JPH10244266A - Electric field treatment apparatus for liquid in piping - Google Patents

Electric field treatment apparatus for liquid in piping

Info

Publication number
JPH10244266A
JPH10244266A JP6556697A JP6556697A JPH10244266A JP H10244266 A JPH10244266 A JP H10244266A JP 6556697 A JP6556697 A JP 6556697A JP 6556697 A JP6556697 A JP 6556697A JP H10244266 A JPH10244266 A JP H10244266A
Authority
JP
Japan
Prior art keywords
electric field
liquid
fine particles
pipe
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6556697A
Other languages
Japanese (ja)
Inventor
Hideto Furumi
秀人 古味
Masayuki Nara
雅之 奈良
Yoji Arata
洋治 荒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KINOUSUI KENKYUSHO KK
Original Assignee
KINOUSUI KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KINOUSUI KENKYUSHO KK filed Critical KINOUSUI KENKYUSHO KK
Priority to JP6556697A priority Critical patent/JPH10244266A/en
Publication of JPH10244266A publication Critical patent/JPH10244266A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the adhesion of scale in piping efficiently by a method in which fine particles in fluid flowing in piping are measured, the condition of scale adhesion is estimated and evaluated from a quantity corresponding to the concentration of the particles, the measured values are fed back, and electric field conditions are controlled to be optimum to prevent the adhesion of scale. SOLUTION: A compound is deposited from liquid in piping 2 by electric field treatment to be fine particles to prevent the adhesion of scale. An electric field treatment apparatus 1 is composed of an electric field generating means 3 for generating an electric field in piping 2, a fine particle measuring means 4 for measuring fine particles in liquid in the piping 2 downstream from the means 3, and a controlling means 5 for controlling the means 3 according to the output of the means 4. The fine particles in the liquid in the piping 2 are measured as absorbance by the means 4, and the relationship between the absorbance by the fine particles or the turbidity of the particles and electric field conditions by the means 5 to the means 3 to obtain the optimum electric field conditions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、配管内に付着する
スケールに関し、特にスケールの付着を防止するスケー
ル付着防止装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scale adhering to a pipe, and more particularly to a scale adhering prevention device for preventing the adhering of a scale.

【0002】[0002]

【従来の技術】水道管やプラント内に設置された配管内
には、水道水や種々の液体が流動している。この配管内
を流動する液体中には、様々な成分の化合物が溶解状態
あるいは微粒子の状態で含まれている。液体中に溶解す
る化合物は、配管の内壁面に沈着するとスケールとな
る。このスケールの沈着量が増加すると、配管の内径を
狭めることになり、配管内を流動する液体の流量や流速
を減少させ、場合によってはプラントの処理に影響を与
えることになる。
2. Description of the Related Art Tap water and various liquids flow in water pipes and pipes installed in plants. The liquid flowing through the pipe contains compounds of various components in a dissolved state or a fine particle state. The compound that dissolves in the liquid becomes a scale when deposited on the inner wall surface of the pipe. When the amount of deposition of the scale increases, the inside diameter of the pipe is reduced, and the flow rate and the flow rate of the liquid flowing in the pipe are reduced, possibly affecting the treatment of the plant.

【0003】従来、配管内へのスケールの付着を防止す
る方法として、電場を利用した方法が知られている。こ
の電場処理によるスケールの付着防止は、電場装置によ
って配管内を流動する液体内の化合物に電場を印加し、
化合物を析出させて結晶化した微粒子とし、これによっ
て化合物の配管内壁への付着を防止するものである。
Conventionally, a method using an electric field has been known as a method for preventing scale from adhering to a pipe. Prevention of scale adhesion by this electric field treatment applies an electric field to the compound in the liquid flowing in the pipe by an electric field device,
The compound is precipitated to form crystallized fine particles, thereby preventing the compound from adhering to the inner wall of the pipe.

【0004】[0004]

【発明が解決しようとする課題】従来のスケール付着防
止のための電場処理は、最適な電場条件に制御すること
が困難であるという問題点がある。また、配管内のスケ
ールの付着状態を知ることが困難であり、電場処理の電
場条件とスケールの付着防止の程度との関係を知ること
が困難であるという問題がある。
The conventional electric field treatment for preventing the adhesion of scale has a problem that it is difficult to control the electric field condition to the optimum. Further, it is difficult to know the adhesion state of the scale in the pipe, and it is difficult to know the relationship between the electric field condition of the electric field treatment and the degree of prevention of the adhesion of the scale.

【0005】配管内に電場を発生させる電場処理による
スケールの付着防止方法では、配管内に発生させる電場
の条件として電場強度や電場周波数がある。スケールの
付着防止を良好に行うには、この電場処理の電場強度や
電場周波数を最適な値に設定する必要がある。しかしな
がら、配管内のスケールの付着状態や電場条件とスケー
ルの付着防止の程度との関係を知るには長時間を要する
ため、電場強度や電場周波数等の電場条件が最適か否か
の判定は困難である。
In the method for preventing adhesion of scale by electric field treatment for generating an electric field in a pipe, electric field strength and electric field frequency are conditions of the electric field generated in the pipe. It is necessary to set the electric field intensity and electric field frequency of this electric field treatment to optimal values in order to effectively prevent the adhesion of the scale. However, it takes a long time to know the relationship between the scale adhesion state and electric field conditions in the pipe and the degree of scale adhesion prevention, so it is difficult to determine whether the electric field conditions such as electric field strength and electric field frequency are optimal. It is.

【0006】電場処理の電場条件の良否判定は、設定し
た電場条件によって数週間あるいは数ヶ月間使用した後
に配管を分解し、配管内に付着したスケールの付着状態
を検査することによって行うことができるが、最適な電
場条件を設定するには上記条件設定と判定を繰り返す必
要があり、電場処理を最適な電場条件で制御すること
は、作業内容や最適な電場条件を得るまでの時間等を考
慮すると現実的ではなく、実際に行うことは困難であ
る。
Whether electric field conditions in electric field treatment are good or bad can be determined by disassembling the pipe after using it for several weeks or months depending on the set electric field condition, and inspecting the attached state of the scale attached to the pipe. However, it is necessary to repeat the above condition setting and determination to set the optimal electric field conditions.Controlling the electric field processing under the optimal electric field conditions takes into account the work content and the time until the optimal electric field conditions are obtained. Then it is not realistic and it is difficult to actually do it.

【0007】そのため、従来では試行錯誤あるいは経験
則によって電場条件の設定を行っている。
For this reason, electric field conditions are conventionally set by trial and error or empirical rules.

【0008】また、配管内に測定プローブを挿入した
り、配管の接続をはずす等の作業によって配管内のスケ
ールの付着状態を検査することも可能であるが、配管内
に液体の流動に影響を与えることなく測定プローブを配
設することは困難であり、また配管の接続作業はプラン
ト処理に影響を与えることになる。
[0008] It is also possible to inspect the adhesion state of the scale in the piping by inserting a measuring probe into the piping or disconnecting the piping. However, it may affect the flow of liquid in the piping. It is difficult to arrange the measuring probe without giving it, and the work of connecting the pipes will affect the plant processing.

【0009】また、通常、浄水,排水,あるいは製造工
程中の液体等、配管内を流れる流水中には種々の組成成
分が含まれており、電場処理を最適に行うための電場条
件もこれら組成成分によって異なる場合がある。さら
に、流水の温度や流速や流量等の流れの条件によっても
電場処理を最適に行うための電場条件が異なる場合があ
る。
[0009] In general, various components such as purified water, wastewater, and liquids flowing in the manufacturing process are contained in flowing water, and electric field conditions for optimally performing electric field treatment are also defined by these compositions. May vary by component. Furthermore, electric field conditions for optimally performing electric field treatment may differ depending on flow conditions such as flowing water temperature, flow velocity, and flow rate.

【0010】従来の電場処理では、上記した組成成分や
温度や流速や流量等の流れの条件にかかわらず、電場条
件を一定の電場強度や電場周波数に設定して行ってい
る。そのため、従来の電場処理装置では配管内の流体の
流れに応じた電場処理の制御を行うことができず、最適
な電場処理を行うことができない。
In the conventional electric field treatment, the electric field condition is set to a constant electric field intensity and electric field frequency irrespective of the flow conditions such as the above-mentioned composition components, temperature, flow rate and flow rate. Therefore, the conventional electric field processing apparatus cannot control the electric field processing according to the flow of the fluid in the pipe, and cannot perform the optimal electric field processing.

【0011】そこで、本発明は上記従来の電場処理装置
の問題点を解決し、配管内のスケールの付着を良好に防
止する最適な電場条件の制御が可能な電場処理装置を提
供することを第1の目的とする。
Therefore, the present invention solves the above-mentioned problems of the conventional electric field treatment apparatus, and provides an electric field treatment apparatus capable of controlling the optimal electric field conditions for favorably preventing the adhesion of scale in the pipe. This is the purpose of 1.

【0012】[0012]

【課題を解決するための手段】本発明の電場処理装置
は、配管中を流動する流体中に含まれる微粒子を測定
し、この微粒子の濃度相当量からスケールの付着状態を
推定し評価して、この測定値をフィードバックして電場
条件がスケールの付着を防止するのに最適な条件となる
よう制御を行うものである。
The electric field treatment apparatus according to the present invention measures fine particles contained in a fluid flowing in a pipe, estimates and evaluates the state of adhesion of scale from the equivalent amount of the fine particles, By feeding back the measured value, control is performed so that the electric field condition becomes an optimal condition for preventing the adhesion of the scale.

【0013】本発明は最適な電場条件の制御が可能な電
場処理装置であり、この電場処理装置の第1の構成は、
配管内に電場を発生する電場発生手段と、この電場発生
手段の下流側における配管内の液体中の微粒子を測定す
る微粒子測定手段と、微粒子測定手段の出力に基づいて
電場発生手段を制御する制御手段とを備え、制御手段
は、配管内の液体中の微粒子の濃度が最大となるよう電
場条件を制御するものである。
The present invention is an electric field processing device capable of controlling an optimal electric field condition, and the first configuration of the electric field processing device is as follows.
Electric field generating means for generating an electric field in the pipe, fine particle measuring means for measuring fine particles in the liquid in the pipe downstream of the electric field generating means, and control for controlling the electric field generating means based on the output of the fine particle measuring means Means for controlling the electric field condition so that the concentration of the fine particles in the liquid in the pipe is maximized.

【0014】この第1の構成の電場処理装置によれば、
電場発生手段によって配管内に電場を発生させ、この電
場によって配管を流動する液体に含まれる化合物を析出
させて微粒子とし、配管内壁への付着を防止すると共
に、電場発生手段の下流側の設けた微粒子測定手段によ
って配管内の液体中の微粒子を測定して、液体中の微粒
子の濃度相当量を測定する。この液体中の微粒子の濃度
相当量は、電場発生手段によって析出した微結晶の析出
量に対応するものであり、この濃度相当量が多く液体中
に存在する微粒子が多いほど、電場発生手段によるスケ
ールの付着防止の効果が高いことを示している。
According to the electric field processing apparatus of the first configuration,
An electric field is generated in the pipe by the electric field generating means, and the compound contained in the liquid flowing through the pipe is precipitated into fine particles by the electric field, and is prevented from adhering to the inner wall of the pipe, and provided downstream of the electric field generating means. The fine particles in the liquid in the pipe are measured by the fine particle measuring means, and the concentration equivalent of the fine particles in the liquid is measured. The concentration equivalent of the fine particles in the liquid corresponds to the amount of microcrystals precipitated by the electric field generating means. This shows that the effect of preventing the adhesion of the particles is high.

【0015】そこで、微粒子測定手段の測定値を制御手
段にフィードバックして、液体中の微粒子の濃度が最大
となるように電場発生手段の電場条件を制御することに
よって、配管内のスケールの付着を良好に防止する最適
な電場条件の制御が可能となる。
Therefore, by feeding back the measured value of the fine particle measuring means to the control means and controlling the electric field conditions of the electric field generating means so that the concentration of the fine particles in the liquid is maximized, the adhesion of the scale in the pipe is prevented. It is possible to control the electric field conditions optimally preventing the electric field.

【0016】また、電場処理装置の第2の構成は電場条
件を電場強度とし、制御手段は電場発生手段が発生する
電場強度を制御する構成とするものであり、直流電場の
電場強度あるいは交流電場の電場強度を制御することに
よって、液体中の微粒子濃度が最大となるように電場発
生手段の電場強度を制御して、最適な電場強度の制御を
行う。
In a second configuration of the electric field processing apparatus, the electric field condition is an electric field intensity, and the control means controls the electric field intensity generated by the electric field generating means. The electric field intensity of the electric field generating means is controlled such that the concentration of the fine particles in the liquid is maximized by controlling the electric field intensity of the liquid, and the optimal electric field intensity is controlled.

【0017】また、電場処理装置の第3の構成は電場条
件を電場周波数とし、制御手段は電場発生手段が発生す
る電場周波数を制御する構成とするものであり、交流電
場の電場周波数を制御することによって、液体中の微粒
子濃度が最大となるように電場発生手段の電場強度を制
御して、最適な電場強度の制御を行う。
In a third configuration of the electric field processing device, the electric field condition is an electric field frequency, and the control means controls the electric field frequency generated by the electric field generating means, and controls the electric field frequency of the alternating electric field. Thus, the electric field intensity of the electric field generating means is controlled so that the concentration of the fine particles in the liquid is maximized, and the optimal electric field intensity is controlled.

【0018】さらに、電場処理装置の第4の構成は電場
条件を電場強度および電場周波数とし、制御手段は電場
発生手段が発生する電場強度および電場周波数を制御す
る構成とするものであり、交流電場の電場強度および電
場周波数を制御することによって、液体中の微粒子濃度
が最大となるように電場発生手段の電場強度を制御し
て、最適な電場強度の制御を行う。
Further, in a fourth configuration of the electric field processing apparatus, the electric field conditions are electric field intensity and electric field frequency, and the control means controls the electric field intensity and electric field frequency generated by the electric field generating means. By controlling the electric field intensity and the electric field frequency of the electric field, the electric field intensity of the electric field generating means is controlled so that the concentration of the fine particles in the liquid is maximized, and the optimal electric field intensity is controlled.

【0019】電場処理装置の第5の構成は、配管内液体
の微粒子を測定する微粒子測定手段を、液体中の微粒子
によって吸収される赤外領域の吸収光の吸収強度を測定
する吸収強度測定手段によって構成するものであり、制
御手段はこの吸収強度に基づいて、電場強度や電場周波
数等の電場条件を最適に制御するものである。
A fifth configuration of the electric field treatment apparatus comprises a fine particle measuring means for measuring fine particles of the liquid in the pipe, and an absorption intensity measuring means for measuring the absorption intensity of infrared light absorbed by the fine particles in the liquid. The control means optimally controls electric field conditions such as electric field intensity and electric field frequency based on the absorption intensity.

【0020】吸収強度測定手段は、微粒子の組成によっ
て赤外スペクトルが相違することを利用するものであっ
て、液体中の微粒子に赤外領域の光を照射すると、照射
された赤外領域光は、それぞれ特徴的な異なる波長で吸
収が見られ、また、その吸収強度は微粒子の濃度に応じ
たものとなる特性を利用し、各組成に特有の波長の吸収
強度から微粒子の濃度の対応した値を測定するものであ
る。
The absorption intensity measuring means utilizes the fact that the infrared spectrum is different depending on the composition of the fine particles. When the fine particles in the liquid are irradiated with light in the infrared region, the irradiated infrared region light is Absorption is observed at different characteristic wavelengths, and the absorption intensity is dependent on the concentration of the fine particles. Is measured.

【0021】従って、吸収強度測定手段によれば、赤外
スペクトルの特徴的な吸収波長から微粒子の組成を知る
ことができ、また、微粒子に特徴的な波長の吸収強度か
ら微粒子の濃度相当量を求めることができる。
Therefore, according to the absorption intensity measuring means, the composition of the fine particles can be known from the characteristic absorption wavelength of the infrared spectrum, and the concentration equivalent of the fine particles can be determined from the absorption intensity at the characteristic wavelength of the fine particles. You can ask.

【0022】なお、吸収強度測定手段において、既知組
成の微粒子の濃度と赤外領域光の吸収強度の関係を用い
ることによって、測定した吸収強度から流水中の微粒子
濃度を求めることもできる。
By using the relationship between the concentration of fine particles of a known composition and the absorption intensity of infrared region light in the absorption intensity measuring means, the concentration of fine particles in flowing water can be determined from the measured absorption intensity.

【0023】電場処理装置の第6の構成は、配管内液体
の微粒子を測定する微粒子測定手段を、液体中の微粒子
による濁度を測定する測定手段によって構成するもので
あり、制御手段は光の吸光度又は散乱強度に基づいて、
電場強度や電場周波数等の電場条件を最適に制御するも
のである。
In a sixth configuration of the electric field treatment apparatus, the fine particle measuring means for measuring the fine particles of the liquid in the pipe is constituted by measuring means for measuring the turbidity due to the fine particles in the liquid, and the control means comprises a light source. Based on absorbance or scattering intensity,
This is to optimally control electric field conditions such as electric field strength and electric field frequency.

【0024】[0024]

【発明の実施の形態】以下、本発明の実施の形態を図を
参照しながら詳細に説明する。図1は本発明の配管内液
体の電場処理装置および配管内スケールの付着評価方法
を説明するための概略ブロック図である。図1におい
て、電場処理装置1は、配管2内に付着するスケールを
防止する装置であって、配管2内の液体中には、スケー
ルの原因となる化合物が含まれている。この化合物は、
液体内において微粒子の状態あるいは溶解した状態で含
まれており、溶解した状態の化合物は配管2の内壁面に
付着してスケールを形成し、微粒子の状態にある化合物
は配管2の内壁面への付着は起こらずスケールを形成し
ない。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic block diagram for explaining an electric field treatment apparatus for liquid in a pipe and a method for evaluating adhesion of scale in a pipe according to the present invention. In FIG. 1, an electric field treatment device 1 is a device for preventing scale from adhering in a pipe 2, and a liquid in the pipe 2 contains a compound that causes scale. This compound
The compound is contained in a liquid state in the form of fine particles or in a dissolved state, and the dissolved compound adheres to the inner wall surface of the pipe 2 to form a scale. No adhesion occurs and no scale is formed.

【0025】従って、電場処理によって、配管内の液体
中に含まれる化合物を析出させ微粒子の状態とすること
によって、スケールの付着を防止することができる。
Therefore, by depositing the compound contained in the liquid in the pipe by the electric field treatment to form fine particles, it is possible to prevent the adhesion of scale.

【0026】電場処理装置1は、この配管2に対して配
管2内に電場を発生する電場発生手段3、電場発生手段
3の下流側における配管2内の液体中の微粒子を測定す
る微粒子測定手段4と、微粒子測定手段4の出力に基づ
いて電場発生手段3を制御する制御手段5とを備える。
なお、図1では、制御手段5は電場発生手段3の電源6
の制御を行う構成を示している。
The electric field processing apparatus 1 comprises an electric field generating means 3 for generating an electric field in the pipe 2 with respect to the pipe 2, and a fine particle measuring means for measuring fine particles in the liquid in the pipe 2 on the downstream side of the electric field generating means 3. 4 and a control means 5 for controlling the electric field generating means 3 based on the output of the fine particle measuring means 4.
In FIG. 1, the control means 5 is a power source 6 of the electric field generation means 3.
Is shown.

【0027】電場発生手段3は直流電場あるいは交流電
場を配管2内の液体中の化合物に印加するものであり、
電場はスケールとなる化合物の微結晶を析出させる。析
出された微結晶は、液体中で微粒子として流れ、配管内
壁に付着しにくくなる。電場発生手段は、この電場によ
る化合物の析出特性を利用したものであり、これによっ
て、スケールの付着防止を行う。
The electric field generating means 3 applies a DC electric field or an AC electric field to the compound in the liquid in the pipe 2.
The electric field precipitates microcrystals of the compound that serve as scales. The precipitated microcrystals flow as fine particles in the liquid, and hardly adhere to the inner wall of the pipe. The electric field generating means utilizes the deposition characteristics of the compound due to the electric field, thereby preventing the scale from adhering.

【0028】また、制御手段5は、電場発生手段3が直
流電場を発生する場合にはその直流電場の電場強度を制
御し、交流電場を発生する場合にはその交流電場の電場
強度、電場周波数、あるいは電場強度と電場周波数の両
方について、配管内の液体中の微粒子の濃度が最大とな
るよう電場条件を制御する。
When the electric field generating means 3 generates a DC electric field, the control means 5 controls the electric field strength of the DC electric field, and when the electric field generating means 3 generates an AC electric field, the electric field strength and the electric field frequency of the AC electric field are controlled. Alternatively, for both the electric field strength and the electric field frequency, the electric field conditions are controlled so that the concentration of the fine particles in the liquid in the pipe is maximized.

【0029】この配管内の液体中の微粒子の濃度が最大
となるように強度条件を制御することによって、配管内
の液体中でスケールの原因となる溶解状態の化合物の割
合を減少させ、スケールの付着を防止する。
By controlling the strength conditions so that the concentration of the fine particles in the liquid in the pipe is maximized, the proportion of the dissolved compound causing scale in the liquid in the pipe is reduced, and Prevents adhesion.

【0030】図1において、微粒子測定手段4は配管内
の液体中に含まれる微粒子を吸光度として測定すること
ができる。この微粒子測定手段4は、微粒子の組成によ
って赤外スペクトルが相違することを利用するものであ
って、液体中の微粒子に赤外領域の光を照射すると、照
射された赤外領域光は、それぞれ特徴的な異なる波長で
吸収が見られ、また、その吸収強度は微粒子の濃度に応
じたものとなる特性を利用し、各組成に特有の波長の吸
収強度から微粒子の濃度の対応した値を測定することが
できる。
In FIG. 1, the fine particle measuring means 4 can measure the fine particles contained in the liquid in the pipe as the absorbance. The fine particle measuring means 4 utilizes the fact that the infrared spectrum differs depending on the composition of the fine particles. When the fine particles in the liquid are irradiated with light in the infrared region, the irradiated infrared region light is Absorption is observed at characteristic different wavelengths, and the absorption intensity is dependent on the concentration of the fine particles. Using the absorption intensity at a wavelength unique to each composition, the value corresponding to the concentration of the fine particles is measured. can do.

【0031】従って、微粒子測定手段4によれば、赤外
スペクトルの特徴的な吸収波長から微粒子の組成を知る
ことができ、また、微粒子に特徴的な波長の吸収強度か
ら微粒子の濃度相当量を求めることができる。また、こ
の微粒子測定手段4は、粒子の測定を行う場合には、配
管内に残留する粒子の濃度相当量を濁度として測定する
ことができる。
Therefore, according to the fine particle measuring means 4, the composition of the fine particles can be known from the characteristic absorption wavelength of the infrared spectrum, and the concentration equivalent of the fine particles can be determined from the absorption intensity at the characteristic wavelength of the fine particles. You can ask. Further, when measuring the particles, the fine particle measuring means 4 can measure the concentration equivalent of the particles remaining in the pipe as turbidity.

【0032】図2を用いて、液体中の微粒子による吸光
度あるいは粒子の濁度と、電場発生手段に電場条件との
関係を用いることによって、最適な電場条件を求める方
法を説明する。図2(a)は電場条件として電場強度を
制御する場合を示している。電場強度を増加(図中の矢
印A)あるいは減少(図中の矢印B)させると、その電
場強度の変化内に最適電場強度がある場合には、極大あ
るいは最大となる吸光度Cが得られ、このときの電場強
度が最適な電場強度となる。従って、電場強度を変化さ
せながら極大あるいは最大となる吸光度を求めることに
よって、最適な電場強度を求めることができる。
Referring to FIG. 2, a method for obtaining an optimal electric field condition by using the relationship between the absorbance or the turbidity of the particles in the liquid and the electric field condition in the electric field generating means will be described. FIG. 2A shows a case where the electric field strength is controlled as the electric field condition. When the electric field strength is increased (arrow A in the figure) or decreased (arrow B in the figure), the maximum or maximum absorbance C is obtained when the optimum electric field strength exists within the change in the electric field strength, The electric field strength at this time becomes the optimum electric field strength. Therefore, the optimum electric field strength can be obtained by obtaining the maximum or maximum absorbance while changing the electric field strength.

【0033】また、図2(b)は電場条件として電場周
波数を制御する場合を示している。電場周波数を増加
(図中の矢印a)あるいは減少(図中の矢印b)させる
と、その電場周波数の変化内に最適電場周波数がある場
合には、極大あるいは最大となる吸光度cが得られ、こ
のときの電場周波数が最適な電場周波数となる。従っ
て、電場周波数を変化させながら極大あるいは最大とな
る吸光度または濁度を求めることによって、最適な電場
周波数を求めることができる。
FIG. 2B shows the case where the electric field frequency is controlled as the electric field condition. When the electric field frequency is increased (arrow a in the figure) or decreased (arrow b in the figure), the maximum or maximum absorbance c is obtained when the optimum electric field frequency is within the change of the electric field frequency, The electric field frequency at this time is the optimum electric field frequency. Therefore, the optimum electric field frequency can be obtained by obtaining the maximum or maximum absorbance or turbidity while changing the electric field frequency.

【0034】次に、電場条件の制御手順について、赤外
領域光の吸光度を用いた方法について図3,4のフロー
チャート、および図6の電場条件と吸光度との関係図を
用いて説明する。なお、図3は電場発生手段が直流電場
を発生する場合のフローチャートであり、図4は電場発
生手段が交流電場を発生する場合のフローチャートであ
る。
Next, the control procedure of the electric field condition will be described with reference to the flow charts of FIGS. 3 and 4 and the relationship between the electric field condition and the absorbance of FIG. FIG. 3 is a flowchart when the electric field generating means generates a DC electric field, and FIG. 4 is a flowchart when the electric field generating means generates an AC electric field.

【0035】初めに、電場処理装置1の微粒子測定手段
4において、微粒子の吸光度を測定する測定波長を設定
する。微粒子の吸光度は、微粒子の組成によって吸収を
行う波長が異なる。そこで、配管内を流動する液体に含
まれる化合物の組成について、良好な吸収を行う波長を
あらかじめ求めておく。そして、スケールの付着を防止
する化合物に対応した波長を、求めておいた波長の中か
ら選択し、微粒子測定手段4に設定する(ステップS
1)。
First, a measurement wavelength for measuring the absorbance of the fine particles is set in the fine particle measuring means 4 of the electric field treatment device 1. The wavelength at which light is absorbed varies depending on the composition of the fine particles. Therefore, a wavelength at which good absorption is obtained for the composition of the compound contained in the liquid flowing in the pipe is determined in advance. Then, a wavelength corresponding to the compound for preventing the adhesion of the scale is selected from the determined wavelengths and set in the fine particle measuring means 4 (Step S).
1).

【0036】微粒子測定手段4によって、設定した測定
波長で吸光度の測定を行い、その測定値を初期値とし
(ステップS2)、この初期値を用いて吸光度のゼロ校
正を行う。図6中のS3はこのゼロ校正を示している
(ステップS3)。
The absorbance is measured at the set measurement wavelength by the fine particle measuring means 4, the measured value is set as an initial value (step S2), and zero calibration of the absorbance is performed using the initial value. S3 in FIG. 6 indicates this zero calibration (step S3).

【0037】次に、電場発生手段3の直流電場の電場強
度、または、交流電場の電場強度と電場周波数に初期値
を設定する。図6中のS4はこの電場強度の初期設定を
示している(ステップS4)。設定した電場強度で吸光
度を測定する。図6中のS5はこの吸光度を示している
(ステップS5)。
Next, initial values are set for the electric field intensity of the DC electric field of the electric field generating means 3 or the electric field intensity and the electric field frequency of the AC electric field. S4 in FIG. 6 indicates the initial setting of the electric field strength (step S4). Measure the absorbance at the set electric field strength. S5 in FIG. 6 indicates this absorbance (step S5).

【0038】この後、直流電場の電場強度の変化に対す
る吸光度の変化を測定し、この吸光度が極大あるいは最
大となるように電場強度を制御することによって、直流
電場強度の制御を行うことができ(ステップS10)、
また、交流電場の電場強度および周波数の変化に対する
吸光度の変化を測定し、この吸光度が極大あるいは最大
となるように電場強度および周波数を制御することによ
って、交流電場強度の制御を行うことができる(ステッ
プS20,ステップS30)。
Thereafter, the change in the absorbance with respect to the change in the electric field strength of the DC electric field is measured, and the electric field strength is controlled so that the absorbance is maximum or maximum, whereby the DC electric field strength can be controlled ( Step S10),
Further, by measuring the change in the absorbance with respect to the change in the electric field strength and the frequency of the AC electric field, and controlling the electric field strength and the frequency so that the absorbance is maximum or maximum, the AC electric field strength can be controlled ( Step S20, Step S30).

【0039】以下、直流電場強度の制御、交流電場強度
の制御、および交流電場の周波数制御ついて図5,6,
7,8を用いて説明する。
The control of the DC electric field intensity, the control of the AC electric field intensity, and the frequency control of the AC electric field will now be described with reference to FIGS.
This will be described with reference to FIGS.

【0040】図5は直流電場強度の制御を説明するため
のフローチャートである。直流電場強度の制御は、図6
に示したS5の後、電場強度を増加させる。図6中の矢
印S11はこの電場強度の増加による吸光度の変化を示
している(ステップS11)。このとき、電場発生手段
が発生する電場強度は、装置が許容する最大電場強度内
か否かを判定し、最大電場強度内に収まるよう電場強度
の大きさを制限する(ステップS12)。増加した電場
強度における吸光度を測定する。図6中のS13はこの
吸光度を示している(ステップS13)。
FIG. 5 is a flowchart for explaining the control of the DC electric field intensity. The control of the DC electric field strength is shown in FIG.
After S5 shown in (1), the electric field strength is increased. An arrow S11 in FIG. 6 indicates a change in absorbance due to the increase in the electric field intensity (step S11). At this time, it is determined whether or not the electric field intensity generated by the electric field generating means is within the maximum electric field intensity allowed by the device, and the magnitude of the electric field intensity is limited so as to be within the maximum electric field intensity (step S12). The absorbance at the increased electric field strength is measured. S13 in FIG. 6 indicates this absorbance (step S13).

【0041】測定した吸光度が増加したか否かを判定し
(ステップS14)、吸光度が増加しなくなるまでステ
ップS11〜ステップS14を繰り返す。
It is determined whether the measured absorbance has increased (step S14), and steps S11 to S14 are repeated until the absorbance no longer increases.

【0042】電場強度の増加に伴う吸光度の増加が停止
した後、次に、電場強度を減少させて同様な操作を行
う。図6中の矢印S15はこの電場強度の減少による吸
光度の変化を示している(ステップS15)。このと
き、電場発生手段が発生する電場強度は、装置が許容す
る最小電場強度内か否かを判定し、最小電場強度内に収
まるよう電場強度の大きさを制限する(ステップS1
6)。減少した電場強度における吸光度を測定する(ス
テップS17)。
After the increase in the absorbance due to the increase in the electric field strength is stopped, the same operation is performed by decreasing the electric field strength. An arrow S15 in FIG. 6 indicates a change in absorbance due to the decrease in the electric field intensity (step S15). At this time, it is determined whether or not the electric field intensity generated by the electric field generating means is within the minimum electric field intensity permitted by the device, and the magnitude of the electric field intensity is limited so as to be within the minimum electric field intensity (step S1).
6). The absorbance at the decreased electric field intensity is measured (step S17).

【0043】測定した吸光度が増加したか否かを判定し
(ステップS18)、吸光度が増加しなくなるまでステ
ップS15〜ステップS18を繰り返す。
It is determined whether the measured absorbance has increased (step S18), and steps S15 to S18 are repeated until the absorbance no longer increases.

【0044】前記工程によって、吸光度が極大あるいは
最大となる電場強度を求めることができ、この求めた電
場強度がスケール付着防止の最適な電場強度となる。
By the above-mentioned process, the electric field intensity at which the absorbance is maximum or maximum can be obtained, and the obtained electric field intensity is the optimum electric field intensity for preventing the scale from adhering.

【0045】この状態のまま所定の時間待機して、電場
発生手段によるスケール付着防止の電場処理を行う。所
定の時間の経過後、再び前記ステップS11〜ステップ
S19の工程を繰り返す。これによって、配管内の条件
変化に対応した最適な電場条件を制御することができ
る。
In this state, after waiting for a predetermined time, an electric field process for preventing scale adhesion by the electric field generating means is performed. After the elapse of a predetermined time, the steps S11 to S19 are repeated again. Thereby, it is possible to control the optimal electric field condition corresponding to the condition change in the pipe.

【0046】また、図7,図8は交流電場の電場条件の
制御を説明するためのフローチャートであり、図7は交
流電場の強度を制御するためのフローチャートであり、
図8は交流電場の周波数を制御するためのフローチャー
トである。
7 and 8 are flow charts for explaining the control of the electric field condition of the AC electric field, and FIG. 7 is a flow chart for controlling the intensity of the AC electric field.
FIG. 8 is a flowchart for controlling the frequency of the AC electric field.

【0047】図7および図8のフローチャートは、電場
条件として前記図5のフローチャートの直流電場強度に
代えて、交流電場強度および交流電場周波数を制御する
点で異なり、その他はほぼ同様である。そこで、ここで
は図7および図8のフローチャートの説明は省略する。
The flowcharts of FIGS. 7 and 8 are different from the flowchart of FIG. 5 in that an AC electric field intensity and an AC electric field frequency are controlled instead of the DC electric field intensity in the flowchart of FIG. Therefore, the description of the flowcharts of FIGS. 7 and 8 is omitted here.

【0048】本発明の実施形態によれば、電場発生手段
の発生する直流電場の最適電場強度の制御を、配管内を
流動する液体の状態に応じて自動で迅速に行うことがで
きる。ただし、電場強度と電場周波数の制御を繰り返す
ことによって、最適な電場条件を得る。
According to the embodiment of the present invention, the control of the optimum electric field intensity of the DC electric field generated by the electric field generating means can be automatically and promptly performed according to the state of the liquid flowing in the pipe. However, an optimal electric field condition is obtained by repeating the control of the electric field strength and the electric field frequency.

【0049】また、測定手段に濁度として光の吸光度ま
たは散乱強度の測定を用いた場合も、同様の制御を行う
ことができる。
The same control can be performed also when the measurement of light absorbance or scattering intensity as turbidity is used as the measuring means.

【0050】本発明の実施形態によれば、電場発生手段
の発生する交流電場の最適電場強度、交流電場周波数の
制御を、配管内を流動する液体の状態に応じて自動で迅
速に行うことができる。
According to the embodiment of the present invention, the control of the optimum electric field intensity and the alternating electric field frequency of the alternating electric field generated by the electric field generating means can be automatically and promptly performed according to the state of the liquid flowing in the pipe. it can.

【0051】本発明の実施形態によれば、吸収強度また
は散乱強度によって、電場発生手段によるスケール付着
防止の評価を行うことができる。
According to the embodiment of the present invention, it is possible to evaluate the prevention of scale adhesion by the electric field generating means based on the absorption intensity or the scattering intensity.

【0052】[0052]

【発明の効果】以上説明したように、本発明の配管内液
体の電場処理装置によれば、配管内のスケールの付着を
良好に防止する最適な電場条件の制御を行うことがで
き、また、本発明の配管内スケールの付着評価方法によ
れば、配管内に付着するスケールの付着状態を推定し、
スケール付着防止の評価を行うことができる。
As described above, according to the electric field treatment apparatus for liquid in a pipe of the present invention, it is possible to control the optimal electric field conditions for preventing the adhesion of scale in the pipe in a favorable manner. According to the method for evaluating the adhesion of scale in a pipe according to the present invention, the state of adhesion of scale attached to the pipe is estimated,
Evaluation of scale adhesion prevention can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の配管内液体の電場処理装置および配管
内スケールの付着評価方法を説明するための概略ブロッ
ク図である。
FIG. 1 is a schematic block diagram for explaining an electric field treatment apparatus for liquid in a pipe and a method for evaluating adhesion of scale in a pipe according to the present invention.

【図2】本発明の配管内液体の電場処理装置による最適
な電場条件を求める方法を説明するための図である。
FIG. 2 is a diagram for explaining a method for obtaining an optimum electric field condition by the electric field treatment apparatus for liquid in a pipe according to the present invention.

【図3】本発明の電場発生手段が直流電場を発生する場
合の電場条件の制御手順を説明するためのフローチャー
トである。
FIG. 3 is a flowchart for explaining a control procedure of electric field conditions when the electric field generating means of the present invention generates a DC electric field.

【図4】本発明の電場発生手段が交流電場を発生する場
合の電場条件の制御手順を説明するためのフローチャー
トである。
FIG. 4 is a flowchart for explaining a control procedure of electric field conditions when the electric field generating means of the present invention generates an AC electric field.

【図5】本発明の直流電場強度の制御を説明するための
フローチャートである。
FIG. 5 is a flowchart illustrating control of the DC electric field intensity according to the present invention.

【図6】電場条件と吸光度との関係図である。FIG. 6 is a diagram showing the relationship between electric field conditions and absorbance.

【図7】本発明の交流電場の強度を制御するためのフロ
ーチャートである。
FIG. 7 is a flowchart for controlling the intensity of an AC electric field according to the present invention.

【図8】本発明の交流電場の周波数を制御するためのフ
ローチャートである。
FIG. 8 is a flowchart for controlling the frequency of an AC electric field according to the present invention.

【符号の説明】[Explanation of symbols]

1 電場処理装置 2 配管 3 電場発生手段 4 微粒子測定手段 5 制御手段 6 電源 DESCRIPTION OF SYMBOLS 1 Electric field processing apparatus 2 Piping 3 Electric field generating means 4 Particle measuring means 5 Control means 6 Power supply

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 配管内に電場を発生する電場発生手段
と、前記電場発生手段の下流側における配管内の液体中
の微粒子を測定する微粒子測定手段と、前記微粒子測定
手段の出力に基づいて電場発生手段を制御する制御手段
とを備え、前記制御手段は、配管内の液体中の微粒子の
濃度が最大となるよう電場条件を制御することを特徴と
する配管内液体の電場処理装置。
An electric field generating means for generating an electric field in the pipe; a fine particle measuring means for measuring fine particles in a liquid in the pipe downstream of the electric field generating means; and an electric field based on an output of the fine particle measuring means. Control means for controlling the generation means, wherein the control means controls the electric field conditions so that the concentration of the fine particles in the liquid in the pipe is maximized.
【請求項2】 前記電場条件は電場強度であり、制御手
段は電場発生手段が発生する電場強度を制御することを
特徴とする請求項1記載の配管内液体の電場処理装置。
2. The electric field treatment apparatus for liquid in a pipe according to claim 1, wherein the electric field condition is an electric field intensity, and the control means controls the electric field intensity generated by the electric field generating means.
【請求項3】 前記電場条件は電場周波数であり、制御
手段は電場発生手段が発生する電場周波数を制御するこ
とを特徴とする請求項1記載の配管内液体の電場処理装
置。
3. The electric field processing apparatus for liquid in a pipe according to claim 1, wherein said electric field condition is an electric field frequency, and said control means controls an electric field frequency generated by said electric field generating means.
【請求項4】 前記電場条件は電場強度および電場周波
数であり、電場条件の制御手段は電場発生手段が発生す
る電場強度および電場周波数を制御することを特徴とす
る請求項1記載の配管内液体の電場処理装置。
4. The liquid in a pipe according to claim 1, wherein the electric field condition is an electric field intensity and an electric field frequency, and the electric field condition controlling means controls the electric field intensity and the electric field frequency generated by the electric field generating means. Electric field treatment equipment.
【請求項5】 前記微粒子測定手段は、液体中の微粒子
によって吸収される赤外領域の吸収光の吸収強度を測定
する吸収強度測定手段を備え、前記制御手段は吸収強度
に基づいて制御することを特徴とする請求項1,2,3
又は4記載の配管内液体の電場処理装置。
5. The method according to claim 1, wherein the fine particle measuring means includes an absorption intensity measuring means for measuring an absorption intensity of an infrared light absorbed by the fine particles in the liquid, and the control means performs control based on the absorption intensity. 4. The method according to claim 1, wherein:
Or the electric field treatment device for liquid in a pipe according to 4.
【請求項6】 前記微粒子測定手段は、液体中の微粒子
による濁度を測定する測定手段を備え、前記制御手段
は、吸光度又は散乱強度に基づいて制御することを特徴
とする請求項1,2,3又は4記載の配管内液体の電場
処理装置。
6. The apparatus according to claim 1, wherein said fine particle measuring means includes a measuring means for measuring turbidity due to fine particles in a liquid, and said control means performs control based on absorbance or scattering intensity. 5. The electric field treatment device for liquid in a pipe according to claim 3, 3 or 4.
JP6556697A 1997-03-05 1997-03-05 Electric field treatment apparatus for liquid in piping Withdrawn JPH10244266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6556697A JPH10244266A (en) 1997-03-05 1997-03-05 Electric field treatment apparatus for liquid in piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6556697A JPH10244266A (en) 1997-03-05 1997-03-05 Electric field treatment apparatus for liquid in piping

Publications (1)

Publication Number Publication Date
JPH10244266A true JPH10244266A (en) 1998-09-14

Family

ID=13290698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6556697A Withdrawn JPH10244266A (en) 1997-03-05 1997-03-05 Electric field treatment apparatus for liquid in piping

Country Status (1)

Country Link
JP (1) JPH10244266A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270698A (en) * 2004-03-23 2005-10-06 Osaka Gas Co Ltd Scale inhibiting method, piping structure, and cooling water circulation device
JP2009112894A (en) * 2007-11-02 2009-05-28 Nomura Micro Sci Co Ltd Leak monitoring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270698A (en) * 2004-03-23 2005-10-06 Osaka Gas Co Ltd Scale inhibiting method, piping structure, and cooling water circulation device
JP4508690B2 (en) * 2004-03-23 2010-07-21 大阪瓦斯株式会社 Scale suppression method, piping structure, and cooling water circulation device
JP2009112894A (en) * 2007-11-02 2009-05-28 Nomura Micro Sci Co Ltd Leak monitoring device

Similar Documents

Publication Publication Date Title
US6943878B2 (en) Methods and systems for controlling the concentration of a component in a composition with absorption spectroscopy
CN1067907C (en) Filtration monitoring and control system
JP2720340B2 (en) Laser diffraction particle size distribution measurement method
US20040238005A1 (en) Method of judging end of cleaning treatment and device for the cleaning treatment
JPH10244265A (en) Magnetic field treatment device for liquid in piping
US5160439A (en) System for controlling coagulant treatment based on monitoring of plural parameters
US7507587B2 (en) Automatic analysis and control system for electroless composite plating solution
JPH10244266A (en) Electric field treatment apparatus for liquid in piping
CN114323120B (en) Sludge discharge amount measuring method, control method, treatment system, equipment and medium
Huang et al. Automatic control for chemical dosing in laboratory-scale coagulation process by using an optical monitor
FR2509879A1 (en) METHOD AND APPARATUS FOR CONTROLLING THE ACTIVITY OF A DEVELOPMENT SOLUTION AND OPPOSING ITS OXIDATION USING A TEST
FR2743634A1 (en) METHOD AND APPARATUS FOR CONTINUOUSLY CONTROLLING THE POWER OF DISPENSING A WATER
JPH10253542A (en) Method for evaluating adhesion of scale in piping
JP5534329B2 (en) Particle measurement water quality analyzer
JPH0634890B2 (en) Preparation method of chemicals
CN109589632B (en) Recovery method of stripping liquid
JP3300764B2 (en) Suspension coagulation test method and coagulant injection amount determination method
JP4042422B2 (en) Automatic measuring device, automatic measuring method and control method of aqueous processing agent concentration
JPS6316901B2 (en)
CA3091698C (en) Method and device for the determination of film forming amines in a liquid
JP2005024357A (en) Automatic measuring instrument for concentration of treatment agent in aqueous system
JPH10160668A (en) Method and device for measuring nitric acid concentration by continuous flow analysis method
CA2305488C (en) Method for controlling aeration systems of biological tanks treating waste water
JP2000131308A (en) Apparatus and method for measurement of concentration of dissolved nitrogen in ultrapure water
CN117328069A (en) Corrosion control system and method for industrial circulating water pipeline

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040511