JPH10244890A - Automatic parking device - Google Patents

Automatic parking device

Info

Publication number
JPH10244890A
JPH10244890A JP9053511A JP5351197A JPH10244890A JP H10244890 A JPH10244890 A JP H10244890A JP 9053511 A JP9053511 A JP 9053511A JP 5351197 A JP5351197 A JP 5351197A JP H10244890 A JPH10244890 A JP H10244890A
Authority
JP
Japan
Prior art keywords
parking
vehicle
automatic
image processing
automatic parking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9053511A
Other languages
Japanese (ja)
Inventor
Ryota Shirato
良太 白▲土▼
Jun Koreishi
純 是石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP9053511A priority Critical patent/JPH10244890A/en
Publication of JPH10244890A publication Critical patent/JPH10244890A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately detect a parking block and guide a vehicle by calculating the parking path to a parking point based on the processed results of the rear, right, and left images of the vehicle photographed by three image pickup means. SOLUTION: An image processing device 4 processes the images photographed by cameras 1-3, detects the white lines indicating a parking block on the road surface, and detects the lower sections of the side faces of a parking vehicle at a parking lot partitioned with the parking block by ropes stretched on an unpaved surface. A surrounding environment recognizing device 5 recognizes the parking block and the vehicle surrounding environment based on the image processed results by the image processing device 4. A parking control device 6 controls a steering control device 7, a braking force control device 8, a driving force control device 9 automatically changing the driving force, and an automatic transmission 10 automatically switching a lever to advance D, reverse R, neutral N, or parking P to calculate the path to a parking point based on the parking block and vehicle surrounding environment recognized by the surrounding environment recognizing device 5 and guide the vehicle along the parking path.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、駐車地点を検出し
て車両を駐車地点まで誘導する自動駐車装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic parking system for detecting a parking spot and guiding a vehicle to the parking spot.

【0002】[0002]

【従来の技術】図19に示すように、カメラで車両後方
の周囲環境を撮像して画像処理により駐車車両の前端角
部を検出し、隣接する駐車車両の前端角部の間に駐車地
点を設定して車両を誘導する自動駐車装置が知られてい
る(例えば、特開平5−143895号公報参照)。
2. Description of the Related Art As shown in FIG. 19, the surrounding environment behind a vehicle is imaged by a camera, the front corner of a parked vehicle is detected by image processing, and a parking point is located between the front corners of adjacent parked vehicles. There is known an automatic parking device that guides a vehicle by setting (for example, see Japanese Patent Application Laid-Open No. 5-143895).

【0003】[0003]

【発明が解決しようとする課題】ところで、駐車場にも
図20に示すような車両の切り返し量を大きくとれない
狭い駐車場がある。このような駐車場で従来の自動駐車
装置により自動駐車を行なう場合に、目標駐車区画の両
隣の駐車車両の前端角部を撮像できる初期位置、すなわ
ち自動駐車開始地点まで車両を移動することができない
ことがあり、自動駐車ができないという問題がある。ま
た、図21に示すように駐車区画の駐車方向に対してほ
ぼ垂直に停車し、そこを自動駐車開始地点とすると、両
隣の駐車車両の前端角部が正確に検出できないことがあ
り、自動駐車ができないという問題がある。
By the way, as shown in FIG. 20, there is also a narrow parking lot where the turning amount of the vehicle cannot be increased. When performing automatic parking using a conventional automatic parking device in such a parking lot, the vehicle cannot be moved to an initial position where the front corners of the parked vehicles adjacent to the target parking section can be imaged, that is, an automatic parking start point. There is a problem that automatic parking is not possible. Further, as shown in FIG. 21, if the vehicle stops almost perpendicularly to the parking direction of the parking section and is set as the automatic parking start point, the front corners of the parked vehicles on both sides may not be accurately detected, and the automatic parking may be performed. There is a problem that can not be.

【0004】本発明の目的は、駐車区画を正確に検出し
て駐車経路を演算し車両を誘導する自動駐車装置を提供
することにある。
It is an object of the present invention to provide an automatic parking device that accurately detects a parking section, calculates a parking route, and guides a vehicle.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

(1) 請求項1の発明は、操舵輪を自動的に操舵する
操舵制御手段と、制動力を自動的に発生させる制動力制
御手段と、駆動力を自動的に変える駆動力制御手段と、
前進、後退、中立および駐車を自動的に切り換える自動
変速手段と、車両の後方、左側方および右側方をそれぞ
れ撮像する3台の撮像手段と、撮像手段による撮像画像
を処理する画像処理手段と、画像処理手段による画像処
理結果に基づいて駐車地点までの駐車経路を演算する経
路演算手段と、操舵制御手段、制動力制御手段、駆動力
制御手段および自動変速手段を制御し、駐車経路に沿っ
て車両を自動的に移動して駐車させる駐車制御手段とを
備える。3台の撮像手段で車両の後方、左側方および右
側方を撮像し、それらの撮像画像の処理結果に基づいて
駐車地点までの駐車経路を演算し、その駐車経路に沿っ
て車両を自動的に移動して駐車させる。 (2) 請求項2の自動駐車装置は、左側方撮像手段と
右側方撮像手段を、車両の前後方向における運転者の目
の位置近傍に配置したものである。 (3) 請求項3の自動駐車装置は、画像処理手段によ
って、駐車場の白線または両隣の駐車車両の側面を検出
して駐車区画を認識するようにしたものである。 (4) 請求項4の自動駐車装置は、経路演算手段によ
って、左右の駐車区画の延長線と車両側面との交点の間
を駐車区画の仮想入口とし、その仮想入口を通過する経
路を演算するようにしたものである。 (5) 請求項5の自動駐車装置は、経路演算手段によ
って、最小回転半径の円弧と直線とで構成される駐車経
路を演算するようにしたものである。 (6) 請求項6の自動駐車装置は、経路演算手段によ
って、最小回転半径の円弧に沿って駐車区画から遠ざか
る方向に進み、次に最小回転半径の円弧に沿って駐車区
画の中心線に乗る駐車経路を演算するようにしたもので
ある。 (7) 請求項7の自動駐車装置は、画像処理手段によ
って画像処理により駐車区画と反対側の障害物までの距
離を検出し、経路演算手段によって駐車区画と反対側の
障害物までの距離を考慮した駐車経路を演算するように
したものである。
(1) The invention according to claim 1 is a steering control means for automatically steering a steered wheel, a braking force control means for automatically generating a braking force, a driving force control means for automatically changing a driving force,
Automatic shifting means for automatically switching forward, backward, neutral and parking; three imaging means for imaging the rear, left and right sides of the vehicle, respectively; and image processing means for processing an image captured by the imaging means; A path calculating means for calculating a parking route to a parking point based on an image processing result by the image processing means; a steering control means, a braking force control means, a driving force control means, and an automatic transmission means; Parking control means for automatically moving and parking the vehicle. The rear, left and right sides of the vehicle are imaged by the three imaging means, a parking route to a parking point is calculated based on the processing results of the captured images, and the vehicle is automatically moved along the parking route. Move and park. (2) In the automatic parking device according to a second aspect, the left-side imaging unit and the right-side imaging unit are arranged near the driver's eyes in the front-rear direction of the vehicle. (3) In the automatic parking device according to the third aspect, the image processing means detects a white line of the parking lot or a side surface of the parked vehicle on both sides to recognize the parking section. (4) In the automatic parking device according to the fourth aspect, a path between the intersections of the extension lines of the left and right parking sections and the side of the vehicle is set as a virtual entrance of the parking section, and a path passing through the virtual entrance is calculated by the path calculating means. It is like that. (5) In the automatic parking device according to a fifth aspect, the path calculating means calculates a parking path composed of an arc having a minimum turning radius and a straight line. (6) In the automatic parking device according to the sixth aspect, the path calculation means advances in a direction away from the parking section along the arc of the minimum turning radius, and then rides on the center line of the parking section along the arc of the minimum turning radius. The parking route is calculated. (7) In the automatic parking device according to claim 7, the distance to the obstacle on the opposite side to the parking section is detected by the image processing means by image processing, and the distance to the obstacle on the opposite side to the parking section is detected by the path calculation means. The calculated parking route is taken into account.

【0006】[0006]

【発明の効果】【The invention's effect】

(1) 請求項1の発明によれば、3台の撮像手段で車
両の後方、左側方および右側方を撮像し、それらの撮像
画像の処理結果に基づいて駐車地点までの駐車経路を演
算し、その駐車経路に沿って車両を自動的に移動して駐
車させるようにしたので、従来のように1台のカメラで
車両の周囲環境を撮像する場合に比べ、自動駐車の初期
位置においてどのような向きに車両を停車させても目標
駐車区画の両隣の車両の前端角部を正確に検出すること
ができ、狭い駐車場でも自動駐車が可能になる。 (2) 請求項2の発明によれば、左側方撮像手段と右
側方撮像手段を車両の前後方向における運転者の目の位
置近傍に配置したので、運転者自身の視線が駐車区画の
間になるように停車させるだけで正しい自動駐車の初期
位置を容易に設定できる。 (3) 請求項3の発明によれば、画像処理によって駐
車場の白線または両隣の駐車車両の側面を検出して駐車
区画を認識するようにしたので、駐車区画を正確に検出
できる。 (4) 請求項4の発明によれば、左右の駐車区画の延
長線と車両側面との交点の間を駐車区画の仮想入口と
し、その仮想入口を通過する経路を演算するようにした
ので、画面座標系から道路座標系への変換誤差を小さく
するために、画面歪の少ない焦点距離の大きなレンズを
撮像手段に用いても、駐車区画への入口を特定すること
ができ、歪の少ない撮像画面を処理して正確な駐車経路
を演算できる。 (5) 請求項5の発明によれば、最小回転半径の円弧
と直線とで構成される駐車経路を演算するようにしたの
で、最短の経路に沿って駐車地点まで移動でき、狭い駐
車場でも自動駐車が可能になる。 (6) 請求項6の発明によれば、最小回転半径の円弧
に沿って駐車区画から遠ざかる方向に進み、次に最小回
転半径の円弧に沿って駐車区画の中心線に乗る駐車経路
を演算するようにしたので、請求項5と同様な効果が得
られる。 (7) 請求項7の発明によれば、画像処理により駐車
区画と反対側の障害物までの距離を検出し、障害物まで
の距離を考慮した駐車経路を演算するようにしたので、
狭い駐車場でも自動駐車が可能になる。
(1) According to the first aspect of the present invention, the rear, left, and right sides of the vehicle are imaged by the three imaging units, and the parking route to the parking point is calculated based on the processing results of the captured images. The vehicle is automatically moved along the parking route to park the vehicle, so that compared to the conventional case where one camera captures an image of the surrounding environment of the vehicle, how the vehicle is automatically parked in the initial position Even if the vehicle is stopped in an appropriate direction, the front corners of the vehicles on both sides of the target parking section can be accurately detected, and automatic parking can be performed even in a narrow parking lot. (2) According to the second aspect of the present invention, since the left-side imaging unit and the right-side imaging unit are disposed near the driver's eyes in the front-rear direction of the vehicle, the driver's own line of sight is between the parking sections. It is possible to easily set the correct initial position of the automatic parking simply by stopping the vehicle. (3) According to the third aspect of the invention, the parking section is recognized by detecting the white line of the parking lot or the side of the parked vehicle on both sides by image processing, so that the parking section can be accurately detected. (4) According to the invention of claim 4, the virtual entrance of the parking section is set between the intersection between the extension line of the left and right parking sections and the side of the vehicle, and the route passing through the virtual entrance is calculated. In order to reduce the conversion error from the screen coordinate system to the road coordinate system, even if a lens with a small focal length and a small focal length is used for the image capturing means, the entrance to the parking section can be specified, and the image with little distortion can be obtained. The screen can be processed to calculate an accurate parking route. (5) According to the invention of claim 5, since the parking path composed of the arc and the straight line having the minimum turning radius is calculated, it is possible to move to the parking point along the shortest path and even in a narrow parking lot. Automatic parking becomes possible. (6) According to the sixth aspect of the present invention, a parking path that proceeds in a direction away from the parking section along the arc of the minimum turning radius and then rides on the center line of the parking section along the arc of the minimum turning radius is calculated. As a result, an effect similar to that of the fifth aspect is obtained. (7) According to the seventh aspect of the present invention, the distance to the obstacle on the opposite side to the parking section is detected by image processing, and the parking route is calculated in consideration of the distance to the obstacle.
Automatic parking is possible even in a small parking lot.

【0007】[0007]

【発明の実施の形態】図1に一実施の形態の構成を示
す。後方カメラ1は車両後方の周囲環境を撮像し、左側
方カメラ2は車両左側方の周囲環境を撮像し、右側方カ
メラ3は車両右側方の周囲環境を撮像する。カメラ1〜
3は画面周辺の歪が少ない広角の白黒カメラを用いる。
これらのカメラ1〜3は、一定画角でできる限り広い視
野を確保するために地上高の大きい場所に設置する。特
に、後方カメラ1は車両後端の車幅方向の中央に設置
し、左右いずれの駐車場にも対応できるようにする。ま
た、左右側方カメラ2および3は図2に示すように車両
前後方向の運転者の目(アイポイント)に近い位置に設
置し、車両を最適な自動駐車開始地点に停車しやすいよ
うにする。
FIG. 1 shows a configuration of an embodiment. The rear camera 1 captures the surrounding environment behind the vehicle, the left camera 2 captures the surrounding environment on the left side of the vehicle, and the right camera 3 captures the surrounding environment on the right side of the vehicle. Camera 1
3 uses a wide-angle black-and-white camera with little distortion around the screen.
These cameras 1 to 3 are installed at a place with a large ground height in order to secure a wide field of view as possible at a fixed angle of view. In particular, the rear camera 1 is installed at the center of the rear end of the vehicle in the vehicle width direction so as to be able to cope with either the left or right parking lot. The left and right side cameras 2 and 3 are installed at positions near the driver's eyes (eye points) in the vehicle front-rear direction as shown in FIG. 2 so that the vehicle can be easily stopped at an optimum automatic parking start point. .

【0008】図3は、3ボックスカーと呼ばれる乗用車
タイプの車両に自動駐車装置を搭載する場合のカメラの
設置例を示す。後方カメラ1はトランクリッドの後端部
内側に埋設する。また、左側方カメラ2は車両左側方の
車両前後方向における乗員の目に近い位置のルーフ内側
に埋設する。さらに、右側方カメラ3は車両右側方の車
両前後方向における乗員の目に近い位置のルーフ内側に
埋設する。
FIG. 3 shows an installation example of a camera when an automatic parking device is mounted on a passenger car type vehicle called a three-box car. The rear camera 1 is buried inside the rear end of the trunk lid. Further, the left camera 2 is embedded inside the roof at a position close to the eyes of the occupant in the vehicle longitudinal direction on the left side of the vehicle. Further, the right camera 3 is embedded inside the roof at a position close to the eyes of the occupant in the vehicle front-rear direction on the right side of the vehicle.

【0009】図4は、1ボックスカーと呼ばれる車両に
自動駐車装置を搭載する場合のカメラの設置例を示す。
後方カメラ1は車両後端部のリアハッチのヒンジ部付近
に埋設する。また、左側方カメラ2は車両左側方の車両
前後方向における乗員の目に近い位置のルーフ内側に埋
設する。さらに、右側方カメラ3は車両右側方の車両前
後方向における乗員の目に近い位置のルーフ内側に埋設
する。
FIG. 4 shows an installation example of a camera when an automatic parking device is mounted on a vehicle called a one-box car.
The rear camera 1 is embedded near the hinge of the rear hatch at the rear end of the vehicle. Further, the left camera 2 is embedded inside the roof at a position close to the eyes of the occupant in the vehicle longitudinal direction on the left side of the vehicle. Further, the right camera 3 is embedded inside the roof at a position close to the eyes of the occupant in the vehicle front-rear direction on the right side of the vehicle.

【0010】画像処理装置4はカメラ1〜3により撮像
された画像を処理し、図5に示すような路面に描かれた
駐車区画を表わす白線を検出する。すなわち、撮像画像
をsobelフィルターなどを用いて微分画像に変換
し、白線を構成する1組のほぼ並行なエッジ成分を検出
し、1組のエッジ成分の間が他の路面より明るければ白
線であると認識する。
The image processing device 4 processes images taken by the cameras 1 to 3 and detects a white line representing a parking section drawn on a road surface as shown in FIG. That is, the captured image is converted into a differential image using a sobel filter or the like, a set of substantially parallel edge components forming a white line is detected, and a white line is present when the interval between the one set of edge components is brighter than another road surface. Recognize.

【0011】また、画像処理装置4はカメラ1〜3によ
り撮像された画像を処理し、図6に示すような非舗装面
にロープを張って駐車区画を仕切った駐車場に対して
は、駐車車両の側面下部を検出する。すなわち、撮像画
像をsobelフィルターなどを用いて微分画像に変換
し、駐車車両の影になる部分と路面との境界をエッジ成
分として検出し、路面よりも暗い部分を駐車車両の影で
あると認識し、駐車車両の側面下部を検出する。
The image processing device 4 processes images captured by the cameras 1 to 3 and parks the vehicle in a parking lot where a parking section is partitioned by stretching a rope on a non-paved surface as shown in FIG. Detect lower side of vehicle. That is, the captured image is converted into a differential image using a Sobel filter or the like, and the boundary between the shadowed portion of the parked vehicle and the road surface is detected as an edge component, and the darker portion than the road surface is recognized as the shadow of the parked vehicle. Then, the lower side of the parked vehicle is detected.

【0012】周囲環境認識装置5は、画像処理装置4に
よる画像処理結果に基づいて駐車区画や車両周囲環境を
認識する。駐車制御装置6はマイクロコンピュータとそ
の周辺部品を備え、周囲環境認識装置5で認識された駐
車区画や車両周囲環境に基づいて駐車地点までの経路を
演算し、駐車経路に沿って車両を誘導すべく操舵制御装
置7、制動力制御装置8、駆動力制御装置9および自動
変速装置10を制御する。操舵制御装置7は操舵輪を自
動的に操舵する装置であり、制動力制御装置8は制動力
を自動的に発生させる装置である。また、駆動力制御装
置9は駆動力を自動的に変える装置であり、自動変速装
置10は前進D、後退R、中立NおよびパーキングPに
自動的に切り換える装置である。
The surrounding environment recognizing device 5 recognizes a parking space or a vehicle surrounding environment based on the image processing result of the image processing device 4. The parking control device 6 includes a microcomputer and its peripheral components, calculates a route to a parking point based on the parking section and the vehicle surrounding environment recognized by the surrounding environment recognition device 5, and guides the vehicle along the parking route. The steering control device 7, the braking force control device 8, the driving force control device 9, and the automatic transmission 10 are controlled as needed. The steering control device 7 is a device that automatically steers a steered wheel, and the braking force control device 8 is a device that automatically generates a braking force. The driving force control device 9 is a device that automatically changes the driving force, and the automatic transmission 10 is a device that automatically switches between forward D, reverse R, neutral N, and parking P.

【0013】左右駐車場選択スイッチ11は車両右側の
駐車場に駐車するのか、または車両左側の駐車場に駐車
するのかを選択するためのスイッチであり、自動駐車開
始スイッチ12は自動駐車を開始させるためのスイッチ
である。また、表示装置13はカメラ1〜3で撮像され
た映像を表示する。
The left and right parking lot selection switch 11 is a switch for selecting whether to park in the parking lot on the right side of the vehicle or in the parking lot on the left side of the vehicle. The automatic parking start switch 12 starts automatic parking. Switch. The display device 13 displays images captured by the cameras 1 to 3.

【0014】図7は、駐車制御装置6で実行される自動
駐車制御を示すフローチャートである。このフローチャ
ートにより一実施の形態の動作を説明する。乗員は駐車
場所を探しながら駐車場内を移動し、空いている駐車区
画を見つけたら、図8に示すように自分の目が両隣の駐
車車両の間、または空駐車区画の間になるような自動駐
車の初期位置(自動駐車開始地点)で、駐車区画の駐車
方向とほぼ垂直な向きに停車する。そして、シフトレバ
ーを駐車Pまたは中立N位置に設定し、ブレーキペダル
を開放してステアリングを中立にする。以上の自動駐車
のための準備が完了したら、乗員は左右駐車場選択スイ
ッチ11により右または左の駐車場を選択した後、自動
駐車開始スイッチ12を操作して自動駐車動作を開始さ
せる。
FIG. 7 is a flowchart showing the automatic parking control executed by the parking control device 6. The operation of the embodiment will be described with reference to this flowchart. The occupant moves through the parking lot while searching for a parking place, and when he finds a vacant parking space, as shown in FIG. 8, the occupant automatically moves his or her eyes between the parked vehicles on both sides or between empty parking spaces. At the initial position of parking (automatic parking start point), the vehicle stops in a direction substantially perpendicular to the parking direction of the parking section. Then, the shift lever is set to the parking P or neutral N position, and the brake pedal is released to make the steering neutral. When the preparation for the above automatic parking is completed, the occupant selects the right or left parking lot by the left and right parking selection switch 11, and then operates the automatic parking start switch 12 to start the automatic parking operation.

【0015】駐車制御装置6は、自動駐車開始スイッチ
12がオンするとステップ2以降の自動駐車制御を開始
する。ステップ3において、左右駐車場選択スイッチ1
1により選択された駐車場を読み込む。
When the automatic parking start switch 12 is turned on, the parking control device 6 starts automatic parking control after step 2. In step 3, left and right parking lot selection switch 1
The parking lot selected by 1 is read.

【0016】ここで、自動駐車動作を開始させる方法は
上述した専用スイッチによる方法に限定されず、例えば
自動駐車専用のシフトポジションを設け、そのシフトポ
ジションに設定されたら自動駐車動作を開始させるよう
にしてもよい。また、シフトレバーを駐車Pまたは中立
Nに設定し、ブレーキペダルを開放してステアリングを
中立に戻すなど、所定の操作が行なわれたら自動駐車動
作を自動的に開始させるようにしてもよい。この場合
は、左右の駐車位置選択などの駐車条件の設定がなされ
なければ自動駐車制御を解除する。
Here, the method of starting the automatic parking operation is not limited to the above-described method using the dedicated switch. For example, a shift position dedicated to automatic parking is provided, and when the shift position is set, the automatic parking operation is started. You may. Further, the automatic parking operation may be automatically started when a predetermined operation is performed, such as setting the shift lever to parking P or neutral N and releasing the brake pedal to return the steering to neutral. In this case, the automatic parking control is canceled unless parking conditions such as left and right parking position selection are set.

【0017】次に、ステップ4で周囲環境認識装置5に
よって図9に示す駐車区画の幅W、駐車区画と車両との
相対位置Lおよび相対角度θを演算する。側方カメラ
2、3は車両前後方向の運転者の目に近い位置に配置さ
れるので、自動駐車開始地点では側方カメラ2、3によ
って図10に示すような画像が撮像される。この画像に
おいて、両隣の駐車車両の側面または駐車区画を示す白
線を検出し、それらの画面上での直線式を求める。白線
の直線式を求めるには、図11に示すように、画面上に
白線検出のための小領域を設定し、その領域内で上述し
たように駐車区画を表わす白線を検出する。左右両白線
の2本のエッジの内の内側(駐車区画側)のエッジの始
点と終点を特定し、画面上の始点座標(x1,y1)、
(x3,y3)と終点座標(x2,y2)、(x4,y
4)を求める。
Next, at step 4, the surrounding environment recognition device 5 calculates the width W of the parking section, the relative position L between the parking section and the vehicle, and the relative angle θ shown in FIG. Since the side cameras 2 and 3 are arranged at positions near the driver's eyes in the vehicle front-rear direction, images shown in FIG. 10 are captured by the side cameras 2 and 3 at the automatic parking start point. In this image, a white line indicating the side surface or the parking section of the parked vehicle on both sides is detected, and a straight line formula on the screen is obtained. In order to obtain the straight line equation of the white line, as shown in FIG. 11, a small area for detecting the white line is set on the screen, and the white line representing the parking section is detected in the area as described above. The start point and the end point of the inner (parking section side) edge of the two edges of the left and right white lines are specified, and the start point coordinates (x1, y1) on the screen,
(X3, y3) and end point coordinates (x2, y2), (x4, y
Find 4).

【0018】図12は、表示装置13の画面上の座標系
x,yと実際の道路座標系X,Y,Zとの関係を説明す
る図である。カメラ1〜3のレンズの地上高をH、カメ
ラ1〜3のレンズの焦点距離をF、カメラ1〜3のレン
ズ光軸の対地ピッチ角をαとすると、
FIG. 12 is a diagram for explaining the relationship between the coordinate system x, y on the screen of the display device 13 and the actual road coordinate system X, Y, Z. Assuming that the ground clearance of the lenses of the cameras 1 to 3 is H, the focal length of the lenses of the cameras 1 to 3 is F, and the pitch angle between the optical axes of the lenses of the cameras 1 to 3 is α,

【数1】 x=−FX/{−(Y−H)sinα+Zcosα}, y=−F{(Y−H)cosα+Zsinα}/{−
(Y−H)sinα+Zcosα} カメラ1〜3で撮像される白線は路面上にあるからY=
0とすることができ、数式1によって図11に示す白線
エッジの始点(x1,y1)、(x3,y3)と終点
(x2,y2)、(x4,y4)を道路座標系における
始点と終点に変換することができる。
X = −FX / {− (Y−H) sinα + Zcosα}, y = −F {(Y−H) cosα + Zsinα} / {−
(Y−H) sinα + Zcosα} Since the white lines captured by the cameras 1 to 3 are on the road surface, Y =
The start point (x1, y1), (x3, y3) and end point (x2, y2), (x4, y4) of the white line edge shown in FIG. Can be converted to

【0019】道路座標系に変換した始点と終点から2本
の駐車区画を表わす白線エッジの直線式を算出できる。
ここで、Y=0としているので白線エッジの直線式は
X,Zの1次式になる。これらの道路座標系における白
線エッジの直線式から、駐車区画の幅W、駐車区画と車
両との相対位置Lおよび相対角度θを求めることができ
る。すなわち、幅Wは、駐車区画を表わす2直線のZ=
0におけるXの値の差として演算される。また、相対位
置Lは、駐車区画を表わす2直線のZ=0におけるXの
値の平均値から駐車区画の中心線を求め、この中心線と
後車軸の位置(カメラ2または3との位置関係から既知
の値)との差として演算される。さらに、相対角度θは
駐車区画を表わす2直線の傾きの平均値として求められ
る。
From the start point and the end point converted to the road coordinate system, a straight line equation of a white line edge representing two parking sections can be calculated.
Here, since Y = 0, the linear equation of the white line edge is a linear equation of X and Z. The width W of the parking section, the relative position L between the parking section and the vehicle, and the relative angle θ can be obtained from the linear formula of the white line edge in the road coordinate system. That is, the width W is Z = two straight lines representing the parking section.
It is calculated as the difference between the values of X at zero. The relative position L is obtained by calculating the center line of the parking section from the average of the X values of two straight lines representing the parking section at Z = 0, and determining the center line and the position of the rear axle (the positional relationship between the camera 2 and 3). Is calculated as the difference from the known value. Further, the relative angle θ is obtained as an average value of the inclinations of the two straight lines representing the parking sections.

【0020】なお、駐車場の白線を検出して駐車区画の
幅W、駐車区画と車両との相対位置Lおよび相対角度θ
を求めたが、両隣の駐車車両の影から駐車車両の側面を
検出して駐車区画の幅W、駐車区画と車両との相対位置
Lおよび相対角度θを演算するようにしてもよい。
The white line of the parking lot is detected to detect the width W of the parking section, the relative position L between the parking section and the vehicle, and the relative angle θ.
However, the width W of the parking section, the relative position L between the parking section and the vehicle, and the relative angle θ may be calculated by detecting the side of the parked vehicle from the shadow of the parked vehicle on both sides.

【0021】ステップ5において、駐車区画の幅Wに基
づいて駐車可能か否かを判断する。すなわち、図13に
示すように駐車後に乗員がドアを開けて乗降できるだけ
のスペースSがない場合はステップ6へ進み、表示およ
び音声によりこの駐車場は十分なスペースがない旨の警
告を行なって自動駐車制御を終了する。
In step 5, it is determined whether parking is possible based on the width W of the parking space. That is, as shown in FIG. 13, if there is no space S enough for the occupant to open the door and get on and off after parking, the process proceeds to step 6, and the display and the sound warn that there is not enough space in this parking lot to issue an automatic warning. The parking control ends.

【0022】駐車場に乗員が乗降できる十分な幅がある
場合はステップ7へ進み、図14に示すように自動駐車
制御時に駐車場と反対側へ移動できる距離Dを求める。
今、駐車場と反対側の側方カメラにより図15に示すよ
うな画像が撮像されているとする。画面下側から検索
し、画面上で最も下にある駐車車両や壁などの障害物を
検知する。駐車車両の場合には、画像処理により駐車車
両下部の影から車両前面の画面上のy座標を求める。ま
た、壁は、画像処理により路面と壁との境界線を検出
し、画面上の壁のy座標を求める。実際の道路面上で
は、近くにある物ほど画面上では下に映り、遠くにある
ある物ほど画面上では上に映る。したがって、障害物の
画面上の下端のy座標に基づいて上記数式1により実際
の道路面上の障害物までの距離を求めることができる。
数式1において道路座標系のY座標を路面(Y=0)と
すれば、数式1は画面座標系のyと道路座標系のZとの
関係式になる。道路上の最至近の障害物までの距離を算
出したら、その距離から適当な余裕分を減じて駐車上の
反対側に移動できる距離Dを設定する。
If the parking lot has a sufficient width for the occupant to get on and off, the process proceeds to step 7, and a distance D that can move to the opposite side of the parking lot during automatic parking control is obtained as shown in FIG.
Now, it is assumed that an image as shown in FIG. 15 is captured by the side camera on the opposite side to the parking lot. Search from the bottom of the screen to detect the lowest obstacle on the screen, such as a parked vehicle or wall. In the case of a parked vehicle, the y-coordinate on the screen in front of the vehicle is obtained from the shadow under the parked vehicle by image processing. For the wall, the boundary between the road surface and the wall is detected by image processing, and the y coordinate of the wall on the screen is obtained. On an actual road surface, near objects appear on the screen below, and objects far away appear on the screen. Therefore, based on the y-coordinate of the lower end of the obstacle on the screen, the distance to the actual obstacle on the road surface can be obtained by the above equation (1).
Assuming that the Y coordinate of the road coordinate system is the road surface (Y = 0) in Expression 1, Expression 1 is a relational expression between y in the screen coordinate system and Z in the road coordinate system. After the distance to the nearest obstacle on the road is calculated, an appropriate margin is subtracted from the distance to set a distance D that can be moved to the opposite side of the parking.

【0023】ステップ8において、算出した駐車区画の
幅W、駐車区画と車両との相対位置Lおよび相対角度
θ、駐車場の反対側への移動距離Dに基づいて、駐車地
点までの走行経路を演算する。まず、図14に示すよう
に、駐車場の反対側に移動できる距離Dにより、自動駐
車の初期位置(自動駐車開始地点)の車両中心線に接
し、駐車場の反対側へ移動できる最小回転半径の円弧A
1を算出する。この円弧A1は、自動駐車の初期位置の
車両中心線に沿う方向に平行移動できる円弧である。次
に、図16に示すように、駐車区画の幅W、駐車区画と
車両との相対位置Lおよび相対角度θにより、駐車場の
中心線に接し、車両が駐車場の入口を通過できる経路と
なる最小回転半径の円弧A2を算出する。円弧A2は駐
車場の中心線に沿う方向に並行移動できる円弧である。
In step 8, based on the calculated width W of the parking section, the relative position L and the relative angle θ between the parking section and the vehicle, and the moving distance D to the opposite side of the parking lot, the traveling route to the parking point is determined. Calculate. First, as shown in FIG. 14, the minimum turning radius that can contact the vehicle center line at the initial position of automatic parking (automatic parking start point) and move to the opposite side of the parking lot by the distance D that can move to the opposite side of the parking lot. Arc A of
1 is calculated. The arc A1 is an arc that can be translated in a direction along the vehicle center line at the initial position of the automatic parking. Next, as shown in FIG. 16, the width W of the parking section, the relative position L between the parking section and the vehicle, and the relative angle θ indicate the route that contacts the center line of the parking lot and allows the vehicle to pass through the entrance of the parking lot. An arc A2 having a minimum turning radius is calculated. The arc A2 is an arc that can move in parallel in a direction along the center line of the parking lot.

【0024】ここで、側方カメラ2、3のレンズの焦点
距離を短くすればより広い範囲を撮像できるが、画面の
周辺部が歪んで画面座標系から道路座標系への変換誤差
が大きくなる。そのため、側方カメラ2、3のレンズに
は、画面の歪みが小さい焦点距離のレンズが用いられ
る。小さい焦点距離のレンズでは広角な画像が得られな
いので、図10に示すように駐車区画の入口が映ること
はほとんどない。そこでこの実施の形態では、図16に
示すように、白線の延長線または両隣の駐車車両側面の
延長線と、車両の駐車区画側の車体側面との交点を駐車
場の入口の両端とする。
Here, if the focal lengths of the lenses of the side cameras 2 and 3 are shortened, a wider range can be imaged. However, the peripheral portion of the screen is distorted and the conversion error from the screen coordinate system to the road coordinate system increases. . Therefore, as the lenses of the side cameras 2 and 3, lenses having a focal length with a small screen distortion are used. Since a wide-angle image cannot be obtained with a lens having a small focal length, the entrance of the parking section is hardly seen as shown in FIG. Therefore, in this embodiment, as shown in FIG. 16, the intersections of the extension of the white line or the extension of the side of the parking vehicle adjacent to the vehicle and the side of the vehicle on the parking section side of the vehicle are defined as both ends of the entrance of the parking lot.

【0025】次に、円弧A1を自動駐車の初期位置(自
動駐車開始地点)における車両中心線に沿って移動する
とともに、円弧A2を駐車区画の中心線に沿って移動
し、円弧A1とA2が接する経路を求め、その経路を駐
車経路とする。円弧A1は、自動駐車開始地点から直進
(後退)した後に最小回転半径で移動する経路であり、
自動駐車開始地点での車両中心線に接する。一方、円弧
A2は、最小回転半径で駐車区画に入場できる経路であ
り、駐車区画の中心線に接し、駐車区画の入口を通る。
図17に示すように、円弧A1とA2が接するように経
路を決めれば、直進と最小回転半径の円だけで駐車経路
が構成される。図17に示す例では、直進後退→右すえ
切り前進→左すえ切り後退→直進後退の手順で駐車する
ことができる。
Next, while moving the arc A1 along the vehicle center line at the initial position of automatic parking (automatic parking start point), the arc A2 is moved along the center line of the parking section, and the arcs A1 and A2 are moved. The route that touches is determined, and the route is set as a parking route. The arc A1 is a path that moves with a minimum turning radius after going straight (retreating) from the automatic parking start point,
It touches the vehicle center line at the automatic parking start point. On the other hand, the arc A2 is a path that can enter the parking section with the minimum turning radius, contacts the center line of the parking section, and passes through the entrance of the parking section.
As shown in FIG. 17, if the route is determined so that the arcs A1 and A2 are in contact with each other, a parking route is constituted only by a straight line and a circle having a minimum turning radius. In the example shown in FIG. 17, parking can be performed in the order of straight-ahead retreat → right-hand steered forward → left-hand steed retreat → straight-forward retreat.

【0026】なお、円弧A1とA2が接する点が複数個
存在して上記条件だけでは駐車経路を決定できない場合
には、例えば最短経路の経路を駐車経路としてもよい
し、駐車場にまっすぐに入る経路を駐車経路としてもよ
い。
When there are a plurality of points where the arcs A1 and A2 are in contact with each other and a parking route cannot be determined by the above conditions alone, for example, the shortest route may be used as the parking route or the vehicle may enter the parking lot straight. The route may be a parking route.

【0027】ステップ9において駐車経路が演算された
か否かを確認し、駐車経路が算出できない場合はステッ
プ10へ進む。ステップ10では、駐車場に対して車両
を近づけたり遠ざけたりする方向に移動させるか、他の
駐車場を選択するように表示または音声により警告を行
ない、自動駐車制御を終了する。
In step 9, it is confirmed whether or not the parking route has been calculated. If the parking route cannot be calculated, the process proceeds to step 10. In step 10, a warning is issued by a display or voice to move the vehicle toward or away from the parking lot or to select another parking lot, and the automatic parking control ends.

【0028】駐車経路が算出された場合はステップ11
へ進み、操舵制御装置7、制動力制御装置8、駆動力制
御装置9および自動変速装置10を制御して、図18に
示すように駐車経路に沿って車両を走行させる。ステッ
プ12では、乗員によるブレーキ操作や終了スイッチの
操作により所定の駐車地点に駐車完了したかどうかを確
認し、駐車完了するまで走行制御を続ける。なお、自動
駐車終了は、シフトレバーのP位置への操作、パーキン
グブレーキ操作、後方カメラ1の映像を画像処理するこ
とによって駐車完了を認識し、自動駐車制御を終了させ
るようにしてもよい。
Step 11 if the parking route is calculated
Then, the steering control device 7, the braking force control device 8, the driving force control device 9 and the automatic transmission 10 are controlled to cause the vehicle to travel along the parking route as shown in FIG. In step 12, it is confirmed whether or not the parking has been completed at a predetermined parking point by the brake operation or the operation of the end switch by the occupant, and the traveling control is continued until the parking is completed. It should be noted that the automatic parking end may be recognized by recognizing the completion of parking by operating the shift lever to the P position, operating the parking brake, and processing the image of the rear camera 1 and terminating the automatic parking control.

【0029】以上の一実施の形態の構成において、操舵
制御装置7が操舵制御手段を、制動力制御装置8が制動
力制御手段を、駆動力制御装置9が駆動力制御手段を、
自動変速装置10が自動変速手段を、カメラ1〜3が撮
像手段を、画像処理装置4が画像処理手段を、周囲環境
認識装置5および駐車制御装置6が経路演算手段および
駐車制御手段をそれぞれ構成する。
In the configuration of the above embodiment, the steering control device 7 controls the steering control device, the braking force control device 8 controls the braking force control device, the driving force control device 9 controls the driving force control device,
The automatic transmission 10 constitutes automatic transmission means, the cameras 1 to 3 constitute imaging means, the image processing device 4 constitutes image processing means, the surrounding environment recognition device 5 and the parking control device 6 constitute route calculation means and parking control means, respectively. I do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 一実施の形態の構成を示す図である。FIG. 1 is a diagram showing a configuration of an embodiment.

【図2】 後方カメラおよび側方カメラの配置を示す図
である。
FIG. 2 is a diagram showing an arrangement of a rear camera and a side camera.

【図3】 3ボックスカーと呼ばれる乗用車タイプの車
両に自動駐車装置を搭載する場合のカメラの設置例を示
す図である。
FIG. 3 is a diagram showing an example of installation of a camera when an automatic parking device is mounted on a passenger car type vehicle called a three-box car.

【図4】 1ボックスカーと呼ばれる車両に自動駐車装
置を搭載する場合のカメラの設置例を示す図である。
FIG. 4 is a diagram illustrating an example of installation of a camera when an automatic parking device is mounted on a vehicle called a one-box car.

【図5】 駐車場の撮像画像から駐車区画を表わす白線
を検出する方法の説明図である。
FIG. 5 is an explanatory diagram of a method of detecting a white line representing a parking section from a captured image of a parking lot.

【図6】 駐車場の撮像画像から駐車区画として認識す
る両隣の駐車車両の側面を検出する方法の説明図であ
る。
FIG. 6 is an explanatory diagram of a method of detecting a side surface of a parked vehicle on both sides recognized as a parking section from a captured image of a parking lot.

【図7】 自動駐車制御のフローチャートである。FIG. 7 is a flowchart of automatic parking control.

【図8】 車両を自動駐車開始地点で停車させた状態を
示す図である。
FIG. 8 is a diagram showing a state where the vehicle is stopped at an automatic parking start point.

【図9】 駐車区画の幅W、駐車区画と車両との相対位
置Lおよび相対角度θを示す図である。
FIG. 9 is a diagram showing a width W of the parking section, a relative position L between the parking section and the vehicle, and a relative angle θ.

【図10】 自動駐車開始地点で側方カメラにより撮像
される画像を示す図である。
FIG. 10 is a diagram showing an image captured by a side camera at an automatic parking start point.

【図11】 自動駐車開始地点における側方カメラの撮
像画像から、駐車区角を表わす白線上の2点を求める方
法を説明する図である。
FIG. 11 is a diagram illustrating a method for obtaining two points on a white line representing a parking ward angle from an image captured by a side camera at an automatic parking start point.

【図12】 画面座標系と道路座標系との関係を示す図
である。
FIG. 12 is a diagram showing a relationship between a screen coordinate system and a road coordinate system.

【図13】 駐車可否を判断するための乗降余裕を説明
する図である。
FIG. 13 is a diagram illustrating a boarding / alighting margin for determining whether parking is possible.

【図14】 自動駐車制御時に駐車場と反対側に移動で
きる距離の演算方法を説明する図である。
FIG. 14 is a diagram illustrating a method of calculating a distance that can be moved to a side opposite to a parking lot during automatic parking control.

【図15】 駐車場と反対側の障害物までの距離の演算
方法を説明する図である。
FIG. 15 is a diagram illustrating a method of calculating a distance to an obstacle on the opposite side of a parking lot.

【図16】 駐車区画の仮想入口の決定方法を説明する
図である。
FIG. 16 is a diagram illustrating a method of determining a virtual entrance of a parking space.

【図17】 駐車経路の決定方法を説明する図である。FIG. 17 is a diagram illustrating a method of determining a parking route.

【図18】 駐車経路を示す図である。FIG. 18 is a diagram showing a parking route.

【図19】 従来の自動駐車装置の自動駐車方法を示す
図である。
FIG. 19 is a diagram showing an automatic parking method of a conventional automatic parking device.

【図20】 車両の切り返し量を大きくとれない狭い駐
車場における従来の自動駐車装置の問題点を説明する図
である。
FIG. 20 is a diagram illustrating a problem of a conventional automatic parking device in a narrow parking lot where a turning amount of the vehicle cannot be increased.

【図21】 駐車方向に対してほぼ垂直に停車した場合
の、従来の自動駐車装置の問題点を説明する図である。
FIG. 21 is a diagram illustrating a problem of the conventional automatic parking device when the vehicle is stopped substantially perpendicular to the parking direction.

【符号の説明】[Explanation of symbols]

1 後方カメラ 2 左側方カメラ 3 右側方カメラ 4 画像処理装置 5 周囲環境認識装置 6 駐車制御装置 7 操舵制御装置 8 制動力制御装置 9 駆動力制御装置 10 自動変速装置 11 左右駐車場選択スイッチ 12 自動駐車開始スイッチ 13 表示装置 DESCRIPTION OF SYMBOLS 1 Rear camera 2 Left camera 3 Right camera 4 Image processing device 5 Ambient environment recognition device 6 Parking control device 7 Steering control device 8 Braking force control device 9 Driving force control device 10 Automatic transmission device 11 Left and right parking lot selection switch 12 Automatic Parking start switch 13 Display device

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 操舵輪を自動的に操舵する操舵制御手段
と、 制動力を自動的に発生させる制動力制御手段と、 駆動力を自動的に変える駆動力制御手段と、 前進、後退、中立および駐車を自動的に切り換える自動
変速手段と、 車両の後方、左側方および右側方をそれぞれ撮像する3
台の撮像手段と、 前記撮像手段による撮像画像を処理する画像処理手段
と、 前記画像処理手段による画像処理結果に基づいて駐車地
点までの駐車経路を演算する経路演算手段と、 前記操舵制御手段、前記制動力制御手段、前記駆動力制
御手段および前記自動変速手段を制御し、前記駐車経路
に沿って車両を自動的に移動して駐車させる駐車制御手
段とを備えることを特徴とする自動駐車装置。
1. A steering control means for automatically steering a steered wheel; a braking force control means for automatically generating a braking force; a driving force control means for automatically changing a driving force; Automatic shifting means for automatically switching between parking and parking; 3 for imaging the rear, left and right sides of the vehicle, respectively
An image processing means for processing a captured image by the imaging means; a path calculation means for calculating a parking route to a parking point based on an image processing result by the image processing means; and the steering control means; An automatic parking device, comprising: a parking control unit that controls the braking force control unit, the driving force control unit, and the automatic transmission unit to automatically move and park the vehicle along the parking path. .
【請求項2】 請求項1に記載の自動駐車装置におい
て、 前記左側方撮像手段と前記右側方撮像手段は、車両の前
後方向における運転者の目の位置近傍に配置されること
を特徴とする自動駐車装置。
2. The automatic parking device according to claim 1, wherein the left-side imaging unit and the right-side imaging unit are arranged near the driver's eyes in the front-rear direction of the vehicle. Automatic parking device.
【請求項3】 請求項1または請求項2に記載の自動駐
車装置において、 前記画像処理手段は、駐車場の白線または両隣の駐車車
両の側面を検出して駐車区画を認識することを特徴とす
る自動駐車装置。
3. The automatic parking device according to claim 1, wherein the image processing unit recognizes a parking section by detecting a white line of a parking lot or a side of a parked vehicle adjacent to the parking lot. Automatic parking equipment.
【請求項4】 請求項3に記載の自動駐車装置におい
て、 前記経路演算手段は、左右の前記駐車区画の延長線と車
両側面との交点の間を前記駐車区画の仮想入口とし、そ
の仮想入口を通過する経路を演算することを特徴とする
自動駐車装置。
4. The automatic parking device according to claim 3, wherein the path calculation unit sets a virtual entrance of the parking section between an intersection between an extension of the left and right parking sections and a side of the vehicle, and the virtual entrance. An automatic parking device characterized by calculating a route passing through the vehicle.
【請求項5】 請求項4に記載の自動駐車装置におい
て、 前記経路演算手段は、最小回転半径の円弧と直線とで構
成される駐車経路を演算することを特徴とする自動駐車
装置。
5. The automatic parking apparatus according to claim 4, wherein the path calculation means calculates a parking path including an arc having a minimum turning radius and a straight line.
【請求項6】 請求項5に記載の自動駐車装置におい
て、 前記経路演算手段は、最小回転半径の円弧に沿って前記
駐車区画から遠ざかる方向に進み、次に最小回転半径の
円弧に沿って前記駐車区画の中心線に乗る駐車経路を演
算することを特徴とする自動駐車装置。
6. The automatic parking device according to claim 5, wherein the path calculation means proceeds in a direction away from the parking section along an arc having a minimum radius of rotation, and then proceeds along the arc having a minimum radius of rotation. An automatic parking device for calculating a parking route on a center line of a parking section.
【請求項7】 請求項6に記載の自動駐車装置におい
て、 前記画像処理手段は画像処理により前記駐車区画と反対
側の障害物までの距離を検出し、 前記経路演算手段は前記駐車区画と反対側の障害物まで
の距離を考慮した駐車経路を演算することを特徴とする
自動駐車装置。
7. The automatic parking device according to claim 6, wherein the image processing means detects a distance to an obstacle on the opposite side to the parking section by image processing, and the path calculating means is opposite to the parking section. An automatic parking device, which calculates a parking route in consideration of a distance to a side obstacle.
JP9053511A 1997-03-07 1997-03-07 Automatic parking device Pending JPH10244890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9053511A JPH10244890A (en) 1997-03-07 1997-03-07 Automatic parking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9053511A JPH10244890A (en) 1997-03-07 1997-03-07 Automatic parking device

Publications (1)

Publication Number Publication Date
JPH10244890A true JPH10244890A (en) 1998-09-14

Family

ID=12944851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9053511A Pending JPH10244890A (en) 1997-03-07 1997-03-07 Automatic parking device

Country Status (1)

Country Link
JP (1) JPH10244890A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002036991A (en) * 2000-07-27 2002-02-06 Honda Motor Co Ltd Parking support device
JP2003127813A (en) * 2001-10-19 2003-05-08 Mitsubishi Motors Corp Parking support device
JP2004142658A (en) * 2002-10-25 2004-05-20 Nissan Motor Co Ltd Parking support device
JP2004142659A (en) * 2002-10-25 2004-05-20 Nissan Motor Co Ltd Parking support device
US7043346B2 (en) * 2003-04-28 2006-05-09 Toyota Jidosha Kabushiki Kaisha Parking assist apparatus and parking assist method for vehicle
JP2008165765A (en) * 2006-12-29 2008-07-17 Alpine Electronics Inc Method and apparatus for acquiring vehicle side image, vehicle lamp recognition error detection method and prediction method for safe driving
JP2008247254A (en) * 2007-03-30 2008-10-16 Honda Lock Mfg Co Ltd Dead angle monitoring device of vehicle
JP2009143550A (en) * 2007-12-12 2009-07-02 Hyundai Motor Co Ltd Automatic parking system for vehicle
JP2011025754A (en) * 2009-07-22 2011-02-10 Equos Research Co Ltd Device and method for supporting traveling
US8374749B2 (en) 2007-05-16 2013-02-12 Aisin Seiki Kabushiki Kaisha Parking assist system
JP2013192404A (en) * 2012-03-14 2013-09-26 Ihi Corp Mobile vehicle power supply system
KR101399786B1 (en) * 2010-09-27 2014-05-27 주식회사 만도 Automatic parking system and traffic signal alarm method by the same
KR101424636B1 (en) * 2013-01-30 2014-08-04 한국기술교육대학교 산학협력단 Automatic parking system for vehicle
KR101583998B1 (en) * 2014-10-17 2016-01-19 현대자동차주식회사 Smart parking assist apparatus and method thereof
US9758048B2 (en) 2013-05-31 2017-09-12 Ihi Corporation Vehicle power-supplying system
WO2019012848A1 (en) * 2017-07-11 2019-01-17 日立オートモティブシステムズ株式会社 Parking assistance device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002036991A (en) * 2000-07-27 2002-02-06 Honda Motor Co Ltd Parking support device
JP2003127813A (en) * 2001-10-19 2003-05-08 Mitsubishi Motors Corp Parking support device
JP2004142658A (en) * 2002-10-25 2004-05-20 Nissan Motor Co Ltd Parking support device
JP2004142659A (en) * 2002-10-25 2004-05-20 Nissan Motor Co Ltd Parking support device
US7043346B2 (en) * 2003-04-28 2006-05-09 Toyota Jidosha Kabushiki Kaisha Parking assist apparatus and parking assist method for vehicle
JP2008165765A (en) * 2006-12-29 2008-07-17 Alpine Electronics Inc Method and apparatus for acquiring vehicle side image, vehicle lamp recognition error detection method and prediction method for safe driving
JP2008247254A (en) * 2007-03-30 2008-10-16 Honda Lock Mfg Co Ltd Dead angle monitoring device of vehicle
US8374749B2 (en) 2007-05-16 2013-02-12 Aisin Seiki Kabushiki Kaisha Parking assist system
JP2009143550A (en) * 2007-12-12 2009-07-02 Hyundai Motor Co Ltd Automatic parking system for vehicle
JP2011025754A (en) * 2009-07-22 2011-02-10 Equos Research Co Ltd Device and method for supporting traveling
KR101399786B1 (en) * 2010-09-27 2014-05-27 주식회사 만도 Automatic parking system and traffic signal alarm method by the same
JP2013192404A (en) * 2012-03-14 2013-09-26 Ihi Corp Mobile vehicle power supply system
KR101424636B1 (en) * 2013-01-30 2014-08-04 한국기술교육대학교 산학협력단 Automatic parking system for vehicle
US9758048B2 (en) 2013-05-31 2017-09-12 Ihi Corporation Vehicle power-supplying system
KR101583998B1 (en) * 2014-10-17 2016-01-19 현대자동차주식회사 Smart parking assist apparatus and method thereof
US9754173B2 (en) 2014-10-17 2017-09-05 Hyundai Motor Company Smart parking assist apparatus and method
US10474911B2 (en) 2014-10-17 2019-11-12 Hyundai Motor Company Smart parking assist apparatus and method
WO2019012848A1 (en) * 2017-07-11 2019-01-17 日立オートモティブシステムズ株式会社 Parking assistance device
JPWO2019012848A1 (en) * 2017-07-11 2020-04-16 日立オートモティブシステムズ株式会社 Parking assistance device
US11275957B2 (en) 2017-07-11 2022-03-15 Hitachi Astemo, Ltd. Parking assistance apparatus

Similar Documents

Publication Publication Date Title
JP5182545B2 (en) Parking assistance device
US6940423B2 (en) Device for monitoring area around vehicle
JP4604703B2 (en) Parking assistance device
EP3290301B1 (en) Parking assist device
KR101465905B1 (en) Parking assistance device and method
US7363130B2 (en) Parking assist systems, methods, and programs
JP5003946B2 (en) Parking assistance device
JP5429514B2 (en) Parking assistance device
JP3695319B2 (en) Vehicle periphery monitoring device
JP4853712B2 (en) Parking assistance device
JP3804161B2 (en) Automatic parking device and parking guidance device
JPH10244890A (en) Automatic parking device
JP2001315604A (en) Vehicle retreat supporting device in tandem parking
JP2003104220A (en) Parking assist device
JP2000280823A (en) Parking auxiliary device
JP2001180405A (en) Steering support device
JP2003146133A (en) Vehicular surrounding monitoring device
JP2006273122A (en) Parking brake assistance device
JP2003291759A (en) Parking operation support system
JP6710647B2 (en) Parking assistance device
KR20040038880A (en) Parking support device
JP5400316B2 (en) Parking assistance device
JP5013205B2 (en) Parking assistance device
JP4997183B2 (en) Device for assisting parking
JP3362569B2 (en) Vehicle guidance device