JPH10248552A - Charging of cultivation raw material to rotary disk solid cultivation apparatus and charging apparatus - Google Patents

Charging of cultivation raw material to rotary disk solid cultivation apparatus and charging apparatus

Info

Publication number
JPH10248552A
JPH10248552A JP5912797A JP5912797A JPH10248552A JP H10248552 A JPH10248552 A JP H10248552A JP 5912797 A JP5912797 A JP 5912797A JP 5912797 A JP5912797 A JP 5912797A JP H10248552 A JPH10248552 A JP H10248552A
Authority
JP
Japan
Prior art keywords
culture
circular
bed
filling
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5912797A
Other languages
Japanese (ja)
Other versions
JP4033515B2 (en
Inventor
Yutaka Yasui
豊 安井
Akio Fujiwara
章夫 藤原
Yoshinari Fujiwara
善也 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujiwara Techno Art Co Ltd
Original Assignee
Fujiwara Techno Art Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujiwara Techno Art Co Ltd filed Critical Fujiwara Techno Art Co Ltd
Priority to JP05912797A priority Critical patent/JP4033515B2/en
Publication of JPH10248552A publication Critical patent/JPH10248552A/en
Application granted granted Critical
Publication of JP4033515B2 publication Critical patent/JP4033515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable easy and accurate control of a charging apparatus for uniformly charging a cultivation raw material to a cultivation bed in the form of multiple thin layers. SOLUTION: A cultivation raw material is charged on a circular cultivation bed 6 from a charging port 4 of a charging chute 3 to form a thin layer of the cultivation raw material on the circular cultivation bed 6. The thin layers are laminated to form a laminate of layers having a prescribed thickness. The charging chute 3 is composed of an arm 5 having a vertically opened charging port 4 at the front part and a swinging shaft 2 at the rear part. The charging port 4 is reciprocated along an arc orbit directing in nearly radial direction of the circular cultivation bed 6 by reciprocating the charging chute 3 in horizontal direction while rotating the circular cultivation bed 6. A definite amount of the cultivation raw material per unit time is vertically dropped from the charging port 4 to the surface of the cultivation bed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回転円盤固体培養
装置において、円形培養床へ培養原料を盛り込む培養原
料盛込方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for loading a culture material into a circular culture bed in a rotating disk solid culture device.

【0002】なお、以下本文中においては、回転円盤固
体培養装置を「培養装置」、円形培養床を「培養床」、そし
て培養原料盛込方法を「盛込方法」又は単に「方法」と略す
る。また、「落下位置」とは培養原料が落ち始める位置、
「盛込位置」とは落ちた原料が培養床に到達して堆積する
位置を指すものとする。
[0002] In the following text, the rotating disk solid culturing apparatus is abbreviated as "culturing apparatus", the circular culturing bed is referred to as "culturing bed", and the method for charging the culture material is referred to as "filling method" or simply "method". I do. Also, the “fall position” is the position where the culture material starts to fall,
The “loading position” indicates a position where the dropped raw material reaches the culture bed and is deposited.

【0003】[0003]

【従来の技術】培養装置では、培養床へ培養原料を所定
厚で均一に盛り込むことが重要で、不均一な盛込は品質
を低下させる原因となる。従来は、盛り込んだ結果の堆
積層が所定厚かつ均一であればよいとの考えから、仮想
的に堆積方向又は半径方向に区分した培養床の各区分へ
培養原料を少量ずつ堆積させる、といった概ね共通のア
プローチを異なる方法で実現するものが多い。実公昭53
-42640号、特開平3-240481号、特公平7-108214号、特開
平6-327466号等はその例である。
2. Description of the Related Art In a culturing apparatus, it is important to uniformly incorporate a culture material into a culture bed at a predetermined thickness, and non-uniform loading causes deterioration in quality. Conventionally, from the idea that the deposited layer as a result of embedding should be a predetermined thickness and uniform, a small amount of culture material is deposited little by little on each section of the culture bed virtually divided in the deposition direction or radial direction. Many implement a common approach in different ways. 53
JP-A-42640, JP-A-3-240481, JP-B-7-108214, JP-A-6-327466 are examples thereof.

【0004】[0004]

【発明が解決しようとする課題】実公昭53-42640号は、
回転する培養床の内外周で異なる周速に反比例した速度
で半径方向に進退する搬送機(例示はコンベア)の先端か
ら培養原料を均一に盛り込むようにしている。これは、
半径方向を一体に前後動するコンベアの先端(盛込口に
相当)と回転する培養床とが単位時間当たりに交差する
微小面積を搬送機の軌道上で一定にすることで、各微小
面積に盛り込む培養原料が等しければ所定厚の堆積層が
形成できるとするものであり、コンベアから盛り込む培
養原料を単位時間当たり定量とするため、コンベア上の
培養原料の層厚を一定にしなければならない。コンベア
を一体として培養床の半径方向で前後動させるために運
用空間が非常に大きくなるほか、前後動するコンベア上
の培養原料の層厚を一定にする必要からコンベアの駆動
装置及び制御機構が複雑になり、製造、運用又は保守コ
ストが高くなる問題がある。
[Problems to be solved by the invention] Japanese Utility Model Publication No. 53-42640
The culture material is uniformly loaded from the tip of a conveyor (eg, a conveyor) that moves in the radial direction at a speed inversely proportional to a different peripheral speed on the inner and outer peripheries of the rotating culture bed. this is,
By keeping the micro area where the tip of the conveyor (corresponding to the filling port) that moves back and forth integrally in the radial direction and the rotating culture bed per unit time constant on the orbit of the transporter, It is assumed that if the culturing raw materials to be included are equal, a deposited layer having a predetermined thickness can be formed. In order to quantitatively determine the culturing raw materials to be included from the conveyor per unit time, the layer thickness of the culturing raw materials on the conveyor must be constant. The operation space becomes extremely large because the conveyor is moved back and forth in the radial direction of the culture bed, and the conveyor drive unit and control mechanism are complicated because the layer thickness of the culture material on the moving back and forth conveyor must be constant. This leads to a problem that manufacturing, operation or maintenance costs increase.

【0005】特開平3-240481号は、回転する培養床の半
径方向に配した搬送機に往復移動する分配機を設けて、
この分配機が搬送機から培養床上へ培養原料を押し出す
ように落下させて形成する薄層を順次積層していく。こ
れは、培養床上に位置固定した搬送機上の培養原料を分
配機が移動しながら培養床へ落とすことで、できる限り
落下位置と盛込位置との一致を図った方法である。しか
し、培養原料の盛込量は、分配機の移動速度と搬送機上
の培養原料の搬送速度との相対速度に比例するため、分
配機の前進時と後進時とでは盛込量が異なり、所定の盛
込量を得ることが難しく、堆積層表面に凹凸を発生させ
やすい欠点があった。
[0005] Japanese Patent Application Laid-Open No. 3-240481 discloses a method in which a reciprocating distributor is provided on a transporter arranged in the radial direction of a rotating culture bed,
The dispenser drops the culture raw material from the carrier onto the culture bed so as to extrude the culture material, and successively laminates the thin layers formed. This is a method in which the dropping position and the filling position are matched as much as possible by dropping the culture material on the carrier fixed on the culture bed to the culture bed while moving the distributor. However, the loading amount of the culture material is proportional to the relative speed between the moving speed of the distributor and the transport speed of the culture material on the transporter. There is a disadvantage that it is difficult to obtain a predetermined filling amount, and irregularities are easily generated on the surface of the deposited layer.

【0006】特公平7-108214号は、回転する培養床を面
積のほぼ等しい同心円周からなるドーナツ状区画に仮想
的に分割し、各区画ごとに単位時間当たり定量の培養原
料を盛込装置から落として所定厚の堆積層を形成してい
く方法である。区画毎に定めた培養原料を落とすため、
各区画それぞれの堆積層内における量的な均一性は確保
されるが、同一区画内において堆積層の表面が半径方向
に傾斜する上、区画毎の培養原料の温度差が大きくなっ
てしまう欠点があった。
[0007] Japanese Patent Publication No. Hei 7-108214 discloses that a rotating culture bed is virtually divided into donut-shaped sections each having a concentric circumference having almost the same area, and a fixed amount of culture material per unit time is supplied from a filling apparatus to each section. This is a method of forming a deposited layer having a predetermined thickness by dropping. In order to drop the culture material specified for each section,
Although the quantitative uniformity in the sedimentary layer of each section is ensured, the disadvantage is that the surface of the sedimentary layer is inclined in the radial direction in the same section and the temperature difference of the culture material in each section becomes large. there were.

【0007】特開平6-327466号は、回転する培養床の半
径方向に進退する移動コンベアからこの搬送機の現在位
置に当たる培養床の周速に対応した量の培養原料を落と
して薄層を形成し、この薄層を積層する方法である。こ
れは、移動コンベアの進退速度を可変するのではなく、
培養原料が自然落下する落下位置と盛込位置とのずれを
考慮して移動コンベアのベルトスピードを加減し、培養
原料の盛込量を可変するものであり、均一な所定厚の堆
積層を得ることができる。しかし、移動コンベアの進退
方向又は速度やベルトスピードの加減量と培養原料の盛
込量とが相互に関連し、制御に要する計算が複雑になる
問題があった。
[0007] Japanese Patent Application Laid-Open No. Hei 6-327466 discloses a method in which a thin layer is formed by dropping a culture material in an amount corresponding to the peripheral speed of a culture bed corresponding to the current position of the transfer machine from a moving conveyor which advances and retreats in a radial direction of a rotating culture bed. Then, this thin layer is laminated. This does not vary the moving speed of the moving conveyor,
Considering the deviation between the drop position where the culture material falls naturally and the loading position, the belt speed of the moving conveyor is adjusted to change the loading amount of the culture material, and a uniform predetermined thickness of the deposited layer is obtained. be able to. However, there is a problem in that the moving direction of the moving conveyor or the speed of the moving conveyor or the adjustment of the belt speed is interrelated with the loading amount of the culture material, and the calculation required for the control becomes complicated.

【0008】そこで、以下の点に留意し、上記各問題を
解決することにした。第一に、上記搬送機(盛込コンベ
ア、盛込スクリューや盛込シュート等)を含む盛込手段
(培養原料を搬送して盛込口から培養床へ放出する手段
を指す、以下同じ)から単位時間当たり定量の培養原料
を盛り込み、装置全体の制御を容易にする。第二に、盛
込時間を短縮するため、盛込手段を位置変位させつつ同
時に培養床も回転させて培養原料を盛り込むこととする
が、培養原料の落下位置と盛込位置とのずれによる影響
を除去したい。更に、第三として装置構成が簡単かつ小
型化して、できるだけ設置面積を少なくする。本発明
は、以上を踏まえて、特に盛込口について検討したもの
である。
Therefore, the following points have been noted and the above-mentioned problems have been solved. First, charging means including the above-described conveyor (a charging conveyor, a charging screw, a charging chute, etc.)
(This means a means for transporting the culture material and discharging it from the filling port to the culture bed. The same applies hereinafter.) A fixed amount of the culture material is incorporated per unit time to facilitate the control of the entire apparatus. Second, in order to shorten the loading time, the culture material is loaded by simultaneously rotating the culture bed while displacing the loading means, but the influence of the difference between the falling position of the culture material and the loading position. Want to remove. Third, the apparatus configuration is simple and small, and the installation area is reduced as much as possible. In view of the above, the present invention has particularly studied a filling port.

【0009】[0009]

【課題を解決するための手段】検討の結果開発したもの
が、盛込手段の盛込口から培養床上へ培養原料を盛り込
んで該培養床上に培養原料の薄層を形成し、該薄層を積
層して所定厚の堆積層を形成する方法であって、盛込手
段は鉛直方向に開口した盛込口を前方に設け、かつ揺動
軸を後方に配した搬送経路からなり、培養床を回転させ
つつ盛込手段を水平方向に揺動させることにより盛込口
を培養床上の略半径方向の円弧軌道上で往復移動させ、
この盛込口から単位時間当たり定量の培養原料を鉛直方
向に落として盛り込む回転円盤固体培養装置の培養原料
盛込方法である。なお、本発明における揺動とは、揺動
軸に対して盛込口が円弧軌道を描いて反覆回動すること
を意味し、必ずしも盛込手段が揺動軸と盛込口とを連結
している必要はなく、例えば盛込口に対して揺動軸が仮
想的なものであってもよい。
Means for solving the problem The thing developed as a result of the study is that a culture material is poured into the culture bed from the filling port of the filling means, a thin layer of the culture material is formed on the culture bed, and the thin layer is formed. A method of laminating to form a sedimentary layer of a predetermined thickness, wherein the filling means is provided with a vertically-opened filling port at the front, and comprises a transport path having a swinging shaft arranged rearward, and the culture bed is formed. The loading port is reciprocated on a substantially radial circular orbit on the culture bed by swinging the loading means in the horizontal direction while rotating,
This is a method for loading a culture material of a rotating disk solid culture device in which a fixed amount of a culture material is dropped in a vertical direction per unit time from the loading port and is loaded. Note that the swing in the present invention means that the filling port rotates repeatedly in a circular orbit with respect to the swing axis, and the filling means does not necessarily connect the swing shaft and the filling port. It is not necessary that the swing axis is virtual with respect to the filling port, for example.

【0010】培養原料を単位時間当たり定量に落として
盛り込むことから、盛込口の移動速度を培養床の周速に
反比例させて往路及び復路で形成する層の厚みを一定に
する場合を基本とするが、例えば、往路では盛込口の移
動速度を等速とし、往路で盛り込んだ培養原料の前記基
本に対する過不足を補うように復路での盛込口の移動速
度を加減してもよい。薄層は培養床全面に対して形成し
たものを積層するが、この薄層を形成する際の培養床の
回転数と盛込口の往復回数との組合せは自由である。通
常は、培養床を1回転させる間に盛込口を数往復させて
薄層1層を形成し、培養床が数回転する間に薄層多段の
盛込作業を完遂する。
[0010] Since the cultivation raw material is reduced in a fixed amount per unit time and incorporated, the moving speed of the injection port is inversely proportional to the peripheral speed of the culture bed, and the thickness of the layers formed on the outward path and the return path is made constant. However, for example, the moving speed of the filling port on the outward path may be constant, and the moving speed of the filling port on the return path may be adjusted so as to compensate for the excess or deficiency of the culture material loaded on the outward path with respect to the basic. The thin layer is laminated on the entire surface of the culture bed, and the combination of the number of rotations of the culture bed and the number of reciprocations of the filling port in forming the thin layer is free. Usually, the feeding port is reciprocated several times during one rotation of the culture bed to form one thin layer, and the multi-layer feeding operation is completed during several rotations of the culture bed.

【0011】この盛込方法では、盛込口の軌道を円弧軌
道とすることにより、盛込手段の稼働時における占有面
積を減少させる。特に、後述する盛込シュートを用いた
盛込装置に見られるように、揺動軸を培養室壁面近傍に
配すると盛込手段のほとんどが培養室内に納まるため、
培養床とは別に盛込装置としての設置面積をほとんど必
要としない利点がある。また、円弧軌道であるにも拘わ
らず、円弧の半径を大きくして揺動角度を小さくすれ
ば、円弧軌道≒直線軌道とみなすことができ、盛込口は
直線的に往復するとして制御変数の計算も簡単になる。
そして、水平方向に搬送されてきた培養原料を鉛直方向
へ方向転換して落とす、好ましくは前記方向転換に加え
て鉛直方向の力を原料に付加して鉛直方向に原料を落と
して培養床へ盛り込むことで、従来の盛込装置に見られ
た搬送機の進退速度等による落下位置と盛込位置との不
一致を解消する。
In this filling method, the occupied area of the filling means during operation is reduced by making the trajectory of the filling port an arc-shaped trajectory. In particular, as seen in a setting device using a setting chute described later, when the swinging shaft is arranged near the wall of the culture room, most of the setting means is accommodated in the culture room,
There is an advantage that an installation area as an embedding device is hardly required separately from the culture bed. In addition, if the swing radius is reduced by increasing the radius of the circular arc despite the circular orbit, the circular orbit can be regarded as a linear orbit. Calculations are also easier.
Then, the culture material that has been transported in the horizontal direction is turned in the vertical direction and dropped. Preferably, in addition to the direction change, a vertical force is applied to the material to drop the material in the vertical direction and incorporate it into the culture bed. This eliminates the discrepancy between the drop position and the filling position due to the advance / retreat speed of the transfer device and the like seen in the conventional filling device.

【0012】盛込手段には、盛込コンベア、盛込スクリ
ュー、盛込シュート等、既存の搬送形態を利用できる
が、培養原料は水平な搬送方向から鉛直方向へと方向転
換し、盛込口の移動の影響を取り除いた状態で落とす。
培養原料は鉛直方向、すなわち培養床までの最短距離を
落ちることになるから、落下時間は短縮される。更に、
鉛直方向の力を培養原料に加えて落とすと落下時間はほ
とんど無視できる程度になるので、盛込口の移動による
影響を加味して落下量を増減せずとも単位時間当たりほ
ぼ定量の培養原料を培養床へ盛り込むことができるよう
になり、形成する薄層の厚みの制御が簡単になる。
As the loading means, existing transport modes such as a loading conveyor, a loading screw, and a loading chute can be used. However, the culture material is changed from a horizontal transport direction to a vertical direction, and a loading port is provided. Drop after removing the effects of moving.
Since the culture material falls in the vertical direction, that is, the shortest distance to the culture bed, the fall time is reduced. Furthermore,
If a vertical force is applied to the culture material to drop it, the fall time will be almost negligible. It can be incorporated into the culture bed, and the thickness of the thin layer to be formed can be easily controlled.

【0013】盛込手段の種類を問わず、盛込口への培養
原料の搬送方法としては、空気搬送が好ましい。盛込手
段として盛込コンベアや盛込スクリューを用いた場合、
搬送してきた培養原料を、盛込口に配した傾斜板等にぶ
つけて方向転換する、又は別途培養原料を下方に放出す
る機構を盛込口に構成し、培養原料を鉛直方向に落下さ
せることになる。しかし、前者では落下速度が遅くな
り、後者はコスト高になる。これに対し、盛込手段とし
て盛り込みシュートを用いた場合、搬送媒体(通常空気)
で圧送してきた培養原料を、開放端を鉛直方向に折り曲
げた盛込口から放出すれば、十分な落下速度をもって培
養原料を鉛直方向に落下させることができる。搬送媒体
には、空気のほか、他の気体や液体も考えられるが、培
養原料に余分な液分を加えず、安価かつ手軽に利用でき
る空気が最適なのである。なお、空気搬送を用いた盛込
シュートでは、水平方向の開放端にサイクロンを取り付
けて盛込口にしてもよい。サイクロンは、培養原料の水
平移動成分を取り除きながら搬送媒体である空気を上方
へ逃がし、培養原料のみを鉛直方向へ落下させることが
できる。
Regardless of the type of charging means, the method of transporting the culture material to the charging port is preferably air transport. When using a filling conveyor or a filling screw as the filling means,
The culture material that has been transported is hit by an inclined plate or the like arranged in the filling port to change the direction, or a mechanism that separately discharges the culture material downward is configured in the filling port, and the culture material is dropped vertically. become. However, in the former, the falling speed is slow, and in the latter, the cost is high. On the other hand, when a loading chute is used as the loading means, the transport medium (normal air)
By discharging the culture material fed under pressure from the filling opening whose open end is bent in the vertical direction, the culture material can be dropped in the vertical direction at a sufficient falling speed. As the transport medium, other gases and liquids can be considered in addition to air. However, air that is inexpensive and easily used without adding an extra liquid component to the culture raw material is optimal. In addition, in a filling chute using air conveyance, a cyclone may be attached to an open end in the horizontal direction to form a filling port. The cyclone can release air, which is a transport medium, upward while removing the horizontally moving components of the culture material, and can drop only the culture material in the vertical direction.

【0014】上記盛込方法を適用した装置は、盛込手段
は鉛直方向に開口した盛込口を前方に設け、かつ揺動軸
を後方に設けた盛込シュートであり、回転する円形培養
床上でこの盛込シュートを水平方向に揺動させて盛込口
が円形培養床上の略半径方向の円弧軌道上で往復移動す
るように、前記揺動軸を培養室の壁面近傍に配した盛込
装置となる。揺動軸は、培養床の回転を妨げない培養室
内か、培養室からあまり突出しない範囲、すなわち培養
室の壁面近傍に配する。盛込口の描く円弧軌道は、既述
したように、直線軌道とみなしうるものであれば、培養
床の半径方向に斜行するものであってもよい。
[0014] In the apparatus to which the above-mentioned filling method is applied, the filling means is a filling chute provided with a vertically opened filling port at the front and a swing axis provided at the rear, on a rotating circular culture bed. The rocking shaft is arranged near the wall surface of the culture chamber so that the charging chute is swung in the horizontal direction so that the charging port reciprocates on a substantially radial circular orbit on the circular culture bed. Device. The oscillating shaft is arranged in a culture room that does not hinder the rotation of the culture bed or in a range that does not project much from the culture room, that is, in the vicinity of the wall surface of the culture room. As described above, the arc trajectory drawn by the filling port may be skewed in the radial direction of the culture bed as long as it can be regarded as a straight trajectory.

【0015】また、培養床を回転させつつ盛込口を前記
培養床上の略半径方向の軌道上で断続的に停止させなが
ら往復移動させ、この盛込口から単位時間当たり定量の
培養原料を鉛直方向に落として盛り込む盛込方法であっ
てもよい。盛り込む培養原料が形成する薄層は、主とし
て停止状態の盛込口から落下する培養原料により層厚が
決定されるため、培養原料の落下運動を考慮した補正を
することなく盛込口の往復移動を制御することができ、
停止状態の盛込口から盛り込む培養原料は単位時間当た
り定量なので、ほぼ均一な層厚の薄層を形成できる。
Further, while the culture bed is being rotated, the filling port is reciprocated while being stopped intermittently on a substantially radial orbit on the culture bed, and a fixed amount of culture material per unit time is vertically transferred from the filling port. An embedding method of dropping in the direction and embedding may be used. The thickness of the thin layer formed by the culture material to be incorporated is determined mainly by the culture material that falls from the stop in the stopped state. Can be controlled,
Since the amount of the culture material to be fed from the inlet in the stopped state is determined per unit time, a thin layer having a substantially uniform layer thickness can be formed.

【0016】盛込口の停止時間と停止間隔とは相関関係
にあり、概ね(単位時間当たりの盛込量×停止時間)/(停
止位置での培養床の周速×停止間隔)が一定になればよ
い。例えば、停止間隔が一定であれば、停止時間は半径
方向に比例して長くする。停止時間を一定とした場合、
停止間隔は半径方向に反比例して短くする。そのほか
に、軌道を等分し、内周側は停止間隔を一定、外周側を
停止時間一定とし、同一軌道上を区分し制御するように
してもよい。この盛込方法は、上記盛込手段が水平方向
に揺動する盛込方法のほか、上述した既存の各盛込方法
にも応用できる。
There is a correlation between the stop time of the filling port and the stop interval, and generally (the amount of filling per unit time × stop time) / (the peripheral speed of the culture bed at the stop position × stop interval) is constant. I just need to be. For example, if the stop interval is constant, the stop time is lengthened in proportion to the radial direction. If the downtime is fixed,
The stop interval is shortened in inverse proportion to the radial direction. Alternatively, the trajectory may be equally divided, and the stop interval may be constant on the inner circumference and the stop time may be constant on the outer circumference, and the same trajectory may be controlled separately. This embedding method can be applied to the above-described existing embedding methods in addition to the embedding method in which the embedding means swings in the horizontal direction.

【0017】盛込口が往復移動する軌道となる「培養床
の略半径方向」とは、培養床の半径方向の直線軌道はも
ちろん、半径方向に延びる円弧軌道や半径方向に交差す
る斜行軌道を含む意味である。円弧軌道は、円弧の半径
が大きく、かつ揺動角度が小さい場合に、制御変数の計
算上、半径方向と同じとみなしても構わない。また、直
線状の斜行軌道は、半径方向との交差角がθの場合、斜
行軌道の位置×cosθ=半径方向の位置と換算ができ、
制御変数の計算上、半径方向の直線軌道と同視できるの
である。なお、円弧状の斜行軌道は、円弧軌道≒その斜
行方向の直線軌道とみなせる場合のみ、前記同様の換算
により半径方向として扱える。
The “substantially radial direction of the culture bed”, which is a trajectory on which the filling port reciprocates, refers to not only a linear trajectory in the radial direction of the culture bed, but also a circular orbit extending in the radial direction or an oblique trajectory intersecting in the radial direction. It is a meaning including. When the radius of the arc is large and the swing angle is small, the arc trajectory may be considered to be the same as the radial direction in calculating the control variable. In addition, when the crossing angle with the radial direction is θ, the linear skew track can be converted into the position of the skew track × cos θ = the position in the radial direction.
In calculating control variables, it can be regarded as a straight line trajectory in the radial direction. It should be noted that an arc-shaped oblique path can be treated as a radial direction by the same conversion as described above only when it can be regarded as an arc path or a linear path in the oblique direction.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施形態につき、
図を参照しながら説明する。図1は、培養室の壁面1に
揺動軸2を配した盛込シュート3の投下口を盛込口4と
して、この盛込口4を円弧軌道上で往復移動させる盛込
装置の平面図、図2は同側面図、図3は同盛込装置の原
理を示すために簡略化した図1相当の模式図であり、図
4は図2相当の模式図である。図1に見られるように、
盛込シュート3のアーム5を水平方向に湾曲させて、盛
込口4を培養室の壁面1に接近させてもアーム5が壁面
1と干渉しないようにしている(図3では、説明の簡略
化のため、揺動軸2と盛込口4とを直線で結んでい
る)。なお、盛込シュート3を下方に折り曲げた前記盛
込口4に代えて、図5に見られるように、サイクロン12
からなる盛込口4を用いてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described.
This will be described with reference to the drawings. FIG. 1 is a plan view of a setting device in which a dropping port of a setting chute 3 having a swinging shaft 2 arranged on a wall surface 1 of a culture room is set as a setting port 4 and the setting port 4 is reciprocated on an arc-shaped orbit. , FIG. 2 is a side view of the same, FIG. 3 is a schematic diagram corresponding to FIG. 1 simplified to show the principle of the embedding device, and FIG. 4 is a schematic diagram corresponding to FIG. As can be seen in FIG.
The arm 5 of the loading chute 3 is bent in the horizontal direction so that the arm 5 does not interfere with the wall 1 even when the loading port 4 approaches the wall 1 of the culture chamber (in FIG. 3, the explanation is simplified). The swing shaft 2 and the filling port 4 are connected by a straight line for the purpose of realization. In addition, as shown in FIG. 5, a cyclone 12 is used instead of the filling port 4 in which the filling chute 3 is bent downward.
May be used.

【0019】本例の盛込装置は、八角形に組んだ培養室
の壁面1に揺動軸2を配し、培養床6上へ盛込シュート
3を揺動させ、先端の盛込口4を培養床6の略半径方向
の円弧軌道上を往復移動させる。駆動手段であるインバ
ータ制御のシリンダ7は、後端を揺動軸2近傍の培養室
の壁面1に軸支し、先端を揺動軸2から盛込口4寄りの
アーム5に軸着している。なお、盛込シュート3の揺動
を円滑にするために、図1及び図2に見られるように、
盛込口4付近は培養室上方からハンガー8で吊下げ、揺
動軸2後方を延長してバランスを図っている。図1から
も明らかなように、本発明の盛込装置は設置面積を多く
必要とせず、コンパクトになっている。
In the embedding apparatus of this embodiment, a rocking shaft 2 is arranged on a wall 1 of an octagonally assembled culture chamber, a shaking chute 3 is rocked on a culture bed 6, and a mounting port 4 at the tip end. Is reciprocated on a substantially circular arc orbit of the culture bed 6. An inverter-controlled cylinder 7 as a driving means has a rear end pivotally supported on the wall 1 of the culture chamber near the oscillation shaft 2 and a distal end pivotally mounted on the arm 5 near the loading port 4 from the oscillation shaft 2. I have. In addition, in order to make the swing of the loading chute 3 smooth, as shown in FIG. 1 and FIG.
The vicinity of the filling port 4 is hung from above the culture chamber by a hanger 8 and the rear of the swing shaft 2 is extended to achieve balance. As is clear from FIG. 1, the embedding device of the present invention does not require a large installation area and is compact.

【0020】盛込シュート3は、アーム5を搬送経路と
して、培養床6の周速に反比例して円弧軌道上を移動す
る盛込口4から鉛直方向へ単位時間当たり定量の培養原
料を回転する培養床6へと落下させる。本例では、培養
原料を鉛直方向に落下させることにより、盛込口4から
の落下位置≒盛込位置という関係を実現し、盛込量及び
盛込位置を簡単かつ正確に制御できるようにしている。
落下した培養原料は、図1又は図3に見られるように、
培養床6の中心円筒9から外周壁10に掛けての盛込範囲
で薄層を形成していく。
The feeding chute 3 rotates a fixed amount of the culture material per unit time in a vertical direction from the feeding port 4 moving on an arc orbit in inverse proportion to the peripheral speed of the culture bed 6 using the arm 5 as a transport path. Drop onto culture bed 6. In this example, by dropping the culture material in the vertical direction, the relationship of the falling position from the filling port 4 / the filling position is realized, so that the filling amount and the filling position can be easily and accurately controlled. I have.
As can be seen in FIG. 1 or FIG.
A thin layer is formed in the area where the culture bed 6 extends from the central cylinder 9 to the outer peripheral wall 10.

【0021】図3及び図4の模式図により、制御の例を
示す。本例では、シリンダ7の単位時間当たりの伸縮量
に比例してアーム5を揺動させ、盛込口4の移動速度を
制御している。具体的には、シリンダ7の制御パラメー
タであるインバータ周波数を加減して連続的に伸縮量を
変化させ、盛込口4の往復移動を制御する。また、シリ
ンダ7の伸縮を断続的に停止させると、盛込口4を断続
的に停止させる盛込方法を本例の装置構成に適用するこ
とも可能である。このように、盛込口を断続的に停止さ
せる盛込方法は、盛込手段を水平方向に揺動させる本発
明の盛込方法や従来の盛込方法の装置構成とほとんど異
ならない。
An example of the control is shown in the schematic diagrams of FIGS. In this example, the arm 5 is swung in proportion to the amount of expansion and contraction of the cylinder 7 per unit time, and the moving speed of the filling port 4 is controlled. Specifically, the reciprocating movement of the filling port 4 is controlled by continuously changing the amount of expansion and contraction by adjusting the inverter frequency which is a control parameter of the cylinder 7. In addition, when the expansion and contraction of the cylinder 7 is intermittently stopped, a mounting method of intermittently stopping the charging port 4 can be applied to the apparatus configuration of this example. As described above, the filling method for intermittently stopping the filling port is almost the same as the filling method of the present invention in which the filling means is swung in the horizontal direction and the device configuration of the conventional filling method.

【0022】今、便宜上、盛込口4が培養床6の中心円
筒9から外周壁10へ向けて移動したとき、図6に見られ
るように、落とされた盛込原料が水平方向にほぼ扇形状
の薄層11を形成する、と仮定する。盛込手段を水平方向
に揺動させる盛込方法では、盛込口4から単位時間当た
り定量の培養原料を落とすので、移動する盛込口が培養
床と交差する略扇形の小面積ΔSが常に一定であれば、
盛り込んだ培養原料が前記小面積ΔSに形成する部分的
薄層の厚さが一定となり、最終的な薄層11の厚さは一定
となる。そこで、本例では、盛込口4は培養床6の周速
に反比例して円弧軌道上を移動させ、後述のようにΔS
が略一定になるようにしている。
Now, for convenience, when the loading port 4 moves from the central cylinder 9 of the culture bed 6 toward the outer peripheral wall 10, as shown in FIG. It is assumed that a thin layer 11 having a shape is formed. In the filling method in which the filling means is swung in the horizontal direction, a fixed amount of culture material is dropped per unit time from the filling port 4, so that the small area ΔS of a substantially sector shape in which the moving filling port intersects with the culture bed is always present. If constant
The thickness of the partial thin layer formed by the incorporated culture material in the small area ΔS is constant, and the thickness of the final thin layer 11 is constant. Therefore, in this example, the filling port 4 is moved on an arc orbit in inverse proportion to the peripheral speed of the culture bed 6, and ΔS
Is approximately constant.

【0023】通常、培養床の回転速度(=角速度)は一定
である(これに対し、周速は回転速度と盛込口4の位置
に相当する半径との積であり、盛込口4の位置によって
異なる)から、上記小面積ΔSは、盛込口4の軌道上の
移動開始位置(略扇形の上辺を決定)及び移動距離(略扇
形の下辺及び高さを決定)により求められるが、移動開
始位置はこれまでの移動距離の和で求められるから、小
面積ΔSは移動距離の関数となる。このことから、単位
時間当たりの盛込口4の移動距離を加減するシリンダ7
の伸縮量、すなわちインバータ周波数を制御すると、培
養原料が形成する薄層11の厚さが決定できることがわか
る。
Usually, the rotation speed (= angular speed) of the culture bed is constant (in contrast, the peripheral speed is the product of the rotation speed and the radius corresponding to the position of the inlet 4, The above-mentioned small area ΔS is obtained from the movement start position on the orbit of the filling port 4 (determining the upper side of the approximate sector) and the moving distance (determining the lower side and the height of the approximate sector), Since the movement start position is obtained by the sum of the movement distances so far, the small area ΔS is a function of the movement distance. For this reason, the cylinder 7 that adjusts the moving distance of the filling port 4 per unit time
It can be understood that the thickness of the thin layer 11 formed by the culture raw material can be determined by controlling the amount of expansion and contraction, that is, the inverter frequency.

【0024】盛込口を断続的に停止させる盛込方法で
は、盛込口から単位時間当たり定量の培養原料を鉛直方
向に落として盛り込むことで盛込口の移動の制御を簡単
にし、(1)停止間隔を調整してΔSを一定にし、上記小
面積ΔSに形成する部分的薄層の厚さを一定にする、又
は(2)停止間隔を一定にし、ΔSに比例した停止時間で
培養原料を盛り込めば、最終的な薄層11の厚さは一定と
なる。
In the filling method in which the filling port is intermittently stopped, the control of the movement of the filling port is simplified by dropping a fixed amount of culture material per unit time from the filling port in the vertical direction, and (1) ) Stopping interval is adjusted to make ΔS constant, and the thickness of the partial thin layer formed in the small area ΔS is made constant, or (2) The stopping interval is made constant, and the cultivation raw material is produced at a stopping time proportional to ΔS. , The final thickness of the thin layer 11 is constant.

【0025】従来は、盛込口から培養床までの落下時間
が大きく、上記小面積ΔSは移動距離の関数となるもの
の、前記落下時間を考慮して、場合によっては、盛り込
む培養原料の盛込量を経時的に変動させなければならな
かった。本発明は、培養原料を鉛直方向へ落下させる、
更には鉛直方向への力を加えて落下させることで前記落
下時間を無視できるほど小さくし、培養原料を単位時間
当たり定量で盛り込めるようにして、(1)制御を簡単に
すると共に、(2)盛り込んだ培養原料が形成する薄層の
均一性をも確保できるようにしたのである。
Conventionally, the falling time from the filling port to the culture bed is long, and the small area ΔS is a function of the moving distance. The amount had to be varied over time. The present invention drops the culture material in the vertical direction,
Furthermore, the falling time is made negligibly small by applying a force in the vertical direction to cause the culture material to be included in a fixed amount per unit time, thereby simplifying the control (1) and (2) The uniformity of the thin layer formed by the incorporated culture material was also ensured.

【0026】[0026]

【実施例】上記盛込手段を水平方向に揺動させる制御例
に従って、次のような味噌原料の盛込を試みた。培養床
の盛込面積が112m2(培養床の直径12m)に対し、堆積層
厚500mmを目標に、味噌原料を0.28m3/分の定量で空気
搬送し、盛り込むことにした。盛込シュートの盛込口の
往復時間は78秒、培養床の1回転に要する時間は50分
で、そしてこの培養床が4回転する間に盛込を終えるこ
とにする。
EXAMPLE According to the control example in which the filling means is swung in the horizontal direction, the following miso raw material was loaded. With the target area of the culture bed of 112 m 2 (diameter of the culture bed of 12 m), the miso raw material was air-conveyed at a rate of 0.28 m 3 / min, with the target of the sedimentary layer thickness of 500 mm. The reciprocating time at the inlet of the setting chute is 78 seconds, the time required for one rotation of the culture bed is 50 minutes, and the addition is completed during the four rotations of the culture bed.

【0027】盛込の良否を判定するために、盛込終了
後、内周から外周へ向けて等間隔に6点、A点,B点,C
点,D点,E点,F点(図1参照)の堆積層厚を、培養床を
回転させながら2分おきに各25回、つまり培養床の円周
方向にわたって測定した結果の平均値一覧を表1に示
す。表1から明らかなように、目標とする堆積層厚500m
mに対し、培養床の半径方向における誤差は±10mm以内
に納まっており、薄層を積み重ねた堆積層は、正確に所
定厚に達することがわかる。
In order to judge the quality of the embedding, after the embedding is completed, six points, points A, B and C are arranged at equal intervals from the inner circumference to the outer circumference.
A list of the average values of the results obtained by measuring the thickness of the sedimentary layer at points D, D, E, and F (see FIG. 1) 25 times each two minutes while rotating the culture bed, that is, in the circumferential direction of the culture bed. Are shown in Table 1. As is clear from Table 1, the target thickness of the deposited layer is 500m
With respect to m, the error in the radial direction of the culture bed is within ± 10 mm, which indicates that the deposited layer obtained by stacking thin layers accurately reaches the predetermined thickness.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】本発明の盛込方法及びこれを適用した盛
込装置は、比較的簡単な制御により盛込手段を駆動して
培養床へ培養原料を盛り込み、薄層を積層して所定厚か
つ均一な培養原料の堆積層を形成することができ、従来
に比べて、制御に至るパラメータの決定及び設定の労力
を削減することができる(特開平6-327466号の盛込装置
に比べ、およそ1/5程度)。また、培養室や盛込装置の仕
様の変更によるパラメータの変更も容易にできる。更
に、盛込装置自体が非常にコンパクトにまとまり、必要
以上に設置面積を占有しない利点がある。
According to the filling method of the present invention and a filling apparatus to which the present invention is applied, the filling means is driven by relatively simple control to load the culture material into the culture bed, and a thin layer is laminated to a predetermined thickness. And it is possible to form a uniform deposition layer of the culture material, compared to the conventional, it is possible to reduce the effort of determining and setting parameters leading to control (compared to the embedding device of JP-A-6-327466, About 1/5). In addition, it is possible to easily change parameters by changing the specifications of the culture room and the filling device. Furthermore, there is an advantage that the embedding device itself is very compact and does not occupy more installation space than necessary.

【0030】何よりも、培養床の内外周での盛込時間に
差がなく、一定の堆積層厚で均一な培養原料の盛込がで
きるため、製品の品質が非常に良質なものとなる点が、
本発明の盛込方法の効果である。そして、コンパクトで
制御も簡単で、装置としての単価も抑えることができる
ことから、従来の大型で制御が難しい盛込装置の導入に
踏み切れなかった比較的小規模な工場や店でも設置、運
用可能な小型の培養装置が提供できるようになる。
Above all, there is no difference in the filling time on the inner and outer peripheries of the culture bed, and a uniform amount of culture material can be loaded with a constant sedimentary layer thickness, so that the quality of the product is extremely high. But,
This is an effect of the embedding method of the present invention. And because it is compact and easy to control and the unit price of the device can be reduced, it can be installed and operated even in relatively small factories and stores where the installation of conventional large and difficult control devices could not be completed. A small culture device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】盛込シュートを水平方向に揺動させる盛込装置
の平面図である。
FIG. 1 is a plan view of a setting device for swinging a setting chute in a horizontal direction.

【図2】同盛込装置の側面図である。FIG. 2 is a side view of the embedding device.

【図3】同盛込装置の原理を示すために簡略化した図1
相当の模式図である。
FIG. 3 is a simplified diagram showing the principle of the embedding device.
It is a considerable schematic diagram.

【図4】同盛込装置の原理を示すために簡略化した図2
相当の模式図である。
FIG. 4 is a simplified diagram showing the principle of the embedding device.
It is a considerable schematic diagram.

【図5】サイクロンからなる盛込口の斜視図である。FIG. 5 is a perspective view of a filling port made of a cyclone.

【図6】一往復した盛込口から落とす培養原料が形成す
る薄層を表した斜視図である。
FIG. 6 is a perspective view showing a thin layer formed by a culture material dropped from a reciprocating filling port.

【符号の説明】[Explanation of symbols]

1 培養室の壁面 2 揺動軸 3 盛込シュート 4 盛込口 5 アーム 6 培養床 7 シリンダ 8 ハンガー 9 中心円筒 10 外周壁 11 盛込口の片道で盛り込む薄層 12 サイクロン DESCRIPTION OF SYMBOLS 1 Wall surface of a culture room 2 Oscillating axis 3 Injection chute 4 Injection port 5 Arm 6 Incubation bed 7 Cylinder 8 Hanger 9 Central cylinder 10 Outer peripheral wall 11 Thin layer to be incorporated in one way of injecting port 12 Cyclone

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 盛込手段の盛込口から円形培養床上へ培
養原料を盛り込んで該円形培養床上に培養原料の薄層を
形成し、該薄層を積層して所定厚の堆積層を形成する方
法であって、盛込手段は鉛直方向に開口した盛込口を前
方に設け、かつ揺動軸を後方に配した搬送経路からな
り、円形培養床を回転させつつ盛込手段を水平方向に揺
動させることにより盛込口を円形培養床上の略半径方向
の円弧軌道上で往復移動させ、該盛込口から単位時間当
たり定量の培養原料を鉛直方向に落として盛り込むこと
を特徴とする回転円盤固体培養装置の培養原料盛込方
法。
1. A culture material is poured from a filling port of a filling means onto a circular culture bed to form a thin layer of culture material on the circular culture bed, and the thin layers are stacked to form a sedimentary layer having a predetermined thickness. In the method, the loading means is provided with a loading port opened in the vertical direction in the front, and comprises a transport path with a swinging shaft arranged rearward, and rotates the circular culture bed while moving the loading means in the horizontal direction. The inlet is reciprocated on a circular orbit in a substantially radial direction on a circular culture bed by rocking the plate, and a fixed amount of culture material per unit time is dropped vertically from the inlet and incorporated. A method for incorporating a culture material into a rotating disk solid culture device.
【請求項2】 盛込手段の盛込口から円形培養床上へ培
養原料を盛り込んで該円形培養床上に培養原料の薄層を
形成し、該薄層を積層して所定厚の堆積層を形成する方
法であって、円形培養床を回転させつつ盛込口を前記円
形培養床上の略半径方向の軌道上で断続的に停止させな
がら往復移動させ、該盛込口から単位時間当たり定量の
培養原料を鉛直方向に落として盛り込むことを特徴とす
る回転円盤固体培養装置の培養原料盛込方法。
2. A culture material is poured into the circular culture bed from a filling port of the filling means, a thin layer of the culture material is formed on the circular culture bed, and the thin layers are laminated to form a sedimentary layer having a predetermined thickness. In this method, the filling port is reciprocated while being stopped intermittently on a substantially radial trajectory on the circular culture bed while rotating the circular culture bed, and quantitative culture per unit time is performed from the filling port. A method for charging a culture material of a rotating disk solid culture device, wherein the material is dropped in a vertical direction and then charged.
【請求項3】 盛込口へ至る培養原料の搬送方法が空気
搬送であることを特徴とする請求項1又は2記載の回転
円盤固体培養装置の培養原料盛込方法。
3. The method according to claim 1, wherein the method of transporting the culture material to the filling port is air conveyance.
【請求項4】 盛込手段の盛込口から円形培養床上へ培
養原料を盛り込んで該円形培養床上に培養原料の薄層を
形成し、該薄層を積層して所定厚の堆積層を形成する装
置であって、盛込手段は鉛直方向に開口した盛込口を前
方に設け、かつ揺動軸を後方に設けた盛込シュートであ
り、回転する円形培養床上で該盛込シュートを水平方向
に揺動させて盛込口が円形培養床上の略半径方向の円弧
軌道上で往復移動するように、前記揺動軸を培養室の壁
面近傍に配したことを特徴とする回転円盤固体培養装置
の培養原料盛込装置。
4. A culture material is poured into a circular culture bed from a filling port of a filling means, a thin layer of culture material is formed on the circular culture bed, and the thin layers are laminated to form a sedimentary layer having a predetermined thickness. A loading means in which a loading means provided in the vertical direction is provided at the front, and a swing axis is provided at the rear, and the loading chute is horizontally moved on a rotating circular culture bed. Wherein the rocking shaft is arranged near the wall surface of the culture chamber so that the filling port reciprocates on a circular orbit in a substantially radial direction on the circular culture bed by rocking in the direction. Equipment for feeding culture material of the equipment.
JP05912797A 1997-03-13 1997-03-13 Method and apparatus for loading cultivation raw material of rotating disk solid culture apparatus Expired - Fee Related JP4033515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05912797A JP4033515B2 (en) 1997-03-13 1997-03-13 Method and apparatus for loading cultivation raw material of rotating disk solid culture apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05912797A JP4033515B2 (en) 1997-03-13 1997-03-13 Method and apparatus for loading cultivation raw material of rotating disk solid culture apparatus

Publications (2)

Publication Number Publication Date
JPH10248552A true JPH10248552A (en) 1998-09-22
JP4033515B2 JP4033515B2 (en) 2008-01-16

Family

ID=13104343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05912797A Expired - Fee Related JP4033515B2 (en) 1997-03-13 1997-03-13 Method and apparatus for loading cultivation raw material of rotating disk solid culture apparatus

Country Status (1)

Country Link
JP (1) JP4033515B2 (en)

Also Published As

Publication number Publication date
JP4033515B2 (en) 2008-01-16

Similar Documents

Publication Publication Date Title
US20070170207A1 (en) Bin activator apparatus
US3282025A (en) High speed capping machine
JPS588907B2 (en) Self-locking nut manufacturing equipment
JPH0225775Y2 (en)
JPH10273112A (en) Article-aligning device
JPH10248552A (en) Charging of cultivation raw material to rotary disk solid cultivation apparatus and charging apparatus
US4285713A (en) Method and apparatus for feeding batch material
JPH11321803A (en) Particle distributing method and device
TW200836991A (en) Product transport apparatus
US6752544B2 (en) Developing apparatus and developing method
US2910212A (en) Carton filling apparatus
US3877586A (en) Device for feeding a plurality of cigarette machines with cut tobacco
US3773165A (en) Macaroni distributor shaker
KR102347278B1 (en) Intermittent transfer chain conveyor system using cylinder
JPH09221109A (en) Leveling device of processing food material
US3399756A (en) Counting machine with adjustable article channeling mechanism
JP3847256B2 (en) Granular dry ice distribution supply equipment
JP2764289B2 (en) Supply method of material to be dried in vacuum dryer
JP2003102447A (en) Device for coating pizza pie with sauce
JPH0972775A (en) Metric system for thin rod material and corrective supply mechanism therefor
JP2006199424A (en) Conveying device and combination weight measuring device provided with this
JP2533202Y2 (en) Distributed feeder
US4852771A (en) Parts supply hopper
JPH11198901A (en) Filling machine for powdered/granular body
CN218478091U (en) Automatic feeding mechanism

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees