JPH10244451A - Polishing tool and polishing method using it - Google Patents

Polishing tool and polishing method using it

Info

Publication number
JPH10244451A
JPH10244451A JP9061764A JP6176497A JPH10244451A JP H10244451 A JPH10244451 A JP H10244451A JP 9061764 A JP9061764 A JP 9061764A JP 6176497 A JP6176497 A JP 6176497A JP H10244451 A JPH10244451 A JP H10244451A
Authority
JP
Japan
Prior art keywords
polisher
polishing
work
magnetic fluid
cup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9061764A
Other languages
Japanese (ja)
Inventor
Izumi Motoyama
いづみ 元山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP9061764A priority Critical patent/JPH10244451A/en
Publication of JPH10244451A publication Critical patent/JPH10244451A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To polish works of various shapes by a small number of tools without requiring to slidingly adjusting to each other by covering a polishing surface of the tools with an extensible/contractible polisher, and sealing liquid inside of it. SOLUTION: A tool main body 4 is arranged between upper and lower electromagnets 7 and 7', and a work 5 is arranged between a tool main body 4 and the upper electromagnet 7. The tool main body 4 is constituted by using a cup 4a whose upper surface is covered with a polisher 2 as a base body, and is driven in rotation. A peripheral edge part of the polisher 2 is liquidtightly sealed by a holder 9. An opening 4c is formed at the bottom of the cup 4a, and an extensible/contractible bottom plate 4b is stuck, and a magnetic fluid 3 is sealed in the cup 4a. An extensible/ contractible sheet having a thickness of about 0.1 to about 1.0mm is used as the polisher 2. A similar extensible/contactible material is also used as the bottom plate 4b. When a work quantity is little, a magnetic field is not impressed, and the magnetic fluid 3 is freely moved according to a projecting surface of the work 5. When the work quantity is much, the magnetic field is impressed, and the magnetic fluid 3 is moved in the direction of an iron core 6, and is deformed, and pressure is imparted to the work 5. Therefore, a polishing quantity can be optimized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レンズや光学素子
等の研磨方法及びそれに用いる研磨工具に関する。特に
は、多種多様な形状のワークに少数の研磨工具で対応で
きる研磨工具及びそれを用いた研磨方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for polishing lenses, optical elements, and the like, and a polishing tool used therefor. In particular, the present invention relates to a polishing tool capable of coping with works of various shapes with a small number of polishing tools and a polishing method using the same.

【0002】[0002]

【従来の技術】高度な形状精度を要求されるレンズや光
学素子等の仕上げ研磨には、通常、図8に示すような、
弾性材料からなるポリシャ10を用いた研磨工具が使用
される。ポリシャ10は、タール等を主成分とするピッ
チや、発泡ウレタン等を主成分とする研磨用パッド等で
形成されており、保持盤13上に貼り付けられている。
ポリシャ10は、保持盤13と共に、その軸回りに回転
する。そして、ポリシャ10の上面の研磨面11(作業
面)に研磨液を供給しながらワーク(図示されず)を押
し付けて研磨する。通常、このようなポリシャ10の研
磨面11には、溝やピット12等が形成されており、研
磨加工中に補給される遊離砥粒が、加工物の表面との間
で適当に保持されている。
2. Description of the Related Art For final polishing of lenses, optical elements, etc., which require a high degree of shape precision, as shown in FIG.
A polishing tool using a polisher 10 made of an elastic material is used. The polisher 10 is formed of a pitch mainly composed of tar or the like, a polishing pad mainly composed of urethane foam or the like, and is attached on the holding plate 13.
The polisher 10 rotates around its axis together with the holding plate 13. Then, a work (not shown) is pressed and polished while supplying a polishing liquid to the polishing surface 11 (work surface) on the upper surface of the polisher 10. Usually, grooves and pits 12 and the like are formed on the polishing surface 11 of such a polisher 10, and free abrasive grains supplied during polishing are appropriately held between the polishing surface 11 and the surface of the workpiece. I have.

【0003】[0003]

【発明が解決しようとする課題】ところで、この種の研
磨工具のポリシャ10の研磨面11は、特定の形状のワ
ークの加工に適した曲率及び直径に精度良く整形されて
いる。つまり、1つの研磨工具の用途は特定の形状の被
研磨面の研磨加工にのみ使用される。したがって、多種
に昇るレンズの各曲率及び各直径に適した研磨工具をそ
れぞれ準備しなければならないという不都合が生じる。
By the way, the polishing surface 11 of the polisher 10 of this kind of polishing tool is precisely shaped into a curvature and a diameter suitable for processing a workpiece having a specific shape. In other words, one polishing tool is used only for polishing a surface to be polished having a specific shape. Therefore, there arises a disadvantage that a polishing tool suitable for each curvature and each diameter of various kinds of lenses must be prepared.

【0004】また、研磨加工の進行に伴ってポリシャ1
0の研磨面11の形状が徐々に変形し劣化するので、研
磨加工中に適宜ポリシャ10の研磨面11に摺り合わせ
処理を施して転写性に代表される研磨性能の回復を図る
ことが、加工精度を維持するために採るべき定石とされ
ている。ところが、この煩雑な摺り合わせ処理に費やさ
れる多大な時間が、製造効率の低下と製造コストの増大
に直結するという問題を生じる。つまり、摺り合わせ処
理中はポリシャを生産に使用することはできないので、
生産設備は摺り合わせ待ちとなる。
[0004] As the polishing process proceeds, the polisher 1
Since the shape of the polished surface 11 of the polisher 10 is gradually deformed and deteriorated, the polishing surface 11 of the polisher 10 is appropriately rubbed during the polishing process to recover the polishing performance represented by the transferability. It is said to be the standard to be adopted to maintain accuracy. However, there is a problem that a great amount of time spent in the complicated rubbing process is directly linked to a reduction in manufacturing efficiency and an increase in manufacturing cost. In other words, the polisher cannot be used for production during the rubbing process.
The production facilities are waiting to be assembled.

【0005】本発明は、多種多様な形状のワークに少数
の研磨工具で対応できるとともに、摺り合わせの不要な
画期的な研磨工具及びそれを用いた研磨方法を提供する
ことを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an innovative polishing tool which can cope with works of various shapes with a small number of polishing tools and does not require rubbing, and a polishing method using the polishing tool.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明の研磨工具は、伸縮性ポリシャで覆われた研
磨面を有し、該ポリシャの内側に液体が封入されている
ことを特徴とする。
In order to solve the above problems, a polishing tool according to the present invention has a polishing surface covered with an elastic polisher, and a liquid is sealed inside the polisher. And

【0007】また、本発明の研磨方法は、 伸縮性ポリ
シャで覆われた研磨面を有し、該ポリシャの内側に液体
が封入されている研磨工具を用い、 該研磨工具をワー
クに押し付けて、該ポリシャの研磨面をワークの被研磨
面にフィットさせ、 この状態で上記伸縮性ポリシャと
ワークとを相対的に運動させて被研磨面を研磨すること
を特徴とする。
[0007] The polishing method of the present invention uses a polishing tool having a polishing surface covered with an elastic polisher and a liquid sealed inside the polisher, and pressing the polishing tool against a workpiece. The polished surface of the polisher is fitted to the polished surface of the work, and in this state, the polished surface is polished by relatively moving the elastic polisher and the work.

【0008】[0008]

【発明の実施の形態】本発明においては、さらに、上記
液体が磁性流体であり、選択された方向に向けて該磁性
流体を付勢する磁気付勢手段を用いて伸縮性ポリシャを
被研磨面に押し付けることが好ましい。
In the present invention, the liquid is a magnetic fluid, and the elastic polisher is polished to the surface to be polished by using magnetic urging means for urging the magnetic fluid in a selected direction. Preferably.

【0009】この態様においては、磁界中の磁性流体の
移動によって、ポリシャを自由に変形させることができ
る。また、ポリシャの変形形状は、鉄心の形状を変える
ことによっても制御可能である。つまり、ポリシャの研
磨面の曲率と研磨圧とを自在に変えることができるの
で、曲率の異なる種々のレンズ研磨に対し、研磨工具を
取り替えることなく加工が可能である。さらに、非球面
レンズのような表面形状の曲率が変化する加工物等に対
して良好な仕上げの研磨加工を施すことができる。この
際、摺り合わせ処理を施す必要はない。
In this embodiment, the polisher can be freely deformed by the movement of the magnetic fluid in the magnetic field. The deformed shape of the polisher can also be controlled by changing the shape of the iron core. That is, since the curvature and the polishing pressure of the polished surface of the polisher can be freely changed, it is possible to perform polishing of various lenses having different curvatures without changing the polishing tool. Further, it is possible to perform a polishing process with a good finish on a workpiece such as an aspherical lens whose surface shape changes in curvature. At this time, it is not necessary to perform the rubbing process.

【0010】以下に図面を参照して、実施例によって詳
細に説明する。この実施例で用いている磁性流体は、フ
ェライト等の強磁性微粉末を液相(水)中に分散させた
コロイド溶液である。強磁性微粉末(分散剤)の粒径が
数十から数百Å程度と極めて微細であるため、常時性的
挙動を示す磁気的性質を持つ。すなわち、磁場を印加す
ることによって、磁性流体は磁束経路に引き付けられ、
特に磁束密度の大きい方に引き寄せられるのである。
Hereinafter, embodiments will be described in detail with reference to the drawings. The magnetic fluid used in this embodiment is a colloid solution in which ferromagnetic fine powder such as ferrite is dispersed in a liquid phase (water). Since the ferromagnetic fine powder (dispersant) has an extremely fine particle size of about several tens to several hundreds of millimeters, it has magnetic properties that always exhibit sexual behavior. That is, by applying a magnetic field, the magnetic fluid is attracted to the magnetic flux path,
In particular, the magnetic flux density is attracted to the larger one.

【0011】図1は、本発明の1実施例に係る研磨工具
の全体構成を模式的に示す側面断面図である。図2は、
図1の研磨工具のカップ部の詳細を示す側面断面図であ
る。この研磨工具1は、上下の電磁石7、7′と、その
間に挟まれている工具本体4とから構成されている。工
具本体4の上面と、上電磁石7の下の間にワーク5(レ
ンズ)を配置して加工する。このワーク5は、基本的
に、工具本体4に対してある基準的な位置に位置決めさ
れて固定される。しかし、ワークの種類によっては、回
転・揺動・左右前後動する構造としてもよい。
FIG. 1 is a side sectional view schematically showing the entire configuration of a polishing tool according to one embodiment of the present invention. FIG.
FIG. 2 is a side sectional view showing details of a cup portion of the polishing tool of FIG. 1. This polishing tool 1 is composed of upper and lower electromagnets 7, 7 'and a tool body 4 interposed therebetween. A work 5 (lens) is arranged between the upper surface of the tool body 4 and under the upper electromagnet 7 for processing. The work 5 is basically positioned and fixed at a certain reference position with respect to the tool body 4. However, depending on the type of the work, a structure that rotates, swings, and moves left and right, back and forth may be used.

【0012】工具本体4は、回転駆動されるカップ4a
(材質:真鍮等)を基本として構成されている。カップ
4aは、上面が開放されており、この上面はポリシャ2
(詳細後述)で覆われている。ポリシャ2は、後述する
機構によりその上面(研磨面)をワーク5に押し付けて
研磨加工する。ポリシャ2の周縁部2aは、カップ4a
の外周面に張り出している。周縁部2aの外周は、保持
具9で固く均一に固縛されている。保持具9は、水道ホ
ースの締め具のような金属バンドと締め上げ機構(図示
されず)を有し、ポリシャ周縁部2aを液密にシールす
るとともに上面を皺のない状態としている。
The tool body 4 includes a cup 4a which is driven to rotate.
(Material: brass, etc.). The upper surface of the cup 4a is open, and this upper surface is
(Details described later). The polisher 2 is polished by pressing the upper surface (polishing surface) against the work 5 by a mechanism described later. The peripheral portion 2a of the polisher 2 is a cup 4a
Overhangs the outer peripheral surface of. The outer periphery of the peripheral edge portion 2a is firmly and uniformly fastened by the holder 9. The holder 9 has a metal band such as a fastener for a water hose and a tightening mechanism (not shown), seals the polisher peripheral portion 2a in a liquid-tight manner, and keeps the upper surface free of wrinkles.

【0013】カップ4aの底は、若干の周縁部を残して
開口4cが開いている。開口4cの上には、カップ4a
内の体積を一定にするための伸縮性底板4bが貼られて
いる。この底板4bは、ポリシャ2同様の伸縮性を有す
る材料でできている。同底板4bは、接着剤及び機械的
締め付け具(図示されず)で液密にカップ4aに固定さ
れている。カップ4a内には上述の磁性流体3が封入さ
れている。
An opening 4c is opened at the bottom of the cup 4a except for a small peripheral portion. A cup 4a is placed on the opening 4c.
An elastic bottom plate 4b for keeping the inside volume constant is attached. The bottom plate 4b is made of a material having the same elasticity as the polisher 2. The bottom plate 4b is liquid-tightly fixed to the cup 4a with an adhesive and a mechanical fastener (not shown). The above-described magnetic fluid 3 is sealed in the cup 4a.

【0014】電磁石8は、中央部の鉄心6と、その周り
のコイル8を備える。コイル8に通電すると、上下の鉄
心6、6′間に磁束φ(ファイ、2点鎖線)が形成され
る。この磁束の影響で、封入した磁性流体3は、磁束形
成部に引き寄せられて液面が盛り上がり、ポリシャ2は
点線で示したように隆起し、ポリシャ2の研磨面がワー
ク5の下面(被研磨面)に密着するように変形する。こ
こで、磁性流体3に印加する磁場の強度は、コイル8に
流す電流量を変化させれば調整できる。一方、磁場分布
は鉄心6の先端の形状を変えることで変化させることが
可能であるため、ポリシャの硬度や形状を調整できる。
例えば、鉄心6の中央部がワーク5方向に突き出すよう
な形にすれば、ポリシャ2の中央部も鋭く盛り上がる。
また、鉄心6をリング状とすれば、ポリシャ2もリング
状に盛り上がる。
The electromagnet 8 has an iron core 6 at the center and a coil 8 around the core. When the coil 8 is energized, a magnetic flux φ (phi, two-dot chain line) is formed between the upper and lower iron cores 6, 6 '. Under the influence of this magnetic flux, the enclosed magnetic fluid 3 is attracted to the magnetic flux forming portion and the liquid surface rises, the polisher 2 rises as shown by the dotted line, and the polished surface of the polisher 2 Surface). Here, the intensity of the magnetic field applied to the magnetic fluid 3 can be adjusted by changing the amount of current flowing through the coil 8. On the other hand, since the magnetic field distribution can be changed by changing the shape of the tip of the iron core 6, the hardness and shape of the polisher can be adjusted.
For example, if the central part of the iron core 6 is formed so as to protrude in the direction of the work 5, the central part of the polisher 2 also rises sharply.
Further, if the iron core 6 is formed in a ring shape, the polisher 2 also rises in a ring shape.

【0015】この電磁石7は、研磨加工具4とワーク5
の両側についている必要はなく、いずれか一方のみでも
同様の効果が得られる。電磁石の効果が充分出るよう、
鉄心6の中心と研磨加工具4の中心は一致し、ポリシャ
面と鉄心6は直行するよう位置することが好ましい。ま
た、電磁石7の替りに永久磁石を使用しても同様の効果
が得られることは言うまでもない。この場合、永久磁石
の位置を変えることにより、磁場の強度を変えることが
できる。
The electromagnet 7 comprises a polishing tool 4 and a work 5
It is not necessary to be on both sides, and a similar effect can be obtained with only one of them. So that the effect of the electromagnet is
It is preferable that the center of the iron core 6 and the center of the polishing tool 4 coincide with each other, and the polisher surface and the iron core 6 be located at right angles. Needless to say, the same effect can be obtained even if a permanent magnet is used instead of the electromagnet 7. In this case, the strength of the magnetic field can be changed by changing the position of the permanent magnet.

【0016】ここでポリシャは0.1から1.0mm程度
の厚さを持った伸縮性のあるシートを使用する。材質
は、特にクロロプレンゴム又はニトリルゴムが望まし
い。しかし、これに限らず、伸縮性のある素材であれ
ば、対応可能である。
Here, the polisher uses a stretchable sheet having a thickness of about 0.1 to 1.0 mm. The material is preferably chloroprene rubber or nitrile rubber. However, the present invention is not limited to this, and any material having elasticity can be used.

【0017】図3は、図1の研磨工具を用いてワーク
(レンズ)の凸面を研磨する様子を示す一部断面側面図
である。磁場を印加しない状態では、磁性流体3は自由
に移動できるため、図3のように被研磨面が凸面のワー
ク5を磨く場合、凸面に沿ってポリシャ2が凹に変形
し、それに伴い、磁性流体3が移動する。この場合、ポ
リシャ2はワーク5の被研磨面に積極的に作用しないた
め、少ない加工量を得たい場合に適している。
FIG. 3 is a partial cross-sectional side view showing a state in which a convex surface of a work (lens) is polished using the polishing tool of FIG. In the state where no magnetic field is applied, the magnetic fluid 3 can move freely. Therefore, when polishing the work 5 having a polished surface as shown in FIG. 3, the polisher 2 is deformed into a concave shape along the convex surface. Fluid 3 moves. In this case, the polisher 2 does not positively act on the surface to be polished of the work 5 and is suitable for obtaining a small processing amount.

【0018】多くの加工量を必要とする場合、磁場を印
加することによって磁性流体3が鉄心6の方向に移動
し、ワーク5に対して適当な圧力を与えるので、良好な
研磨量と加工面形状を得ることができる。
When a large amount of machining is required, the magnetic fluid 3 moves in the direction of the iron core 6 by applying a magnetic field, and applies an appropriate pressure to the work 5. Shape can be obtained.

【0019】図4は、図1の研磨工具を用いて、平面の
被研磨面を磨く様子を示す一部断面側面図である。この
ような場合は、磁場を印加することによって磁性流体3
を鉄心6の方向に移動させ、ポリシャ2表面の圧力分布
が均一になるよう電磁石のコイルに流す電流を調節す
る。ワーク5に対し、ポリシャ2が適当な圧力を加える
ため、良好な、研磨量と加工面形状を得ることができ
る。
FIG. 4 is a partial cross-sectional side view showing a state in which a flat polished surface is polished using the polishing tool of FIG. In such a case, the magnetic fluid 3 is applied by applying a magnetic field.
Is moved in the direction of the iron core 6, and the current flowing through the coil of the electromagnet is adjusted so that the pressure distribution on the surface of the polisher 2 becomes uniform. Since the polisher 2 applies an appropriate pressure to the work 5, it is possible to obtain a good polishing amount and a processed surface shape.

【0020】図5は、図1の研磨工具を用いて、凹面の
被研磨面を磨く様子を示す一部断面側面図である。この
ような場合は、磁場を印加することによって磁性流体3
を鉄心6の上方向に移動させ、ポリシャ2表面の中心部
分の圧力が高くなるよう電磁石のコイルに流す電流を調
節する。ワーク5に対し、ポリシャ2が凸面に変形し適
当な圧力を加えるため、良好な研磨量と加工面形状を得
ることができる。
FIG. 5 is a partial cross-sectional side view showing a manner of polishing a concave surface to be polished using the polishing tool of FIG. In such a case, the magnetic fluid 3 is applied by applying a magnetic field.
Is moved in the upward direction of the iron core 6, and the current flowing through the coil of the electromagnet is adjusted so that the pressure at the center of the surface of the polisher 2 is increased. Since the polisher 2 is deformed to a convex surface and applies an appropriate pressure to the work 5, a good polishing amount and a processed surface shape can be obtained.

【0021】図6は、曲率の大きい凸面に対応する研磨
工具を用いて、ワークの凸面を研磨している様子を示す
一部断面側面図である。カップ4にポリシャ2を皺がで
きないように貼り、さらにカップ4とポリシャ2との間
に磁性流体3を封入する。その際、磁性流体3が漏れな
いよう保持具9でチャックをする。このような曲率の大
きい凸面のワーク5を加工する場合、ポリシャをあらか
じめ凸面形状に成形した物を用いた方が磁性流体の移動
に伴う変形に追従しやすいため、さらに効果的な加工が
可能になる。
FIG. 6 is a partial cross-sectional side view showing a state in which a convex surface of a work is polished using a polishing tool corresponding to a convex surface having a large curvature. The polisher 2 is attached to the cup 4 so as not to wrinkle, and the magnetic fluid 3 is sealed between the cup 4 and the polisher 2. At this time, the holding tool 9 chucks the magnetic fluid 3 so as not to leak. When processing such a convex workpiece 5 having a large curvature, it is easier to follow the deformation caused by the movement of the magnetic fluid by using a polisher that has been formed into a convex shape in advance, so that more effective processing can be performed. Become.

【0022】磁場を印加しない状態では、磁性流体3は
自由に移動できるため、図6のように曲率の大きい凸面
のワーク5を磨く場合、ポリシャ2がワーク5の凸面に
沿って凹に変形し、それに伴い、磁性流体3が移動す
る。この場合、ポリシャ2はワーク5の凸面に積極的に
作用しないため、少ない加工量を得たい時に適してい
る。
When no magnetic field is applied, the magnetic fluid 3 can move freely. Therefore, when polishing a convex work 5 having a large curvature as shown in FIG. 6, the polisher 2 is deformed concavely along the convex surface of the work 5. Accordingly, the magnetic fluid 3 moves. In this case, the polisher 2 does not positively act on the convex surface of the work 5 and is suitable for obtaining a small processing amount.

【0023】多くの加工量を必要とする場合、磁場を印
加することによって磁性流体3が鉄心6の方向に移動
し、ワーク5に対して適当な圧力を与えるので、良好な
研磨量と加工面形状を得ることができる。
When a large amount of machining is required, the magnetic fluid 3 moves in the direction of the iron core 6 by applying a magnetic field, and applies an appropriate pressure to the work 5. Shape can be obtained.

【0024】図7は、曲率の大きい凹面に対応する研磨
工具を用いて、ワークの凹面を研磨している様子を示す
一部断面側面図である。図6の場合と同様に大曲率凹面
の研磨加工を行うことができる。
FIG. 7 is a partial cross-sectional side view showing a state in which a concave surface of a work is polished using a polishing tool corresponding to a concave surface having a large curvature. As in the case of FIG. 6, the polishing of the concave surface with a large curvature can be performed.

【0025】研磨加工時の加工圧は、印加する磁場強度
を変化させることによって制御可能である。このことを
応用すれば、非球面の加工も可能である。曲率が大きい
部分では加工圧が高くなるように磁場を制御し、曲率が
小さい部分では逆に加工圧が低くなるよう磁場を制御す
ることによって、連続した加工で非球面形状を得ること
ができる。加工圧の強度はスムーズに変化させられるの
で、加工による折れやゆがみも従来の加工法に比べ、少
なくなる。
The processing pressure at the time of polishing can be controlled by changing the intensity of the applied magnetic field. If this is applied, aspherical surface processing is also possible. By controlling the magnetic field so that the processing pressure increases in a portion having a large curvature, and controlling the magnetic field so that the processing pressure decreases in a portion having a small curvature, an aspherical shape can be obtained by continuous processing. Since the intensity of the processing pressure can be smoothly changed, the bending and distortion due to the processing are reduced as compared with the conventional processing method.

【0026】[0026]

【発明の効果】以上の説明から明らかなように、本発明
によれば、本発明の研磨工具を使用することにより、少
ない研磨工具でも様々なワーク形状に対応できる。ま
た、磁場調整を行う態様では、細かいポリシャの面形状
や加工圧も、鉄心形状や磁場強度を変えることによって
も制御可能である。つまり、ポリシャの作業面の曲率と
研磨圧とを自在に変えることができるので、曲率の異な
る種々のレンズ研磨に対し、研磨工具を取り替えること
なく加工が可能である。さらに、非球面レンズのような
表面形状の曲率が変化する加工物等に対して良好な仕上
げの研磨加工を施すことができる。したがって、研磨工
具に摺り合わせ処理を施す必要がなく、研磨工具準備に
費やされた多大なる時間及び経費が削減できる。
As is apparent from the above description, according to the present invention, by using the polishing tool of the present invention, it is possible to cope with various workpiece shapes even with a small number of polishing tools. In the embodiment in which the magnetic field is adjusted, the surface shape and processing pressure of the fine polisher can also be controlled by changing the iron core shape and the magnetic field strength. That is, since the curvature of the working surface of the polisher and the polishing pressure can be freely changed, it is possible to perform polishing of various lenses having different curvatures without changing the polishing tool. Further, it is possible to perform a polishing process with a good finish on a workpiece such as an aspherical lens whose surface shape changes in curvature. Therefore, it is not necessary to apply a grinding process to the polishing tool, and a great amount of time and cost spent for preparing the polishing tool can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施例に係る研磨工具の全体構成を
模式的に示す側面断面図である。
FIG. 1 is a side cross-sectional view schematically showing an overall configuration of a polishing tool according to one embodiment of the present invention.

【図2】図1の研磨工具のカップ部の詳細を示す側面断
面図である。
FIG. 2 is a side sectional view showing details of a cup portion of the polishing tool of FIG. 1;

【図3】図1の研磨工具を用いてワークの凸面を研磨す
る様子を示す一部断面側面図である。
FIG. 3 is a partial cross-sectional side view showing a state where a convex surface of a work is polished using the polishing tool of FIG. 1;

【図4】図1の研磨工具を用いて、平面の被研磨面を磨
く様子を示す一部断面側面図である。
FIG. 4 is a partial cross-sectional side view showing a state in which a flat polished surface is polished using the polishing tool of FIG. 1;

【図5】図1の研磨工具を用いて、凹面の被研磨面を磨
く様子を示す一部断面側面図である。
FIG. 5 is a partial cross-sectional side view showing a manner of polishing a concave surface to be polished using the polishing tool of FIG. 1;

【図6】曲率の大きい凸面に対応する研磨工具を用い
て、ワークの凸面を研磨している様子を示す一部断面側
面図である。
FIG. 6 is a partial cross-sectional side view showing a state in which a convex surface of a work is polished using a polishing tool corresponding to a convex surface having a large curvature.

【図7】曲率の大きい凹面に対応する研磨工具を用い
て、ワークの凹面を研磨している様子を示す一部断面側
面図である。
FIG. 7 is a partial cross-sectional side view showing a state in which a concave surface of a workpiece is polished using a polishing tool corresponding to a concave surface having a large curvature.

【図8】従来の研磨工具の構成を示す側面図である。FIG. 8 is a side view showing a configuration of a conventional polishing tool.

【符号の説明】[Explanation of symbols]

1 研磨工具 2 ポリシャ 2a 周縁部 3 磁性流体 4 工具本体 4a カップ 4b 伸縮性底板 4c 底開口 5 ワーク(レンズ) 6 鉄心 7 電磁石 8 コイル 9 保持具 10 ポリシャ(ピ
ッチ、ウレタン) 11 研磨面 12 ピット 13 保持盤
Reference Signs List 1 polishing tool 2 polisher 2a peripheral part 3 magnetic fluid 4 tool body 4a cup 4b elastic bottom plate 4c bottom opening 5 work (lens) 6 iron core 7 electromagnet 8 coil 9 holder 10 polisher (pitch, urethane) 11 polished surface 12 pit 13 Holding board

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 伸縮性ポリシャで覆われた研磨面を有
し、該ポリシャの内側に液体が封入されていることを特
徴とする研磨工具。
1. A polishing tool having a polishing surface covered with an elastic polisher, wherein a liquid is sealed inside the polisher.
【請求項2】 上記液体が磁性流体であり、 かつ、選択された方向に向けて該磁性流体を付勢する磁
気付勢手段が設けられていることを特徴とする請求項1
記載の研磨工具。
2. The method according to claim 1, wherein the liquid is a magnetic fluid, and magnetic biasing means for biasing the magnetic fluid in a selected direction is provided.
Polishing tool as described.
【請求項3】 伸縮性ポリシャで覆われた研磨面を有
し、該ポリシャの内側に液体が封入されている研磨工具
を用い、 該研磨工具をワークに押し付けて、該ポリシャの研磨面
をワークの被研磨面にフィットさせ、 この状態で上記伸縮性ポリシャとワークとを相対的に運
動させて被研磨面を研磨することを特徴とする研磨方
法。
3. A polishing tool having a polishing surface covered with an elastic polisher and having a liquid sealed inside the polisher, pressing the polishing tool against the work, and polishing the polishing surface of the polisher to the work A polishing method, wherein the elastic polisher and the work are relatively moved to polish the surface to be polished in this state.
【請求項4】 さらに、上記液体が磁性流体であり、 選択された方向に向けて該磁性流体を付勢して伸縮性ポ
リシャを被研磨面に押し付けることを特徴とする請求項
3記載の研磨方法。
4. The polishing method according to claim 3, wherein the liquid is a magnetic fluid, and the elastic fluid is urged in a selected direction to press the elastic polisher against the surface to be polished. Method.
JP9061764A 1997-03-03 1997-03-03 Polishing tool and polishing method using it Pending JPH10244451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9061764A JPH10244451A (en) 1997-03-03 1997-03-03 Polishing tool and polishing method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9061764A JPH10244451A (en) 1997-03-03 1997-03-03 Polishing tool and polishing method using it

Publications (1)

Publication Number Publication Date
JPH10244451A true JPH10244451A (en) 1998-09-14

Family

ID=13180532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9061764A Pending JPH10244451A (en) 1997-03-03 1997-03-03 Polishing tool and polishing method using it

Country Status (1)

Country Link
JP (1) JPH10244451A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6875090B2 (en) 1999-12-01 2005-04-05 Gerber Coburn Optical, Inc. Apparatus for finishing optical surfaces, including a pad compensation device
JP2006524587A (en) * 2003-04-28 2006-11-02 マイクロン・テクノロジー・インコーポレーテッド Polishing machine and method including an underpad for mechanically and / or chemically mechanically polishing a micro-shaped workpiece
CN103465112A (en) * 2013-09-03 2013-12-25 黑龙江科技大学 Magnetorheological colloid or magnetorheological foam material based flexible polishing method and device
CN104942661A (en) * 2015-06-30 2015-09-30 深圳市智博高科光电装备有限公司 Magneto-rheological polish grinding head and device suitable for plane optical part
CN108687647A (en) * 2018-05-23 2018-10-23 成都信息工程大学 A kind of lossless burnishing device for diabolo processing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6875090B2 (en) 1999-12-01 2005-04-05 Gerber Coburn Optical, Inc. Apparatus for finishing optical surfaces, including a pad compensation device
JP2006524587A (en) * 2003-04-28 2006-11-02 マイクロン・テクノロジー・インコーポレーテッド Polishing machine and method including an underpad for mechanically and / or chemically mechanically polishing a micro-shaped workpiece
CN103465112A (en) * 2013-09-03 2013-12-25 黑龙江科技大学 Magnetorheological colloid or magnetorheological foam material based flexible polishing method and device
CN104942661A (en) * 2015-06-30 2015-09-30 深圳市智博高科光电装备有限公司 Magneto-rheological polish grinding head and device suitable for plane optical part
CN108687647A (en) * 2018-05-23 2018-10-23 成都信息工程大学 A kind of lossless burnishing device for diabolo processing

Similar Documents

Publication Publication Date Title
US5885135A (en) CMP wafer carrier for preferential polishing of a wafer
KR960015777A (en) Polishing device
JPH08195364A (en) Grind pad cluster to grind semiconductor wafer
CN113458909B (en) Optical lens double-side polishing method
US3977130A (en) Removal-compensating polishing apparatus
US6733367B1 (en) Method and apparatus for polishing silicon wafers
US6929534B2 (en) Polisher and polishing method
JPH10244451A (en) Polishing tool and polishing method using it
JPH11291165A (en) Polishing device and polishing method
JPH08192348A (en) Grinding and polishing method and device therefor
JPH06155259A (en) Method of producing board having main flat surface and two parallel main surfaces and device suited for said methods
JPS5932135A (en) Bonding device for semiconductor wafer
JP2001054862A (en) Polishing fixture and curved face polishing method using it
JP2008264920A (en) Grinding tool, magnetic grinding method, and magnetic grinding device
JP2000225555A (en) Jig tool for polishing and polishing method
JPH09239666A (en) Smoothing tool
US6267646B1 (en) Polishing machine
JPH01281859A (en) Curved surface polishing device
JPH09180389A (en) Magnetic head slider production device and magnetic head slider production
JP2005111629A (en) Polishing tool, polishing device using the same, and polishing method
JP2001062695A (en) Polishing tool and polishing device
JPS6288566A (en) Precision polishing method
KR20190066812A (en) Apparatus for grinding
JPS63260751A (en) Polishing holder mechanism in lens polishing device
JP2001353650A (en) Polisher, and method and device of polishing optical component using it