JPH10245573A - Apparatus for removing carbon monoxide from reformed gas - Google Patents

Apparatus for removing carbon monoxide from reformed gas

Info

Publication number
JPH10245573A
JPH10245573A JP6175297A JP6175297A JPH10245573A JP H10245573 A JPH10245573 A JP H10245573A JP 6175297 A JP6175297 A JP 6175297A JP 6175297 A JP6175297 A JP 6175297A JP H10245573 A JPH10245573 A JP H10245573A
Authority
JP
Japan
Prior art keywords
catalyst
carbon monoxide
reformed gas
casing
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6175297A
Other languages
Japanese (ja)
Other versions
JP4228401B2 (en
Inventor
Hideaki Komaki
秀明 駒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP06175297A priority Critical patent/JP4228401B2/en
Publication of JPH10245573A publication Critical patent/JPH10245573A/en
Application granted granted Critical
Publication of JP4228401B2 publication Critical patent/JP4228401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for removing carbon monoxide from a reformed gas in a high removal rate of carbon monoxide at reduced consumption of hydrogen by reducing a feed of oxidizing air or oxygen necessary for the reaction. SOLUTION: A catalyst layer 14 and cooling layers 15 for cooling the layer 14 are laminated to form a plate, and the layer 14 is sandwiched between the layers 15. The layer 14 extends in the longer direction of a casing 11, and a catalyst 23 which can selectively oxidize carbon monoxide is packed into the middle of the width to form a catalyst packed zone 24. One side of the zone 24 serves as a gas inlet part 17, and the other side serves as a gas discharge part 18. A reformed gas FG and oxidizing air or oxygen change in direction from the longer direction to the rectangular direction and passes the zone 24. The catalyst 23 in the direction of flow of the gas is short and thin, and therefore has a less dispersed temperature distribution. Its entire surface can be uniformly cooled. As a consequence, the amount of oxidizing air or oxygen O2 used can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固体高分子型燃料電
池発電システムにおいて、改質器で改質されて得られた
改質ガス中に含まれる一酸化炭素COを選択的に除去し
て燃料電池の燃料極へ供給するようにするため改質ガス
の供給ラインの途中に設けて用いる一酸化炭素除去装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell power generation system by selectively removing carbon monoxide CO contained in a reformed gas obtained by reforming in a reformer. The present invention relates to a carbon monoxide removing device which is provided in the middle of a reformed gas supply line so as to be supplied to a fuel electrode of a battery.

【0002】[0002]

【従来の技術】燃料電池のうち、固体高分子型燃料電池
の場合、改質器で改質原料ガスとしてのメタノールを改
質した後、改質ガス(燃料ガス)を燃料電池の燃料極へ
供給するようにするが、改質ガスに一酸化炭素COが含
まれていると、このCOによって燃料電池の電極が被毒
して性能低下を来たすことから、改質ガスを燃料電池の
燃料極へ供給する前に該改質ガス中のCOを選択的に除
去する必要がある。
2. Description of the Related Art Among fuel cells, in the case of a polymer electrolyte fuel cell, methanol as a reforming material gas is reformed in a reformer, and then the reformed gas (fuel gas) is supplied to the fuel electrode of the fuel cell. However, if the reformed gas contains carbon monoxide (CO), the CO poisons the fuel cell electrode and deteriorates the performance. It is necessary to selectively remove CO in the reformed gas before supplying the reformed gas.

【0003】従来、かかる必要性を満足させるために改
質ガス中のCOを除去するようにした一酸化炭素除去装
置としては、図6(イ)(ロ)に示す如き長い円筒体1
の内部に、該円筒体1の軸心方向と平行に延びる複数本
の小径の管2を配設し、該各管2の内部にほぼ全長にわ
たって、COを選択的に酸化できる触媒としてロジウム
(Rh)系又はルテニウム(Ru)系等の触媒3を充填
して、各管2の外側を冷却媒体4を流す冷却室5とし、
円筒体1の一端側に開口させた各管2の入口2aより改
質ガスFGとともに酸化空気又は酸素O2 を導入させる
と共に、円筒体1の他端より冷却室5に冷却媒体4を導
入して上記各管2の入口2a側より取り出すようにし、
改質ガスFGと酸化空気又は酸素O2 を各管2内の触媒
3によりCO+1/2 O2 →CO2 の反応を行わせて、改
質ガスFG中のCOを選択的に除去するようにしたもの
があり、又、図7に示す如く、多数のハニカム状の通路
7を形成したセラミック製の触媒担持体6を、ケーシン
グ8内に該ケーシング8の長手方向に通路7が平行とな
るように組み込み、該触媒担持体6の通路7に、COを
選択的に酸化できる触媒3を、粉末状にして担持させ、
ケーシング8の入口側から改質ガスFGとともに酸化空
気又は酸素O2 を導入して、CO除去の反応を行わせ、
COを除去した改質ガスを燃料電池の燃料極へ供給する
ようにしたもの、等がある。
Conventionally, as a carbon monoxide removing device for removing CO in a reformed gas in order to satisfy such a need, a long cylindrical body 1 as shown in FIGS.
A plurality of small-diameter pipes 2 extending in parallel with the axial direction of the cylindrical body 1 are disposed in the inside of each of the pipes, and rhodium ( A cooling chamber 5 in which a catalyst 3 such as Rh) or ruthenium (Ru) is filled, and the outside of each tube 2 flows a cooling medium 4,
Oxidizing air or oxygen O 2 is introduced together with the reformed gas FG from the inlet 2 a of each tube 2 opened at one end of the cylindrical body 1, and the cooling medium 4 is introduced into the cooling chamber 5 from the other end of the cylindrical body 1. To take out from the inlet 2a side of each pipe 2,
The reformed gas FG and the oxidized air or oxygen O 2 are subjected to a reaction of CO + 1/2 O 2 → CO 2 by the catalyst 3 in each tube 2 so that CO in the reformed gas FG is selectively removed. As shown in FIG. 7, a ceramic catalyst carrier 6 having a large number of honeycomb-shaped passages 7 is placed in a casing 8 such that the passages 7 are parallel to the longitudinal direction of the casing 8. And the catalyst 3 capable of selectively oxidizing CO is supported in the form of a powder in the passage 7 of the catalyst carrier 6,
Oxidizing air or oxygen O 2 is introduced together with the reformed gas FG from the inlet side of the casing 8 to cause a reaction for CO removal,
One in which the reformed gas from which CO is removed is supplied to the fuel electrode of the fuel cell, and the like.

【0004】[0004]

【発明が解決しようとする課題】ところが、図6に示す
一酸化炭素除去装置の場合、円筒体1内に平行に配設し
た各管2の長さが長いため、改質ガスの流れ方向におい
て触媒3の温度差が大きくなると共に、円筒体1の半径
方向にも大きな温度差が生じ、特に、改質ガスの流れ方
向に触媒温度差があると、各管2の入口2aから導入さ
れた酸化空気又は酸素O2 がガスの流れ方向で一様に一
酸化炭素と反応しないため、均一な反応温度とすること
ができない。CO除去率と反応温度の関係を示す図8の
ように、COを選択的に酸化できる触媒として、ロジウ
ム(Rh)系触媒又はルテニウム(Ru)系触媒を充填
して用いた場合のCOとH2 の除去率について見ると、
Rh系触媒を用いた場合は、◇印の如く反応温度が高く
なると、H2 の除去率は僅かに高くなって行く程度であ
るが、COの除去率は○印の如く、200℃以上になる
と、低下して来るため、最適温度範囲が狭い問題があ
り、又、Ru系触媒を用いた場合は、反応温度が高くな
っても、CO除去率は●印の如く低下しないが、◆印の
如くH2 の除去率が100℃を超えると急激に高くなっ
て来てこの場合も、最適温度の範囲が狭い。水素を消費
する副反応(H2 +1/2 O2 →H2 O)が起きると、燃
料電池の燃料極への燃料としてのH2 の量が少なくなる
という問題があると共に、上記のように副反応が起ると
それだけ多くの酸素が使用されるために、酸化空気又は
酸素O2 の導入量を多くしなければならず、通常は酸化
空気中の酸素又は酸素を理論上必要な量の4倍程度入れ
なければならないとされ(酸化空気量論比4.0)、こ
れに伴い供給機として圧縮機の能力を高めなければなら
ない、という問題があり、更に、冷却は、管2の外側か
ら行う構造であるため、管2の径が大きいと、該管2の
中央と周囲で触媒温度に差が生じ、一方、管2の径が小
さいと、ガスの流れの圧損が増大すると共に、触媒3を
詰めにくくなり、更に又、平行に配設された各管2の圧
損の違いから管2ごとの流量配分が異なる、等の問題が
ある。
However, in the case of the carbon monoxide removing apparatus shown in FIG. 6, since the length of each of the pipes 2 arranged in parallel in the cylindrical body 1 is long, the apparatus does not have the same structure in the flow direction of the reformed gas. As the temperature difference of the catalyst 3 increases, a large temperature difference also occurs in the radial direction of the cylindrical body 1. Particularly, when there is a catalyst temperature difference in the flow direction of the reformed gas, the catalyst gas is introduced from the inlet 2 a of each pipe 2. Since the oxidized air or oxygen O 2 does not uniformly react with carbon monoxide in the gas flow direction, a uniform reaction temperature cannot be achieved. As shown in FIG. 8 showing the relationship between the CO removal rate and the reaction temperature, CO and H when a rhodium (Rh) -based catalyst or a ruthenium (Ru) -based catalyst is used as a catalyst capable of selectively oxidizing CO are used. Looking at the removal rate of 2 ,
In the case of using a Rh-based catalyst, as the reaction temperature increases as indicated by the symbol ◇, the removal rate of H 2 is slightly increased, but the removal rate of CO is increased to 200 ° C. or higher as indicated by the mark ○. Then, there is a problem that the optimum temperature range is narrow because the temperature decreases, and when a Ru-based catalyst is used, even if the reaction temperature increases, the CO removal rate does not decrease as indicated by ●, but Δ When the H 2 removal rate exceeds 100 ° C., the temperature rapidly increases, and in this case also, the range of the optimum temperature is narrow. When the side reaction (H 2 +1/2 O 2 → H 2 O) that consumes hydrogen occurs, there is a problem that the amount of H 2 as fuel to the fuel electrode of the fuel cell decreases, and as described above, for side reactions correspondingly much oxygen is employed when occurs, it is necessary to increase the introduced amount of the oxidizing air or oxygen O 2, usually in oxidizing atmospheric oxygen or oxygen theoretically required amount There is a problem that it is necessary to add about four times (oxidizing air stoichiometric ratio 4.0), and accordingly, the capacity of the compressor must be increased as a feeder. When the diameter of the tube 2 is large, a difference occurs in the catalyst temperature between the center and the periphery of the tube 2. On the other hand, when the diameter of the tube 2 is small, the pressure loss of the gas flow increases, It becomes difficult to pack the catalyst 3, and furthermore, the difference in pressure loss between the tubes 2 arranged in parallel. Flow distribution per al pipe 2 are different, there are problems such.

【0005】又、図7に示す一酸化炭素除去装置の場合
は、同じハニカム状の通路内では下流ほど反応温度が高
くなるので、冷却に熱交換器を用いる場合はハニカム状
通路と熱交換器とを交互に配置する構成とすることにな
り、構造が複雑になる、という問題がある。
In the case of the carbon monoxide removing apparatus shown in FIG. 7, the reaction temperature becomes higher downstream in the same honeycomb-shaped passage. Therefore, when a heat exchanger is used for cooling, the honeycomb-shaped passage and the heat exchanger are used. Are arranged alternately, and there is a problem that the structure becomes complicated.

【0006】そこで、本発明は、改質ガス中の一酸化炭
素を選択的に除去する主反応が行われるときに水素消費
反応が行われる副反応(H2 +1/2 O2 →H2 O)が起
りにくいようにして、水素の消費を少なくすると共に、
酸化空気又は酸素の供給量を少なくして量論比を4.0
以下にすることができるようにし、更に、触媒充填部を
均一な反応温度とすることができるようにしようとする
ものである。
Therefore, the present invention provides a secondary reaction (H 2 +1/2 O 2 → H 2 O) in which a hydrogen consumption reaction is performed when a main reaction for selectively removing carbon monoxide in a reformed gas is performed. ) To reduce the consumption of hydrogen,
The stoichiometric ratio is set to 4.0 by reducing the supply amount of the oxidizing air or oxygen.
It is intended to make it possible to make the reaction temperature of the catalyst-filled portion uniform.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を解
決するために、箱形ケーシングの内部に、触媒層と、該
触媒層での反応温度を調整するための冷却層とを水平の
隔壁を介し冷却層で触媒層を挟むように積層させてCO
除去部を構成し、且つ該CO除去部の触媒層の中央部分
に、一酸化炭素を選択的に酸化させる触媒を、厚さを薄
くして上記ケーシングの長手方向へ長くなるように充填
して触媒充填部とし、該触媒充填部の片側となる上記ケ
ーシングの幅方向一側を改質ガス及び酸化空気又は酸素
の導入部とすると共に、触媒充填部の反対側となる上記
ケーシングの幅方向他側を改質ガス及び酸化空気又は酸
素の導出部として、改質ガス及び酸化空気又は酸素がケ
ーシングの幅方向へ流れるようにし、更に上記ケーシン
グに、上記触媒層の改質ガス及び酸化空気又は酸素の導
入部と導出部、冷却層の冷却媒体導入部と導出部を各々
ケーシングの外部へ開口させてなる構成とする。
According to the present invention, in order to solve the above-mentioned problems, a catalyst layer and a cooling layer for adjusting a reaction temperature in the catalyst layer are horizontally provided inside a box-shaped casing. The catalyst layer is laminated so as to sandwich the catalyst layer with the cooling layer through the partition wall and CO 2
A catalyst for selectively oxidizing carbon monoxide is filled in the central portion of the catalyst layer of the CO removing portion so as to reduce the thickness and lengthen in the longitudinal direction of the casing. A catalyst-filled portion, one side of the width of the casing that is one side of the catalyst-filled portion is used as a portion for introducing reformed gas and oxidized air or oxygen, and the other side of the casing that is the opposite side of the catalyst-filled portion. As the outlet for the reformed gas and the oxidized air or oxygen, the reformed gas and the oxidized air or oxygen flow in the width direction of the casing. And a cooling medium introduction part and a discharge part of the cooling layer are respectively opened to the outside of the casing.

【0008】改質ガス及び酸化空気又は酸素が導入部を
ケーシングの長手方向へ流れてから直角方向に向きを変
えて触媒充填部を通過するようにしてあるので、ガスの
流れ方向で触媒は短かく、したがって、触媒の温度差は
小さく、又、触媒充填部の両面が全面にわたり冷却され
るので、均一冷却ができ、更に、触媒は薄くしてあるこ
とから、反応温度の均一化が図れる。これにより、酸化
空気又は酸素の供給量を減少できて量論比を下げること
ができ、改質ガス中の水素の消費量が減少する。
[0008] Since the reformed gas and oxidized air or oxygen flow through the introduction section in the longitudinal direction of the casing and then change the direction at right angles to pass through the catalyst filling section, the catalyst is short in the gas flow direction. Thus, the temperature difference between the catalysts is small, and since both surfaces of the catalyst-filled portion are cooled over the entire surface, uniform cooling can be performed. Further, since the catalyst is thin, the reaction temperature can be made uniform. Thereby, the supply amount of the oxidizing air or oxygen can be reduced, the stoichiometric ratio can be reduced, and the consumption of hydrogen in the reformed gas decreases.

【0009】又、CO除去部を、ケーシング内の幅方向
に区画して複数構成し、各CO除去部の各改質ガス及び
酸化空気又は酸素の導入部同士及び導出部同士をそれぞ
れ連通させ、且つ各冷却層の入口側同士及び出口側同士
をそれぞれ連通させた構成とすると、効率よく一酸化炭
素を除去できる。
A plurality of CO removing sections are formed by partitioning in the width direction in the casing, and the reforming gas and oxidizing air or oxygen introduction sections and discharge sections of each CO removal section are communicated with each other. In addition, when the inlet side and the outlet side of each cooling layer are connected to each other, carbon monoxide can be efficiently removed.

【0010】更に、CO冷却部の触媒充填部をケーシン
グの長手方向へ多数の仕切壁で仕切って区画した構成と
すると、触媒を小さいブロックとして詰めることができ
ると共に、改質ガスの流れを均一化できる。
Further, if the catalyst filling section of the CO cooling section is divided by a large number of partition walls in the longitudinal direction of the casing, the catalyst can be packed as small blocks and the flow of reformed gas can be made uniform. it can.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1(イ)(ロ)(ハ)は本発明の実施の
一形態として、プレート型のCO除去部10aと10b
を1つの箱形ケーシング11の内部に左右別々に形成
し、ケーシング11の一端側から導入した改質ガスFG
及び酸化空気又は酸素O2 を同時に2つのCO除去部1
0aと10bに流して改質ガスFG中の一酸化炭素CO
を除去するようにしたものについて示す。
FIGS. 1A, 1B, and 1C show plate-type CO removing units 10a and 10b according to an embodiment of the present invention.
Are formed separately on the left and right inside one box-shaped casing 11, and the reformed gas FG introduced from one end side of the casing 11
And oxidizing air or oxygen O 2 simultaneously in two CO removing units 1
0a and 10b and carbon monoxide CO in the reformed gas FG
Are shown below.

【0013】詳述すると、箱形に形成したケーシング1
1内の中央部に、中央仕切壁12を設けて左右に仕切る
と共に、該中央仕切壁12を挟んで左右対称的に水平の
隔壁13を多段に配設して、1つ置きに内部に触媒を充
填するためのプレート型の触媒層14と該触媒層14で
の反応温度を調整するために冷却媒体を流すようにする
プレート型の冷却層15を積層して形成するようにして
触媒層14が両面より冷却層15で挟まれているように
し、且つ上記各触媒層14と冷却層15の各中央部分に
のみ左右方向へ延びる仕切壁16を所要間隔で配設して
多数の小空間を形成させ、更に、該触媒層14中央部の
小空間形成部の片側をケーシング11の長手方向に沿う
ガス導入部17とし、又、反対側をガス導出部18と
し、同様に上記冷却層15中央部の小空間形成部の片側
を冷却媒体導入部19とし、反対側を冷却媒体導出部2
0とするようにして、ガスや冷却媒体の入口側となるケ
ーシング11の一端側では、各触媒層14のガス導入部
17と各冷却層15の冷却媒体導入部19のみを残して
閉塞板21で閉塞すると共に、ケーシング11の反対側
では、各触媒層14のガス導入部17と各冷却層15の
冷却媒体導入部19を除いて閉塞板22で閉塞して、上
記触媒層14の隣接する仕切壁16の間又は両端の仕切
壁16と閉塞板21,22との間で形成された各小空間
には、一酸化炭素を選択的に酸化できる触媒23を厚さ
を薄くして詰めて触媒充填部24を形成することによ
り、左右別々のCO除去部10aと10bを構成するよ
うにする。
More specifically, a casing 1 formed in a box shape
1, a central partition wall 12 is provided at a central portion to partition left and right, and horizontal partition walls 13 are arranged in multiple stages symmetrically with respect to the central partition wall 12 so as to sandwich catalyst every other one inside. The catalyst layer 14 is formed by laminating a plate-type catalyst layer 14 for filling the catalyst layer and a plate-type cooling layer 15 for flowing a cooling medium to adjust the reaction temperature in the catalyst layer 14. Are sandwiched between the cooling layers 15 from both sides, and partition walls 16 extending in the left-right direction only at the respective center portions of the catalyst layers 14 and the cooling layer 15 are arranged at required intervals to form a large number of small spaces. Further, one side of the small space forming portion at the center of the catalyst layer 14 is defined as a gas introduction portion 17 along the longitudinal direction of the casing 11, and the other side is defined as a gas outlet portion 18. One side of the small space forming part is a cooling medium introduction part 1 And then, the opposite side cooling medium outlet section 2
At one end of the casing 11 which is the inlet side of the gas and the cooling medium, the closing plate 21 is left, leaving only the gas introduction part 17 of each catalyst layer 14 and the cooling medium introduction part 19 of each cooling layer 15. On the other side of the casing 11, except for the gas introduction section 17 of each catalyst layer 14 and the cooling medium introduction section 19 of each cooling layer 15, the casing 11 is closed with the closing plate 22, and the catalyst layer 14 is adjacent to the catalyst layer 14. In each small space formed between the partition walls 16 or between the partition walls 16 at both ends and the closing plates 21 and 22, a catalyst 23 capable of selectively oxidizing carbon monoxide is packed with a reduced thickness. By forming the catalyst filling section 24, the left and right separate CO removing sections 10a and 10b are configured.

【0014】25は触媒充填部24のガス導入部17側
に設けたガスの流量調整用の多孔板、26は酸化空気又
は酸素O2 を各小空間に均一に流すようにするために触
媒層14のガス導入部17に設けた流量調整用の多孔板
で、該多孔板26とケーシング11の内壁又は中央仕切
壁12との間に形成される流路27に、ケーシング11
の外部から酸化空気又は酸素O2 を供給できるようにし
てある。28は2つのCO除去部10a,10bの各触
媒層14のガス導入部17へ改質ガスFGを導くように
するため、各触媒層14に対応させてケーシング11に
設けた改質ガス入口、29はケーシング11の反対側に
各触媒層14に対応させて設けた改質ガス出口、30は
冷却媒体4を各冷却層15へ導入するため、ケーシング
11の一端側に設けた冷却媒体入口、31はケーシング
11の反対側に設けた冷却媒体出口である。
Reference numeral 25 denotes a perforated plate provided on the side of the gas introduction section 17 of the catalyst filling section 24 for adjusting the flow rate of gas. Reference numeral 26 denotes a catalyst layer for uniformly flowing oxidized air or oxygen O 2 into each small space. 14 is a perforated plate for adjusting the flow rate provided in the gas introduction portion 17 of the fuel cell 14, and a casing 11 is provided in a flow path 27 formed between the perforated plate 26 and the inner wall or the central partition wall 12 of the casing 11.
Oxidizing air or oxygen O 2 can be supplied from the outside. Reference numeral 28 denotes a reformed gas inlet provided in the casing 11 corresponding to each catalyst layer 14 so as to guide the reformed gas FG to the gas introduction unit 17 of each catalyst layer 14 of the two CO removing units 10a and 10b. 29 is a reformed gas outlet provided on the opposite side of the casing 11 corresponding to each catalyst layer 14, 30 is a cooling medium inlet provided on one end side of the casing 11 for introducing the cooling medium 4 into each cooling layer 15, Reference numeral 31 denotes a cooling medium outlet provided on the opposite side of the casing 11.

【0015】なお、冷却媒体4は図1(ハ)において、
流れ方向を逆にして冷却媒体出口31から導入して冷却
媒体入口30から排出するようにしてもよく、又、1つ
のケーシング11の内部に中央の仕切壁12にて左右に
別々のCO除去部10a,10bを構成した場合を示し
ているが、ケーシング11内に1つのCO除去部を構成
したものでもよい。
The cooling medium 4 is shown in FIG.
The flow direction may be reversed, and the cooling medium may be introduced from the cooling medium outlet 31 and discharged from the cooling medium inlet 30. Although the case where 10a and 10b are configured is shown, a configuration in which one CO removing unit is configured in the casing 11 may be used.

【0016】したがって、改質ガスFGがケーシング1
1の入口28から導入されると、該改質ガスFGはケー
シング11内の各層の触媒層14のガス導入部17から
流量調整用多孔板25を通って触媒充填部24へ入る。
一方、酸化空気又は酸素O2は、ケーシング11の外部
から流路27へと導かれた後、該流路27を仕切る流量
調整用多孔板26を通り、上記改質ガスFGとともに均
一に触媒充填部24へ入り、触媒23の存在下で主反応
(CO+1/2 O2 →CO2 )が行われることになる。こ
の間、冷却層15には冷却媒体4が流されているので、
上記発熱反応による一酸化炭素の除去時に冷却作用を行
うことができる。
Therefore, the reformed gas FG is
When the reformed gas FG is introduced from the first inlet 28, the reformed gas FG enters the catalyst filling section 24 from the gas introduction section 17 of the catalyst layer 14 of each layer in the casing 11 through the flow control porous plate 25.
On the other hand, the oxidized air or oxygen O 2 is guided from the outside of the casing 11 to the flow path 27, passes through the perforated flow control plate 26 partitioning the flow path 27, and uniformly fills the catalyst with the reformed gas FG. In the part 24, the main reaction (CO + 1/2 O 2 → CO 2 ) is performed in the presence of the catalyst 23. During this time, since the cooling medium 4 is flowing through the cooling layer 15,
A cooling action can be performed when removing carbon monoxide by the exothermic reaction.

【0017】上記において、本発明では、上述したよう
に、ケーシング11の長手方向に長くなるように形成し
たプレート型触媒層14の反応部となる幅方向中央部分
に、触媒23を充填して触媒充填部24として、改質ガ
スFGと酸化空気又は酸素O2 がケーシング11の長手
方向と直交する方向へ流れて触媒充填部24を通過する
ようにしてあり、又、上記触媒充填部24は、多数の仕
切壁16で小さな区画に仕切られていて、触媒充填部2
4の触媒23は厚さが薄く且つガスの流れ方向に短かく
なっており、しかもガスは触媒充填部24を全域にわた
って均一に流れ、更に、触媒充填部24は両面から冷却
層15で挟まれていて、全面にわたって均一な冷却が行
われるようになっているので、ガスの流れ方向や厚み方
向での温度差は小さく、且つ冷却面積は円管の場合より
大きくできるので触媒全体にわたり均一に冷却を行うこ
とができる。これにより、触媒充填部24での反応温度
を均一化することができ、図8に示したCOの除去率が
高く且つH2 の除去率が低い最適値の反応温度に保つこ
とができ、CO+1/2 O2 →CO2 の主反応のほかに起
るH2 +1/2 O2 →H2 OやCO+3H2 →CH4 +H
2 Oの如き副反応が少なくなり、これに伴い酸化空気又
は酸素O2 の供給量を予め少なくすることが可能とな
り、従来、前記したように酸化空気量論比を4.0とし
ていたものを、酸化空気量論比を4.0以下とすること
ができる。
In the above, according to the present invention, as described above, the catalyst 23 is filled in the central portion in the width direction of the reaction portion of the plate-type catalyst layer 14 formed so as to be longer in the longitudinal direction of the casing 11. As the charging section 24, the reformed gas FG and the oxidized air or oxygen O 2 flow in a direction perpendicular to the longitudinal direction of the casing 11 and pass through the catalyst charging section 24. It is divided into small sections by a large number of partition walls 16, and the catalyst filling section 2
The catalyst 23 of No. 4 has a small thickness and is short in the gas flow direction, and the gas flows uniformly throughout the catalyst filling portion 24, and the catalyst filling portion 24 is sandwiched between the cooling layers 15 from both sides. The uniform cooling is performed over the entire surface, so the temperature difference in the gas flow direction and thickness direction is small, and the cooling area can be made larger than in the case of a circular tube, so that the entire catalyst is cooled uniformly. It can be performed. Thus, it is possible to equalize the reaction temperature in the catalyst packed portion 24, it is possible to maintain the reaction temperature optimum value is high and H is low 2 removal rate removal rate of CO shown in FIG. 8, CO + 1 / 2 O 2 → H 2 +1/2 O 2 → H 2 O which occurs in addition to the main reaction of CO 2 or CO + 3H 2 → CH 4 + H
Side reactions such as 2 O are reduced, and accordingly, the supply amount of oxidizing air or oxygen O 2 can be reduced in advance. As a result, the oxidizing air stoichiometric ratio is set at 4.0 as described above. , The stoichiometric ratio of oxidizing air can be 4.0 or less.

【0018】すなわち、図2及び図3は酸化空気量論比
と出口CO濃度との関係及び酸化空気量論比と水素濃度
との関係を示すもので、酸化空気の量論比を多くする
と、一酸化炭素除去装置出口のCO濃度は、図2に△印
で示す如く低くなるが、副反応が起きて図3に▽印で示
す如く一酸化炭素除去装置出口の水素濃度も低くなると
いう関係にある。
2 and 3 show the relationship between the stoichiometric ratio of oxidizing air and the outlet CO concentration and the relationship between the stoichiometric ratio of oxidizing air and the hydrogen concentration. Although the CO concentration at the outlet of the carbon monoxide removal device is low as indicated by the symbol △ in FIG. 2, a side reaction occurs and the hydrogen concentration at the outlet of the carbon monoxide removal device is also reduced as indicated by the symbol ▽ in FIG. It is in.

【0019】本発明では、上述した如き構成としてある
ことから、酸化空気又は酸素O2 の供給量を減らすこと
ができるので、図2における一酸化炭素除去装置出口の
CO濃度(△印)を図上左方へシフトさせて酸化空気量
論比を4.0より少くしても十分なCO除去効果が得ら
れ、同時に、出口における水素濃度は図3に破線で示す
一酸化炭素除去装置入口水素濃度aとほとんど変らずに
水素消費量を少なくすることができる。これに伴い燃料
電池の効率を向上させることができる。
In the present invention, since the configuration is as described above, the supply amount of the oxidizing air or oxygen O 2 can be reduced. Therefore, the CO concentration at the outlet of the carbon monoxide removing device in FIG. A sufficient CO removal effect can be obtained even if the oxidizing air stoichiometric ratio is made lower than 4.0 by shifting to the upper left, and at the same time, the hydrogen concentration at the outlet is reduced by the hydrogen concentration at the inlet of the carbon monoxide removal device shown by the broken line in FIG. The hydrogen consumption can be reduced with almost no change from the concentration a. Accordingly, the efficiency of the fuel cell can be improved.

【0020】本発明の一酸化炭素除去装置は、たとえ
ば、船舶推進用燃料電池発電装置に用いるようにする。
The apparatus for removing carbon monoxide of the present invention is used, for example, in a fuel cell power generator for ship propulsion.

【0021】図4は、船舶推進用燃料電池として固体高
分子型燃料電池による発電装置を示すもので、本発明の
一酸化炭素除去装置Iは、改質器32で改質され、CO
コンバータ33を経由した改質ガス中のCOを除去する
ようCOコンバータ33の下流側に設置して用いられ
る。
FIG. 4 shows a power generator using a polymer electrolyte fuel cell as a fuel cell for ship propulsion. The carbon monoxide removing apparatus I of the present invention is reformed by
It is installed and used downstream of the CO converter 33 so as to remove CO in the reformed gas passing through the converter 33.

【0022】固体高分子電解質型燃料電池発電装置につ
いて説明すると、固体高分子電解質膜34を酸素極(カ
ソード)35と燃料極(アノード)36の両電極で両面
から挟んでなるセルをセパレータを介して積層し且つ任
意のセルに冷却部37を有してスタックとしてなる固体
高分子電解質型燃料電池FCの外側に、改質器32を設
置し、燃料としてのメタノールをメタノールタンク38
からメタノールポンプ39で加圧して蒸発器40、予熱
器41を経て改質器32の改質室に供給するようにし、
該改質器32で改質されたガス(燃料ガス)FGを、上
記予熱器41、COコンバータ33、熱交換器42を通
した後、本発明の一酸化炭素除去装置IでCOを除去し
た後、熱交換器43を経て100℃以下にし、更に、改
質ガスリザーバ44を通し、加湿器45を経て燃料極3
6に供給するようにし、且つ該燃料極36から排出され
たアノード排ガスAGを、気水分離器46で水分を除去
した後、アノード排ガスライン47により改質器32の
燃焼室に供給し燃焼させるようにすると共に、アノード
排ガスAGの一部を、アノード排ガスライン47より分
岐したバイパスライン48によりバイパスさせて触媒燃
焼器49に導入するようにし、更に、上記アノード排ガ
スライン47とバイパスライン48に流量調節弁50と
51を設け、改質器32の燃焼室の温度を検出する温度
計52からの検出温度に応じてアノード排ガス流量を調
節するよう流量調節弁50,51をコントロールする制
御部53を設けた構成としてある。又、上記触媒燃焼器
49には、改質器32から排出された燃焼ガスを燃焼ガ
スラインを通して導入するようにすると共に、排ガスタ
ービン54で駆動させられる圧縮機55で圧縮された空
気の一部を導入して、ここでアノード排ガス中の未反応
分を燃焼させるようにし、触媒燃焼器49へ入るバイパ
スライン48からのアノード排ガス量が少ないときは、
メタノールタンク38内からメタノールの一部をポンプ
56で加圧して触媒燃焼器49へ導入して燃焼させるよ
うにしてある。
The solid polymer electrolyte fuel cell power generator will be described. A cell in which a solid polymer electrolyte membrane 34 is sandwiched between both electrodes of an oxygen electrode (cathode) 35 and a fuel electrode (anode) 36 via a separator. A reformer 32 is installed outside a solid polymer electrolyte fuel cell FC which is stacked and has a cooling unit 37 in an arbitrary cell and is a stack, and methanol as a fuel is stored in a methanol tank 38.
, Pressurized by a methanol pump 39, and supplied to a reforming chamber of a reformer 32 via an evaporator 40 and a preheater 41,
The gas (fuel gas) FG reformed by the reformer 32 passes through the preheater 41, the CO converter 33, and the heat exchanger 42, and then CO is removed by the carbon monoxide removing device I of the present invention. Thereafter, the temperature is lowered to 100 ° C. or lower through a heat exchanger 43, further, through a reformed gas reservoir 44, through a humidifier 45, and the fuel electrode 3.
The anode exhaust gas AG discharged from the fuel electrode 36 is supplied to the combustion chamber of the reformer 32 through the anode exhaust gas line 47 and burned after the moisture is removed by the steam separator 46. At the same time, a part of the anode exhaust gas AG is bypassed by a bypass line 48 branched from the anode exhaust gas line 47 and introduced into the catalytic combustor 49. Control valves 50 and 51 are provided, and a control unit 53 that controls the flow rate control valves 50 and 51 so as to adjust the anode exhaust gas flow rate in accordance with the temperature detected by the thermometer 52 that detects the temperature of the combustion chamber of the reformer 32 is provided. It is a configuration provided. Further, the catalytic combustor 49 is configured to introduce the combustion gas discharged from the reformer 32 through a combustion gas line and a part of the air compressed by a compressor 55 driven by an exhaust gas turbine 54. Is introduced to burn unreacted components in the anode exhaust gas, and when the amount of anode exhaust gas from the bypass line 48 entering the catalytic combustor 49 is small,
A part of methanol is pressurized by the pump 56 from the methanol tank 38 and introduced into the catalytic combustor 49 for combustion.

【0023】57は蒸気発生器、58は蒸気ライン、5
9は酸素極35への酸化剤ガスOGとしての空気Aの供
給ライン、60と61は酸素極35から排出されたカソ
ード排ガスCGを改質器32の燃焼室に供給するライン
に設けた熱交換器と気水分離器である。
Reference numeral 57 denotes a steam generator; 58, a steam line;
Reference numeral 9 denotes a supply line for supplying air A as an oxidant gas OG to the oxygen electrode 35, and reference numerals 60 and 61 denote heat exchange lines provided for supplying a cathode exhaust gas CG discharged from the oxygen electrode 35 to a combustion chamber of the reformer 32. And steam-water separator.

【0024】本発明の一酸化炭素除去装置Iを、かかる
固体高分子型燃料電池発電装置に用いる場合、改質器3
2及びCOコンバータ33をともにプレート型として、
本発明の一酸化炭素除去装置Iと組み合わせて積層する
ことができる。
When the carbon monoxide removing device I of the present invention is used in such a polymer electrolyte fuel cell power generator, the reformer 3
2 and CO converter 33 are both plate type,
It can be laminated in combination with the carbon monoxide removing device I of the present invention.

【0025】図5はその一例として、本発明の一酸化炭
素除去装置Iを、COコンバータ33と改質器32の上
に重ねた場合を示すもので、改質器32は、中央部分の
反応部に改質用触媒62を充填したプレート型の改質室
63と燃焼用触媒64を充填した燃焼室65とを隔壁6
6を介し積層して、改質室63を燃焼室65で挟むよう
にし、改質室63には入口側から改質原料(メタノー
ル)と水蒸気67供給ラインより供給すると共に、燃焼
室65には入口側から燃焼ガス68を供給ラインより供
給して、燃焼室65で燃焼させ、燃焼により生じた熱を
隔壁66を通して改質室63で吸熱して改質反応を行わ
せ、改質ガスFGを改質室63出口側の改質ガスライン
69に排出させ、燃焼室65の出口側より燃焼排ガスを
排出させるようにしてある。又、COコンバータ33
は、触媒70を充填したプレート型の変成室71を、隔
壁72を介してプレート型の冷却室73で両面より挟む
ようにして積層し、改質器32で改質された改質ガスF
GをCOコンバータ33の変成室71で変成して排出す
るようにしてある。
FIG. 5 shows, as an example, a case where the carbon monoxide removing apparatus I of the present invention is superposed on a CO converter 33 and a reformer 32. A plate-type reforming chamber 63 filled with a reforming catalyst 62 in a portion thereof and a combustion chamber 65 filled with a combustion catalyst 64 are divided into partition walls 6.
The reforming chamber 63 is sandwiched between the combustion chambers 65. The reforming chamber 63 is supplied from the inlet side with a reforming raw material (methanol) and a steam 67 supply line. A combustion gas 68 is supplied from a supply line from an inlet side, burned in a combustion chamber 65, and heat generated by the combustion is absorbed in a reforming chamber 63 through a partition wall 66 to cause a reforming reaction to be performed. The exhaust gas is discharged to the reformed gas line 69 on the outlet side of the reforming chamber 63, and the combustion exhaust gas is discharged from the outlet side of the combustion chamber 65. CO converter 33
Is formed by stacking a plate-type shift chamber 71 filled with a catalyst 70 on both sides of a plate-type cooling chamber 73 via a partition wall 72, and reforming gas F reformed in a reformer 32.
G is converted in the conversion chamber 71 of the CO converter 33 and discharged.

【0026】上記3つの機器をプレート型にして積層
し、改質器32の出口側とCOコンバータ33の入口側
とを改質ガスライン69で接続すると共に、各冷却室7
3には冷却媒体供給ライン74より冷却媒体を供給する
ようにし、該COコンバータ33の変成室71から排出
された改質ガスを改質ガスライン69にて本発明の一酸
化炭素除去装置Iの触媒層14へ導入させるようにす
る。
The above three devices are stacked in a plate type, the outlet side of the reformer 32 and the inlet side of the CO converter 33 are connected by a reformed gas line 69, and each cooling chamber 7 is connected.
3 is supplied with a cooling medium from a cooling medium supply line 74, and the reformed gas discharged from the shift chamber 71 of the CO converter 33 is passed through a reformed gas line 69 of the carbon monoxide removal device I of the present invention. It is introduced into the catalyst layer 14.

【0027】なお、図5は一例であり、改質器32とC
Oコンバータ33を入れ替える等、組み合わせ方は任意
である。
FIG. 5 is an example, and the reformer 32 and C
The combination method is arbitrary, such as exchanging the O converter 33.

【0028】このように、本発明の一酸化炭素除去装置
Iをプレート型の改質器32とプレート型のCOコンバ
ータ33と積層させて一体化させることにより、コンパ
クト化を図ることができ、発電装置のシステム構成を簡
略化することができる。
As described above, the carbon monoxide removing apparatus I of the present invention is laminated and integrated with the plate-type reformer 32 and the plate-type CO converter 33, thereby achieving compactness and power generation. The system configuration of the device can be simplified.

【0029】なお、触媒充填部24はハニカム状にして
触媒23を担持させるようにしてもよい。ハニカム状触
媒の場合、振動等によっても触媒が動きにくいので、仕
切壁16はなくすこともできる。
The catalyst filling section 24 may be formed in a honeycomb shape to support the catalyst 23. In the case of a honeycomb catalyst, the partition wall 16 can be eliminated because the catalyst does not easily move due to vibration or the like.

【0030】[0030]

【実施例】本発明者が行った実験結果について説明す
る。
EXAMPLES The results of experiments conducted by the present inventors will be described.

【0031】10KW級メタノール改質ガス中一酸化炭
素除去装置において、 改質ガス流量:0.458Kmol /H(10.25Nm
3 /H) 触媒容積:430cm3 発熱量(量論比4):868Kcal /H 酸化空気量(量論比4):11.4Nl/min の条件で図6に示す従来装置を円筒体1の径を100m
m、各管2の長さを1500mmとして実施したとき、触
媒温度差は、ガス流れ方向に約50℃、半径方向に約5
0℃で、冷却媒体を入れたところが多く冷却されてい
る。
In the apparatus for removing carbon monoxide in a 10 kW class methanol reformed gas, the reformed gas flow rate is 0.458 kmol / H (10.25 Nm
3 / H) Catalyst volume: 430 cm 3 Heat value (stoichiometric ratio 4): 868 Kcal / H Oxidized air amount (stoichiometric ratio 4): 11.4 Nl / min. 100m diameter
m, when the length of each tube 2 is 1500 mm, the catalyst temperature difference is about 50 ° C. in the gas flow direction and about 5 ° in the radial direction.
At 0 ° C., the part where the cooling medium is put is cooled much.

【0032】これに対し、本発明の場合は、触媒層14
及び冷却層15を積層して収納したケーシング11の幅
を450mm、長さを600mm、高さを15mmとし、冷却
媒体として水と空気を用いた場合の流量Qと温度上昇
(入口、出口の温度差)ΔTを求めたところ、 水冷却の場合:Q=1.44l/min ΔT=10℃
(量論比4.0のとき) 空気冷却の場合:Q=960Nl/min ΔT=60℃
(量論比4.0のとき) であった。空気冷却の場合は、ΔTが大きいので、この
ΔTを下げるためには、酸化空気量論比を4.0以下に
下げる必要がある。水冷却の場合はΔTは10℃である
から、図8においてCOの除去率が高く水素の除去率が
低いところの最適温度に触媒反応温度を保つことができ
る。
On the other hand, in the case of the present invention, the catalyst layer 14
The flow rate Q and the temperature rise when using water and air as the cooling medium are 450 mm, the length is 600 mm, and the height is 15 mm. Difference) When ΔT was determined, in the case of water cooling: Q = 1.44 l / min ΔT = 10 ° C.
(When the stoichiometric ratio is 4.0) In the case of air cooling: Q = 960 Nl / min ΔT = 60 ° C.
(At a stoichiometric ratio of 4.0). In the case of air cooling, since ΔT is large, it is necessary to reduce the oxidizing air stoichiometric ratio to 4.0 or less in order to reduce ΔT. Since ΔT is 10 ° C. in the case of water cooling, the catalytic reaction temperature can be maintained at the optimum temperature where the CO removal rate is high and the hydrogen removal rate is low in FIG.

【0033】[0033]

【発明の効果】以上述べた如く、本発明の改質ガス中の
一酸化炭素除去装置によれば、プレート型とした触媒層
に一酸化炭素を選択的に除去できる触媒を厚さを薄くし
て、改質ガス及び酸化空気又は酸素が流れる方向に触媒
の長さを短かくし、且つ上記触媒層を、プレート型の冷
却層で両面より挟んで積層させ、改質ガス及び酸化空気
又は酸素が触媒を通過するときの発熱反応でCOを除去
するときに冷却層に流される冷却媒体により冷却させる
ようにしてあるので、触媒の温度差が極めて少なく且つ
触媒充填部は全体にわたって均一に冷却を行うことがで
きて、反応温度の均一化を図ることができると共に、酸
化空気又は酸素の供給量を少なくすることができて量論
比を従来より下げることができ、これに伴い改質ガス中
の水素の消費量をより少なくすることができて燃料電池
の効率向上を図ることができ、又、温度分布の均一化が
図れて反応の安定化が向上し、更に、酸化空気供給量の
減少から圧縮機による供給動力を大幅に減少できる、等
の優れた効果を奏し得られ、更に、プレート型とした本
発明の一酸化炭素除去装置を、プレート型とした改質器
及びプレート型としたCOコンバータと積層して一体化
させることにより発電装置のコンパクト化を図ることが
できる、という優れた効果を奏し得られる。
As described above, according to the apparatus for removing carbon monoxide in reformed gas of the present invention, a catalyst capable of selectively removing carbon monoxide is provided in a plate-type catalyst layer by reducing the thickness. The length of the catalyst is shortened in the direction in which the reformed gas and the oxidizing air or oxygen flow, and the catalyst layer is laminated and sandwiched from both sides by a plate-type cooling layer. When CO is removed by an exothermic reaction when passing through the catalyst, cooling is performed by the cooling medium flowing through the cooling layer, so that the temperature difference of the catalyst is extremely small, and the catalyst filling portion uniformly cools the whole. The reaction temperature can be made uniform, the supply amount of oxidizing air or oxygen can be reduced, and the stoichiometric ratio can be reduced as compared with the conventional method. Hydrogen consumption As a result, the efficiency of the fuel cell can be improved, the temperature distribution can be made uniform, the stability of the reaction can be improved, and the supply power of the compressor can be reduced by reducing the supply of oxidized air. Can be greatly reduced, and the like. Furthermore, the plate-type carbon monoxide removal device of the present invention is laminated with a plate-type reformer and a plate-type CO converter. By integrating them, an excellent effect that the power generation device can be made compact can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一酸化炭素除去装置の実施の一形態を
示すもので、(イ)は切断側面図、(ロ)は(イ)のX
−X矢視図、(ハ)は(イ)のY−Y矢視図である。
FIG. 1 shows an embodiment of a carbon monoxide removing apparatus according to the present invention, in which (a) is a cut side view, and (b) is X in (a).
FIG. 3C is a view as seen in the direction of the arrow X, and FIG. 3C is a view as viewed in the direction of the arrow YY in FIG.

【図2】酸化空気量論比と一酸化炭素除去装置出口CO
濃度の関係を示す図である。
FIG. 2 Stoichiometric ratio of oxidizing air and CO at the outlet of carbon monoxide removing device
It is a figure which shows the relationship of density.

【図3】酸化空気量論比と一酸化炭素除去装置出口水素
濃度の関係を示す図である。
FIG. 3 is a graph showing the relationship between the stoichiometric ratio of oxidizing air and the concentration of hydrogen at the outlet of the carbon monoxide removing device.

【図4】固体高分子型燃料電池発電装置の一例を示すシ
ステム系統構成図である。
FIG. 4 is a system diagram showing an example of a polymer electrolyte fuel cell power generator.

【図5】本発明の一酸化炭素除去装置をプレート型の改
質器、COコンバータと積層して一体とした場合を示す
概略図である。
FIG. 5 is a schematic diagram showing a case where the carbon monoxide removing device of the present invention is laminated with a plate-type reformer and a CO converter to be integrated.

【図6】従来の一酸化炭素除去装置の一例を示すもの
で、(イ)は切断側面図、(ロ)は(イ)のZ−Z矢視
図である。
FIG. 6 shows an example of a conventional carbon monoxide removing apparatus, in which (A) is a cut side view, and (B) is a view taken along the line ZZ of (A).

【図7】従来の一酸化炭素除去装置の他の例を示す断面
図である。
FIG. 7 is a sectional view showing another example of the conventional carbon monoxide removing device.

【図8】触媒の反応温度とCO、H2 の除去率の関係を
示す図である。
FIG. 8 is a diagram showing the relationship between the reaction temperature of the catalyst and the removal rates of CO and H 2 .

【符号の説明】[Explanation of symbols]

4 冷却媒体 10a,10b CO除去部 11 ケーシング 12 中央仕切壁 13 隔壁 14 触媒層 15 冷却層 16 仕切壁 17 ガス導入部 18 ガス導出部 19 冷却媒体導入部 20 冷却媒体導出部 23 触媒 24 触媒充填部 32 改質器 33 COコンバータ 63 改質室 65 燃焼室 71 変成室 FG 改質ガス O2 酸化空気又は酸素Reference Signs List 4 cooling medium 10a, 10b CO removal unit 11 casing 12 central partition wall 13 partition wall 14 catalyst layer 15 cooling layer 16 partition wall 17 gas introduction unit 18 gas extraction unit 19 cooling medium introduction unit 20 cooling medium extraction unit 23 catalyst 24 catalyst filling unit 32 reformer 33 CO converter 63 reforming chamber 65 combustion chamber 71 shift chamber FG reformed gas O 2 oxidized air or oxygen

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 箱形ケーシングの内部に、触媒層と、該
触媒層での反応温度を調整するための冷却層とを水平の
隔壁を介し冷却層で触媒層を挟むように積層させてCO
除去部を構成し、且つ該CO除去部の触媒層の中央部分
に、一酸化炭素を選択的に酸化させる触媒を、厚さを薄
くして上記ケーシングの長手方向へ長くなるように充填
して触媒充填部とし、該触媒充填部の片側となる上記ケ
ーシングの幅方向一側を改質ガス及び酸化空気又は酸素
の導入部とすると共に、触媒充填部の反対側となる上記
ケーシングの幅方向他側を改質ガス及び酸化空気又は酸
素の導出部として、改質ガス及び酸化空気又は酸素がケ
ーシングの幅方向へ流れるようにし、更に上記ケーシン
グに、上記触媒層の改質ガス及び酸化空気又は酸素の導
入部と導出部、冷却層の冷却媒体導入部と導出部を各々
ケーシングの外部へ開口させてなることを特徴とする改
質ガス中の一酸化炭素除去装置。
1. A catalyst layer and a cooling layer for adjusting a reaction temperature in the catalyst layer are stacked inside a box-shaped casing so as to sandwich the catalyst layer between the cooling layers via a horizontal partition.
A catalyst for selectively oxidizing carbon monoxide is filled in the central portion of the catalyst layer of the CO removing portion so as to reduce the thickness and lengthen in the longitudinal direction of the casing. A catalyst-filled portion, one side of the width of the casing that is one side of the catalyst-filled portion is used as a portion for introducing reformed gas and oxidized air or oxygen, and the other side of the casing that is the opposite side of the catalyst-filled portion. As the outlet for the reformed gas and the oxidized air or oxygen, the reformed gas and the oxidized air or oxygen flow in the width direction of the casing. An opening and an outlet for the cooling medium and an inlet and an outlet for the cooling medium of the cooling layer are respectively opened to the outside of the casing.
【請求項2】 CO除去部を、ケーシング内の幅方向に
区画して複数構成し、各CO除去部の各改質ガス及び酸
化空気又は酸素の導入部同士及び導出部同士をそれぞれ
連通させ、且つ各冷却層の入口側同士及び出口側同士を
それぞれ連通させた請求項1記載の改質ガス中の一酸化
炭素除去装置。
2. A plurality of CO removing sections are formed by partitioning in the width direction in the casing, and the reforming gas and oxidizing air or oxygen introduction sections and discharge sections of each CO removal section are communicated with each other, 2. The apparatus for removing carbon monoxide in a reformed gas according to claim 1, wherein an inlet side and an outlet side of each cooling layer communicate with each other.
【請求項3】 CO冷却部の触媒充填部をケーシングの
長手方向へ多数の仕切壁で仕切って区画した請求項1又
は2記載の改質ガス中の一酸化炭素除去装置。
3. The apparatus for removing carbon monoxide in a reformed gas according to claim 1, wherein the catalyst filling section of the CO cooling section is partitioned by a number of partition walls in the longitudinal direction of the casing.
【請求項4】 CO除去部の触媒層と冷却層を複数の積
層とした請求項1、2又は3記載の改質ガス中の一酸化
炭素除去装置。
4. The apparatus for removing carbon monoxide in a reformed gas according to claim 1, wherein the catalyst layer and the cooling layer of the CO removing section are formed in a plurality of layers.
【請求項5】 改質器及びCOコンバータをプレート型
として、該プレート型の改質器及びCOコンバータと積
層して一体としてなる請求項1記載の改質ガス中の一酸
化炭素除去装置。
5. The apparatus for removing carbon monoxide in reformed gas according to claim 1, wherein the reformer and the CO converter are of a plate type, and are integrated with the plate type reformer and the CO converter.
JP06175297A 1997-03-03 1997-03-03 Carbon monoxide removal equipment in reformed gas Expired - Fee Related JP4228401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06175297A JP4228401B2 (en) 1997-03-03 1997-03-03 Carbon monoxide removal equipment in reformed gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06175297A JP4228401B2 (en) 1997-03-03 1997-03-03 Carbon monoxide removal equipment in reformed gas

Publications (2)

Publication Number Publication Date
JPH10245573A true JPH10245573A (en) 1998-09-14
JP4228401B2 JP4228401B2 (en) 2009-02-25

Family

ID=13180218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06175297A Expired - Fee Related JP4228401B2 (en) 1997-03-03 1997-03-03 Carbon monoxide removal equipment in reformed gas

Country Status (1)

Country Link
JP (1) JP4228401B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040376A (en) * 1999-07-28 2001-02-13 Aisin Seiki Co Ltd Carbon monoxide-reducing apparatus, modification apparatus, and fuel cell system
JP2003089502A (en) * 2001-09-12 2003-03-28 Suzuki Motor Corp Methanol reformer
JP2003531092A (en) * 2000-04-14 2003-10-21 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for selective oxidation of carbon monoxide
JP2006261007A (en) * 2005-03-18 2006-09-28 Matsushita Electric Ind Co Ltd Hydrogen generator and fuel cell system
US7572417B2 (en) 2005-09-29 2009-08-11 Casio Computer Co., Ltd. Reactor
US8038959B2 (en) 2005-09-08 2011-10-18 Casio Computer Co., Ltd. Reacting device
US8178248B2 (en) 2005-01-10 2012-05-15 Samsung Sdi Co., Ltd. Carbon monoxide remover and fuel cell system with the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040376A (en) * 1999-07-28 2001-02-13 Aisin Seiki Co Ltd Carbon monoxide-reducing apparatus, modification apparatus, and fuel cell system
JP2003531092A (en) * 2000-04-14 2003-10-21 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for selective oxidation of carbon monoxide
JP2003089502A (en) * 2001-09-12 2003-03-28 Suzuki Motor Corp Methanol reformer
US8178248B2 (en) 2005-01-10 2012-05-15 Samsung Sdi Co., Ltd. Carbon monoxide remover and fuel cell system with the same
JP2006261007A (en) * 2005-03-18 2006-09-28 Matsushita Electric Ind Co Ltd Hydrogen generator and fuel cell system
US8038959B2 (en) 2005-09-08 2011-10-18 Casio Computer Co., Ltd. Reacting device
US7572417B2 (en) 2005-09-29 2009-08-11 Casio Computer Co., Ltd. Reactor

Also Published As

Publication number Publication date
JP4228401B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
KR100566739B1 (en) Ion transport membrane module and vessel system
US7503948B2 (en) Solid oxide fuel cell systems having temperature swing reforming
US7736774B2 (en) Solid oxide fuel cell system
JP3114097B2 (en) Hydrocarbon steam reformer
JP5227706B2 (en) Reformer
JP4956000B2 (en) Fuel cell stack
JP2008521184A (en) Equipment for carrying out chemical reactions
US20090064579A1 (en) Heat exchange reformer unit and reformer system
JP4942952B2 (en) Operation method of high temperature fuel cell
JP4809113B2 (en) Heat exchange type reformer
JP2002198074A (en) Multi-stage combustion process for maintaining controllable reforming temperature profile
JP4228401B2 (en) Carbon monoxide removal equipment in reformed gas
JP4963372B2 (en) REACTOR, REACTOR MANUFACTURING METHOD, AND REACTOR UNIT MEMBER
JP2005209579A (en) Fuel cell assembly
JPS63232275A (en) Fuel cell of lamination type
JP2008166233A (en) Fuel cell
JPH08283002A (en) Fuel reforming device
JP3777122B2 (en) Gas generation system
JPH0280301A (en) Fuel reforming apparatus for fuel cell and power generating apparatus using the fuel cell
JP4809117B2 (en) Heat exchange type reformer and reformer
JP4443968B2 (en) Hydrogen production equipment
JPH03216962A (en) Fuel cell
JP2009091181A (en) Reforming apparatus and fuel cell system
JP2751523B2 (en) Internal reforming fuel cell
JP2008257939A (en) Fuel cell stack structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060703

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20081111

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081124

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20111212

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees