JPH10244295A - Nitrogen removal device - Google Patents

Nitrogen removal device

Info

Publication number
JPH10244295A
JPH10244295A JP419398A JP419398A JPH10244295A JP H10244295 A JPH10244295 A JP H10244295A JP 419398 A JP419398 A JP 419398A JP 419398 A JP419398 A JP 419398A JP H10244295 A JPH10244295 A JP H10244295A
Authority
JP
Japan
Prior art keywords
carrier
air lift
pipe
bed
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP419398A
Other languages
Japanese (ja)
Other versions
JP3264881B2 (en
Inventor
Kazuo Tayama
和夫 田山
Yoshio Oshima
吉雄 大嶋
Fumio Mishina
文雄 三品
Norio Murotani
憲男 室谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GESUIDO JIGYODAN
Sanki Engineering Co Ltd
Saitama Prefecture
Original Assignee
NIPPON GESUIDO JIGYODAN
Sanki Engineering Co Ltd
Saitama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GESUIDO JIGYODAN, Sanki Engineering Co Ltd, Saitama Prefecture filed Critical NIPPON GESUIDO JIGYODAN
Priority to JP00419398A priority Critical patent/JP3264881B2/en
Publication of JPH10244295A publication Critical patent/JPH10244295A/en
Application granted granted Critical
Publication of JP3264881B2 publication Critical patent/JP3264881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nitrogen removal device in which microorganisms stuck to a fluidized carrier are certainly released. SOLUTION: In the device for biologically removing BOD and nitrogen in organic drainage containing ammonia nitrogen such as sewage, a biomembrane peeling device 28 is provided with a suction port 29a for sucking a carrier stuck with microorganisms in the lower part, an air lift pipe 29 having an air supply part 30 in the vicinity of the suction port, a separation part which is provided in the upper part of the air lift pipe and separates peeled organisms discharged from the air lift pipe and the carrier and a water level controlling weir 35 provided in the separation part. Further, the biomember peeling device 28 is operated so that the suction port of the air lift pipe is arranged in the part slightly lower than the interface of a fluidized bed and the fluidized interface ascending according to multiplication of the films of microorganisms sticking on the surface of the carrier is maintained and controlled to a constant height by peeling the films of microorganisms while raising the carrier stuck with microorganisms through the air lift pipe from the anaerobically fluidized bed near to the fluidized interface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水などアンモニ
ア性窒素を含む有機性排水中のBODおよび窒素を除去
する生物学的処理装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biological treatment apparatus for removing BOD and nitrogen in organic wastewater containing ammonia nitrogen such as sewage.

【0002】[0002]

【従来の技術】湖沼、閉鎖性水域の富栄養化にみられる
ように栄養塩類(窒素、リン)の除去が水域環境保全の
上から重要になってきている。従来、下水などの排水か
らBODおよび窒素を除去する生物学的方法には、活性
汚泥法を基本としたいくつかの変法が考えられている
が、現在、主として実用に供されている方法として、硝
化液循環型の活性汚泥循環変法がある。
2. Description of the Related Art As seen in the eutrophication of lakes and marshes and enclosed waters, the removal of nutrients (nitrogen and phosphorus) has become important from the viewpoint of water environment conservation. Conventionally, there have been considered several types of biological methods for removing BOD and nitrogen from wastewater such as sewage, which are based on the activated sludge method. There is a modified activated sludge circulation method of the nitrification liquid circulation type.

【0003】この硝化液循環型の活性汚泥循環変法は、
図3に示すごとく、前段を脱窒素のための嫌気性槽(完
全混合槽)2、後段をBOD酸化とアンモニア性窒素の
硝酸化のための好気性槽(完全混合槽)3とし、好気性
槽3からの流出液、すなわち硝化液の一部を硝化液循環
ポンプ4によって前段の嫌気性槽2に循環させるもので
ある。
[0003] A modified method of circulating activated sludge of the nitrification liquid circulation type is as follows.
As shown in FIG. 3, the first stage is an anaerobic tank (complete mixing tank) 2 for denitrification, and the second stage is an aerobic tank (complete mixing tank) 3 for BOD oxidation and nitrification of ammonia nitrogen. The effluent from the tank 3, that is, a part of the nitrification liquid is circulated to the preceding anaerobic tank 2 by the nitrification liquid circulation pump 4.

【0004】なお、図3において、原水は第1沈澱池1
から嫌気性槽2へ流入し、好気性槽3を経て第2沈澱池
5に流入する。しかし、活性汚泥循環法では、処理時間
が著しく長く、広大な敷地面積を必要とする。また、活
性汚泥循環法では、第2沈澱池5を用いて処理水と汚泥
を分離するので、バルキングに代表されるような運転管
理上の障害が発生することがあり、維持管理が容易でな
く、専門的技術を要する。
In FIG. 3, raw water is supplied to a first settling basin 1.
, Flows into the anaerobic tank 2, passes through the aerobic tank 3, and flows into the second sedimentation basin 5. However, the activated sludge circulation method requires a significantly long treatment time and requires a large site area. Further, in the activated sludge circulation method, the treated water and the sludge are separated by using the second sedimentation basin 5, so that an obstacle in operation management such as bulking may occur, and maintenance is not easy. Requires professional skills.

【0005】そこで、最近では水処理用充填材(担体)
を利用したろ床法の発達により、図4に示すごとく、前
段を脱窒素のための嫌気性ろ床8、後段をBOD酸化と
アンモニア性窒素の硝酸化のための好気性ろ床10と
し、好気性ろ床10からの流出液、すなわち硝化液の一
部を硝化液循環ポンプ9によって前段の嫌気性槽8に循
環させる、いわゆる嫌気性ろ床・好気性ろ床法が検討さ
れている。
Therefore, recently, a filler (carrier) for water treatment has been used.
Due to the development of the filter bed method utilizing anaerobic filter, as shown in FIG. 4, the first stage is an anaerobic filter bed 8 for denitrification, and the second stage is an aerobic filter bed 10 for BOD oxidation and nitrification of ammonia nitrogen. The so-called anaerobic filter / aerobic filter method of circulating a part of the effluent from the aerobic filter bed, that is, a part of the nitrification liquid, to the anaerobic tank 8 at the preceding stage by the nitrification liquid circulation pump 9 is being studied.

【0006】なお、図4において、原水は第1沈澱池6
から供給ポンプ7によって嫌気性ろ床8へ送られる。活
性汚泥法の代わりにろ床法を用いる利点としては、次の
とおりである。好気性ろ床は、活性汚泥法に比べて硝化
性能が優れている(活性汚泥の約3倍の硝化速度を有す
る)ので高速処理が可能である。好気性ろ床の硝化性能
が優れている理由は、硝化菌は、BOD酸化菌に比べて
増殖が遅いが、好気性ろ床ではこの硝化菌が担体の表面
に生物膜を形成して保持されるので、完全混合槽におけ
る硝化菌濃度に比べて高濃度の硝化菌を維持できること
による。
In FIG. 4, raw water is supplied to the first sedimentation basin 6.
From the anaerobic filter bed 8 by the supply pump 7. The advantages of using the filter bed method instead of the activated sludge method are as follows. The aerobic filter bed has better nitrification performance than the activated sludge method (it has a nitrification rate about three times that of activated sludge), so that high-speed treatment is possible. The reason that the nitrification performance of the aerobic filter is excellent is that nitrifying bacteria grow slower than BOD oxidizing bacteria, but in the aerobic filter, the nitrifying bacteria form a biofilm on the surface of the carrier and are retained. Therefore, the nitrifying bacteria can be maintained at a higher concentration than the nitrifying bacteria concentration in the complete mixing tank.

【0007】また、好気性ろ床はろ過機能を持つので、
活性汚泥法における第2沈澱池5が不要であり、バルキ
ングなど活性汚泥法特有の障害が生じない。さらに、例
えば、「流動床脱窒に関する実験的研究」(第15回下
水道研究発表会講演集、Vol.15 No.165 1978/2)には、
流動床を脱窒用反応槽として用いる検討も行われてい
る。
[0007] Also, since the aerobic filter bed has a filtration function,
The second sedimentation basin 5 in the activated sludge method is unnecessary, and there is no trouble peculiar to the activated sludge method such as bulking. Further, for example, “Experimental research on fluidized bed denitrification” (Proceedings of the 15th Sewage Works Research Conference, Vol.15 No.165 1978/2)
Studies have been made to use a fluidized bed as a reaction tank for denitrification.

【0008】[0008]

【発明が解決しようとする課題】しかし、嫌気性ろ床・
好気性ろ床法では、嫌気性ろ床での汚泥濃度が低く、処
理時間が長くなるという欠点がある。そして、処理時間
が長くなると、硫化水素等の腐敗性ガスが発生するの
で、脱臭対策と、機器類の防蝕に対する配慮を必要とし
ていた。
However, an anaerobic filter
The aerobic filter method has the disadvantage that the sludge concentration in the anaerobic filter is low and the treatment time is long. When the treatment time is prolonged, a putrefactive gas such as hydrogen sulfide is generated, so that it is necessary to take measures against deodorization and consideration for corrosion prevention of equipment.

【0009】また、流動床を脱窒反応槽として用いる検
討も行われているが、この場合は、あくまでもメタノー
ルを使用して、硝化後の排水を脱窒素しようとするもの
で、硝化後の循環型のフローではない。ところで、「流
動床脱窒に関する実験的研究」に示された結果からも、
流動床法は微生物濃度が高くなり、浮遊法(活性汚泥
法)や固定床法(嫌気ろ床)に比べて、処理時間が短
く、従って、装置のコンパクト化が図れることが明らか
である。
[0009] In addition, studies have been made to use a fluidized bed as a denitrification reaction tank. In this case, however, the wastewater after nitrification is intended to be denitrified using methanol, and the circulation after nitrification is performed. It is not a type flow. By the way, from the results shown in "Experimental research on fluidized bed denitrification",
It is clear that the fluidized bed method has a higher concentration of microorganisms, and requires a shorter treatment time than the floating method (activated sludge method) and the fixed bed method (anaerobic filter bed), so that the apparatus can be made more compact.

【0010】しかし、流動床を安定的に連続して機能さ
せるには、処理に伴って上昇してくる担体の流動界面を
一定の高さに保ち、微生物量の安定的保持を図ることが
不可欠である。流動床が優れた反応槽であるにも拘わら
ず、これまで十分に実用化されたとは言い難い最も大き
な原因の一つは、この界面制御機構、言い換えれば、余
剰の微生物を担体より剥離して、反応槽外に排出するこ
とで、界面を一定高さに保つ生物剥離装置の実用化が達
成されていないことによる。
However, in order for the fluidized bed to function stably and continuously, it is indispensable to maintain the fluid interface of the carrier, which rises with the treatment, at a constant height and to stably maintain the amount of microorganisms. It is. Despite the fact that the fluidized bed is an excellent reaction vessel, one of the biggest causes that has not been sufficiently commercialized so far is this interface control mechanism, in other words, peeling off excess microorganisms from the carrier. This is because practical use of a biological exfoliation apparatus for maintaining the interface at a constant height by discharging the liquid to the outside of the reaction tank has not been achieved.

【0011】「流動床脱窒に関する実験的研究」では、
この機構として、エアリフト、脱気塔、サイクロン、サ
ンドセパレータ、返砂筒で構成される返砂装置が示され
ている(第38頁の図2)。この返砂装置は、機構が複
雑で、運転操作上のトラブルが予想され、また、砂(担
体)を塔外に抜き出すため、そのスペースが必要になる
という問題点をもっている。
"Experimental research on fluidized bed denitrification"
As this mechanism, there is shown a sand returning device including an air lift, a degassing tower, a cyclone, a sand separator, and a sand returning cylinder (FIG. 2 on page 38). This sand returning device has a problem that the mechanism is complicated, troubles in the operation are expected, and the sand (carrier) is taken out of the tower, so that a space is required.

【0012】なお、エアリフト管を使った洗浄装置に
は、例えば、特開平2−184398号公報に開示され
た移動床型脱窒装置が知られている。しかし、この洗浄
装置では、担体を吸い込むエアリフト管の先端部、すな
わち、吸込口が、塔底部に設定されているため、流動床
内の分級され、上部に上昇してきた密度の小さい肥厚し
た担体を優先的に洗浄(生物膜の剥離)を行うことがで
きない。
As a cleaning apparatus using an air lift tube, for example, a moving bed type denitrification apparatus disclosed in Japanese Patent Application Laid-Open No. 2-184398 is known. However, in this washing device, since the tip of the air lift pipe for sucking the carrier, that is, the suction port is set at the bottom of the tower, the thickened carrier having a small density that has been classified in the fluidized bed and ascended to the top is removed. Cleaning (biofilm removal) cannot be performed preferentially.

【0013】また、特開平2−184398号公報で
は、「担体3ひいては充填層4の汚泥濃度を高濃度に維
持することができる」(第3頁右上段10行〜11行)
と記載されているが、高濃度であるかどうかは、その判
断指標が必要であり、この指標がないと、洗浄の最適化
が図れないはずである。ところで、判断指標としては、
塔内の圧力損失、すなわち、水位変化が考えられるが、
水位を一定に保つため、この変化を検知して、洗浄を行
うとか、逆洗水排出量を調整するとかの機構が付加され
なければ、洗浄の最適化は図れないはずである。
In Japanese Patent Application Laid-Open No. 2-184398, "the sludge concentration of the carrier 3 and thus of the packed bed 4 can be maintained at a high concentration" (page 10, upper right, lines 10 to 11).
However, whether or not the concentration is high requires a judgment index, and without this index, the cleaning cannot be optimized. By the way, as a judgment index,
Pressure loss in the tower, that is, water level change is considered,
In order to keep the water level constant, it is impossible to optimize the cleaning unless a mechanism for detecting this change and performing cleaning or adjusting the backwash water discharge amount is added.

【0014】従って、従来のエアリフト管を使った洗浄
装置では、簡易な構造で担体の洗浄を行うことができな
かった。本発明はかかる従来の問題点を解決するために
なされたもので、その目的は、前段に嫌気性ろ床に代え
て嫌気性流動床を用いることで、さらに脱窒素時間の短
縮を図り、また流動床担体の流動には好気性ろ床の硝化
液を利用することで従来法と遜色のない程度まで動力の
低減を図ることが可能で、かつ流動担体に付着する微生
物の余剰分を確実に担体から剥離され、処理を行えるよ
うに必要かつ十分な微生物量を常に安定して保持できる
簡易な生物膜剥離装置とを兼ね備えた窒素除去装置を提
供することにある。
Therefore, the conventional cleaning device using an air lift tube cannot clean the carrier with a simple structure. The present invention has been made in order to solve such conventional problems, the purpose of which is to use an anaerobic fluidized bed instead of an anaerobic filter bed in the first stage to further reduce the denitrification time, By using the nitrifying solution of the aerobic filter bed for fluidization of the fluidized bed carrier, the power can be reduced to a level comparable to that of the conventional method, and the surplus amount of microorganisms adhering to the fluidized carrier can be reliably reduced. It is an object of the present invention to provide a nitrogen removing device which is combined with a simple biofilm removing device capable of always stably maintaining a necessary and sufficient amount of microorganisms so as to be detached from a carrier and capable of performing treatment.

【0015】[0015]

【課題を解決するための手段】請求項1は、下水などア
ンモニア性窒素を含む有機性排水中のBODおよび窒素
を生物学的に除去する装置において、生物膜剥離装置を
備えた脱窒素のための嫌気性流動床と、BOD酸化とア
ンモニア性窒素の硝酸化のための好気性ろ床と、嫌気性
流動床からの溢流液を好気性ろ床に移送する第一配管
と、好気性ろ床からの硝化液を嫌気性流動床に戻す第二
配管と、第二配管に設けた循環ポンプとを備え、生物膜
剥離装置は、下部に微生物が付着した担体を吸い込む吸
込口を有するとともにこの吸込口の近傍に空気供給部を
有するエアリフト管と、このエアリフト管の上部に設け
られ、エアリフト管を出た剥離生物と担体とを分離する
分離部と、この分離部に設けた水位調節堰とを有し、生
物膜剥離装置は、エアリフト管の吸込口を、流動床界面
より少し下に配し、担体の表面に付着する微生物膜の増
殖に伴い上昇する流動界面を、その流動界面の近傍の嫌
気性流動床から微生物が付着した担体をエアリフト管で
上昇させながら微生物膜を剥離することにより一定高さ
に維持制御するように運転されることを特徴とする。
SUMMARY OF THE INVENTION An apparatus for biologically removing BOD and nitrogen in an organic wastewater containing ammonia nitrogen, such as sewage, is provided. An anaerobic fluidized bed, an aerobic filter for BOD oxidation and nitrification of ammoniacal nitrogen, a first pipe for transferring the overflow from the anaerobic fluidized bed to the aerobic filter, and an aerobic filter. A second pipe for returning the nitrifying liquid from the bed to the anaerobic fluidized bed, and a circulation pump provided in the second pipe, the biofilm stripping apparatus has a suction port for sucking the carrier to which the microorganisms are attached at the bottom, and this An air lift pipe having an air supply section in the vicinity of the suction port, a separation section provided at an upper portion of the air lift pipe, for separating exfoliated organisms and carriers that have exited the air lift pipe, and a water level control weir provided at the separation section; The biofilm stripping device has The suction port of the lift tube was placed slightly below the fluidized bed interface, and the microorganisms attached from the anaerobic fluidized bed near the fluidized interface to the rising fluidized interface with the growth of the microbial membrane attached to the surface of the carrier. The method is characterized in that the carrier is maintained and controlled at a constant height by removing the microbial membrane while raising the carrier with an air lift tube.

【0016】(作用)請求項1においては、下水などア
ンモニア性窒素を含む有機性排水(原水)を嫌気性流動
床に導入し、ここで原水と後段の好気性ろ床からの戻し
液によって担体を流動させながら脱窒素する。次に、こ
の嫌気性流動床からの溢流水を好気性ろ床へ送り、ここ
で溢流水に含まれるBOD,SSの除去およびアンモニ
ア性窒素の硝化を行う。その後、この好気性ろ床からの
硝化液の一部を嫌気性流動床に戻し、嫌気性流動床内の
担体を原水と共に流動させながら担体に付着する微生物
濃度を高める。
(Action) In the first aspect, an organic wastewater (raw water) containing ammonia nitrogen such as sewage is introduced into an anaerobic fluidized bed, where the raw water and a return liquid from a downstream aerobic filter bed are used to carry the carrier. Is denitrified while flowing. Next, the overflow water from the anaerobic fluidized bed is sent to an aerobic filter bed, where BOD and SS contained in the overflow water are removed, and nitrification of ammonia nitrogen is performed. Thereafter, a part of the nitrification liquid from the aerobic filter bed is returned to the anaerobic fluidized bed, and the concentration of microorganisms adhering to the carrier is increased while the carrier in the anaerobic fluidized bed is fluidized together with raw water.

【0017】そして、担体の表面に付着する微生物膜の
増殖に伴い上昇する流動界面を、その流動界面の近傍の
嫌気性流動床から微生物が付着した担体をエアリフト管
で上昇させながら微生物膜を剥離することにより一定高
さに維持制御することができる。
The microbial membrane is separated from the anaerobic fluidized bed in the vicinity of the flow interface by raising the microbeads with the microbes attached thereto by an air lift tube. By doing so, it is possible to maintain and control at a constant height.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1および図2に基づいて、請求項1に係
る窒素除去装置の一実施形態を説明する。図において、
20は第1沈澱池を表し、原水供給管21を介して嫌気
性流動床23と連絡している。原水供給管21には、原
水供給ポンプ22が設けられている。
An embodiment of the nitrogen removing apparatus according to claim 1 will be described with reference to FIGS. In the figure,
Reference numeral 20 denotes a first settling basin, which is in communication with an anaerobic fluidized bed 23 via a raw water supply pipe 21. The raw water supply pipe 21 is provided with a raw water supply pump 22.

【0020】嫌気性流動床23は、溢流液を好気性ろ床
36に搬入する第一配管32と、好気性ろ床36からの
硝化液を嫌気性動流床23に戻す第二配管37が取り付
けられている。第二配管37には、硝化液循環ポンプ3
8が設けられている。嫌気性流動床23内には、担体2
4として粒状物(砂、活性炭、プラスチックろ材など)
が充填され、上昇流により流動させられる。
The anaerobic fluidized bed 23 has a first pipe 32 for carrying the overflow liquid into the aerobic filter bed 36 and a second pipe 37 for returning the nitrified liquid from the aerobic filter bed 36 to the anaerobic fluidized bed 23. Is attached. In the second pipe 37, the nitrification liquid circulation pump 3
8 are provided. The carrier 2 is contained in the anaerobic fluidized bed 23.
Granules (sand, activated carbon, plastic media, etc.) as 4
Is filled and fluidized by the upward flow.

【0021】この嫌気性流動床23は、原水供給管21
と第二配管37に連結する供給部25と、この供給部2
5に設けた分散ノズル26と、担体24を充填した流動
床27と、上部に設けた生物膜剥離装置28とを有す
る。生物膜剥離装置28は、下部に微生物が付着した担
体24を吸い込む吸込口29aを有するとともにこの吸
込口29aの近傍に空気供給部30を有するエアリフト
管29と、このエアリフト管29の上部の吐出口29b
側に設けられ、エアリフト管29を出た剥離生物と担体
とを分離する分離部31とを有する。この分離部31に
は、水位調節堰35が設けられている。また、エアリフ
ト管29の下部の吸込口29aは、図2に示すように、
コントロールしようとする流動床27の流動界面より少
し下に位置するように配される。
The anaerobic fluidized bed 23 is provided with a raw water supply pipe 21.
And a supply unit 25 connected to the second pipe 37, and the supply unit 2
5 has a dispersion nozzle 26, a fluidized bed 27 filled with a carrier 24, and a biofilm stripping device 28 provided on the upper part. The biofilm stripping device 28 has an air lift pipe 29 having a suction port 29a at a lower portion for sucking the carrier 24 to which microorganisms are attached and an air supply section 30 near the suction port 29a, and a discharge port at an upper portion of the air lift pipe 29. 29b
And a separation unit 31 provided on the side, for separating exfoliated organisms and carriers from the air lift pipe 29. The separation section 31 is provided with a water level control weir 35. Further, as shown in FIG. 2, the suction port 29a at the lower part of the air lift pipe 29 is
It is disposed so as to be located slightly below the fluid interface of the fluidized bed 27 to be controlled.

【0022】生物膜剥離装置28によって生物膜が剥離
された担体24は、流動床27の上部に沈降し、剥離汚
泥は、汚泥排出管33を介して第1沈澱池20へ戻され
る。また、エアリフト管29の空気供給部30には、曝
気ブロア39に連絡する配管34が取り付けられてい
る。好気性ろ床36は、上部に第一配管32が連絡し、
下部に硝化液溜41が設けられている。そして、内部に
はろ材充填槽43が形成され、このろ材充填層43には
曝気ブロア39に配管40を介して連絡する散気管44
が配置されている。
The carrier 24 from which the biofilm has been stripped by the biofilm stripping device 28 sinks to the upper part of the fluidized bed 27, and the separated sludge is returned to the first settling basin 20 via the sludge discharge pipe 33. Further, a pipe 34 communicating with the aeration blower 39 is attached to the air supply section 30 of the air lift pipe 29. The first pipe 32 communicates with the upper part of the aerobic filter bed 36,
A nitrification liquid reservoir 41 is provided at the lower part. A filter medium filling tank 43 is formed inside the filter medium filling tank 43, and a diffuser pipe 44 communicating with the aeration blower 39 via a pipe 40 is formed in the filter medium filling tank 43.
Is arranged.

【0023】また、ろ材充填層43からは硝化液が下部
の硝化液溜41に流入するようになっている。さらに、
硝化液溜41には、第二配管37と処理水排出管45が
取り付けられている。この処理水排出管45には、バル
ブ46が取り付けられている。また、処理水排出管45
は、処理水槽47に連絡している。
The nitrification liquid flows from the filter medium filling layer 43 into the lower nitrification liquid reservoir 41. further,
A second pipe 37 and a treated water discharge pipe 45 are attached to the nitrification liquid reservoir 41. A valve 46 is attached to the treated water discharge pipe 45. In addition, the treated water discharge pipe 45
Communicates with the treatment water tank 47.

【0024】この処理水槽47には、逆洗管48を介し
て硝化液溜41と連絡している。この逆洗管48には、
逆洗ポンプ49とバルブ50とが設けられている。ま
た、硝化液溜41には、逆洗ブロア配管51が取り付け
られている。この逆洗ブロア配管51には、逆洗ブロア
52とバルブ53が設けられている。逆洗ポンプ49か
ら送られる逆洗水と逆洗ブロア52から送られる空気
は、ノズル42を介してろ材充填層43に噴射されるよ
うにしてある。
The treated water tank 47 is connected to a nitrification liquid reservoir 41 through a backwash pipe 48. In this backwash tube 48,
A backwash pump 49 and a valve 50 are provided. A backwash blower pipe 51 is attached to the nitrification liquid reservoir 41. The backwash blower pipe 51 is provided with a backwash blower 52 and a valve 53. The backwash water sent from the backwash pump 49 and the air sent from the backwash blower 52 are jetted through the nozzle 42 to the filter medium filling layer 43.

【0025】次に、かくして構成された本実施形態に係
る装置を用いて、窒素除去方法を説明する。下水などア
ンモニア性窒素を含む有機性排水(原水)を第1沈澱池
20に貯留し、ここから原水供給ポンプ22により原水
供給管21を介して嫌気性流動床23の供給部25に送
られる。そして、分散ノズル26によって流動床27内
に導入される。ここでは、原水と後段の好気性ろ床36
からの戻し液によって担体24を流動させながら脱窒素
する。
Next, a method for removing nitrogen will be described using the apparatus according to the present embodiment configured as described above. Organic wastewater (raw water) containing ammonia nitrogen such as sewage is stored in the first sedimentation basin 20, and sent from the raw water supply pump 22 to the supply section 25 of the anaerobic fluidized bed 23 via the raw water supply pipe 21. Then, it is introduced into the fluidized bed 27 by the dispersion nozzle 26. Here, raw water and the aerobic filter bed 36
The carrier 24 is denitrified while flowing with the return liquid from the carrier.

【0026】そして、担体24の表面に生物膜が増殖す
るにつれて流動界面が上昇してくると、担体24の流動
界面を制御するためエアリフト型生物膜剥離装置28を
作動させ流動界面が一定高さに維持・制御される。この
エアリフト型生物膜剥離装置28では、エアリフト管2
9内に空気を吹き込むことにより、エアリフト管29の
下部29aから微生物が付着した担体24を吸い込み、
空気の撹乱作用でエアリフト管29内を上昇する担体2
4に付着した生物膜を剥離し、分離部31において、エ
アリフト管29を出た剥離生物と担体24を比重の違い
を利用して嫌気性流動床23内の上昇流により分離す
る。
When the flow interface rises as the biofilm grows on the surface of the carrier 24, the air-lift type biofilm stripping device 28 is operated to control the flow interface of the carrier 24, and the flow interface is maintained at a certain height. Is maintained and controlled. In the air lift type biofilm stripping device 28, the air lift pipe 2
By blowing air into 9, the carrier 24 to which microorganisms adhere is sucked from the lower portion 29a of the air lift tube 29,
Carrier 2 which rises in air lift pipe 29 by the turbulence of air
The biofilm adhering to 4 is peeled off, and the separated organisms and carrier 24 that have exited air lift tube 29 are separated by ascending flow in anaerobic fluidized bed 23 using the difference in specific gravity in separation section 31.

【0027】上昇流で押し出された剥離生物は、図示し
たように第1沈澱池20へ排出するか、あるいは別途取
り出して処理してもよく、また溢流液と共に第一配管3
2によってそのまま後段の好気性ろ床36に流入させ、
ろ床の洗浄により排出してもよい。また、このエアリフ
ト型生物膜剥離装置28は、流動界面を検知して起動さ
せてもよいし、界面を検知することなく連続的あるいは
間欠的に起動させてもよい。
The exfoliated organisms extruded by the ascending flow may be discharged to the first sedimentation basin 20 as shown in the figure, or may be separately taken out and treated.
2 to allow it to flow into the subsequent aerobic filter bed 36,
It may be discharged by washing the filter bed. Further, the air lift type biofilm peeling device 28 may be activated by detecting a flow interface, or may be activated continuously or intermittently without detecting the interface.

【0028】次に、この嫌気性流動床23からの溢流水
を第一配管32を介して好気性ろ床36へ送り、ここで
溢流水に含まれるBOD,SSの除去およびアンモニア
性窒素の硝化を行う。そして、この好気性ろ床36の硝
化液溜41に流入した硝化液を、硝化液循環ポンプ38
によって第二配管37を介して嫌気性流動床23の供給
部25に戻し、嫌気性流動床23内の担体24を原水と
共に流動させながら担体24に付着する微生物濃度を高
める。
Next, the overflow water from the anaerobic fluidized bed 23 is sent to the aerobic filter bed 36 through the first pipe 32, where BOD and SS contained in the overflow water are removed, and nitrification of ammonia nitrogen is performed. I do. The nitrification liquid flowing into the nitrification liquid reservoir 41 of the aerobic filter bed 36 is supplied to the nitrification liquid circulation pump 38.
Thus, the concentration of microorganisms adhering to the carrier 24 is increased while the carrier 24 in the anaerobic fluidized bed 23 flows together with the raw water while returning the carrier 24 in the anaerobic fluidized bed 23 through the second pipe 37.

【0029】この流動により、流動床27内の担体24
の全表面積が微生物の付着場所として提供されるように
なり、流動前(すなわち、固定床状態)に比べて担体2
4の比表面積が飛躍的に増加し、担体24の表面には微
生物膜を形成する形で脱窒素菌が集積するので、高濃度
化が達成される。
By this flow, the carrier 24 in the fluidized bed 27
Is provided as a place where microorganisms adhere, and the carrier 2 is compared with that before flowing (that is, in a fixed bed state).
Since the specific surface area of No. 4 increases dramatically and the denitrifying bacteria accumulate on the surface of the carrier 24 in the form of a microbial membrane, a high concentration is achieved.

【0030】ここで、微生物濃度は、単位容積当たりで
10,000mg/l〜50,000mg/lとなり、きわめて短時間(実質
的には数分〜数十分)の脱窒素が可能となる。これに対
し、完全混合槽(浮遊生物法)の微生物濃度は、単位容
積当たりで1500mg/l〜3000mg/l、嫌気性ろ床の微生物濃
度は、単位容積当たりで5000mg/l〜7000mg/lであった。
Here, the concentration of the microorganism is expressed per unit volume.
From 10,000 mg / l to 50,000 mg / l, denitrification in a very short time (substantially several minutes to several tens of minutes) becomes possible. In contrast, the concentration of microorganisms in the complete mixing tank (suspension organism method) is 1500 mg / l to 3000 mg / l per unit volume, and the concentration of microorganisms in the anaerobic filter is 5000 mg / l to 7000 mg / l per unit volume. there were.

【0031】また、嫌気性流動床23では、上述したご
とく、微生物濃度が高濃度であることに加えて、流動床
27では、液と微生物膜との接触が良好で、嫌気性ろ床
のように部分的な閉塞による水の均等分散の悪化などの
現象を生じない。なお、前段の嫌気性流動床23内の担
体24は、後段の好気性ろ床23からの硝化液循環量と
原水供給量の和の流量に応じて流動するものであればよ
く、比重の重いものであれば粒径の小さいものを、比重
の軽いものであれば粒径の大きいものを一般的に用いれ
ばよい。
In the anaerobic fluidized bed 23, as described above, in addition to the high concentration of microorganisms, the fluidized bed 27 has good contact between the liquid and the microbial membrane, as in the anaerobic filter bed. No phenomenon such as deterioration of the uniform dispersion of water due to partial blockage occurs. The carrier 24 in the anaerobic fluidized bed 23 of the former stage may be any material that flows according to the flow rate of the sum of the circulating amount of the nitrification liquid and the supply amount of raw water from the aerobic filter bed 23 of the latter stage, and has a high specific gravity. Generally, those having a small particle diameter may be used if they have a small particle diameter, and those having a large particle diameter may be generally used if they have a small specific gravity.

【0032】また、後段の好気性ろ床36は、前段の嫌
気性流動床23からの流出液(溢流液)を第一配管32
を介して導入し、この液に含まれるBOD、SSの除去
およびアンモニア性窒素の硝化を行うためのもので、粒
状担体を充填した固定床型あるいは移動床型のいずれの
型でもよく、その構造・機能は通常、有機性排水処理な
どで用いられる好気性ろ床と同一である。
The downstream aerobic filter bed 36 transfers the effluent (overflow liquid) from the upstream anaerobic fluidized bed 23 to the first pipe 32.
For removing BOD and SS contained in this solution and nitrification of ammoniacal nitrogen, and may be any of a fixed-bed type or a moving-bed type filled with a granular carrier. -The function is usually the same as the aerobic filter bed used in organic wastewater treatment.

【0033】以上のごとく、本実施形態によれば、下水
などアンモニア性窒素を含む有機性排水中のBODおよ
び窒素を生物学的に除去する方法において、前段に嫌気
性ろ床にかえて嫌気性流動床23を用いることで、表1
に示すごとく、さらに脱窒素時間の短縮を図ることがで
きた。また、嫌気性流動床23内の担体24の流動には
被処理液(原水)および好気性ろ床36からの循環液を
利用することで、従来、流動床の流動維持に必要とされ
た自己循環(流動床流出液の一部を再度流動床に供給す
ること)を不要とし、流動用液循環動力の低減化を達成
することで従来法と遜色のない程度まで動力の低減を図
ることができた。
As described above, according to the present embodiment, in the method of biologically removing BOD and nitrogen in organic wastewater containing ammoniacal nitrogen such as sewage, the anaerobic filter is replaced by an anaerobic filter in the first stage. Using fluidized bed 23, Table 1
As shown in the figure, the denitrification time could be further reduced. In addition, by using the liquid to be treated (raw water) and the circulating liquid from the aerobic filter bed 36 for the flow of the carrier 24 in the anaerobic fluidized bed 23, the flow required for maintaining the fluidity of the fluidized bed is conventionally required. By eliminating the need for circulation (a part of the effluent of the fluidized bed is supplied to the fluidized bed again) and reducing the circulating power of the fluid for fluidization, the power can be reduced to a level comparable to the conventional method. did it.

【0034】さらにまた、下水などアンモニア性窒素を
含む有機性排水中のBODおよび窒素を生物学的に除去
する方法において、嫌気性流動床23の膨張界面はエア
リフト型生物膜剥離装置28により自動的に制御するこ
とが可能となった。また、本実施形態におけるエアリフ
ト型生物膜剥離装置28は、上述したように、担体24
を吸い込むエアリフト管29の先端部(すなわち吸込口
29a)を、担体流動界面の少し下に設定した点に特長
を有する。これに対し、従来のエアリフト管を使った洗
浄装置では、例えば、特開平2−184398号公報に
示されるように、塔底部に設置されており、明らかに相
違する。
Furthermore, in the method for biologically removing BOD and nitrogen in organic wastewater containing ammoniacal nitrogen such as sewage, the expansion interface of the anaerobic fluidized bed 23 is automatically controlled by an airlift type biofilm stripping device 28. It became possible to control. Further, as described above, the air lift-type biofilm peeling device 28 in the present embodiment includes the carrier 24.
The feature is that the tip of the air lift pipe 29 (that is, the suction port 29a) for sucking air is set slightly below the carrier flow interface. On the other hand, in a conventional cleaning device using an air lift tube, for example, as shown in Japanese Patent Application Laid-Open No. 2-184398, the cleaning device is installed at the bottom of the tower, which is clearly different.

【0035】この相違点はきわめて重要である。何故な
ら、本実施形態では、嫌気性流動床23と組み合わせた
装置として、嫌気性流動床23内の分級され、上部に上
昇してきた密度の小さい肥厚した担体24を優先的に洗
浄(生物膜の剥離)をしなければならないからである。
従って、本実施形態におけるエアリフト型生物膜剥離装
置28は、従来のエアリフト管を使った洗浄装置とは異
なり、嫌気性流動床23と一体となって機能する流動床
固有の装置ということができる。
This difference is very important. This is because, in the present embodiment, as a device combined with the anaerobic fluidized bed 23, the thickened carrier 24 having a small density that has been classified and has risen upward in the anaerobic fluidized bed 23 is preferentially washed (biofilm removal). (Peeling).
Therefore, unlike the cleaning device using a conventional air lift tube, the air lift type biofilm stripping device 28 in this embodiment can be said to be a device unique to a fluidized bed that functions integrally with the anaerobic fluidized bed 23.

【0036】また、本実施形態におけるエアリフト型生
物膜剥離装置28は、上述したように、担体24を吸い
込むエアリフト管29の先端部(すなわち吸込口29
a)を、予め設定した担体流動界面の少し下にすること
で、吸込口29aより上に膨張した担体24は、自動的
にエアリフト管29内に吸い込むことができる。また、
洗浄排水(剥離生物排出液)は、水位調節堰35寄りは
移出するので、堰高さを調節してオーバフロー水位より
分離部内の水位を下に設定するだけで、洗浄排水は確実
に排出される。
Further, as described above, the air-lift type biofilm stripping device 28 in the present embodiment is configured such that the tip of the air-lift tube 29 for sucking the carrier 24 (ie, the suction port 29).
By setting a) slightly below the predetermined carrier flow interface, the carrier 24 expanded above the suction port 29a can be automatically sucked into the air lift pipe 29. Also,
The washing wastewater (exfoliated biological effluent) moves out toward the water level control weir 35, so the washing wastewater is reliably discharged only by adjusting the weir height and setting the water level in the separation unit below the overflow water level. .

【0037】このように、本実施形態におけるエアリフ
ト型生物膜剥離装置28によれば、水位検知などの必要
が無く、きわめて簡単な構造で流動界面を一定に保ち、
ひいては、処理に必要十分な微生物量を確保することが
できる。参考として各処理方法の処理時間(標準)を表
1にまとめた。
As described above, according to the air-lift type biofilm stripping apparatus 28 of this embodiment, there is no need to detect the water level, etc., and the flow interface is kept constant with a very simple structure.
As a result, it is possible to secure a sufficient amount of microorganisms necessary for the treatment. Table 1 shows the processing time (standard) of each processing method for reference.

【表1】 表1において、従来法1は嫌気性・好気性ろ床を表し、
従来法2は活性汚泥変法を表す。
[Table 1] In Table 1, Conventional Method 1 represents an anaerobic / aerobic filter bed,
Conventional method 2 represents a modified activated sludge method.

【0038】実験例 下水処理場一次処理水(最初沈澱池流出水)を対象水と
した。図1に示す装置を用いた。嫌気性流動床の大きさ
を120φ×4650Hとし、0.5mm径のけい砂を担
体24として流動床27内に高さ700mmで充填した。
また、好気性ろ床の大きさを500φ×4000Hと
し、3〜6mm径のアンスラサイトを担体としてろ材充填
層43内に高さ2000mmで充填した。
EXPERIMENTAL EXAMPLE Primary effluent from a sewage treatment plant (first settling pond effluent) was used as the target water. The apparatus shown in FIG. 1 was used. The size of the anaerobic fluidized bed was 120φ × 4650H, and silica bed having a diameter of 0.5 mm was filled as a carrier 24 into the fluidized bed 27 at a height of 700 mm.
Further, the size of the aerobic filter bed was set to 500φ × 4000H, and an anthracite having a diameter of 3 to 6 mm was filled into the filter medium filling layer 43 at a height of 2000 mm as a carrier.

【0039】運転条件は、表2に示すとおりであった。The operating conditions were as shown in Table 2.

【表2】 処理結果は、次の表3に示すとおりであった。[Table 2] The treatment results were as shown in Table 3 below.

【表3】 但し、表3中、原水は、一次処理水である。[Table 3] However, in Table 3, raw water is primary treated water.

【0040】[0040]

【発明の効果】以上説明したように、本発明によれば、
嫌気性流動床の膨張界面はエアリフト型生物膜剥離装置
を用いて簡易に行うことができ、維持管理の容易なプロ
セスとなった。
As described above, according to the present invention,
The expansion interface of the anaerobic fluidized bed can be easily performed by using an airlift type biofilm stripper, which is an easy maintenance process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る窒素除去装置の一実施形態を示す
説明図である。
FIG. 1 is an explanatory view showing one embodiment of a nitrogen removing device according to the present invention.

【図2】図1における嫌気性流動床の要部を示す拡大断
面図である。
FIG. 2 is an enlarged sectional view showing a main part of the anaerobic fluidized bed in FIG.

【図3】従来の硝化液循環型の活性汚泥循環変法を示す
説明図である。
FIG. 3 is an explanatory diagram showing a modified nitrification liquid circulation type activated sludge circulation method.

【図4】従来の嫌気性ろ床・好気性ろ床法を示す説明図
である。
FIG. 4 is an explanatory view showing a conventional anaerobic filter / aerobic filter method.

【符号の説明】[Explanation of symbols]

23 嫌気性流動床 24 担体 28 生物膜剥離装置 29 エアリフト管 29a 吸込口 29b 吐出口 30 空気供給部 31 分離部 32 第一配管 35 水位調節堰 36 好気性ろ床 37 第二配管 38 硝化液循環ポンプ Reference Signs List 23 Anaerobic fluidized bed 24 Carrier 28 Biofilm stripping device 29 Air lift pipe 29a Suction port 29b Discharge port 30 Air supply unit 31 Separation unit 32 First pipe 35 Water level control weir 36 Aerobic filter bed 37 Second pipe 38 Nitrification liquid circulation pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大嶋 吉雄 東京都港区虎ノ門2丁目3番13号 日本下 水道事業団内 (72)発明者 三品 文雄 愛媛県今治市内掘1丁目185番15号 日本 下水道事業団愛媛工事事務所内 (72)発明者 室谷 憲男 東京都千代田区有楽町1丁目4番1号 三 機工業株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yoshio Oshima 2-3-13 Toranomon, Minato-ku, Tokyo Inside the Japan Sewerage Corporation (72) Inventor Fumio Sanpin 1-185-15, Drilling Imabari City, Ehime Prefecture In Japan Sewerage Corporation Ehime Construction Office (72) Inventor Norio Muroya 1-4-1, Yurakucho, Chiyoda-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下水などアンモニア性窒素を含む有機性
排水中のBODおよび窒素を生物学的に除去する装置に
おいて、 生物膜剥離装置を備えた脱窒素のための嫌気性流動床
と、 BOD酸化とアンモニア性窒素の硝酸化のための好気性
ろ床と、 嫌気性流動床からの溢流液を好気性ろ床に移送する第一
配管と、 好気性ろ床からの硝化液を嫌気性流動床に戻す第二配管
と、 第二配管に設けた循環ポンプとを備え、 生物膜剥離装置は、下部に微生物が付着した担体を吸い
込む吸込口を有するとともにこの吸込口の近傍に空気供
給部を有するエアリフト管と、このエアリフト管の上部
に設けられ、エアリフト管を出た剥離生物と担体とを分
離する分離部と、この分離部に設けた水位調節堰とを有
し、 生物膜剥離装置は、エアリフト管の吸込口を、流動床界
面より少し下に配し、担体の表面に付着する微生物膜の
増殖に伴い上昇する流動界面を、その流動界面の近傍の
嫌気性流動床から微生物が付着した担体をエアリフト管
で上昇させながら微生物膜を剥離することにより一定高
さに維持制御するように運転されることを特徴とする窒
素除去装置。
1. An apparatus for biologically removing BOD and nitrogen in an organic wastewater containing ammonia nitrogen such as sewage, comprising: an anaerobic fluidized bed for denitrification equipped with a biofilm stripping apparatus; Aerobic filter bed for nitrification of ammonia and ammonia nitrogen, first pipe to transfer overflow from anaerobic fluid bed to aerobic filter bed, and anaerobic flow of nitrifying solution from aerobic filter bed A second pipe returning to the floor, and a circulation pump provided in the second pipe, the biofilm stripping apparatus has a suction port for sucking a carrier to which microorganisms are attached at a lower portion, and an air supply unit near the suction port. An air lift pipe, a separation unit provided above the air lift pipe and separating the exfoliated organisms and the carrier that have exited the air lift pipe, and a water level regulating weir provided at the separation unit. , The suction port of the air lift pipe, The fluid interface, which is located slightly below the moving bed interface and rises with the growth of the microbial film attached to the surface of the carrier, is raised by an airlift tube from the anaerobic fluid bed near the fluid interface to the carrier with microorganisms attached. A nitrogen removing device, which is operated to maintain and control a constant height by peeling a microbial membrane while removing the microorganism film.
JP00419398A 1998-01-12 1998-01-12 Nitrogen removal equipment Expired - Fee Related JP3264881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00419398A JP3264881B2 (en) 1998-01-12 1998-01-12 Nitrogen removal equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00419398A JP3264881B2 (en) 1998-01-12 1998-01-12 Nitrogen removal equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4160993A Division JP2786779B2 (en) 1992-06-19 1992-06-19 Nitrogen removal method

Publications (2)

Publication Number Publication Date
JPH10244295A true JPH10244295A (en) 1998-09-14
JP3264881B2 JP3264881B2 (en) 2002-03-11

Family

ID=11577866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00419398A Expired - Fee Related JP3264881B2 (en) 1998-01-12 1998-01-12 Nitrogen removal equipment

Country Status (1)

Country Link
JP (1) JP3264881B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2425305A (en) * 2005-04-15 2006-10-25 Shaw Environmental & Infrastru Controlling biomass growth in suspended carrier bioreactor
JP2008100151A (en) * 2006-10-18 2008-05-01 Kobelco Eco-Solutions Co Ltd Organic wastewater treatment method and organic waste water treatment device
CN102424477A (en) * 2011-10-27 2012-04-25 徐洪斌 Counterflow moving bed biological advanced denitrification processing apparatus
CN103224287A (en) * 2013-05-16 2013-07-31 南京大学 Device and method for treating organic wastewater by using hydraulic jet circulating anaerobic biofilter
JP2020037112A (en) * 2016-03-03 2020-03-12 住友重機械エンバイロメント株式会社 Water treatment equipment, and water treatment method
JP2020146664A (en) * 2019-03-15 2020-09-17 三機工業株式会社 Water treatment device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7419594B2 (en) 2003-10-09 2008-09-02 Shaw Environmental & Infrastructure, Inc. Apparatus and method for controlling biomass growth in suspended carrier bioreactor
GB2425305A (en) * 2005-04-15 2006-10-25 Shaw Environmental & Infrastru Controlling biomass growth in suspended carrier bioreactor
GB2425305B (en) * 2005-04-15 2009-01-14 Shaw Environmental & Infrastru Apparatus and method for controlling biomass growth in suspended carrier bioreactor
JP2008100151A (en) * 2006-10-18 2008-05-01 Kobelco Eco-Solutions Co Ltd Organic wastewater treatment method and organic waste water treatment device
CN102424477A (en) * 2011-10-27 2012-04-25 徐洪斌 Counterflow moving bed biological advanced denitrification processing apparatus
CN103224287A (en) * 2013-05-16 2013-07-31 南京大学 Device and method for treating organic wastewater by using hydraulic jet circulating anaerobic biofilter
JP2020037112A (en) * 2016-03-03 2020-03-12 住友重機械エンバイロメント株式会社 Water treatment equipment, and water treatment method
JP2020146664A (en) * 2019-03-15 2020-09-17 三機工業株式会社 Water treatment device

Also Published As

Publication number Publication date
JP3264881B2 (en) 2002-03-11

Similar Documents

Publication Publication Date Title
KR100441208B1 (en) Batch style waste water treatment apparatus using biological filtering process and waste water treatment method using the same
CN111675435A (en) Integrated sewage treatment equipment based on A/O-MBBR (anaerobic-anoxic-aerobic-moving bed biofilm reactor) process and sewage treatment method
CN111704323A (en) High-efficient sewage treatment system of modularization integrated form
JP3264881B2 (en) Nitrogen removal equipment
CN208166683U (en) A kind of gravity reflux formula integrated energy-saving sewage treatment device
CN213171940U (en) High-efficient sewage treatment system of modularization integrated form
KR100419888B1 (en) Activated sludge process with high biomass concentration using a downflow sludge blanket filtration
CN206616115U (en) A kind of two-stage A BAF textile waste processing units
JP2786779B2 (en) Nitrogen removal method
JP4581211B2 (en) Biological denitrification equipment
KR100436960B1 (en) The Biological Nutrient Removal System Using The Porous Media
Sørensen et al. Biofilm reactors
JP3607088B2 (en) Method and system for continuous simultaneous removal of nitrogen and suspended solids from wastewater
JP2953835B2 (en) Biological nitrification and denitrification equipment
JP3861573B2 (en) Waste water treatment equipment
KR100489328B1 (en) System and method for wastewater treatment using partition type anoxic basin and membrane basin
KR100433096B1 (en) Equipment and Method of Nitrogen Removal with Down-flow Biofilm System using the Granule Sulfur
KR101126424B1 (en) Wastewater treatment apparatus having tail treatment equipment including hardwood charcoal
CN209835754U (en) Reclaimed water treatment system
KR100525742B1 (en) Advanced wastewater treatment system using indirectly aerated submerged biofilter
JPS6094194A (en) Treating apparatus for organic waste water
KR200317731Y1 (en) Advanced wastewater treatment system using indirectly aerated submerged biofilter
JP2000135499A (en) Biological nitrification and denitrification of waste water and nitrification and denitrification device for waste water
JPH0710393B2 (en) Organic wastewater treatment equipment
JPH0223239B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20091228

LAPS Cancellation because of no payment of annual fees