JPH10251410A - Gas circulation feeder for solid phase polymerization apparatus and method for washing gas heat exchanger - Google Patents
Gas circulation feeder for solid phase polymerization apparatus and method for washing gas heat exchangerInfo
- Publication number
- JPH10251410A JPH10251410A JP5670397A JP5670397A JPH10251410A JP H10251410 A JPH10251410 A JP H10251410A JP 5670397 A JP5670397 A JP 5670397A JP 5670397 A JP5670397 A JP 5670397A JP H10251410 A JPH10251410 A JP H10251410A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- heat exchanger
- cleaning
- water
- gas heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Polyesters Or Polycarbonates (AREA)
- Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
- Polyamides (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ポリアミドやポリ
エステルなどの熱可塑性樹脂を連続固相重合させるため
に用いられる熱気流通気型連続固相重合装置に、不活性
ガスを循環供給させる装置として有用な装置に関するも
のである。さらに詳しくは、このガス循環供給装置の流
路途中の熱交換器の内部伝熱面の汚れを効率的に洗浄除
去する装置及び方法に関するものである。The present invention is useful as a device for circulating and supplying an inert gas to a hot-air flowing continuous solid-state polymerization apparatus used for continuous solid-state polymerization of thermoplastic resins such as polyamide and polyester. Device. More specifically, the present invention relates to an apparatus and a method for efficiently cleaning and removing dirt on an internal heat transfer surface of a heat exchanger in a flow passage of the gas circulation supply device.
【0002】[0002]
【従来の技術】通常、熱可塑性樹脂(例えばポリアミド
やポリエステル)の固相重合は、溶融重縮合反応によっ
て得られたチップを不活性気体の雰囲気下、融点以下の
温度で加熱することによって行われ、これにより重縮合
反応がさらに進み、高重合度のポリマーチップが得られ
る。この際、不活性ガスは予め固相重合反応に適切な温
度に加熱されて供給されチップ層を通気させられる。2. Description of the Related Art Generally, solid-phase polymerization of a thermoplastic resin (eg, polyamide or polyester) is performed by heating a chip obtained by a melt polycondensation reaction in an atmosphere of an inert gas at a temperature lower than a melting point. Thus, the polycondensation reaction further proceeds, and a polymer chip having a high degree of polymerization is obtained. At this time, the inert gas is heated and supplied to a temperature suitable for the solid-state polymerization reaction in advance, and the chip layer is aerated.
【0003】この固相重合反応とともに、反応副生物、
例えばポリアミドでは水分、ポリエステルでは水分およ
びグリコール類が発生し、これら反応副生物は固相重合
に供した不活性ガスとともに系外に排出される。不活性
ガスは一般に高価であるので排出された不活性ガスは精
製循環して再度供給する方法が通常とられる。Along with this solid-state polymerization reaction, a reaction by-product,
For example, water is generated in polyamide and water and glycols are generated in polyester, and these reaction by-products are discharged out of the system together with the inert gas used for the solid-phase polymerization. Since an inert gas is generally expensive, a method of purifying the exhausted inert gas and supplying it again is usually employed.
【0004】排出ガス中には反応副生物以外に、反応平
衡的に発生するモノマーやオリゴマーの類、例えば2量
体、3量体も含まれ、またそれ以外に例えばポリエチレ
ンテレフタレートではジエチレングリコール、ナイロン
66ではヘキサメチレンジアミンやアジピン酸などの副
次的に発生する物質も排出ガス中に同伴される。当然な
がら、チップ中に含まれるポリマーの微粉末もガスと共
に排出される。In the exhaust gas, besides reaction by-products, monomers and oligomers generated in a reaction equilibrium, for example, dimers and trimers are also contained. In addition, for example, in polyethylene terephthalate, diethylene glycol and nylon 66 are used. In the exhaust gas, by-products such as hexamethylenediamine and adipic acid are also entrained. Of course, the fine powder of the polymer contained in the chip is also discharged together with the gas.
【0005】このガス循環回路ではまず排出ガスをガス
冷却器によって冷却した後、精製によりガス中に含まれ
る副生物を除去する。その精製手段としては、副生物を
凝縮させて除去する方法や、吸着材を充填したカラムを
通過させて吸着除去する方法などの通常の手段が採用さ
れる。しかる後にガス加熱器によって所定温度まで再加
熱されて固相重合するチップ層へと送り込まれる。[0005] In this gas circulation circuit, exhaust gas is first cooled by a gas cooler, and then by-products contained in the gas are removed by purification. As the purification means, ordinary methods such as a method of condensing and removing by-products and a method of adsorbing and removing by passing through a column filled with an adsorbent are employed. Thereafter, the mixture is reheated to a predetermined temperature by a gas heater and fed into a chip layer to be solid-phase polymerized.
【0006】かかるガス循環回路内に設置されたガス冷
却器やガス加熱器(以下、ガス熱交換器又は熱交換器と
総称する)には、前述のように反応副生物やモノマーや
オリゴマー等を含む排出ガスが通過するので、その内部
の伝熱面ではスケール付着による汚染が経時的に進行
し、しばしば熱交換機能を失わせしめるに至る。特にガ
ス冷却器においてはその汚染が顕著であるので、伝熱面
の洗浄が日常運転途中においても不可欠な操作となって
いる。[0006] As described above, a gas cooler or a gas heater (hereinafter, generically referred to as a gas heat exchanger or a heat exchanger) installed in the gas circulation circuit contains reaction by-products, monomers and oligomers, and the like. Since the exhaust gas containing the gas passes through, contamination due to scale adhesion progresses with time on the internal heat transfer surface, often leading to loss of the heat exchange function. Particularly in a gas cooler, the contamination is remarkable, so that cleaning of the heat transfer surface is an indispensable operation even during daily operation.
【0007】従来、汚染された伝熱面の洗浄方法として
は、高圧ガスを伝熱面に吹き付けるガスパージ法やジェ
ット水による水洗法等が行われてきた。Conventionally, as a method of cleaning a contaminated heat transfer surface, a gas purge method in which high-pressure gas is blown onto the heat transfer surface, a water washing method using jet water, and the like have been used.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、従来の
洗浄手法では次のような問題点があり、さらに効率的な
洗浄手段が望まれていた。However, the conventional cleaning method has the following problems, and a more efficient cleaning means has been desired.
【0009】付着するスケールは、粉末の類とともにモ
ノマーやオリゴマー成分も含むので粘着性を有してい
る。このため、高圧ガスパージ洗浄法では付着したスケ
ールは殆ど除去できない。また、水洗法では粘着物の溶
解性が悪く完全に伝熱面を清浄にすることができない。
加えて、熱交換器としてはアルミニウムなどのフィンを
有する多管式熱交換器が一般に使用されるのでフィンの
間などは極めて洗浄が困難である。The scale to be adhered has tackiness because it contains monomer and oligomer components as well as powders. Therefore, the adhered scale can hardly be removed by the high pressure gas purge cleaning method. In addition, in the water washing method, the heat transfer surface cannot be completely cleaned due to poor solubility of the sticky substance.
In addition, since a multi-tube heat exchanger having fins of aluminum or the like is generally used as the heat exchanger, it is extremely difficult to clean the space between the fins.
【0010】このような問題点があるために、一度汚染
された熱交換器は洗浄を施しても新品装置と同様の熱交
換能力を復元することはできない。従って、新品熱交換
器の設計時には汚れ係数を過大に見積もっておく必要が
あり、熱交換器の設備費が高価になる。[0010] Due to such a problem, the heat exchanger once contaminated cannot be restored to the same heat exchange capacity as that of a new device even after being cleaned. Therefore, when designing a new heat exchanger, it is necessary to overestimate the dirt coefficient, and the equipment cost of the heat exchanger becomes high.
【0011】また、汚染された熱交換器を完全に洗浄す
るためには、使用中に汚染された熱交換器を解体して伝
熱面にブラシをかけて洗浄するという方法もあるが多大
な労力を要し、工業的には実施困難である。In order to completely clean the contaminated heat exchanger, there is a method of disassembling the contaminated heat exchanger during use and brushing the heat transfer surface for cleaning. It is labor intensive and difficult to implement industrially.
【0012】そこで、本発明は、上記のような従来技術
の問題点を解消し、ポリアミド、ポリエステルなどの熱
可塑性樹脂を固相重合する際に用いられる熱気流通気型
連続固相重合装置へとガスを循環供給する装置に配設さ
れた熱交換器の伝熱面の汚れを効率的に洗浄する装置お
よび方法を提供することを主な目的とする。Accordingly, the present invention solves the above-mentioned problems of the prior art, and provides a hot-air flowing continuous solid-state polymerization apparatus used for solid-state polymerization of a thermoplastic resin such as polyamide or polyester. A main object of the present invention is to provide an apparatus and a method for efficiently cleaning dirt on a heat transfer surface of a heat exchanger provided in an apparatus for circulating and supplying gas.
【0013】[0013]
【課題を解決するための手段】上述の目的を達成するた
め、本発明の固相重合装置用のガス循環供給装置は、固
相重合装置へ不活性ガスを循環供給させるためのガス循
環供給流路、及び該流路の途中に配設されたガス熱交換
器を有するガス循環供給装置において、前記ガス熱交換
器の下部に洗浄水供給口及び水蒸気供給口が、上部に溢
水用の洗浄水出口が、さらに、最下端部にドレン液排出
口がそれぞれ配設されていることを特徴とする。In order to achieve the above object, a gas circulating supply apparatus for a solid-state polymerization apparatus according to the present invention comprises a gas circulating supply flow for circulating and supplying an inert gas to the solid-state polymerization apparatus. In a gas circulation supply device having a passage and a gas heat exchanger provided in the middle of the passage, a washing water supply port and a steam supply port are provided at a lower portion of the gas heat exchanger, and a washing water for overflow is provided at an upper portion. The outlet is further provided with a drain outlet at the lowermost end.
【0014】また、そのガス熱交換器の内部洗浄方法
は、洗浄水供給口からの洗浄水の供給、水蒸気供給口か
らの水蒸気の供給、及び、洗浄水出口からの溢水の排出
を同時に行うことにより内壁面を70〜95℃の温水で
洗浄し、その後に、ドレン液排出口から洗浄用温水を排
出することを特徴とする。Further, the method of cleaning the inside of the gas heat exchanger is that the supply of cleaning water from the cleaning water supply port, the supply of steam from the steam supply port, and the discharge of overflow from the cleaning water outlet are performed simultaneously. The inner wall surface is washed with hot water at 70 to 95 ° C., and thereafter, the washing hot water is discharged from the drain liquid outlet.
【0015】[0015]
【発明の実施の形態】本発明の装置をその一実施態様を
示す図1及び図2に沿って説明する。図2は連続固相重
合装置及びそれに付設されたガス循環供給装置を示すフ
ロー図であり、また、図1はそれで用いられる熱交換器
の一実施態様を示す概略縦断面図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS An apparatus according to the present invention will be described with reference to FIGS. FIG. 2 is a flowchart showing a continuous solid-state polymerization apparatus and a gas circulation / supply apparatus attached thereto, and FIG. 1 is a schematic longitudinal sectional view showing one embodiment of a heat exchanger used in the apparatus.
【0016】熱可塑性樹脂、特にポリエステルやポリア
ミドのチップは、図2における矢印の流れのように、チ
ップ投入用ロータリーバルブ22によって計量されつつ
固相重合塔20へと供給され、固相重合塔内を下方へ向
かって通過し、チップ排出用ロータリーバルブ27によ
って排出される。固相重合塔の内部へはその下部から固
相重合に必要十分な温度に加熱された不活性ガスが供給
される。不活性ガスは塔内でチップと向流接触し、チッ
プは不活性ガスから熱を得て固相重合反応が行われる。
供給されるガス流量によってはチップとガスとを単に向
流接触させるだけでもよいし、塔内で流動化させてもよ
い。A thermoplastic resin, particularly a polyester or polyamide chip, is supplied to the solid-state polymerization tower 20 while being measured by a chip-input rotary valve 22 as shown by a flow of an arrow in FIG. , And is discharged by a chip discharge rotary valve 27. An inert gas heated to a temperature necessary and sufficient for solid-state polymerization is supplied from the lower part into the inside of the solid-state polymerization tower. The inert gas comes into countercurrent contact with the chips in the tower, and the chips obtain heat from the inert gas to perform a solid state polymerization reaction.
Depending on the flow rate of the supplied gas, the chip and the gas may simply be brought into countercurrent contact or may be fluidized in the column.
【0017】塔内へ供給される不活性ガスはブロワ26
によって圧力を得、ガス加熱器25によって加熱され
る。そして固相重合塔20内でチップと接触する際に、
固相重合によって発生する成分やポリマー粉末やオリゴ
マー成分などがガス中に取込まれ、これら成分を含む排
ガスとして固相重合塔20の上部から排出される。排出
されたガスは一旦ガス冷却器23によって冷却された後
に吸着塔24で、水分や固相重合反応によって副生する
物質等の不純物が吸着除去される。その後、不活性ガス
は、不活性ガス補給口28から補充されたガスとともに
ブロワ26で圧縮されて、ガス加熱器25によって所望
の温度まで昇温され、再度、固相重合塔へ供給される。The inert gas supplied into the tower is blower 26
And heated by the gas heater 25. And when it comes into contact with the chip in the solid-state polymerization tower 20,
Components generated by solid-state polymerization, polymer powder, oligomer components, and the like are taken into the gas, and are discharged from the upper portion of the solid-state polymerization tower 20 as exhaust gas containing these components. After the discharged gas is once cooled by the gas cooler 23, the adsorption tower 24 adsorbs and removes impurities such as moisture and substances by-produced by the solid-state polymerization reaction. Thereafter, the inert gas is compressed by the blower 26 together with the gas replenished from the inert gas supply port 28, heated to a desired temperature by the gas heater 25, and supplied again to the solid-state polymerization tower.
【0018】固相重合反応に用いる気体として不活性ガ
スが用いられる理由は、固相重合中に加えられる熱によ
って酸素と反応して樹脂を劣化させることを防止するた
めである。工業的には窒素ガスが最も広く用いられる。The reason why the inert gas is used as the gas used in the solid-state polymerization reaction is to prevent the resin added from reacting with oxygen due to the heat applied during the solid-state polymerization to deteriorate the resin. Industrially, nitrogen gas is most widely used.
【0019】このような連続固相重合装置に付設された
ガス冷却器23やガス加熱器25などのガス熱交換器の
内部伝熱面の汚れに対して効率的な洗浄が可能な設備の
代表的な例として図1の熱交換器がある。図1において
1はガス熱交換器(本体)であり、図2の装置における
ガス冷却器やガス加熱器に相当する。循環している不活
性ガスは不活性ガスの入り口2から熱交換器1内に導入
され、伝熱部12の表面で冷却あるいは加熱の操作(熱
交換)が加えられる。ガスは竪型熱交換器において上向
き、下向きのいずれの流れでもよく、また横型熱交換器
のようにガスの供給、出口部が水平であってもよい。熱
交換の後、ガスは不活性ガス出口3から排出される。Typical equipment capable of efficiently cleaning the internal heat transfer surface of a gas heat exchanger such as a gas cooler 23 or a gas heater 25 attached to such a continuous solid-state polymerization apparatus. A typical example is the heat exchanger of FIG. In FIG. 1, reference numeral 1 denotes a gas heat exchanger (main body), which corresponds to a gas cooler or a gas heater in the apparatus of FIG. The circulating inert gas is introduced into the heat exchanger 1 from the inert gas inlet 2, and a cooling or heating operation (heat exchange) is applied to the surface of the heat transfer unit 12. The gas may flow either upward or downward in the vertical heat exchanger, and the gas supply and outlet may be horizontal as in a horizontal heat exchanger. After the heat exchange, the gas is discharged from the inert gas outlet 3.
【0020】伝熱部12として、多管式熱交換器、フィ
ンチューブ付き多管式熱交換器、プレート式熱交換器な
どが用いられる。このようなガス熱交換器は熱媒又は冷
媒が熱媒/冷媒の入り口10から供給され、熱媒/冷媒
の出口11から排出される。As the heat transfer section 12, a multi-tube heat exchanger, a multi-tube heat exchanger with fin tubes, a plate heat exchanger, or the like is used. In such a gas heat exchanger, a heat medium or a refrigerant is supplied from an inlet 10 of the heat medium / refrigerant and discharged from an outlet 11 of the heat medium / refrigerant.
【0021】この熱交換器には内部洗浄用に、洗浄水供
給口4および水蒸気供給口6が下部に、溢水用の洗浄水
出口5が上部に、さらに、ドレン液排出口7が最下部に
それぞれ配設されている。さらに、上部に散水ノズル8
が配設されていることが好ましい。このガス熱交換器
は、その伝熱部に熱媒を供給すればガス加熱器として機
能し、また、冷媒を供給すればガス冷却器として機能す
る。In this heat exchanger, a washing water supply port 4 and a steam supply port 6 are provided at a lower part, a washing water outlet 5 for overflow is provided at an upper part, and a drain liquid discharge port 7 is provided at a lowermost part. Each is arranged. In addition, watering nozzle 8
Is preferably provided. This gas heat exchanger functions as a gas heater when a heat medium is supplied to the heat transfer section, and functions as a gas cooler when a refrigerant is supplied.
【0022】この熱交換器の内部の洗浄は、洗浄水供給
口4からの洗浄水の供給、及び、水蒸気供給口6からの
水蒸気の供給を同時に行うとともに、さらに、洗浄水出
口5からの溢水の排出を同時に行うことにより、内壁面
を70〜95℃の温水で洗浄し、その洗浄の終了後に、
ドレン液排出口7から洗浄用温水を排出することにより
行う。For cleaning the inside of the heat exchanger, the cleaning water is supplied from the cleaning water supply port 4 and the steam is supplied from the steam supply port 6 at the same time. Simultaneously, the inner wall surface is washed with warm water of 70 to 95 ° C., and after the washing is completed,
The cleaning is performed by discharging hot water for cleaning from the drain liquid discharge port 7.
【0023】具体的な洗浄の手順としては、まず、不活
性ガスの流れを止めるために不活性ガスの入り口2およ
び出口3の直近の弁を閉止する。さらに、熱媒または冷
媒の流れを止めるために熱媒/冷媒入り口10および出
口11の直近の弁を閉止する。熱交換器内に残留する熱
媒/冷媒がない方が洗浄に際し適切な温度が早く得られ
るので、熱媒/冷媒の供給または出口部に残留物の排出
弁(図示なし)を設けておくことが好ましい。しかる
後、洗浄水出口5の直近の弁(溢水弁13)を開き溢水
が可能なようにする。次いで、洗浄水供給口4の直近の
弁を開き熱交換器1内に通水する。洗浄水出口5に通じ
る配管途中に透視窓や漏斗などを設けておき熱交換器内
の洗浄水の水位を観察し、溢水することを確認した後
に、水蒸気供給口6の直近の弁を開き熱交換器内に蒸気
を導入する。As a specific cleaning procedure, first, the valves near the inlet 2 and the outlet 3 of the inert gas are closed to stop the flow of the inert gas. Further, the valves near the heat medium / refrigerant inlet 10 and the outlet 11 are closed to stop the flow of the heat medium / refrigerant. Since there is no heat medium / refrigerant remaining in the heat exchanger, an appropriate temperature can be obtained quickly during washing, a discharge valve (not shown) for supplying the heat medium / refrigerant or providing a residue at the outlet should be provided. Is preferred. Thereafter, the valve (the overflow valve 13) in the immediate vicinity of the washing water outlet 5 is opened to allow overflow. Next, the valve in the immediate vicinity of the washing water supply port 4 is opened to flow water into the heat exchanger 1. A see-through window or a funnel is provided in the middle of the pipe leading to the wash water outlet 5, and the level of the wash water in the heat exchanger is observed. Introduce steam into the exchanger.
【0024】内壁温度が70〜95℃になるように溢水
温度を測定しながら洗浄水供給量及び/又は水蒸気供給
量を調整する。これらの流体の比率は伝熱面の汚れの程
度によって最適化すればよい。汚れが激しい場合は通水
量を大きくする方が好ましい。この際、溢水温度を所定
値に維持するために水蒸気量も調整する。汚れが激しく
ない場合の通水量は溢水を維持できる程度の量でよい。
これらの操作は、手動によって行ってもよいし、また温
度調節計を含む自動弁を採用することによって設定され
たプログラムにしたがって自動的に行わせてもよい。The supply amount of cleaning water and / or the supply amount of steam are adjusted while measuring the overflow temperature so that the inner wall temperature becomes 70 to 95 ° C. The ratio of these fluids may be optimized according to the degree of contamination of the heat transfer surface. When the dirt is severe, it is preferable to increase the water flow. At this time, the steam amount is also adjusted to maintain the overflow temperature at a predetermined value. When the dirt is not severe, the amount of water passing may be an amount that can maintain the overflow.
These operations may be performed manually or automatically according to a program set by employing an automatic valve including a temperature controller.
【0025】洗浄温度は70〜95℃が好適である。洗
浄効果の点からは70℃以上がよく、95℃を越えても
洗浄効果としては特に問題ないが、作業上の安全性の点
からは、熱交換器内部の洗浄水が沸騰しない程度である
ことが好ましく、具体的には、高くても95℃程度がよ
い。かかる洗浄方法においては、水蒸気が直接、水に接
触するときに起きる水撃現象の利用によって、大きな洗
浄効果が発揮できる。この水撃現象は、水蒸気が直接、
水と接触する時に急激に起きる水蒸気の凝縮によって水
に振動を発生させる現象である。発生した振動は、伝熱
面を通過する熱水を揺り動かし、伝熱面に付着したスケ
ールを剥離させる上で大きな効果を発揮する。このた
め、水蒸気供給口6には、消音器などを設けない方が洗
浄効果を高める上で好ましい。The washing temperature is preferably from 70 to 95 ° C. 70 ° C. or higher is preferable from the viewpoint of the cleaning effect, and there is no particular problem as to the cleaning effect even when the temperature exceeds 95 ° C. However, from the viewpoint of operational safety, the cleaning water inside the heat exchanger does not boil. It is preferable that the temperature is specifically about 95 ° C. at the highest. In such a cleaning method, a large cleaning effect can be exhibited by utilizing a water hammer phenomenon that occurs when steam directly contacts water. In this water hammer phenomenon, water vapor is directly
This is a phenomenon in which water vibrates due to condensation of water vapor that occurs rapidly when it comes into contact with water. The generated vibration oscillates the hot water passing through the heat transfer surface, and exerts a great effect in detaching the scale attached to the heat transfer surface. For this reason, it is preferable not to provide a muffler or the like in the steam supply port 6 in order to enhance the cleaning effect.
【0026】溢水した洗浄水は、前記した有機物等を含
んでいるので然るべき廃水処理設備へ送られて処理され
る。溢水する洗浄水が、清浄になったら水蒸気の導入を
止める。ドレン液排出時には一時的に大量のドレン液が
排出されるので、排出ドレン液の温度が高い場合は、作
業環境上危険であるし、また、廃水処理設備に与える負
荷が過大となるので、熱交換器内部の水温を排水可能な
温度、通常60℃以下程度になるまで通水は続ける。そ
の後、洗浄水供給口4の直近の弁を閉止し、ドレン液排
出口7から熱交換器内部の洗浄用温水(ドレン液)を排
出する。Since the overflowed washing water contains the above-mentioned organic substances and the like, it is sent to an appropriate wastewater treatment facility for treatment. When the overflowing cleaning water becomes clean, stop introducing steam. When drain liquid is discharged, a large amount of drain liquid is temporarily discharged.If the temperature of the discharged drain liquid is high, it is dangerous in the work environment and the load on the wastewater treatment equipment will be excessive. The passage of water is continued until the water temperature inside the exchanger reaches a temperature at which the water can be drained, usually about 60 ° C. or less. Thereafter, the valve immediately adjacent to the cleaning water supply port 4 is closed, and the cleaning hot water (drain liquid) inside the heat exchanger is discharged from the drain liquid discharge port 7.
【0027】洗浄を終了する時期は、洗浄が十分である
かどうかを予め伝熱面の検査などで必要な熱水通過時間
を設定しておき、通常の作業では熱水通過時間で管理す
る方法が作業管理上好ましい。When the cleaning is completed, a method is set in advance to determine whether the cleaning is sufficient or not, by setting a necessary hot water passage time in a heat transfer surface inspection or the like, and managing the hot water passage time in a normal operation. Is preferable for work management.
【0028】熱交換器の洗浄作業において、最後に、熱
交換器内部の洗浄用温水をドレン液排出口7から排出さ
せるが、伝熱面から剥離されたスケールの全部を1回の
排水によって完全に洗浄水と共に流出することは難しい
ので、いわゆる濯ぎをすることが好ましい。その濯ぎを
効率的にかつ作業性を損なわずに実行するためには、熱
交換器内の上部に散水ノズル8を配設し、洗浄用温水の
排出の後に、散水ノズル8から新たな洗浄水を散水さ
せ、ドレン排出口から排出させることにより、内部を濯
ぎ洗浄することが好ましい。In the cleaning operation of the heat exchanger, finally, the hot water for cleaning inside the heat exchanger is discharged from the drain liquid discharge port 7, and the entire scale separated from the heat transfer surface is completely drained by one drainage. Since it is difficult to flow out together with the washing water, it is preferable to perform so-called rinsing. In order to carry out the rinsing efficiently and without impairing the workability, a sprinkling nozzle 8 is provided in the upper part of the heat exchanger, and after the washing hot water is discharged, new washing water is supplied from the sprinkling nozzle 8. It is preferable to rinse the inside by sprinkling water and discharging the water from the drain outlet.
【0029】その散水ノズル8は、図1に示すように伝
熱面の上方に設けておけばよい。散水ノズル8の形状は
細孔を有するノズルでもよいし、散水用に特別に設計さ
れたノズルであってもよい。散水ノズル8は伝熱面に濯
ぎ水が均一に注ぐことができるように、複数個を配設す
ることが好ましい。また、その配設位置は、熱交換器の
形状によって、最も適切な位置とすればよいが、伝熱部
および伝熱部を収納する容器部の全面に散水できる位置
が好ましい。The watering nozzle 8 may be provided above the heat transfer surface as shown in FIG. The shape of the watering nozzle 8 may be a nozzle having pores or a nozzle specially designed for watering. It is preferable to arrange a plurality of watering nozzles 8 so that rinsing water can be poured uniformly on the heat transfer surface. In addition, the disposition position may be the most appropriate position depending on the shape of the heat exchanger, but is preferably a position where water can be sprinkled on the entire surface of the heat transfer section and the container section storing the heat transfer section.
【0030】新たな洗浄水の散水による濯ぎは、ドレン
液排出口7からの排出液が清澄になった時点をもって完
了の目安とすればよい。濯ぎが完了した時に濯ぎ用水供
給弁14を閉止して散水を止める。そして、ドレン液の
排出が終わったらすぐにその排出弁を閉めずに放置して
おき、熱交換器内部を自然乾燥させる。このようにし
て、ガス熱交換器内部(特にその伝熱面)の洗浄は完了
する。The rinsing by spraying new washing water may be used as a measure of completion when the discharged liquid from the drain liquid outlet 7 becomes clear. When the rinsing is completed, the rinsing water supply valve 14 is closed to stop watering. Then, immediately after the drain liquid has been discharged, the drain valve is left closed without closing, and the inside of the heat exchanger is naturally dried. Thus, the cleaning of the inside of the gas heat exchanger (particularly, its heat transfer surface) is completed.
【0031】熱交換器内部の乾燥の後、熱交換器内部を
不活性ガスで置換する。このために、熱交換器本体ある
いは連接された不活性ガス配管の一部に置換用の不活性
ガス供給および排出弁を設けておくことが好ましい。特
に排出弁の側には排出ガス中の酸素濃度を測る酸素濃度
計を設置しておくことが、置換完了を正確に判断するた
めに好ましい。After drying the inside of the heat exchanger, the inside of the heat exchanger is replaced with an inert gas. For this purpose, it is preferable to provide a replacement inert gas supply and discharge valve in a part of the heat exchanger body or the connected inert gas pipe. In particular, it is preferable to provide an oxygen concentration meter for measuring the oxygen concentration in the exhaust gas on the side of the discharge valve in order to accurately determine the completion of the replacement.
【0032】さらに、本発明では、実質的に同機能を有
するガス熱交換器の複数をガス循環供給流路途中に並列
に配設させておくことが好ましい。この場合、予備の熱
交換器に切り替えれば、連続固相重合装置における固相
重合を中断することなく熱交換器内部を洗浄することが
可能となる。Further, in the present invention, it is preferable to arrange a plurality of gas heat exchangers having substantially the same function in parallel in the gas circulation supply flow path. In this case, by switching to a spare heat exchanger, it is possible to wash the inside of the heat exchanger without interrupting solid-state polymerization in the continuous solid-state polymerization apparatus.
【0033】即ち、熱交換器の伝熱面の汚れが顕著にな
って、洗浄を要する時期に達した時には、並列に配設さ
れた複数の熱交換器のうちの予備の熱交換器に切り替え
た後に、汚れた熱交換器の内部を洗浄すればよく、生産
継続しつつ洗浄できる点で工業生産上、優れた方法であ
る。That is, when the heat transfer surface of the heat exchanger becomes remarkably contaminated and the time for cleaning is reached, the heat exchanger is switched to a spare heat exchanger among a plurality of heat exchangers arranged in parallel. After the cleaning, the inside of the contaminated heat exchanger may be washed, which is an excellent method for industrial production in that the washing can be performed while the production is continued.
【0034】[0034]
[実施例1]図2に示す固相重合装置を用いてポリエチ
レンテレフタレートの固相重合を行った。即ち、液相重
合により得られた固有粘度(IV)0.70の重合体チ
ップを連続的に15トン/日の量で固相重合塔20に供
給し、固相重合塔20の下部から同じ流量で取り出し
た。固相重合塔20の下部のガス吹き込み部から220
℃に加熱された窒素ガスを供給して、流下するチップと
向流接触させ、15時間の滞留時間を経て重合体チップ
のIV値を1.20まで高め、固相重合されたチップを
連続的に得た。[Example 1] Solid phase polymerization of polyethylene terephthalate was carried out using the solid phase polymerization apparatus shown in FIG. That is, a polymer chip having an intrinsic viscosity (IV) of 0.70 obtained by liquid-phase polymerization is continuously supplied to the solid-state polymerization tower 20 at a rate of 15 tons / day, Removed at flow rate. 220 g from the gas blowing part at the bottom of the solid-state polymerization tower 20
A nitrogen gas heated to 0 ° C. is supplied to bring the chip into countercurrent contact with the flowing chip, and the IV value of the polymer chip is increased to 1.20 through a residence time of 15 hours, and the solid-phase polymerized chip is continuously cooled. I got it.
【0035】窒素ガスは、固相重合塔20内で固相重合
反応に供された後に塔上部から排出され、ガス冷却器2
3で25℃まで冷却され、次いで、合成ゼオライトを充
填した吸着筒24内で、ガス中に含まれる不純物、即
ち、固相重合反応によって発生する水分やエチレングリ
コール等、が吸着除去されて精製された。精製された窒
素ガスはブロワ26で圧縮されガス加熱器25で220
℃に加熱されて再び固相重合塔20に循環供給される。The nitrogen gas is subjected to a solid-state polymerization reaction in the solid-state polymerization tower 20 and then discharged from the upper part of the tower.
Then, the mixture is cooled to 25 ° C. in an adsorption column 24 filled with synthetic zeolite, and impurities contained in the gas, that is, water and ethylene glycol generated by a solid phase polymerization reaction are adsorbed and removed and purified. Was. The purified nitrogen gas is compressed by a blower 26 and
The mixture is heated to ℃ and is circulated to the solid-state polymerization tower 20 again.
【0036】この装置で14日間連続して運転を続けた
ところ、ガス冷却器23の出口の温度を25℃に維持で
きなくなったので、冷却器23の伝熱面の汚れが堆積し
たと判断して並列に配設された予備のガス冷却器23′
に切り替えた。When the apparatus was operated continuously for 14 days, the temperature at the outlet of the gas cooler 23 could not be maintained at 25 ° C., so it was judged that dirt on the heat transfer surface of the cooler 23 had accumulated. Spare gas coolers 23 'arranged in parallel
Switched to.
【0037】ガス冷却器23、23′の形状は図1に示
す構造で、伝熱部12にはアルミニウムフィン式の伝熱
管が配設してある。ガスのラインを切り替えて冷媒(冷
却水)を抜いてからそれまで継続使用していたガス冷却
器23を解体点検したところ伝熱管の表面およびガス冷
却器の本体内壁に粘着性の物質とともにポリマー微粉末
が一面に付着していた。ガス冷却器を再度組立てて上部
溢水弁13を開き、下部から洗浄水を供給した。溢水用
の配管から洗浄水が溢水することを確かめてから供給元
圧力が100KPaである飽和水蒸気を供給した。洗浄
水出口5での水温が昇温して90℃になった時点で水蒸
気供給バルブの開度を固定した。その状態を保って2時
間通水を続けた。最初は溢水した洗浄水は白濁を呈して
いた。2時間経過後に溢水が清澄になったことを確認し
た。そこで水蒸気の供給を止め、洗浄水のみを継続して
流し、溢水口での水温が60℃に低下したところで洗浄
水の供給を止めてドレン液排出弁15を開き、熱交換器
内のドレン液を排出した。The gas coolers 23 and 23 'have the structure shown in FIG. 1, and the heat transfer section 12 is provided with an aluminum fin type heat transfer tube. After the gas line was switched and the refrigerant (cooling water) was drained, the gas cooler 23 which had been continuously used was disassembled and inspected. The powder adhered to one side. The gas cooler was assembled again, the upper overflow valve 13 was opened, and the washing water was supplied from the lower part. After confirming that the washing water overflowed from the overflow pipe, saturated steam having a supply source pressure of 100 KPa was supplied. When the water temperature at the washing water outlet 5 rose to 90 ° C., the opening of the steam supply valve was fixed. The water was kept flowing for 2 hours while maintaining the state. At first, the overflowing washing water was cloudy. After 2 hours, it was confirmed that the overflow became clear. Therefore, the supply of water vapor was stopped, and only the washing water was continuously flown. When the water temperature at the overflow port dropped to 60 ° C., the supply of the washing water was stopped, and the drain liquid discharge valve 15 was opened to open the drain liquid in the heat exchanger. Was discharged.
【0038】その後、伝熱管の上方に配設した散水ノズ
ル8へ通じる濯ぎ用水供給弁14を開いて洗浄水を上部
から散水し、ガス冷却器内部を濯いだ。最初はドレン液
排出口7からの排水は白濁物が見られたが数分後に排水
は清澄になったので、濯ぎを終了した。Thereafter, the rinsing water supply valve 14 communicating with the water spray nozzle 8 disposed above the heat transfer tube was opened to spray the washing water from above, thereby rinsing the inside of the gas cooler. At first, white turbid matter was observed in the drain water from the drain liquid discharge port 7, but after a few minutes, the waste water became clear, so the rinsing was completed.
【0039】ガス冷却器の上部蓋を開き、内部を点検し
たところ伝熱面の表面および内壁に付着していた物質は
みられず清浄となっていた。再度、復元してガス冷却器
まわりの弁を閉止し、内部に窒素ガスを供給し、他方で
窒素ガスを排出して冷却器内を窒素置換した。When the upper lid of the gas cooler was opened and the inside was inspected, no substance adhered to the surface of the heat transfer surface and the inner wall was found, and it was clean. It was restored again, the valve around the gas cooler was closed, and nitrogen gas was supplied to the inside. On the other hand, nitrogen gas was discharged to replace the inside of the cooler with nitrogen.
【0040】[比較例1]実施例1と同様にポリエチレ
ンテレフタレートの固相重合を行ない、熱交換能力が低
下したので並列に設置した予備のガス冷却器と切り替え
た。使用していたガス冷却器の内部の汚れ状況は実施例
1と同様であった。Comparative Example 1 Solid-state polymerization of polyethylene terephthalate was carried out in the same manner as in Example 1, and the heat exchange capacity was reduced. Therefore, the gas cooler was replaced with a spare gas cooler installed in parallel. The state of contamination inside the gas cooler used was the same as in Example 1.
【0041】このガス冷却器を解体し、400KPaの
圧空を噴射してスケールを吹き飛ばそうとしたが粘着性
があるために付着物は殆ど脱落しなかった。次いで、常
温水を用いたジェット水によって内部洗浄したが、付着
物は少し脱落した程度で、内面は清浄にならなかった。The gas cooler was disassembled, and a pressure of 400 KPa was jetted to blow off the scale. However, the adhered substance hardly fell off due to the stickiness. Next, the inside was washed with jet water using room temperature water, but the deposits were slightly removed and the inner surface was not cleaned.
【0042】[実施例2]図2に示す固相重合装置を用
いてポリヘキサメチレンアジパミド(ナイロン66)の
固相重合を行った。即ち、液相重合により得られた硫酸
相対粘度(ηr )2.80の重合体チップを連続的に1
5トン/日の量で固相重合塔20に供給し、固相重合塔
20の下部から同じ流量で取り出した。固相重合塔20
の下部のガス吹き込み部から160℃に加熱された窒素
ガスを供給して、流下するチップと向流接触させ、20
時間の滞留時間を経て重合体チップのηr 値を3.60
まで高め、固相重合されたチップを連続的に得た。Example 2 Solid state polymerization of polyhexamethylene adipamide (nylon 66) was performed using the solid state polymerization apparatus shown in FIG. That is, a polymer chip having a relative viscosity of sulfuric acid (ηr) of 2.80 obtained by liquid-phase polymerization was continuously added to 1
The mixture was supplied to the solid-state polymerization tower 20 at an amount of 5 tons / day, and was taken out from the lower part of the solid-state polymerization tower 20 at the same flow rate. Solid phase polymerization tower 20
A nitrogen gas heated to 160 ° C. is supplied from a gas blowing part at a lower part of
After a retention time of 時間, the ηr value of the polymer chip was 3.60.
And solid-phase polymerized chips were continuously obtained.
【0043】窒素ガスは、固相重合塔20内で固相重合
反応に供された後に塔上部から排出され、ガス冷却器2
3で25℃まで冷却され、次いで、活性アルミナを充填
した吸着筒24内で、ガス中に含まれる不純物、即ち、
固相重合反応によって発生する水分等、が吸着除去され
て精製された。精製された窒素ガスはブロワ26で圧縮
されガス加熱器25で160℃に加熱されて再び固相重
合塔20に循環供給される。Nitrogen gas is discharged from the upper part of the solid-state polymerization tower 20 after being subjected to a solid-state polymerization reaction in the solid-state polymerization tower 20,
3 and then cooled to 25 ° C., and then, in an adsorption column 24 filled with activated alumina, impurities contained in the gas, that is,
Water and the like generated by the solid-state polymerization reaction were adsorbed and removed and purified. The purified nitrogen gas is compressed by the blower 26, heated to 160 ° C. by the gas heater 25, and circulated and supplied to the solid-state polymerization tower 20 again.
【0044】この装置で30日間連続して運転を続けた
ところ、ガス冷却器23の出口の温度を25℃に維持で
きなくなったので、冷却器23の伝熱面の汚れが堆積し
たと判断して並列に配設された予備のガス冷却器23′
に切り替えた。When the apparatus was operated continuously for 30 days, the temperature at the outlet of the gas cooler 23 could not be maintained at 25 ° C., so it was judged that dirt on the heat transfer surface of the cooler 23 had accumulated. Spare gas coolers 23 'arranged in parallel
Switched to.
【0045】用いたガス冷却器23、23′は実施例1
の場合と同じである。ガスのラインを切り替えて冷媒
(冷却水)を抜いてからそれまで継続使用していたガス
冷却器を解体点検したところ伝熱管の表面およびガス冷
却器の本体内壁に粘着性の物質とともにポリマー微粉末
が一面に付着していた。ガス冷却器を再度組立てて実施
例1と同様に内部洗浄したところ、伝熱管の表面および
内壁に付着していた物質は離脱し清浄となった。The gas coolers 23 and 23 'used in Example 1
Is the same as After switching the gas line to drain the refrigerant (cooling water) and disassembling and inspecting the gas cooler that had been used until then, the polymer fine powder together with the adhesive substance on the surface of the heat transfer tube and the inner wall of the gas cooler body Was attached to one side. When the gas cooler was reassembled and the inside was cleaned in the same manner as in Example 1, the substances adhering to the surface and the inner wall of the heat transfer tube were separated and cleaned.
【0046】[比較例2]実施例2と同様にポリヘキサ
メチレンアジパミド(ナイロン66)の固相重合を行な
い、熱交換能力が低下したので並列に設置した予備のガ
ス冷却器と切り替えた。使用していたガス冷却器の内部
の汚れ状況は実施例2と同様であった。[Comparative Example 2] Solid-state polymerization of polyhexamethylene adipamide (nylon 66) was carried out in the same manner as in Example 2, and the heat exchange capacity was reduced. . The state of contamination inside the gas cooler used was the same as in Example 2.
【0047】このガス冷却器を解体し、比較例1と同様
な手段で内部洗浄したが、比較例1の場合と同様に、内
面は清浄にならなかった。The gas cooler was disassembled, and the inside was cleaned by the same means as in Comparative Example 1. However, as in Comparative Example 1, the inner surface was not cleaned.
【0048】[0048]
【発明の効果】本発明によると、ポリアミドやポリエス
テルなどの熱可塑性樹脂を固相重合する際に用いられる
熱気流通気型連続固相重合装置へとガスを循環供給する
装置に配設された熱交換器の伝熱面の汚れを効率的に洗
浄することができる。According to the present invention, according to the present invention, there is provided a hot air circulation type solid-state polymerization apparatus used for solid-state polymerization of a thermoplastic resin such as polyamide or polyester. Dirt on the heat transfer surface of the exchanger can be efficiently cleaned.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明のガス循環供給装置及びそれが付設され
た連続固相重合装置を示すフロー図である。FIG. 1 is a flow chart showing a gas circulation supply device of the present invention and a continuous solid-state polymerization device provided with the same.
【図2】本発明の図1のガス循環供給装置で用いられる
熱交換器の一実施態様を示す概略縦断面図である。FIG. 2 is a schematic longitudinal sectional view showing one embodiment of a heat exchanger used in the gas circulation supply device of FIG. 1 of the present invention.
【符号の説明】 1:ガス熱交換器(ガス冷却器又はガス加熱器)、
4:洗浄水供給口、 5:洗浄水出口、 6:水蒸気供
給口、 7:ドレン液排出口、 8:散水ノズル、2
0:固相重合装置、 21:ガス循環供給流路[Description of Signs] 1: Gas heat exchanger (gas cooler or gas heater),
4: Wash water supply port, 5: Wash water outlet, 6: Steam supply port, 7: Drain liquid discharge port, 8: Spray nozzle, 2
0: solid-state polymerization apparatus, 21: gas circulation supply channel
Claims (7)
させるためのガス循環供給流路、及び該流路の途中に配
設されたガス熱交換器を有するガス循環供給装置におい
て、前記ガス熱交換器の下部に洗浄水供給口及び水蒸気
供給口が、上部に溢水用の洗浄水出口が、さらに、最下
端部にドレン液排出口がそれぞれ配設されていることを
特徴とする固相重合装置用のガス循環供給装置。1. A gas circulation supply device having a gas circulation supply flow path for circulating and supplying an inert gas to a solid-state polymerization apparatus, and a gas heat exchanger provided in the middle of the flow path, A solid phase characterized in that a washing water supply port and a steam supply port are provided at a lower portion of the heat exchanger, a washing water outlet for overflow is provided at an upper portion, and a drain liquid outlet is provided at a lowermost portion. Gas circulation supply device for polymerization equipment.
又はガス加熱器であることを特徴とする請求項1記載の
固相重合装置用のガス循環供給装置。2. The method according to claim 1, wherein the gas heat exchanger is a gas cooler and / or a gas cooler.
The gas circulation supply device for a solid-state polymerization device according to claim 1, wherein the gas circulation supply device is a gas heater.
の複数がガス循環供給流路途中に並列に配設されている
ことを特徴とする請求項1又は2記載の固相重合装置用
のガス循環供給装置。3. The solid-state polymerization apparatus according to claim 1, wherein a plurality of gas heat exchangers having substantially the same function are arranged in parallel in the gas circulation supply flow path. Gas circulation supply device.
ルがさらに配設されていることを特徴とする請求項1、
2又は3記載の固相重合装置用のガス循環供給装置。4. The gas heat exchanger according to claim 1, further comprising a watering nozzle at an upper part in the gas heat exchanger.
4. The gas circulation supply device for a solid-state polymerization device according to 2 or 3.
洗浄する際、洗浄水供給口からの洗浄水の供給、水蒸気
供給口からの水蒸気の供給、及び、洗浄水出口からの溢
水の排出を同時に行うことにより内壁面を70〜95℃
の温水で洗浄し、その後に、ドレン液排出口から洗浄用
温水を排出することを特徴とするガス熱交換器の洗浄方
法。5. When cleaning the inside of the gas heat exchanger according to claim 1, supply of cleaning water from a cleaning water supply port, supply of steam from a steam supply port, and overflow of the cleaning water outlet. The inner wall surface is 70-95 ° C by discharging simultaneously.
A method for cleaning a gas heat exchanger, comprising: cleaning with hot water, followed by discharging hot water for cleaning from a drain liquid outlet.
洗浄する際、並列に配設された複数のガス熱交換器を切
替えつつ洗浄することを特徴とするガス熱交換器の洗浄
方法。6. A method for cleaning a gas heat exchanger according to claim 3, wherein when cleaning the inside of the gas heat exchanger, the plurality of gas heat exchangers arranged in parallel are cleaned while switching. .
器内の上部の散水ノズルから洗浄水を散水させて濯ぎ洗
浄することを特徴とする請求項5又は6記載のガス熱交
換器の洗浄方法。7. The gas heat exchanger according to claim 5, wherein after the washing hot water is discharged, the washing water is sprinkled from an upper spray nozzle in the gas heat exchanger to perform rinsing. Cleaning method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5670397A JPH10251410A (en) | 1997-03-11 | 1997-03-11 | Gas circulation feeder for solid phase polymerization apparatus and method for washing gas heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5670397A JPH10251410A (en) | 1997-03-11 | 1997-03-11 | Gas circulation feeder for solid phase polymerization apparatus and method for washing gas heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10251410A true JPH10251410A (en) | 1998-09-22 |
Family
ID=13034839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5670397A Pending JPH10251410A (en) | 1997-03-11 | 1997-03-11 | Gas circulation feeder for solid phase polymerization apparatus and method for washing gas heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10251410A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010518187A (en) * | 2007-02-03 | 2010-05-27 | テイジン・アラミド・ビー.ブイ. | Method of dissolving aramid polymer in sulfuric acid using a twin screw kneader |
KR20190009665A (en) * | 2017-07-19 | 2019-01-29 | 주식회사 엘지화학 | Drying System Comprising Structure for Removing Fine Particle from Inside of Heat-Exchanger Tube |
-
1997
- 1997-03-11 JP JP5670397A patent/JPH10251410A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010518187A (en) * | 2007-02-03 | 2010-05-27 | テイジン・アラミド・ビー.ブイ. | Method of dissolving aramid polymer in sulfuric acid using a twin screw kneader |
KR20190009665A (en) * | 2017-07-19 | 2019-01-29 | 주식회사 엘지화학 | Drying System Comprising Structure for Removing Fine Particle from Inside of Heat-Exchanger Tube |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4841645A (en) | Vapor dryer | |
US9364785B2 (en) | Dehumidifying tower for exhaust gas | |
CN101318651B (en) | Apparatus and method for recovering carbon dioxide from flue gas using ammonia water | |
US7819942B2 (en) | Solid-phase polycondensation of polyester with process gas purification | |
CN1243214A (en) | System and method for delivering vapor-phase product to place for using | |
CN104955547A (en) | Method and system for anhydrous ammonia recovery | |
JP2006501062A (en) | Processes and plants for ultra-cleaning fumes or gases in the overall recovery of synthetic contaminants | |
CN101903072A (en) | Method of filtering crystallization slurry | |
KR980008295A (en) | Pre-cleaning method of multi washers and gas | |
JPH10251410A (en) | Gas circulation feeder for solid phase polymerization apparatus and method for washing gas heat exchanger | |
KR20190127037A (en) | A multi-stage heat exchange type drying system having a cleaning device | |
WO2009110549A1 (en) | Method and system for washing electronic component | |
US5144807A (en) | Vapor treatment facilities for petroleum storage tank cleaning | |
CN113521933A (en) | High-temperature waste gas washing device and implementation method thereof | |
RU2132340C1 (en) | METHOD OF SINGE-STEP SECONDARY CONDENSATION OF POLYCONDENSATES, IN PARTICULAR, POLYAMIDE FIELD: preparation of filaments for industrial yarn | |
US6361586B1 (en) | Process for cooling, demonomerizing and dedusting gas from a polymer drier | |
CN1067913C (en) | Process for cooling, demonomerizing and dedusting gas from polymer drier | |
CN113617153B (en) | High-efficient phase transition dust removal defogging system | |
KR101262842B1 (en) | Device for cooling solution in wet station | |
JP3275044B2 (en) | Drying processing equipment | |
CN221889581U (en) | Energy-saving acid mist washing tower | |
CN115382326A (en) | Waste gas washing heat energy recovery tower and recovery system using same | |
JPH06192865A (en) | Washing and drying device | |
CN115592925A (en) | Manufacturing process of sample bottle and manufactured workpiece thereof | |
JPH0634444B2 (en) | Printed circuit board cleaning method and apparatus |