdoor unit 200 includes an outdoor unit 203 having an outdoor heat exchanger 201 and an outdoor fan 202 in addition to the above-described hot gas engine 1.
An indoor unit 303 having an indoor heat exchanger 301 and an outdoor fan 302 is provided.

【0021】ポンプユニット400は、液冷媒(媒体、
本実施の形態では「水」)を溜めた貯留タンク401と
ポンプ(図示せず)とを備えている。
The pump unit 400 includes a liquid refrigerant (medium,
In the present embodiment, a storage tank 401 storing “water”) and a pump (not shown) are provided.

【0022】次に、熱ガス機関1と室外機203とを、
また熱ガス機関1と室内機303とを熱的に接続する管
路、及び流路を切り換える切換手段について説明する。
Next, the hot gas engine 1 and the outdoor unit 203 are
Further, a description will be given of a pipeline for thermally connecting the hot gas engine 1 and the indoor unit 303 and a switching unit for switching the flow channel.

【0023】図1に示す暖房運転時には、熱ガス機関1
の中温熱交換器5、6と室内機303とが接続され、か
つ、熱ガス機関1の低温熱交換器8と室外機203とが
接続される。暖房運転時の中温熱交換器5は、高温液冷
媒の往路としての管路21、四方弁(媒体供給切換手段
(媒体流路切換弁))51、管路22、貯留タンク40
1、管路23、逆止弁52、管路24を介して、室内熱
交換器301に接続され、室内熱交換器301は、高温
液冷媒の復路としての管路25、四方弁(媒体回収切換
手段(媒体流路切換弁))53、管路26を介して、中
温熱交換器6に接続されている。すなわち、中温熱交換
器5と高温液冷媒の往路と室内熱交換器301と高温液
冷媒の復路と中温熱交換器6とによって高温液冷媒が循
環する閉回路が構成される。なお、図1中の管路34と
貯留タンク401との間には、エア抜き管37が配管さ
れている。
During the heating operation shown in FIG.
Are connected to the indoor unit 303, and the low-temperature heat exchanger 8 of the hot gas engine 1 is connected to the outdoor unit 203. The medium temperature heat exchanger 5 during the heating operation includes a pipe 21 as a forward path of the high-temperature liquid refrigerant, a four-way valve (medium supply switching means (medium flow switching valve)) 51, a pipe 22, and a storage tank 40.
1, the pipe 23, the check valve 52, and the pipe 24 are connected to the indoor heat exchanger 301. The indoor heat exchanger 301 is connected to the pipe 25 as a return path of the high-temperature liquid refrigerant, and a four-way valve (medium recovery). The switching means (medium flow path switching valve) 53 is connected to the intermediate temperature heat exchanger 6 via a pipe line 26. That is, the medium-temperature heat exchanger 5, the outward path of the high-temperature liquid refrigerant, the indoor heat exchanger 301, the return path of the high-temperature liquid refrigerant, and the medium-temperature heat exchanger 6 constitute a closed circuit in which the high-temperature liquid refrigerant circulates. Note that an air vent pipe 37 is provided between the pipeline 34 and the storage tank 401 in FIG.

【0024】また、同じく暖房運転時の低温熱交換器8
は、低温液冷媒の往路としての管路31、四方弁51、
管路32、逆止弁54、管路33を介して、室外熱交換
器201に接続され、室外熱交換器201は、低温液冷
媒の復路としての管路34、四方弁53、管路35を介
して、低温熱交換器8に接続されている。すなわち、低
温熱交換器8と低温液冷媒の往路と室外熱交換器201
と高温液冷媒の復路とによって低温液冷媒が循環する閉
回路が構成される。
The low-temperature heat exchanger 8 during the heating operation is also used.
Is a pipeline 31, a four-way valve 51 as an outgoing path of the low-temperature liquid refrigerant,
The outdoor heat exchanger 201 is connected via a pipe 32, a check valve 54, and a pipe 33 to the outdoor heat exchanger 201. The outdoor heat exchanger 201 has a pipe 34, a four-way valve 53, and a pipe 35 as a return path of the low-temperature liquid refrigerant. Is connected to the low-temperature heat exchanger 8. That is, the low-temperature heat exchanger 8 and the outward path of the low-temperature liquid refrigerant and the outdoor heat exchanger 201
And the return path of the high-temperature liquid refrigerant form a closed circuit in which the low-temperature liquid refrigerant circulates.

【0025】次に、図2に示す冷房運転時には、四方弁
51、53を同図のように切り換える、すなわち、管路
21を管路32に接続するとともに管路31を管路22
に接続し、さらに管路25を管路35に接続するととも
に管路34を管路26に接続する、熱ガス機関1の中温
熱交換器5、6と室外機303とが接続され、かつ、熱
ガス機関1の低温熱交換器8と室内機203とが接続さ
れる。
Next, during the cooling operation shown in FIG. 2, the four-way valves 51 and 53 are switched as shown in FIG. 2, that is, the pipe 21 is connected to the pipe 32 and the pipe 31 is connected to the pipe 22.
And the intermediate temperature heat exchangers 5 and 6 of the hot gas engine 1 and the outdoor unit 303 which connect the pipe 25 to the pipe 35 and connect the pipe 34 to the pipe 26, and The low-temperature heat exchanger 8 of the hot gas engine 1 and the indoor unit 203 are connected.

【0026】冷房運転時の中温熱交換器5は、高温液冷
媒の往路としての管路21、四方弁51、管路32、逆
止弁54、管路33を介して、室外熱交換器201に接
続され、室外熱交換器201は、高温液冷媒の復路とし
ての管路34、四方弁53、管路26を介して、中温熱
交換器6に接続されている。すなわち、中温熱交換器5
と高温液冷媒の往路と室外熱交換器201と高温液冷媒
の復路と中温熱交換器6とによって高温液冷媒が循環す
る閉回路が構成される。
During the cooling operation, the intermediate-temperature heat exchanger 5 is connected to the outdoor heat exchanger 201 via the pipe 21, the four-way valve 51, the pipe 32, the check valve 54, and the pipe 33 as the outward path of the high-temperature liquid refrigerant. , And the outdoor heat exchanger 201 is connected to the intermediate-temperature heat exchanger 6 via a pipe 34, a four-way valve 53, and a pipe 26 as a return path of the high-temperature liquid refrigerant. That is, the medium temperature heat exchanger 5
, The outward path of the high-temperature liquid refrigerant, the outdoor heat exchanger 201, the return path of the high-temperature liquid refrigerant, and the medium-temperature heat exchanger 6 constitute a closed circuit in which the high-temperature liquid refrigerant circulates.

【0027】冷房運転時の低温熱交換器8は、低温液冷
媒の往路としての管路31、四方弁51、管路22、貯
留タンク401、管路23、逆止弁52、管路24を介
して、室内熱交換器301に接続され、室内熱交換器3
01は、低温液冷媒の復路としての管路25、四方弁5
3、管路35を介して、低温熱交換器8に接続されてい
る。すなわち、低温熱交換器8と低温液冷媒の往路と室
内熱交換器301と低温液冷媒の復路とによって低温液
冷媒が循環する閉回路が構成される。
In the cooling operation, the low-temperature heat exchanger 8 is connected to the pipe 31, the four-way valve 51, the pipe 22, the storage tank 401, the pipe 23, the check valve 52, and the pipe 24 as the outward path of the low-temperature liquid refrigerant. Is connected to the indoor heat exchanger 301 via the
01 is a conduit 25 as a return path of the low-temperature liquid refrigerant, a four-way valve 5
3. It is connected to the low-temperature heat exchanger 8 via the pipe line 35. That is, the low-temperature heat exchanger 8 and the outward path of the low-temperature liquid refrigerant, the indoor heat exchanger 301 and the return path of the low-temperature liquid refrigerant constitute a closed circuit in which the low-temperature liquid refrigerant circulates.

【0028】次に、本実施形態の特徴である、図3に示
す除霜運転時には、四方弁51、53を図示のように切
り換える。すなわち、管路21を管路22に接続すると
ともに管路31を管路32に接続し、さらに管路25を
管路35に接続するとともに管路34を管路26に接続
する。これにより、熱ガス機関1の中温熱交換器5と室
内機303と低温熱交換器8と室外機203と中温熱交
換器6とが全体として1つの閉回路を構成することにな
る。
Next, during the defrosting operation shown in FIG. 3, which is a feature of this embodiment, the four-way valves 51 and 53 are switched as shown in the figure. That is, the pipe 21 is connected to the pipe 22, the pipe 31 is connected to the pipe 32, the pipe 25 is connected to the pipe 35, and the pipe 34 is connected to the pipe 26. Thereby, the medium temperature heat exchanger 5, the indoor unit 303, the low temperature heat exchanger 8, the outdoor unit 203, and the medium temperature heat exchanger 6 of the hot gas engine 1 constitute one closed circuit as a whole.

【0029】すなわち、除霜運転時には以下のものが1
つの閉回路を構成する。中温熱交換器5から始まり、管
路21、四方弁51、管路22、貯留タンク401、管
路23、逆止弁52、管路24、室内熱交換器301、
管路25、使用弁53、管路35、低温熱交換器8、管
路31、四方弁51、管路32、逆止弁54、管路3
3、室外熱交換器201、管路34、四方弁53、管路
26、中温熱交換器6、そして管路36を介して中温熱
熱交換器5に戻る閉回路である。
That is, at the time of the defrosting operation,
Form one closed circuit. Starting from the medium temperature heat exchanger 5, the pipe 21, the four-way valve 51, the pipe 22, the storage tank 401, the pipe 23, the check valve 52, the pipe 24, the indoor heat exchanger 301,
Pipe 25, used valve 53, pipe 35, low-temperature heat exchanger 8, pipe 31, four-way valve 51, pipe 32, check valve 54, pipe 3
3. A closed circuit that returns to the intermediate-temperature heat exchanger 5 via the outdoor heat exchanger 201, the pipeline 34, the four-way valve 53, the pipeline 26, the intermediate-temperature heat exchanger 6, and the pipeline 36.

【0030】次に、暖房運転時、冷房運転時、及び除霜
運転時の動作について説明する。
Next, the operations during the heating operation, the cooling operation, and the defrosting operation will be described.

【0031】暖房運転時には、燃焼器11の点火により
熱ガス機関1が作動し、中温熱交換器5、6を介して作
動ガスの熱エネルギが液冷媒に吸収される一方で、低温
熱交換器8を介して液冷媒の熱エネルギが作動ガスに放
出されるが、この際には四方弁51、53が図1に示す
位置に切り換えられる。この場合、中温熱交換器5、6
で熱エネルギを吸収した液冷媒は、管路21、四方弁5
1、管路22、貯留タンク401、管路23、逆止弁5
2、管路24を経由して室内熱交換器301に流れる。
室内機303内では、比較的高温となった室内熱交換器
301に室内ファン302からの送風が行われ、室内に
温風が送り出される(暖房が行われる)一方で、室内に
熱エネルギを放出した液冷媒は管路25、四方弁53、
管路26を経由して中温熱交換器5、6に環流する。
During the heating operation, the hot gas engine 1 is operated by the ignition of the combustor 11, and the heat energy of the working gas is absorbed by the liquid refrigerant via the medium-temperature heat exchangers 5 and 6, while the low-temperature heat exchanger is The heat energy of the liquid refrigerant is released to the working gas via 8, and at this time, the four-way valves 51 and 53 are switched to the positions shown in FIG. In this case, the medium temperature heat exchangers 5, 6
The liquid refrigerant that has absorbed the heat energy in
1, pipeline 22, storage tank 401, pipeline 23, check valve 5
2. It flows to the indoor heat exchanger 301 via the pipe 24.
In the indoor unit 303, air is blown from the indoor fan 302 to the indoor heat exchanger 301, which has become relatively high temperature, and hot air is sent out (heating is performed) into the room, while heat energy is released into the room. The liquid refrigerant that has flowed through the pipe 25, the four-way valve 53,
It recirculates to the intermediate temperature heat exchangers 5 and 6 via the pipe 26.

【0032】低温熱交換器8で熱エネルギを放出した液
冷媒は、管路31、四方弁51、管路32、逆止弁5
4、管路33を通って室外熱交換器201に流れ、そこ
で室外ファン202からの送風により外気の熱エネルギ
を吸収した後、管路34、四方弁53、管路35を経由
して低温熱交換器8に環流する。
The liquid refrigerant that has released the heat energy in the low-temperature heat exchanger 8 is supplied to the pipe 31, the four-way valve 51, the pipe 32, the check valve 5
4. After flowing through the pipe 33 to the outdoor heat exchanger 201, where the heat from the outdoor fan 202 is absorbed by blowing air from the outdoor fan 202, the low-temperature heat is passed through the pipe 34, the four-way valve 53, and the pipe 35. Reflux to the exchanger 8.

【0033】冷房運転時には、燃焼器11の点火により
熱ガス機関1が作動し、中温熱交換器5、6を介して作
動ガスの熱エネルギが液冷媒に放出される一方で、低温
熱交換器8を介して液冷媒の熱エネルギが作動ガスに吸
収される。この際、四方弁51、53は図2で示す位置
に切り換えられており、低温熱交換器8で熱エネルギを
放出した液冷媒は、管路31、四方弁51、管路22、
貯留タンク401、管路23、逆止弁52、管路24を
経由して室内熱交換器301に流れる。室内機303内
では、低温となった室内熱交換器301に室内ファン3
02からの送風が行われ、室内に冷風が送り出され(冷
房が行われ)、室内気の熱エネルギを吸収した液冷媒は
管路25、四方弁53、管路35を経由して低温熱交換
器8に環流する。このとき、中温熱交換器5で熱エネル
ギを吸収した液冷媒は、管路21、四方弁51、管路3
2、逆止弁54、管路33を通過して室外熱交換器20
1に流れ、そこで室外ファン202からの送風により冷
却された後、管路34、四方弁53、管路26を通じて
中温熱交換器6に流れ、さらに管路36を通じて中温熱
交換器5に環流する。
During the cooling operation, the hot gas engine 1 is operated by the ignition of the combustor 11, and the heat energy of the working gas is released to the liquid refrigerant via the medium temperature heat exchangers 5 and 6, while the low temperature heat exchanger is The heat energy of the liquid refrigerant is absorbed by the working gas through 8. At this time, the four-way valves 51 and 53 are switched to the positions shown in FIG. 2, and the liquid refrigerant that has released heat energy in the low-temperature heat exchanger 8 is connected to the pipe 31, the four-way valve 51, the pipe 22,
It flows to the indoor heat exchanger 301 via the storage tank 401, the pipe 23, the check valve 52, and the pipe 24. In the indoor unit 303, the indoor fan 3 is
Blowing from 02 is performed, cool air is blown into the room (cooling is performed), and the liquid refrigerant that has absorbed the heat energy of the room air passes through the pipe 25, the four-way valve 53, and the pipe 35 to perform low-temperature heat exchange. Reflux to vessel 8. At this time, the liquid refrigerant having absorbed the heat energy in the intermediate temperature heat exchanger 5 is supplied to the pipe 21, the four-way valve 51, the pipe 3
2. After passing through the check valve 54 and the pipe 33, the outdoor heat exchanger 20
1, where it is cooled by the air blown from the outdoor fan 202, and then flows through the pipe 34, the four-way valve 53, and the pipe 26 to the intermediate-temperature heat exchanger 6, and further returns to the intermediate-temperature heat exchanger 5 through the pipe 36. .

【0034】除霜運転時には、燃焼器11の点火により
熱ガス機関1が作動し、中温熱交換器5、6を介して作
動ガスの熱エネルギが液冷媒に吸収される一方で、低温
熱交換器8を介して液冷媒の熱エネルギが作動ガスに放
出されるが、この際には四方弁51、53が図3に示す
位置に切り換えられる。この場合、中温熱交換器5、6
で熱エネルギを吸収した液冷媒は、管路21、四方弁5
1、管路22、貯留タンク401、管路23、逆止弁5
2、管路24を経由して室内熱交換器301に流れる。
室内機303内では、比較的高温となった室内熱交換器
301に室内ファン302からの送風が行われ、室内に
温風が送り出される(暖房が行われる)一方で、室内に
熱エネルギを放出した液冷媒は管路25、四方弁53、
管路35を経由して低温熱交換器8に送られる。
At the time of the defrosting operation, the hot gas engine 1 is operated by the ignition of the combustor 11, and the heat energy of the working gas is absorbed by the liquid refrigerant through the medium temperature heat exchangers 5 and 6, while the low temperature heat exchange is performed. The heat energy of the liquid refrigerant is released to the working gas via the vessel 8, and at this time, the four-way valves 51 and 53 are switched to the positions shown in FIG. In this case, the medium temperature heat exchangers 5, 6
The liquid refrigerant that has absorbed the heat energy in
1, pipeline 22, storage tank 401, pipeline 23, check valve 5
2. It flows to the indoor heat exchanger 301 via the pipe 24.
In the indoor unit 303, air is blown from the indoor fan 302 to the indoor heat exchanger 301, which has become relatively high temperature, and hot air is sent out (heating is performed) into the room, while heat energy is released into the room. The liquid refrigerant that has flowed through the pipe 25, the four-way valve 53,
It is sent to the low-temperature heat exchanger 8 via the pipe 35.

【0035】このとき、低温熱交換器8で熱エネルギを
放出した液冷媒は、管路31、四方弁51、管路32、
逆止弁54、管路33を通って室外熱交換器201に流
れ、そこで室外ファン202からの送風により外気の熱
エネルギを吸収した後、管路34、四方弁53、管路2
6を経由して中温熱交換器6に環流する。
At this time, the liquid refrigerant that has released heat energy in the low-temperature heat exchanger 8 is supplied to the pipe 31, the four-way valve 51, the pipe 32,
After flowing through the check valve 54 and the pipe 33 to the outdoor heat exchanger 201, where the heat energy of the outside air is absorbed by blowing air from the outdoor fan 202, the pipe 34, the four-way valve 53, and the pipe 2
The heat is returned to the intermediate temperature heat exchanger 6 via the heat exchanger 6.

【0036】すなわち、暖房運転時に室外熱交換器20
1に供給される液冷媒が、この室外熱交換器201と低
温熱交換器8との間を循環する液冷媒であるのに対し、
除霜運転時に室外熱交換機201に供給される液冷媒
は、室外熱交換器201と中温熱交換器6、5と室内熱
交換器301と低温熱交換器8との間を循環する液冷媒
であるので、室外熱交換器201供給される液冷媒は、
少なくともくとも暖房運転時よりも除霜運転時の方が高
温である。したがって、適度な除霜能力を発揮すること
ができる。ただし、この分、室内熱交換器301に供給
される液冷媒の温度は、暖房運転時よりも除霜運転時の
方が低くなる。
That is, during the heating operation, the outdoor heat exchanger 20
The liquid refrigerant supplied to 1 is a liquid refrigerant circulating between the outdoor heat exchanger 201 and the low-temperature heat exchanger 8,
The liquid refrigerant supplied to the outdoor heat exchanger 201 during the defrosting operation is a liquid refrigerant that circulates between the outdoor heat exchanger 201, the medium-temperature heat exchangers 6, 5, the indoor heat exchanger 301, and the low-temperature heat exchanger 8. Therefore, the liquid refrigerant supplied to the outdoor heat exchanger 201 is:
At least, the temperature is higher during the defrosting operation than during the heating operation. Therefore, an appropriate defrosting ability can be exhibited. However, the temperature of the liquid refrigerant supplied to the indoor heat exchanger 301 is lower during the defrosting operation than during the heating operation.

【0037】しかし、この場合においても従来のよう
に、暖房中に除霜のために一時的に冷房運転に切り換え
る場合と比較すると、室内熱交換器301に供給される
液冷媒の温度は、冷房運転時よりも除霜運転時の方が高
い。つまり、従来の除霜運転は冷房運転と同じであった
ため、暖房時の室内に冷気が送風されていたが、本実施
形態のような除霜運転を行うことにより、除霜運転時に
室内に送風される風は、暖房運転時の暖気よりも低温で
はあるものの、実用上、支承のない程度に暖かいものと
することができる。しかも、上述のように、除霜につい
てもこれを良好に行うことができる。
However, even in this case, the temperature of the liquid refrigerant supplied to the indoor heat exchanger 301 is lower than that in the conventional case where the operation is temporarily switched to the cooling operation for defrosting during heating. Higher during defrosting operation than during operation. That is, since the conventional defrosting operation was the same as the cooling operation, the cool air was blown into the room at the time of heating, but by performing the defrosting operation as in the present embodiment, the air was blown into the room at the time of the defrosting operation. Although the generated wind is lower in temperature than the warm air during the heating operation, it can be warmed to a practically unsupported degree. In addition, as described above, the defrosting can be performed well.

【0038】このように本実施の形態1(第1の発明)
によると、従来は相反するものとされていた、室外熱交
換器201の除霜と室内暖房の快適性とを、実用上問題
のない程度に両立させることが可能となった。しかもこ
れを実現するのに、特別に管路等を追加する必要がな
く、従来から装着されていた四方弁51、53の図3に
示す位置に切り換えるだけの簡単な動作で行うことがで
きる。
As described above, the first embodiment (first invention)
According to this, it has become possible to achieve both the defrosting of the outdoor heat exchanger 201 and the comfort of indoor heating, which have been conventionally contradictory, to such an extent that there is no practical problem. Moreover, in order to realize this, it is not necessary to add a special conduit or the like, and the operation can be performed by a simple operation of simply switching the conventionally mounted four-way valves 51 and 53 to the positions shown in FIG.

【0039】(実施の形態2)上述の実施の形態1(第
1の発明)では、除霜を行う目的で、四方弁51、53
を図3に示す位置に切り換えたが、本実施の形態2(第
2の発明)では、各熱交換器や管路に液冷媒を満たす目
的、いわゆる水張り運転をする目的で、上述の四方弁5
1、53を図3に示す位置(除霜運転時と同じ位置)に
切り換えるものである。空気調和装置100の始動時
に、各熱交換器(中温熱交換器5、6、低温熱交換器
8、室外熱交換器201、室内熱交換器301)、各管
路21〜36に液冷媒を充填させることが必要となる。
ポンプによって貯留タンク(媒体充填用タンク)401
内の液冷媒を流して充填作業を行う。
(Embodiment 2) In the above-described Embodiment 1 (first invention), the four-way valves 51 and 53 are used for the purpose of defrosting.
3 is switched to the position shown in FIG. 3. In the second embodiment (second invention), the above-described four-way valve is used for the purpose of filling each heat exchanger and the pipeline with the liquid refrigerant, that is, for performing the so-called water filling operation. 5
1 and 53 are switched to the positions shown in FIG. 3 (the same positions as in the defrosting operation). At the time of starting the air-conditioning apparatus 100, the liquid refrigerant is supplied to each heat exchanger (medium-temperature heat exchangers 5, 6, low-temperature heat exchanger 8, outdoor heat exchanger 201, and indoor heat exchanger 301) and each of the pipes 21 to 36. It is necessary to fill.
Storage tank (medium filling tank) 401 by pump
The filling operation is performed by flowing the liquid refrigerant inside.

【0040】従来は、暖房運転時と冷房運転時のいずれ
の場合も、実施の形態1で説明したように、所定の各熱
交換器及び所定の管路で、2つの閉回路が構成されるた
め、充填作業においては、まず、四方弁51、53を図
1に示す暖房運転用に設定して、中温熱交換器5、6、
室内熱交換器301、管路21〜26、及び管路36に
液冷媒を満たし、次に、四方弁51、53を図2に示す
冷房運転用に設定して、暖房運転用では満たすことので
きない残りの熱交換器や管路に液冷媒を満たす。このた
め、充填作業が煩雑であった。
Conventionally, in both cases of the heating operation and the cooling operation, as described in the first embodiment, two closed circuits are formed by the predetermined heat exchangers and the predetermined pipelines. Therefore, in the filling operation, first, the four-way valves 51 and 53 are set for the heating operation shown in FIG.
The indoor heat exchanger 301, the pipes 21 to 26, and the pipe 36 are filled with the liquid refrigerant, and then the four-way valves 51 and 53 are set for the cooling operation shown in FIG. Fill the remaining heat exchangers and pipelines that cannot be filled with liquid refrigerant. For this reason, the filling operation was complicated.

【0041】そこで、四方弁51、53を、図3に示す
除霜運転用の位置に切り換えて充填作業を行う。これに
よると、すべてに熱交換器、管路が1つの閉回路を構成
するので、1度の充填作業ですみ、作業性が向上する。
Then, the four-way valves 51 and 53 are switched to the positions for the defrosting operation shown in FIG. According to this, since all the heat exchangers and the pipeline constitute one closed circuit, only one filling operation is required, and workability is improved.

【0042】以上、第1の発明の一例として実施の形態
1について、また第2の発明の一例として実施の形態2
について説明したが、本発明は、これらに限定されるも
のではない。例えば、実施の形態1、実施の形態2で
は、媒体供給切換手段、媒体回収切換手段として、それ
ぞれ四方弁51、四方弁53を用いたが、これに代えて
例えば、電磁弁を使用することもできる。すなわち、媒
体供給切換手段、媒体回収切換手段としては、前述のよ
うに管路を有効に切り換えることができることを条件
に、他の任意の手段を用いることが可能である。
As described above, the first embodiment is described as an example of the first invention, and the second embodiment is described as an example of the second invention.
However, the present invention is not limited to these. For example, in the first and second embodiments, the four-way valve 51 and the four-way valve 53 are used as the medium supply switching means and the medium recovery switching means, respectively. However, for example, an electromagnetic valve may be used instead. it can. In other words, any other means can be used as the medium supply switching means and the medium recovery switching means, provided that the pipeline can be effectively switched as described above.

【0043】[0043]

【発明の効果】請求項1に記載の発明によると、暖房運
転中に除霜運転を行うに際し、媒体供給切換手段と媒体
回収切換手段とを切り換えて、放熱用熱源と室内熱交換
器と吸熱用熱源と室外熱交換器とにより閉回路を構成す
ることにより、室外熱交換器には暖房運転時よりも温度
の高い液冷媒を供給することができる一方、室内熱交換
器には冷房運転時よりも温度の高い液冷媒を供給するこ
とができるので、室外熱交換器の除霜と、室内暖房の快
適性とを両立させることが可能となる。
According to the first aspect of the present invention, when performing the defrosting operation during the heating operation, the medium supply switching means and the medium recovery switching means are switched, so that the heat radiating heat source, the indoor heat exchanger, the heat absorbing By forming a closed circuit with the heat source for use and the outdoor heat exchanger, the outdoor heat exchanger can be supplied with a liquid refrigerant having a higher temperature than during the heating operation, while the indoor heat exchanger can be supplied during the cooling operation. Since a liquid refrigerant having a higher temperature can be supplied, it is possible to achieve both defrosting of the outdoor heat exchanger and comfort of indoor heating.

【0044】請求項2に記載の発明によると、媒体供給
切換手段と媒体回収切換手段とを、除霜運転時の位置に
設定して、媒体の充填作業を行うことにより、従来2つ
の閉回路等に対する充填作業を必要であったのとは異な
り、1つの閉回路に対する充填作業ですみ、充填作業の
簡略化を図ることができる。
According to the second aspect of the present invention, the medium supply switching means and the medium recovery switching means are set to the positions during the defrosting operation, and the medium is filled with the medium. In contrast to the necessity of the filling operation for the closed circuit, etc., only the filling operation for one closed circuit is required, and the filling operation can be simplified.

【0045】請求項3に記載の発明によると、四方弁を
用いているので、配管の簡素化、並びに制御の簡素化を
図ることができる。
According to the third aspect of the invention, since the four-way valve is used, simplification of piping and simplification of control can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】外燃式熱ガス機関を用いた空気調和装置の暖房
運転時の構成を示す回路図。
FIG. 1 is a circuit diagram showing a configuration of an air conditioner using an external combustion type hot gas engine during a heating operation.

【図2】外燃式熱ガス機関を用いた空気調和装置の冷房
運転時の構成を示す回路図。
FIG. 2 is a circuit diagram showing a configuration of the air-conditioning apparatus using the external combustion type hot gas engine during a cooling operation.

【図3】外燃式熱ガス機関を用いた空気調和装置の除霜
運転時の構成を示す回路図。
FIG. 3 is a circuit diagram showing a configuration of an air conditioner using an external combustion type hot gas engine during a defrosting operation.

【図4】外燃式熱ガス機関の構造を示す一部破断斜視
図。
FIG. 4 is a partially cutaway perspective view showing the structure of an external combustion type hot gas engine.

【符号の説明】[Explanation of symbols]

1 外燃式熱ガス機関 5、6 放熱用熱源(中温熱交換器) 8 吸熱用熱源(低温熱交換器) 51 媒体流路切換弁(四方弁) 53 媒体流路切換弁(四方弁) 201 室外熱交換器 301 室内熱交換器 401 媒体充填用タンク DESCRIPTION OF SYMBOLS 1 External combustion type heat gas engine 5, 6 Heat radiation source (medium temperature heat exchanger) 8 Heat absorption source (low temperature heat exchanger) 51 Medium flow path switching valve (four-way valve) 53 Medium flow path switching valve (four-way valve) 201 Outdoor heat exchanger 301 Indoor heat exchanger 401 Medium filling tank

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 外燃式熱ガス機関の放熱用熱源と吸熱用
熱源とを媒体回路を介して室内熱交換器と室外熱交換器
とに接続し、前記媒体回路には媒体流路切換弁を設け、
この媒体流路切換弁の切換により冷暖房運転を可能にし
た外燃式熱ガス機関を用いた空気調和装置において、 前記媒体流路切換弁の切換により除霜運転時に放熱用熱
源、室外熱交換器、吸熱用熱源、及び室内熱交換器の順
に媒体を循環させる閉回路を備えたことを特徴とする空
気調和装置。
1. A heat-radiating heat source and a heat-absorbing heat source of an external combustion type heat gas engine are connected to an indoor heat exchanger and an outdoor heat exchanger via a medium circuit, and the medium circuit has a medium flow path switching valve. Is established,
In an air conditioner using an external combustion type heat gas engine that enables a cooling and heating operation by switching the medium flow path switching valve, a heat radiation source and an outdoor heat exchanger during defrosting operation by switching the medium flow switching valve An air conditioner comprising a closed circuit that circulates a medium in the order of a heat absorbing heat source and an indoor heat exchanger.
【請求項2】 外燃式熱ガス機関の放熱用熱源と吸熱用
熱源とを媒体回路を介して室内熱交換器と室外熱交換器
とに接続し、前記媒体回路には媒体流路切換弁を設け、
この媒体流路切換弁の切換により冷暖房運転を可能にし
た外燃式熱ガス機関を用いた空気調和装置において、 前記媒体流路切換弁の切換により媒体充填運転時に放熱
用熱源、室内熱交換器、吸熱用熱源、及び室外熱交換器
の順に媒体を循環させる閉回路を備え、この閉回路には
媒体充填用タンクを接続したことを特徴とする空気調和
装置。
2. A heat-dissipating heat source and a heat-absorbing heat source of an external combustion type hot gas engine are connected to an indoor heat exchanger and an outdoor heat exchanger via a medium circuit, and the medium circuit has a medium flow path switching valve. Is established,
In an air conditioner using an external combustion type hot gas engine which enables cooling and heating operation by switching the medium flow switching valve, a heat radiation heat source and an indoor heat exchanger during a medium filling operation by switching the medium flow switching valve An air conditioner comprising a closed circuit for circulating a medium in the order of a heat absorbing heat source and an outdoor heat exchanger, and a medium filling tank is connected to the closed circuit.
【請求項3】 前記媒体流路切換弁は二つの四方弁で構
成されることを特徴とする請求項1または2に記載の空
気調和装置。
3. The air conditioner according to claim 1, wherein the medium flow path switching valve includes two four-way valves.
JP7085097A 1997-03-07 1997-03-07 Air conditioner with external combustion type gas engine Pending JPH10253101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7085097A JPH10253101A (en) 1997-03-07 1997-03-07 Air conditioner with external combustion type gas engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7085097A JPH10253101A (en) 1997-03-07 1997-03-07 Air conditioner with external combustion type gas engine

Publications (1)

Publication Number Publication Date
JPH10253101A true JPH10253101A (en) 1998-09-25

Family

ID=13443464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7085097A Pending JPH10253101A (en) 1997-03-07 1997-03-07 Air conditioner with external combustion type gas engine

Country Status (1)

Country Link
JP (1) JPH10253101A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107084461A (en) * 2017-05-19 2017-08-22 刘宽 A kind of room temperature regulation room based on rotating heat conducting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107084461A (en) * 2017-05-19 2017-08-22 刘宽 A kind of room temperature regulation room based on rotating heat conducting
CN107084461B (en) * 2017-05-19 2019-10-22 新沂市棋盘工业集中区建设发展有限公司 A kind of room temperature adjusting room based on rotating heat conducting

Similar Documents

Publication Publication Date Title
JP3719444B1 (en) Compression heat pump system and cogeneration system
JP2004003801A (en) Refrigeration equipment using carbon dioxide as refrigerant
JPH0719636A (en) Vuilleumier heat pump air conditioner
JPH10253101A (en) Air conditioner with external combustion type gas engine
JPS6337856B2 (en)
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
JP2584415B2 (en) Cooling and heating water circulation system for Bulmeier heat pump
JP2653438B2 (en) Stirling heat engine
JPH08327180A (en) Heat pump type cooling or heating device
US12050037B2 (en) Air conditioning, heat pump and water heating system
CN219415055U (en) Heat pump air conditioning system
JPH0949649A (en) Heat pump type air conditioning apparatus
JP2906699B2 (en) Air conditioner
JPH0953841A (en) Heat pump type cooling-heating equipment
JPH0618122A (en) Hot water feeding, cooling and heating system
JP2779422B2 (en) Absorption chiller / heater
JPH0424474A (en) Heat driving type heat pump device
JPH0658578A (en) Air conditioner
JPS6113885Y2 (en)
JPH08303893A (en) Heat pump type air conditioning apparatus
JPH02251060A (en) Room cooling and heating hot water supply system
JPH0953843A (en) Heat pump type cooling-heating equipment
JPH0972575A (en) Heat pump type heating/cooling apparatus
JPH0953845A (en) Heat pump type cooling-heating equipment
JPH0949648A (en) Heat pump type air conditioning apparatus