JPH10245653A - Hydrogen storage alloy excellent in initial activity and reaction rate - Google Patents

Hydrogen storage alloy excellent in initial activity and reaction rate

Info

Publication number
JPH10245653A
JPH10245653A JP9063988A JP6398897A JPH10245653A JP H10245653 A JPH10245653 A JP H10245653A JP 9063988 A JP9063988 A JP 9063988A JP 6398897 A JP6398897 A JP 6398897A JP H10245653 A JPH10245653 A JP H10245653A
Authority
JP
Japan
Prior art keywords
alloy
phase
hydrogen storage
phases
bcc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9063988A
Other languages
Japanese (ja)
Other versions
JP3528502B2 (en
Inventor
Hidenori Iba
英紀 射場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP06398897A priority Critical patent/JP3528502B2/en
Publication of JPH10245653A publication Critical patent/JPH10245653A/en
Application granted granted Critical
Publication of JP3528502B2 publication Critical patent/JP3528502B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy having alloy phases relatively easy to activate in particular and alloy phases relatively hard to activate as mixed phases and excellent in initial activation and the reaction rate as to a hydrogen storage alloy composed of many phases. SOLUTION: This hydrogen storage alloy is composed of alloy phases relatively easy to activate the occlusion of hydrogen and alloy phases relatively hard of the activation for improving the initial activation and reaction rate after the pulverization of the hydrogen storage alloy in the air. Furthermore, the alloy phases relatively easy of the activation are composed of Laves phases, and the alloy phases relatively hard of the activation are composed of BCC phases. Moreover, the hydrogen storage alloy is composed of a Ti-Mn-V alloy, the Laves phases are composed of C14 phases, and the phase fractional rate of the C14 phases is regulated to 3 to 80wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多相からなる水素
吸蔵合金に関し、特に活性化の相対的に容易な合金相と
活性化の相対的に困難な合金相とを混相として有し、初
期活性化および反応速度に優れた水素吸蔵合金に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-phase hydrogen storage alloy, and more particularly to a multi-phase hydrogen storage alloy having an alloy phase which is relatively easy to activate and an alloy phase which is relatively difficult to activate. The present invention relates to a hydrogen storage alloy having excellent activation and reaction rates.

【0002】[0002]

【従来の技術】水素吸蔵合金は水素の吸蔵・放出を可逆
的に行うことができることから、エネルギー貯蔵タンク
やニッケル水素電池をはじめ、水素放出時の吸熱反応を
利用したヒートポンプなどの用途に用いられる。水素吸
蔵合金の利用に当たっては、まず最初に水素の吸蔵・放
出速度を高めるための活性化処理が必要である。通常、
活性化処理は合金粉末を入れた容器を加熱しながら真空
引きした後水素吸蔵・放出を数回繰り返すことにより完
了するが、この処理条件や処理回数は水素吸蔵合金の種
類や合金表面の被毒状況によって異なる。
2. Description of the Related Art Since hydrogen storage alloys can reversibly store and release hydrogen, they are used in applications such as energy storage tanks and nickel-metal hydride batteries, as well as heat pumps that utilize an endothermic reaction when releasing hydrogen. . When using a hydrogen storage alloy, an activation treatment for increasing the rate of hydrogen storage and release is first required. Normal,
The activation process is completed by evacuating the container containing the alloy powder while evacuating it and repeating hydrogen absorption and desorption several times.The conditions and frequency of this treatment depend on the type of hydrogen storage alloy and the poisoning of the alloy surface. It depends on the situation.

【0003】従来から水素吸蔵合金を、粉末や多相にし
て、初期活性や反応速度が向上するという報告は多く見
られる。しかし、これらの報告で主相として示されてい
る合金は、いずれもAB5 型合金(LaNi5 ,Mm
Ni5 など)、AB2 型合金(TiMn2 ,ZrNi
2 ,Zr(FeV))、AB型合金(TiFe)であ
る。
[0003] There have been many reports that a hydrogen storage alloy is made into a powder or a multiphase to improve the initial activity and the reaction rate. However, the alloys indicated as the main phases in these reports are all AB 5 type alloys (LaNi 5 , Mm
Ni 5 etc.), AB 2 type alloys (TiMn 2 , ZrNi
2 , Zr (FeV)) and AB type alloy (TiFe).

【0004】しかし、これらの合金はいずれも吸蔵量が
1〜2wt%で、初期活性や反応速度あるいは耐久性を改
善しても、吸蔵・放出量は増えない。また混合した第2
相の効果についても、触媒的な作用という記述が多く、
実際のメカニズムと効果についての説明があいまいであ
った。混合されるものには水素吸蔵作用がないものが多
く、全体としての水素吸蔵量が多くならなかった。公知
技術として、例えば特開昭60−135538号公報で
は、水素吸蔵作用のある第1相と触媒作用のある第2相
との混合組織とし、かつそれらが共晶組織を一部に有す
る水素吸蔵合金の製造方法が開示されている。
However, these alloys have an occlusion amount of 1 to 2 wt%, and the occlusion / release amount does not increase even if the initial activity, the reaction rate or the durability is improved. Also mixed 2nd
Regarding the effect of the phase, there are many descriptions of catalytic action,
The explanation of the actual mechanism and effect was ambiguous. Many of the mixed materials did not have a hydrogen storage effect, and the hydrogen storage amount as a whole did not increase. As a well-known technique, for example, Japanese Patent Application Laid-Open No. Sho 60-135538 discloses a hydrogen storage having a mixed structure of a first phase having a hydrogen storage action and a second phase having a catalytic action, and having a eutectic structure in part. A method for making an alloy is disclosed.

【0005】また、特開昭56−17901号公報に
は、Fe−Ti中にFe−Ti酸化物を分散させ、活性
化処理を必要としない水素吸蔵合金を開示している。し
かし、これらのものはAB型合金相を主相とするもので
ある。一方、本発明者等のこれまでの知見では、ラーベ
ス相とBCC相が2相共存するような合金においては、
水素吸蔵量は、その構成相間の複合則で説明され、これ
らの合金の特性において、水素吸蔵量や平衡圧のような
平衡特性以外の特性、たとえば活性化のし易さや反応速
度も評価することが重要であることがわかった。BCC
型のような高容量合金においては、これまで反応速度や
活性化のし易さに問題がある場合が多いと考えられてお
り、このことが実用化においても障害となっていた。そ
こで、このような活性化のし易さや反応速度の大きさ
を、多相間の相互作用、特にBCC相中に分散したラー
ベス相の効果を検討して、活性化特性を改善することが
望まれていた。
Japanese Patent Application Laid-Open No. Sho 56-17901 discloses a hydrogen storage alloy in which Fe-Ti oxide is dispersed in Fe-Ti and no activation treatment is required. However, these have an AB type alloy phase as a main phase. On the other hand, according to the findings of the present inventors, in an alloy in which the Laves phase and the BCC phase coexist in two phases,
The amount of hydrogen storage is described by the compound rule between its constituent phases.In the properties of these alloys, characteristics other than equilibrium characteristics such as hydrogen storage amount and equilibrium pressure, such as ease of activation and reaction rate, should be evaluated. Turned out to be important. BCC
It has been considered that high-capacity alloys such as molds often have problems with the reaction speed and the easiness of activation, and this has been an obstacle to practical application. Therefore, it is desired to improve the activation characteristics by examining the easiness of activation and the magnitude of the reaction rate by examining the interaction between multiple phases, particularly the effect of the Laves phase dispersed in the BCC phase. I was

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、前記
のようなBCC相とラーベス相からなる水素吸蔵合金の
活性化特性の改善を検討し、多相間相互作用を利用して
初期活性および反応速度を改善した水素吸蔵合金を提供
することにある。また、本発明の他の目的は、空気中で
粉砕した後の活性化に際し、第2相としてのラーベス相
が先ず粉化することによって、新鮮なBCC相表面を形
成させることによって、潜伏期の短縮を可能とする水素
吸蔵合金を提供することにある。さらに、本発明の他の
目的は、前記新鮮なBCC相表面から順次粉化が進行し
活性化を促進するように二相割合を最適した水素吸蔵合
金を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to study the improvement of the activation characteristics of a hydrogen storage alloy comprising a BCC phase and a Laves phase as described above. An object of the present invention is to provide a hydrogen storage alloy having an improved reaction rate. Another object of the present invention is to reduce the incubation period by activating the Laves phase as the second phase upon activation after pulverization in air to form a fresh BCC phase surface. It is an object of the present invention to provide a hydrogen storage alloy which enables the following. Still another object of the present invention is to provide a hydrogen storage alloy in which the ratio of two phases is optimized so that powdering proceeds sequentially from the surface of the fresh BCC phase to promote activation.

【0007】[0007]

【課題を解決するための手段】上記の目的は、空気中で
水素吸蔵合金を粉砕した場合に、その後の初期活性化お
よび反応速度を向上するために、その組織が水素吸蔵の
活性化が相対的に容易な合金相と、活性化が相対的に困
難な合金相との混相からなることを特徴とする水素吸蔵
合金によって達成される。また、上記の目的は、前記活
性化が相対的に容易な合金相がラーベス相であり、活性
化が相対的に困難な合金相がBCC相である水素吸蔵合
金によっても達成される。さらに、上記の目的は、前記
水素吸蔵合金がTi−Mn−V合金であり、ラーベス相
がC14相であり、C14相の相分率が3〜80重量%
である水素吸蔵合金によっても達成される。
SUMMARY OF THE INVENTION The object of the present invention is to improve the initial activation and the reaction rate of a hydrogen-absorbing alloy in the air when the hydrogen-absorbing alloy is pulverized. This is achieved by a hydrogen storage alloy characterized by being composed of a mixed phase of an alloy phase which is relatively easy and an alloy phase which is relatively difficult to activate. The above object is also achieved by a hydrogen storage alloy in which the alloy phase that is relatively easy to activate is the Laves phase and the alloy phase that is relatively difficult to activate is the BCC phase. Further, the object is that the hydrogen storage alloy is a Ti—Mn—V alloy, the Laves phase is a C14 phase, and the phase fraction of the C14 phase is 3 to 80% by weight.
This is also achieved by a hydrogen storage alloy.

【0008】[0008]

【発明の実施の形態】本発明において、活性化のし易さ
や反応速度の大きさを、多相間の相互作用、特にBCC
相中に分散したラーベス相の効果によるものであるかど
うかを明らかとするために、Ti−Mn−V系の三元状
態図に基づき、段階的にBCC相とラーベス相の2相の
分率の変えた合金を選択し、これらの特性を調べた。従
来からBCC相は吸蔵量が多いが、強固な酸化膜がある
ため活性化が難しいとされていたが、本発明では、活性
化が容易なラーベス相との混合相とすることで、まずラ
ーベス相が水素化し粉化する。その際、BCC相の部分
にも破壊が伝播し、この破壊面を起点として空気に被毒
していない新鮮なBCC相表面が形成される。ここを入
口に水素化が進むことにより、BCC相の部分の粉化が
進展し、加速度的に活性化が進むと考えられる。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, the easiness of activation and the magnitude of the reaction rate are determined based on the interaction between multiple phases, especially BCC.
Based on the ternary phase diagram of the Ti-Mn-V system, the fraction of the two phases of the BCC phase and the Laves phase was determined in order to clarify whether the effect was due to the Laves phase dispersed in the phase. These alloys were selected and their characteristics were examined. Conventionally, the BCC phase has a large amount of occlusion, but it has been considered that activation is difficult due to the presence of a strong oxide film. However, in the present invention, first, by using a mixed phase with the Laves phase that is easy to activate, The phase hydrogenates and pulverizes. At this time, the fracture also propagates to the BCC phase portion, and a fresh BCC phase surface not poisoned by air is formed starting from the fracture surface. It is considered that as the hydrogenation proceeds from here to the inlet, the pulverization of the BCC phase portion progresses, and the activation accelerates.

【0009】すなわち、本発明の効果の発現するメカニ
ズムとしては、a)空気中で粉砕したBCC合金は、強
固な酸化膜があり、相当の潜伏期が必要である。b)こ
れにラーベス相が第2相として混相している場合、まず
ラーベス相が水素化し、粉化する。c)このことによ
り、空気により被毒していない、新鮮なBCC相表面が
つくられる。d)ここを入り口に水素化が進むことによ
り、BCC相も粉化し、加速度的に活性化が進むと考え
られる。そのため、2相の組み合わせとしては、空気中
で粉砕しても、活性化が容易な合金と困難な合金という
組み合わせが基本的に考えられる。
[0009] That is, as a mechanism for exhibiting the effects of the present invention, a) a BCC alloy pulverized in the air has a strong oxide film and requires a considerable incubation period. b) When the Laves phase is mixed with the second phase as the second phase, the Laves phase is first hydrogenated and powdered. c) This creates a fresh BCC phase surface that is not poisoned by air. d) It is considered that the hydrogenation proceeds from here to the entrance, whereby the BCC phase is also pulverized, and the activation accelerates. Therefore, as a combination of two phases, a combination of an alloy that is easily activated and an alloy that is difficult to activate even when pulverized in the air can be basically considered.

【0010】さらにこのようなメカニズムで、生成した
粉は、ある一定の2相の混合割合で、最適な粉砕形態
(=粒度分布)とし結果として、大きな反応速度が得ら
れる。以上のようなメカニズム(推測)により、従来初
期活性や反応速度が劣るとされてきたBCC相主体の水
素吸蔵合金で、例えば、吸蔵量は3.0wt%以上であり
大きいが、初期活性や反応速度が、AB5型合金やAB
2型合金に比べて劣るといわれているBCC型の合金
で、活性化の潜伏期を短く、大きな反応速度にすること
ができた。以下に、本発明について実施例に添付の図面
に基づいてさらに詳述する。
[0010] Further, by such a mechanism, the produced powder is brought into an optimal pulverized form (= particle size distribution) at a certain mixing ratio of two phases, and as a result, a large reaction rate is obtained. Due to the mechanism (estimation) as described above, a hydrogen storage alloy mainly composed of a BCC phase, which has conventionally been considered to have a poor initial activity and reaction rate, has a large storage amount of, for example, 3.0 wt% or more. Speed is AB5 type alloy or AB
The BCC type alloy, which is said to be inferior to the type 2 alloy, has a short activation latency and a high reaction rate. Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

【0011】[0011]

【実施例】本実施例における合金設計と初期活性・反応
速度の評価方法について説明する。図1に示すように、
Ti1.0 Mn1.0 1.0 合金、合金C、合金Nはいずれ
も三元状態図上のTi1.0 MnxV1-X 上の組成であ
り、ラーベス相とBCC相の混相である。本実施例では
この線上でさらに成分範囲を広げ、ラーベス相単相合金
C2とBCC+(C14/BCC)相境界近傍組成合金
B4およびBCC相単相合金B10を選択した。これら
の合金成分で、溶解した合金の相分率を表1に示す。
EXAMPLE An alloy design and a method for evaluating initial activity and reaction rate in this example will be described. As shown in FIG.
The Ti 1.0 Mn 1.0 V 1.0 alloy, the alloy C and the alloy N all have a composition on Ti 1.0 MnxV 1-X in the ternary phase diagram, and are a mixed phase of a Laves phase and a BCC phase. In this example, the component range was further expanded on this line, and the Laves phase single phase alloy C2, the BCC + (C14 / BCC) phase boundary composition alloy B4 and the BCC phase single phase alloy B10 were selected. Table 1 shows the phase fractions of the alloys dissolved in these alloy components.

【0012】[0012]

【表1】 [Table 1]

【0013】活性化のし易さや反応速度は、圧力−組成
等温線測定の装置を用いて、一定の水素の初期圧力を加
えたときの、圧力の低下の時間変化を測定することによ
り、吸蔵量−時間曲線を計算することにより評価した。
試料の重量は、約5g、初期水素圧は3MPaとなるよ
うに加圧し、吸蔵量が平衡に至るまで測定した。この吸
蔵量−時間曲線の測定を粉砕直後から測定を繰り返し、
吸蔵開始までに要した時間である潜伏期と平衡特性から
決定される吸蔵量が得られるまでの繰り返し回数で活性
化のし易さを評価した。また吸蔵開始後の吸蔵量−時間
曲線の傾きから反応速度を計算した。すなわち、反応速
度定数kはdx/dt=k(P0 −Peq)なる式から計
算された。
The easiness of activation and the reaction rate can be measured by measuring the time change of the pressure drop when a constant initial pressure of hydrogen is applied by using a pressure-composition isotherm measuring apparatus. It was evaluated by calculating the amount-time curve.
The weight of the sample was about 5 g, and the pressure was increased so that the initial hydrogen pressure was 3 MPa, and the measurement was performed until the occluded amount reached equilibrium. This occlusion amount-time curve measurement was repeated immediately after pulverization,
Ease of activation was evaluated by the number of repetitions until the amount of occlusion determined from the incubation period, which is the time required until the occlusion started, and the equilibrium characteristics was obtained. The reaction rate was calculated from the slope of the storage amount-time curve after the start of storage. That is, the reaction rate constant k was calculated from the dx / dt = k (P 0 -P eq) becomes equation.

【0014】以下、本実施例における水素吸蔵合金と時
間の関係について結果を説明する。図2(a)にTiVMn
(BCC 相+C14合金) について、図2(b)にC(BCC相+C
14相組成合金) について、図2(c)にN(BCC相組成合
金) に示すように、ラーベス相とBCC相が2相混合し
ている3合金の吸蔵量−時間曲線を示す。いずれの場合
も一回目の吸蔵時に、1〜2分の潜伏期(水素吸蔵が開
始するまでの時間)時間の増大があるが約5分以内に平
衡吸蔵量の100%まで吸蔵する。一方、2回目以降の
吸蔵では、ほとんど潜伏期は見られない。
Hereinafter, the results of the relationship between the hydrogen storage alloy and time in the present embodiment will be described. Figure 2 (a) shows TiVMn
(BCC phase + C14 alloy), Fig. 2 (b) shows C (BCC phase + C14 alloy).
FIG. 2 (c) shows the occlusion amount-time curves of three alloys in which the Laves phase and the BCC phase are mixed in two phases, as shown in N (BCC phase alloy). In any case, at the time of the first storage, there is an increase in the incubation period (time until hydrogen storage starts) of 1 to 2 minutes, but the storage is performed up to 100% of the equilibrium storage amount within about 5 minutes. On the other hand, the second and subsequent occlusions show almost no incubation period.

【0015】これに対して、図3(a)にB10(BCC相10
0%) について、図3(b)にB4(BCC 相96.3%)につい
て、図3(c)にC2(C14 相100%) に示すように、ほぼ
BCC単相の合金B4や完全にBCC単相の合金B10
においては、潜伏期は数分から1時間程度まで長くな
る。しかし、これらの合金においても2回目の吸蔵以降
では、潜伏期はほとんどなく、吸蔵開始後の反応速度も
充分大きい。従来から、BCC単相の純バナジウムやT
i−V合金においては、活性化が難しく、反応速度も小
さいといわれてきた。これに対して本実施例では、一連
のBCC合金はいずれも1回の水素吸蔵で活性化してお
り、反応速度も大きいといわれてきたラーベス相合金と
同等以上であった。
On the other hand, FIG. 3A shows B10 (BCC phase 10).
0%), as shown in FIG. 3 (b) for B4 (BCC phase 96.3%) and FIG. 3 (c) for C2 (C14 phase 100%), almost BCC single phase alloy B4 or completely BCC single phase Phase Alloy B10
In, the incubation period increases from several minutes to about one hour. However, even in these alloys, there is almost no incubation period after the second occlusion, and the reaction rate after the start of occlusion is sufficiently high. Conventionally, BCC single phase pure vanadium or T
It has been said that i-V alloys are difficult to activate and have a low reaction rate. On the other hand, in the present example, all of the series of BCC alloys were activated by one hydrogen absorption, and the reaction rate was equal to or higher than that of the Laves phase alloy, which is said to have a high reaction rate.

【0016】そこで、上記の現象を潜伏期と相分離との
関係の検討結果について説明する。図4に、前節で測定
した吸蔵量−時間曲線により求めたTi1.0 MnxV
1-X合金の各組成における潜伏期と相分率との関係を示
す。潜伏期は、C14相の分率の増大とともに減少して
いる。活性化に必要な潜伏期は、本来の合金の内部組織
や結晶構造よりも、合金の表面状態による影響、特に空
気による表面酸化の影響が大きい。本実施例の場合、合
金は空気中で粉砕しているため、粉砕後の一回目の活性
化時には、表面は酸化しているが2回目以降は、水素化
により粉砕された新鮮な表面から水素が吸蔵されるた
め、潜伏期がなく反応速度も大きいと考えられる。さら
に2相混合により、潜伏期が小さくなるのは、結晶構造
上脆く水素化により微粉化しやすいラーベス相により、
新鮮な表面をより造り易くなったためであると考えられ
る。
Therefore, the above-mentioned phenomenon will be described with reference to the results of study of the relationship between the incubation period and phase separation. FIG. 4 shows Ti 1.0 MnxV obtained from the storage amount-time curve measured in the previous section.
The relationship between the incubation period and the phase fraction in each composition of the 1-X alloy is shown. The incubation period decreases with increasing fraction of the C14 phase. The incubation period required for activation is more influenced by the surface state of the alloy, especially by the surface oxidation by air, than the internal structure or crystal structure of the original alloy. In the case of this embodiment, since the alloy is pulverized in the air, the surface is oxidized during the first activation after the pulverization, but after the second activation, hydrogen is applied from the fresh surface pulverized by hydrogenation. It is considered that there is no incubation period and the reaction rate is high because ozone is stored. Furthermore, the latent period is reduced by two-phase mixing because of the Laves phase, which is brittle in crystal structure and easily pulverized by hydrogenation.
This is probably because it became easier to make a fresh surface.

【0017】次に、上記のメカニズムを検証するため、
ラーベス相の形状を熱処理により変化させた場合の潜伏
期と反応速度に及ぼす影響を調べた。図5(a)は、T
1.0 Mn0.9 1.1 合金(N)の鋳造したままの組織
を、図5(b)は1200℃で2h熱処理したTi1.0
Mn0.9 1.1 合金(N)の光学顕微鏡組織を示す。鋳
造したままでは針状であった析出物は熱処理により粒状
化している。さらに、図6(a)にTi1.0 Mn0.9
1.1 合金(N)の鋳造したまま、図6(b)に1200
℃で2h熱処理したTi1.0 Mn0.9 1.1 合金
(N))Ti1.0 Mn0.9 1.1 合金(N)の吸蔵量−
時間曲線の変化を示した。熱処理により潜伏期が著しく
大きくなっている。このことは、熱処理したことにより
析出物の形状が変化し、BCC相の新鮮な表面をつくる
ための破砕の起点になり難くなったためと考えられる。
ここで、本実施例における前記潜伏期と組織との関係で
は、BCC相が空気被毒の影響を受けやすいことを前提
条件としている。そこで、空気被毒に対する影響を調べ
るために、活性化したBCC合金を空気中に放置した
後、水素吸蔵放出特性を調べた。
Next, in order to verify the above mechanism,
The effect of the Laves phase on the incubation period and the reaction rate when the shape was changed by heat treatment was investigated. FIG.
i 1.0 Mn 0.9 V 1.1 tissue-cast alloy (N), Fig. 5 (b) Ti 1.0 was 2h heat-treated at 1200 ° C.
1 shows an optical microscope structure of a Mn 0.9 V 1.1 alloy (N). The needle-like precipitate as cast is granulated by heat treatment. Further, FIG. 6A shows that Ti 1.0 Mn 0.9 V
As shown in FIG. 6B, 1200 alloy (N) was cast as it was.
Ti 1.0 Mn 0.9 V 1.1 alloy (N) heat treated at 2 ° C. for 2 hours) Storage amount of Ti 1.0 Mn 0.9 V 1.1 alloy (N) −
The change of the time curve was shown. The heat treatment significantly increased the incubation period. This is presumably because the shape of the precipitate changed due to the heat treatment, and it became difficult to become a starting point of crushing for forming a fresh surface of the BCC phase.
Here, the relationship between the incubation period and the tissue in the present embodiment is based on the precondition that the BCC phase is easily affected by air poisoning. Then, in order to investigate the influence on air poisoning, the activated BCC alloy was left in the air, and then the hydrogen storage / release characteristics were examined.

【0018】図7に、BCC単相合金のTi−Cr−V
合金の空気中放置前後での圧力−組成等温線の変化を示
す。この図で、空気中荒粉砕のみでは、やや水素吸蔵量
が低下し、これを再度500℃で活性化するとこれが回
復している。また、24hの空気中放置によって、空気
被毒により、吸蔵量はほとんどなくなることがわかる。
従って、BCC相が空気被毒の影響を受け易いことが分
かる。
FIG. 7 shows a Ti-Cr-V of a BCC single phase alloy.
3 shows the change in pressure-composition isotherm before and after the alloy is left in air. In this figure, only the rough pulverization in the air slightly reduces the hydrogen storage capacity, and when this is activated again at 500 ° C., it recovers. Further, it is understood that the occlusion amount almost disappears due to air poisoning when left in the air for 24 hours.
Therefore, it is understood that the BCC phase is easily affected by air poisoning.

【0019】以下、本実施例での反応速度について説明
する。図8に、図2および図3の活性化した後の吸蔵量
−時間曲線から計算した反応速度とBCC相中に含まれ
るC14相の分率との関係を示す。まず、BCC単相合
金の反応速度は、C14単相合金のそれよりも大きかっ
た。従来から、BCC合金は反応速度が小さいことが問
題といわれてきたが、これは、前記の活性化のための潜
伏期がBCC単相では大きいため、みかけ上の反応時間
が長いことによるものだと考えられる。本実施例の結果
では、活性化した後のBCC合金の反応速度は、必ずし
も小さくないことを示している。また、この図からラー
ベス相のC14相が3%未満または80%超では、初期
の目的とする反応速度の向上が得られないことがわか
る。また、2相混合合金の反応速度は、いずれの単相合
金よりも大きかった。これは、吸蔵量や平衡圧のような
平衡特性においては見られなかった2相間の相互作用
が、反応速度においては、見られることを示している。
このような2相間の相互作用は、2相間の界面が合金の
水素間粉砕時に作用して、各々の単相合金の粉末とは異
なる粒度分布や粉末の形状をもたらした結果であると考
えられる。
Hereinafter, the reaction rate in this embodiment will be described. FIG. 8 shows the relationship between the reaction rate calculated from the storage amount-time curves after activation in FIGS. 2 and 3 and the fraction of the C14 phase contained in the BCC phase. First, the reaction rate of the BCC single phase alloy was higher than that of the C14 single phase alloy. Conventionally, it has been said that BCC alloys have a low reaction rate, but this is because the apparent reaction time is long because the BCC single phase has a large incubation period for activation. Conceivable. The results of this example show that the reaction rate of the activated BCC alloy is not necessarily low. Further, from this figure, it can be seen that when the C14 phase of the Laves phase is less than 3% or more than 80%, the initial target reaction rate cannot be improved. Further, the reaction rate of the two-phase mixed alloy was higher than any of the single-phase alloys. This indicates that the interaction between the two phases, which was not observed in the equilibrium characteristics such as the storage amount and the equilibrium pressure, is observed in the reaction rate.
It is considered that such an interaction between the two phases is a result of the interface between the two phases acting during the hydrogen pulverization of the alloy, resulting in a particle size distribution and a powder shape different from the powder of each single-phase alloy. .

【0020】[0020]

【発明の効果】本発明では、BCC合金とラーベス相と
の相互作用によって、反応速度や初期活性化を向上する
ことが可能となる。さらに、活性化においては、ラーベ
ス相との混合で吸蔵開始までの時間(潜伏期)がほとん
どなくなるまで短縮できる。また、20%程度ラーベス
相が混合している合金において、いずれの単相合金より
も大きな反応速度が得られており、2相混合による相互
作用が確認された。さらに、機械的粉砕時に結晶学的に
脆く、粉砕し易いラーベス相が混合することにより、延
性があり、粉砕の困難なBCC単相合金に比べて、粉砕
が容易になる効果がある。
According to the present invention, the reaction rate and the initial activation can be improved by the interaction between the BCC alloy and the Laves phase. Further, in the activation, the time until the start of occlusion (latent period) can be reduced by mixing with the Laves phase until almost no longer exists. Further, in the alloy in which the Laves phase was mixed at about 20%, a higher reaction rate was obtained than in any single-phase alloy, and interaction due to the two-phase mixing was confirmed. Furthermore, mixing the Laves phase that is crystallographically brittle and easily pulverized during mechanical pulverization has the effect of facilitating pulverization as compared with a BCC single-phase alloy that is ductile and difficult to pulverize.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るTiVMn系三元合金状態図に実
施例の組成を示す図である。
FIG. 1 is a diagram showing the composition of an example in a TiVMn-based ternary alloy phase diagram according to the present invention.

【図2】本発明の実施例に係る活性化を示し、(a)T
iVMn(BCC+C14)合金、(b)C(BCC+
C14)合金、(c)N(BCC)合金を示す図であ
る。
FIG. 2 shows activation according to an embodiment of the present invention, wherein (a) T
iVMn (BCC + C14) alloy, (b) C (BCC +
It is a figure which shows C14) alloy and (c) N (BCC) alloy.

【図3】本発明の実施例に係る活性化を示し、(a)B
10合金(BCC)、(b)B4合金(BCC+C1
4)、(c)C2合金(C14)を示す図である。
FIG. 3 shows activation according to an embodiment of the present invention, wherein (a) B
10 alloy (BCC), (b) B4 alloy (BCC + C1
4) and (c) are views showing a C2 alloy (C14).

【図4】本発明の実施例に係る活性化の潜伏期とC14
相分率との関係を示す図である。
FIG. 4 shows activation latency and C14 according to an embodiment of the present invention.
It is a figure which shows the relationship with a phase fraction.

【図5】本発明の実施例に係るTi1.0 Mn0.9 1.1
合金の、(a)鋳造まま、(b)1200℃、2h熱処
理した400倍の光学顕微鏡組織写真である。
FIG. 5 shows Ti 1.0 Mn 0.9 V 1.1 according to an example of the present invention.
It is a 400-fold optical microscope structure photograph of the alloy, (a) as-cast, (b) heat-treated at 1200 ° C for 2 hours.

【図6】本発明の実施例に係るTi1.0 Mn0.9 1.1
合金の活性化を示し、(a)鋳造まま、(b)1200
℃、2h熱処理したものを示す図である。
FIG. 6 shows Ti 1.0 Mn 0.9 V 1.1 according to an example of the present invention.
Showing activation of the alloy, (a) as cast, (b) 1200
It is a figure which shows what was heat-processed at 2 degreeC for 2 hours.

【図7】本発明の実施例に係るTi−Cr−V合金の空
気中放置後の圧力−組成等温図を示す図である。
FIG. 7 is a diagram showing a pressure-composition isotherm of a Ti—Cr—V alloy according to an example of the present invention after being left in air.

【図8】本発明の実施例に係る反応定数とC14相分率
との関係を示す図である。
FIG. 8 is a diagram showing a relationship between a reaction constant and a C14 phase fraction according to an example of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 空気中で水素吸蔵合金を粉砕した場合
に、その後の初期活性化および反応速度を向上するため
に、その組織が水素吸蔵の活性化が相対的に容易な合金
相と、活性化が相対的に困難な合金相との混合相からな
ることを特徴とする水素吸蔵合金。
When the hydrogen storage alloy is pulverized in the air, the structure of the alloy is relatively easy to activate hydrogen storage in order to improve the initial activation and reaction rate. A hydrogen storage alloy comprising a mixed phase with an alloy phase, which is relatively difficult to form.
【請求項2】 前記活性化が相対的に容易な合金相がラ
ーベス相であり、活性化が相対的に困難な合金相がBC
C相である請求項1に記載の水素吸蔵合金。
2. The alloy phase which is relatively easy to activate is a Laves phase, and the alloy phase which is relatively difficult to activate is BC.
The hydrogen storage alloy according to claim 1, which is a C phase.
【請求項3】 前記水素吸蔵合金がTi−Mn−V合金
であり、ラーベス相がC14相であり、C14相の相分
率が3〜80重量%である請求項2に記載の水素吸蔵合
金。
3. The hydrogen storage alloy according to claim 2, wherein the hydrogen storage alloy is a Ti—Mn—V alloy, the Laves phase is a C14 phase, and a phase fraction of the C14 phase is 3 to 80% by weight. .
JP06398897A 1997-03-04 1997-03-04 Hydrogen storage alloy with excellent initial activity and reaction rate Expired - Lifetime JP3528502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06398897A JP3528502B2 (en) 1997-03-04 1997-03-04 Hydrogen storage alloy with excellent initial activity and reaction rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06398897A JP3528502B2 (en) 1997-03-04 1997-03-04 Hydrogen storage alloy with excellent initial activity and reaction rate

Publications (2)

Publication Number Publication Date
JPH10245653A true JPH10245653A (en) 1998-09-14
JP3528502B2 JP3528502B2 (en) 2004-05-17

Family

ID=13245184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06398897A Expired - Lifetime JP3528502B2 (en) 1997-03-04 1997-03-04 Hydrogen storage alloy with excellent initial activity and reaction rate

Country Status (1)

Country Link
JP (1) JP3528502B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521179A (en) * 2008-05-15 2011-07-21 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ Method for producing hydrogen tank using metal hydride
KR101073825B1 (en) 2009-04-22 2011-10-18 한국에너지기술연구원 Ti-V-Cr-Mn-Mg alloy for the hydrogen storage and the method of preparing the same
JP2013087294A (en) * 2011-10-13 2013-05-13 Denso Corp Method for manufacturing hydrogen-absorbing magnetic refrigeration material
WO2016014356A1 (en) * 2014-07-25 2016-01-28 Ovonic Battery Company, Inc. Laves phase-related bcc metal hydride alloys and activation thereof for electrochemical applications
US9768445B2 (en) 2014-07-25 2017-09-19 Ovonic Battery Company, Inc. Activation of laves phase-related BCC metal hydride alloys for electrochemical applications

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521179A (en) * 2008-05-15 2011-07-21 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ Method for producing hydrogen tank using metal hydride
US9045334B2 (en) 2008-05-15 2015-06-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for manufacturing a hydrogen tank with metal hydrides
KR101073825B1 (en) 2009-04-22 2011-10-18 한국에너지기술연구원 Ti-V-Cr-Mn-Mg alloy for the hydrogen storage and the method of preparing the same
JP2013087294A (en) * 2011-10-13 2013-05-13 Denso Corp Method for manufacturing hydrogen-absorbing magnetic refrigeration material
WO2016014356A1 (en) * 2014-07-25 2016-01-28 Ovonic Battery Company, Inc. Laves phase-related bcc metal hydride alloys and activation thereof for electrochemical applications
US9768445B2 (en) 2014-07-25 2017-09-19 Ovonic Battery Company, Inc. Activation of laves phase-related BCC metal hydride alloys for electrochemical applications

Also Published As

Publication number Publication date
JP3528502B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
JP3241047B2 (en) Improved electrochemical hydrogen storage alloy for nickel metal hydride batteries
JP3528599B2 (en) Hydrogen storage alloy
Joubert et al. Improvement of the electrochemical activity of Zr Ni Cr Laves phase hydride electrodes by secondary phase precipitation
JP3486681B2 (en) Hydrogen storage alloy and method for producing the same
JPH10110225A (en) Hydrogen storage alloy and its production
JP3528502B2 (en) Hydrogen storage alloy with excellent initial activity and reaction rate
JP2000104135A (en) Ternary hydrogen storage alloy and its production
JPH101731A (en) Hydrogen storage alloy and its production
JPH11310844A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP3520461B2 (en) Magnesium-based hydrogen storage composite material
JPS61199045A (en) Hydrogen occluding alloy
JP2773851B2 (en) Hydrogen storage alloy
JP2859187B2 (en) Hydrogen storage alloy
JP4102429B2 (en) Hydrogen storage alloy and method for producing the same
JPH0673466A (en) Hydrogen occlusion alloy for ni-hydrogen battery having excellent electrode life and its production
JP2003193166A (en) Mg HYDROGEN-STORAGE ALLOY AND ITS MANUFACTURING METHOD
JP2654171B2 (en) Hydrogen storage alloy
JP4417805B2 (en) Hydrogen storage alloy and hydrogen storage container
JPH05217578A (en) Manufacture of hydrogen storage alloy electrode
JP2896433B2 (en) Magnesium hydrogen storage alloy
JP3416727B2 (en) Hydrogen storage materials and new metal hydrides
JPH0257137B2 (en)
JP3751063B2 (en) Hydrogen storage alloy
JP4250218B2 (en) Hydrogen storage alloy
JPH09316571A (en) Hydrogen storage alloy

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9