JPH10242455A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method

Info

Publication number
JPH10242455A
JPH10242455A JP4513997A JP4513997A JPH10242455A JP H10242455 A JPH10242455 A JP H10242455A JP 4513997 A JP4513997 A JP 4513997A JP 4513997 A JP4513997 A JP 4513997A JP H10242455 A JPH10242455 A JP H10242455A
Authority
JP
Japan
Prior art keywords
region
type
concentration
conductivity
element formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4513997A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Sugiura
義幸 杉浦
Yosuke Hagiwara
洋右 萩原
Masaari Kamakura
將有 鎌倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP4513997A priority Critical patent/JPH10242455A/en
Publication of JPH10242455A publication Critical patent/JPH10242455A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device having no lowering of breakdown voltage between a drain and a source, even in the case of wiring a high-potential drain electrode over an element separation region. SOLUTION: An n+ type drain region 5 is formed approximately in the center inside an element formation region 4, a p-type channel region 6 is formed inside the element formation region 4 explusive of a lower part of a drain electrode 11 and its neighborhood in contact with a p+ type element separation region 3 so as to enclose the n+ type drain region 5, and an n+ type drain region 5, and an n+ type source region 7 is formed inside an element formation region 4 so as to be involved inside the p-type channel region 6 and the p+ type element separation region 3. In the lower part of the drain electrode 11 and in an insulating layer 10 in its neighborhood, an electrode 13 of the long shape is formed approximately in the vertical direction with respect to the longitudinal direction of the drain electrode 11 for being connected to the element formation region 4 through an n+ type impurity region 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置及びそ
の製造方法に関するものである。
The present invention relates to a semiconductor device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】高耐圧半導体装置の一つとして、横型2
重拡散MOS電解効果トランジスタ、いわゆるLDMO
SFET(Lateral Double Diffused MOSFET)があ
る。図4は、従来例に係るLDMOSFETを示す略断
面図であり、(a)は表面から見た状態を示す略平面図
であり、(b)は(a)におけるZ−Z’での略断面図
である。このLDMOSFETは、p型半導体基板1上
にn型エピタキシャル層2が形成され、n型エピタキシ
ャル層2の表面からp型半導体基板1に到達するように
p+型素子分離領域3が形成されている。そして、p型
半導体基板1及びp+型素子分離領域3により互いに絶
縁分離されたn型エピタキシャル層2から成る複数の素
子形成領域4が形成されている。
2. Description of the Related Art As one of high withstand voltage semiconductor devices, a horizontal type 2 is used.
Double diffusion MOS field effect transistor, so-called LDMO
There is an SFET (Lateral Double Diffused MOSFET). 4A and 4B are schematic cross-sectional views showing an LDMOSFET according to a conventional example, in which FIG. 4A is a schematic plan view showing a state viewed from the surface, and FIG. 4B is a schematic cross-section taken along ZZ ′ in FIG. FIG. In this LDMOSFET, an n-type epitaxial layer 2 is formed on a p-type semiconductor substrate 1, and a p + -type element isolation region 3 is formed so as to reach the p-type semiconductor substrate 1 from the surface of the n-type epitaxial layer 2. Then, a plurality of element forming regions 4 each formed of the n-type epitaxial layer 2 insulated and separated from each other by the p-type semiconductor substrate 1 and the p + -type element isolation region 3 are formed.

【0003】なお、p+型素子分離領域3の形成方法の
一例としては、ボロン(B)等のp型不純物をデポし、
酸化,ドライブ工程により形成する方法がある。
As an example of a method for forming the p + -type element isolation region 3, a p-type impurity such as boron (B) is deposited.
There is a method of forming by an oxidation and drive process.

【0004】また、素子形成領域4の表面に露出するよ
うに素子形成領域4内の略中心にリン(P)等のn型不
純物をイオン注入することによりn+型ドレイン領域5
が形成され、n+型ドレイン領域5に電気的に接続さ
れ、かつ、p+型素子分離領域3を跨いで他の素子形成
領域4まで延設されるようにアルミニウム(Al)等か
ら成るドレイン電極11が形成されている。
An n-type impurity such as phosphorus (P) is ion-implanted substantially at the center of the element forming region 4 so as to be exposed on the surface of the element forming region 4 to thereby form an n + type drain region
Is formed, and is electrically connected to the n + -type drain region 5, and extends over the p + -type element isolation region 3 to another element formation region 4, and is formed of a drain electrode 11 made of aluminum (Al) or the like. Are formed.

【0005】また、ドレイン電極11の下部及びその近
傍を除いてn+型ドレイン領域5を囲み、かつ、p+型
素子分離領域3に隣接して素子形成領域4の表面に露出
するように素子形成領域4内にp+型素子分離領域3よ
りも低濃度のp型チャネル領域6が形成されている。そ
して、素子形成領域4の表面に露出し、かつ、p型チャ
ネル領域6及びp+型素子分離領域3に内包されるよう
に、リン(P)等のn型不純物をイオン注入することに
よりn+型ソース領域7が形成されている。
An element formation region surrounds the n + type drain region 5 except for the lower portion of the drain electrode 11 and the vicinity thereof, and is exposed to the surface of the element formation region 4 adjacent to the p + type element isolation region 3. 4, a p-type channel region 6 having a lower concentration than the p + -type element isolation region 3 is formed. Then, an n-type impurity such as phosphorus (P) is ion-implanted so as to be exposed on the surface of the element formation region 4 and included in the p-type channel region 6 and the p + -type element isolation region 3. A source region 7 is formed.

【0006】また、n+型ドレイン領域5とn+型ソー
ス領域7との間に介在するp型チャネル領域6上には、
ゲート酸化膜8を介して、ポリシリコン等から成る絶縁
ゲート9が形成されている。
On the p-type channel region 6 interposed between the n + -type drain region 5 and the n + -type source region 7,
An insulating gate 9 made of polysilicon or the like is formed via a gate oxide film 8.

【0007】また、n型エピタキシャル層2上には、絶
縁層10が形成され、絶縁ゲート9と電気的に接続され
るようにアルミニウム(Al)等から成るゲート電極
(図示せず)が形成され、n+型ソース領域7及びp+
型素子分離領域3と電気的に接続されるようにアルミニ
ウム(Al)等から成るソース電極12が形成されてい
る。
On the n-type epitaxial layer 2, an insulating layer 10 is formed, and a gate electrode (not shown) made of aluminum (Al) or the like is formed so as to be electrically connected to the insulating gate 9. , N + type source region 7 and p +
Source electrode 12 made of aluminum (Al) or the like is formed so as to be electrically connected to mold element isolation region 3.

【0008】このようなLDMOSFETは、ドレイン
電極11に高電位、ソース電極12に低電位を印加し
て、素子形成領域4全体を空乏化させ、素子形成領域4
の表面の電界強度を緩和してドレイン−ソース間の耐圧
を高い電圧まで維持している。これは、所謂RESUR
F(REduced SURface Field)原理を用いており、”I
nternational Electoronic Device Meeting Techni
cal Digest”,Dec.,p.238〜240(1979)に詳しく記
載されている。
In such an LDMOSFET, a high potential is applied to the drain electrode 11 and a low potential is applied to the source electrode 12 to deplete the entire element forming region 4 and to form the element forming region 4.
The electric field strength on the surface of the substrate is alleviated to maintain the breakdown voltage between the drain and the source at a high voltage. This is the so-called RESUR
F (Reduced SURface Field) principle is used and "I
nternational Electoronic Device Meeting Techni
cal Digest ", Dec., pp. 238-240 (1979).

【0009】上述のLDMOSFETは、他の信号処理
回路と同一チップに集積化することにより、ハイサイド
ドライバ回路のレベルシフタ等が実現でき、有用であ
る。このLDMOSFETをICとして集積化する場
合、図4(a)に示すように、素子形成領域4の略中心
にn+型ドレイン領域5が形成され、その周囲をn+型
ソース領域7で囲んだような形状が用いられることが多
く、n+型ドレイン領域5に高電圧を印加する場合、p
+型素子分離領域3の外部からp+型素子分離領域3を
跨いでn+型ドレイン領域5までドレイン電極11を配
置する必要がある。
The above-mentioned LDMOSFET is useful because a level shifter or the like of a high-side driver circuit can be realized by integrating it on the same chip as other signal processing circuits. When the LDMOSFET is integrated as an IC, as shown in FIG. 4A, an n + type drain region 5 is formed substantially at the center of the element forming region 4 and the periphery thereof is surrounded by an n + type source region 7. When a high voltage is applied to the n + type drain region 5, p
It is necessary to arrange the drain electrode 11 from the outside of the + type element isolation region 3 to the n + type drain region 5 across the p + type element isolation region 3.

【0010】[0010]

【発明が解決しようとする課題】ところが、上述のよう
な構成のLDMOSFETにおいては、ドレイン電極1
1の電位が直下の絶縁層10を介して、その下の素子形
成領域4の表面の電位分布に影響を及ぼすという問題が
あった。
However, in the LDMOSFET having the above structure, the drain electrode 1
There is a problem that the potential of 1 affects the potential distribution on the surface of the element formation region 4 under the insulating layer 10 immediately below.

【0011】図5は、従来例に係るLDMOSFETの
素子形成領域4の電位分布を示す模式図であり、(a)
はドレイン電極11をp+型素子形成領域3を跨いで外
部に引き出さない場合の電位分布を示す模式図であり、
(b)はドレイン電極11をp+型素子形成領域3を跨
いで外部に引き出す場合の電位分布を示す模式図であ
る。図5より、ドレイン電極11をp+型素子形成領域
3を跨いで外部に引き出す場合には、高電位を印加され
たドレイン電極11によりn+型ドレイン領域5がドレ
イン電極11に沿って引き延ばされて素子形成領域4内
に反転層が発生し、p+型素子分離領域3の近傍に素子
形成領域4表面の電位分布が集中して、この部分で臨界
電界を越えてドレイン−ソース間耐圧が低下するという
問題があった。
FIG. 5 is a schematic diagram showing a potential distribution in an element forming region 4 of an LDMOSFET according to a conventional example.
Is a schematic diagram showing a potential distribution when the drain electrode 11 is not drawn out across the p + -type element formation region 3;
(B) is a schematic diagram showing a potential distribution when the drain electrode 11 is drawn out across the p + -type element formation region 3. As shown in FIG. 5, when the drain electrode 11 is drawn out across the p + -type element formation region 3, the n + -type drain region 5 is extended along the drain electrode 11 by the drain electrode 11 to which a high potential is applied. As a result, an inversion layer is generated in the element formation region 4, and the potential distribution on the surface of the element formation region 4 is concentrated near the p + -type element isolation region 3, which exceeds the critical electric field and lowers the drain-source breakdown voltage. There was a problem of doing.

【0012】本発明は、上記の点に鑑みて成されたもの
であり、その目的とするところは、素子分離領域を跨い
で高電位のドレイン電極を配線する場合においてもドレ
イン−ソース間の耐圧が低下することのない半導体装置
及びその製造方法を提供することにある。
The present invention has been made in view of the above points, and an object of the present invention is to provide a high withstand voltage between a drain and a source even when a high potential drain electrode is wired across an element isolation region. It is an object of the present invention to provide a semiconductor device and a method for manufacturing the same, which are not reduced.

【0013】[0013]

【課題を解決するための手段】請求項1記載の発明は、
第一導電型半導体基板と、該第一導電型半導体基板の一
主表面上に形成され、表面から前記第一導電型半導体基
板に到達するように形成された高濃度第一導電型素子分
離領域及び前記第一導電型半導体基板により絶縁分離さ
れた第二導電型エピタキシャル層から成る素子形成領域
と、該素子形成領域の表面に露出するように前記素子形
成領域内の略中心に形成された高濃度第二導電型ドレイ
ン領域と、該高濃度第二導電型ドレイン領域に電気的に
接続され、前記高濃度第一導電型素子分離領域を跨いで
他の前記素子形成領域に引き出されて成るドレイン電極
と、該ドレイン電極の下部及びその近傍を除いて前記高
濃度第二導電型ドレイン領域を囲むとともに前記高濃度
第一導電型素子分離領域に隣接し、前記素子形成領域の
表面に露出するように前記素子形成領域内に形成された
第一導電型チャネル領域と、前記高濃度第一導電型素子
分離領域及び第一導電型チャネル領域に内包され、前記
素子形成領域の表面に露出するように前記素子形成領域
内に形成された高濃度第二導電型ソース領域と、該高濃
度第二導電型ソース領域と前記高濃度第二導電型ドレイ
ン領域との間に介在する前記第一導電型チャネル領域上
にゲート酸化膜を介して形成された絶縁ゲートと、該絶
縁ゲートと電気的に接続されるように形成されたゲート
電極と、前記高濃度第二導電型ソース領域及び高濃度第
一導電型素子分離領域と電気的に接続されるように形成
されたソース電極と、前記素子形成領域上に形成された
絶縁層とを有して成る半導体装置において、前記ドレイ
ン電極の下部及びその近傍に前記ドレイン電極の長手方
向に対して略垂直方向に長い形状の電極を複数形成し、
該電極を高濃度第二導電型不純物領域を介して前記素子
形成領域とコンタクトさせたことを特徴とするものであ
る。
According to the first aspect of the present invention,
A first conductivity type semiconductor substrate, and a high concentration first conductivity type element isolation region formed on one main surface of the first conductivity type semiconductor substrate and formed so as to reach the first conductivity type semiconductor substrate from the surface. An element formation region including a second conductivity type epitaxial layer insulated and separated by the first conductivity type semiconductor substrate; and a high portion formed substantially at the center of the element formation region so as to be exposed on the surface of the element formation region. A second-concentration second-conductivity-type drain region, and a drain electrically connected to the high-concentration second-conductivity-type drain region and drawn out to another element formation region across the high-concentration first-conductivity-type element isolation region. An electrode, surrounding the high-concentration second-conductivity-type drain region except for the lower part of the drain electrode and its vicinity, and adjacent to the high-concentration first-conductivity-type element isolation region and exposed to the surface of the element formation region; A first conductivity type channel region formed in the element formation region, the high-concentration first conductivity type element isolation region and the first conductivity type channel region so as to be exposed on the surface of the element formation region. A high-concentration second-conductivity-type source region formed in the element formation region; and the first-conductivity-type channel interposed between the high-concentration second-conductivity-type source region and the high-concentration second-conductivity-type drain region. An insulating gate formed on the region via a gate oxide film, a gate electrode formed to be electrically connected to the insulating gate, the high-concentration second conductivity type source region and the high-concentration first conductivity In a semiconductor device having a source electrode formed so as to be electrically connected to a mold element isolation region and an insulating layer formed on the element formation region, a semiconductor device includes Said de The elongated electrode substantially vertically to form a plurality to the longitudinal direction of the in-electrode,
The electrode is brought into contact with the element formation region via a high-concentration second conductivity type impurity region.

【0014】請求項2記載の発明は、請求項1記載の半
導体装置において、前記電極を、前記素子形成領域の略
中心から外周に向かうに従って、前記ドレイン電極の長
手方向に対する長さを長くするようにしたことを特徴と
するものである。
According to a second aspect of the present invention, in the semiconductor device of the first aspect, the length of the drain electrode in the longitudinal direction is increased from a substantially center of the element forming region toward the outer periphery. It is characterized by having made it.

【0015】請求項3記載の発明は、第一導電型半導体
基板上に、表面から前記第一導電型半導体基板に到達す
るように形成された高濃度第一導電型素子分離領域及び
前記第一導電型半導体基板により絶縁分離された第二導
電型エピタキシャル層から成る素子形成領域を形成し、
該素子形成領域の表面に露出するように前記素子形成領
域内の略中心に高濃度第二導電型ドレイン領域を形成
し、該高濃度第二導電型ドレイン領域に電気的に接続さ
れ、前記高濃度第一導電型素子分離領域を跨いで他の前
記素子形成領域に引き出されて成るドレイン電極を形成
し、該ドレイン電極の下部及びその近傍を除いて前記高
濃度第二導電型ドレイン領域を囲むとともに前記高濃度
第一導電型素子分離領域に隣接し、前記素子形成領域の
表面に露出するように前記素子形成領域内に第一導電型
チャネル領域を形成し、前記高濃度第一導電型素子分離
領域及び第一導電型チャネル領域に内包され、前記素子
形成領域の表面に露出するように前記素子形成領域内に
高濃度第二導電型ソース領域を形成し、該高濃度第二導
電型ソース領域と前記高濃度第二導電型ドレイン領域と
の間に介在する前記第一導電型チャネル領域上にゲート
酸化膜を介して絶縁ゲートを形成し、該絶縁ゲートと電
気的に接続されるようにゲート電極を形成し、前記高濃
度第二導電型ソース領域及び高濃度第一導電型素子分離
領域と電気的に接続されるようにソース電極を形成し、
前記素子形成領域上に絶縁層を形成して成る半導体装置
の製造方法において、前記ドレイン電極の下部及びその
近傍に前記ドレイン電極の長手方向に対して略垂直方向
に長い形状の、第二導電型不純物を含んで成る電極を複
数形成し、該電極に含まれた第二導電型不純物を前記素
子形成領域に拡散させることにより高濃度第二導電型不
純物領域を形成し、前記電極を前記高濃度第二導電型不
純物領域を介して前記素子形成領域とコンタクトさせた
ことを特徴とするものである。
According to a third aspect of the present invention, there is provided a high-concentration first conductivity type element isolation region formed on a first conductivity type semiconductor substrate so as to reach the first conductivity type semiconductor substrate from a surface. Forming an element formation region composed of a second conductivity type epitaxial layer insulated and separated by a conductivity type semiconductor substrate,
Forming a high-concentration second-conductivity-type drain region substantially at the center of the device-forming region so as to be exposed on the surface of the device-forming region; electrically connecting to the high-concentration second-conductivity-type drain region; Forming a drain electrode extending to the other element formation region across the first concentration type first conductivity type element isolation region, and surrounding the high concentration second conductivity type drain region except for a lower portion of the drain electrode and its vicinity; Forming a first conductivity type channel region in the element formation region adjacent to the high concentration first conductivity type element isolation region and exposed on a surface of the element formation region; Forming a high-concentration second-conductivity-type source region in the element formation region so as to be included in the isolation region and the first-conductivity-type channel region and to be exposed on the surface of the element formation region; Area and front Forming an insulating gate on the first conductive type channel region interposed between the high-concentration second conductive type drain region via a gate oxide film, and forming a gate electrode so as to be electrically connected to the insulating gate. Forming, forming a source electrode so as to be electrically connected to the high concentration second conductivity type source region and the high concentration first conductivity type element isolation region,
In a method of manufacturing a semiconductor device, comprising forming an insulating layer on the element formation region, a second conductive type having a shape elongated in a direction substantially perpendicular to a longitudinal direction of the drain electrode below and near the drain electrode. A plurality of electrodes including impurities are formed, and a second-conductivity-type impurity contained in the electrodes is diffused into the element formation region to form a high-concentration second-conductivity-type impurity region. The semiconductor device is characterized in that it is in contact with the element formation region via a second conductivity type impurity region.

【0016】[0016]

【発明の実施の形態】以下、本発明の一実施形態につい
て図面に基づき説明する。図1は、本発明の一実施形態
に係るLDMOSFETを示す模式図であり、(a)は
上面から見た状態を示す略平面図であり、(b)は
(a)におけるX−X’での略断面図である。なお、本
実施形態においては、説明の便宜上、第一導電型をp
型,第二導電型をn型として説明するが、p型とn型が
逆の場合にも適用される。また、本実施形態に係るLD
MOSFETの全体構成は、従来例として図4に示すL
DMOSFETの全体構成と同様であるので、同一箇所
には同一符号を付して説明を省略し、異なる箇所につい
て説明する。本実施形態に係るLDMOSFETは、従
来例として図4に示すLDMOSFETにおいて、ドレ
イン電極11の下部の絶縁層10内に、ドレイン電極1
1の長手方向に対して垂直に複数のポリシリコンから成
る電極13が形成され、電極13はn+型不純物領域1
4を介してn型エピタキシャル層2から成る素子形成領
域4に電気的に接続されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. 1A and 1B are schematic views showing an LDMOSFET according to an embodiment of the present invention, wherein FIG. 1A is a schematic plan view showing a state viewed from above, and FIG. FIG. In this embodiment, the first conductivity type is set to p for convenience of explanation.
Although the type and the second conductivity type will be described as n-type, the invention is also applied to the case where the p-type and the n-type are reversed. Further, the LD according to the present embodiment
The overall structure of a MOSFET is shown in FIG.
Since the overall configuration is the same as that of the DMOSFET, the same portions are denoted by the same reference numerals, description thereof will be omitted, and different portions will be described. The LDMOSFET according to the present embodiment is different from the LDMOSFET shown in FIG. 4 as a conventional example in that the drain electrode 1 is provided in the insulating layer 10 below the drain electrode 11.
A plurality of electrodes 13 made of polysilicon are formed perpendicularly to the longitudinal direction of the n + -type impurity region 1.
4, it is electrically connected to the element forming region 4 made of the n-type epitaxial layer 2.

【0017】以下、本実施形態に係るLDMOSFET
の製造工程について図面に基づき説明する。図2は、本
実施形態に係るLDMOSFETの製造工程を示す略断
面図である。先ず、p型半導体基板1上にn型エピタキ
シャル層2を形成し、n型エピタキシャル層2上にシリ
コン酸化膜等の絶縁層10を形成する。
Hereinafter, the LDMOSFET according to the present embodiment will be described.
Will be described with reference to the drawings. FIG. 2 is a schematic cross-sectional view illustrating a manufacturing process of the LDMOSFET according to the present embodiment. First, an n-type epitaxial layer 2 is formed on a p-type semiconductor substrate 1, and an insulating layer 10 such as a silicon oxide film is formed on the n-type epitaxial layer 2.

【0018】次に、絶縁層10上にフォトレジスト(図
示せず)を塗布し、露光,現像を行うことによりフォト
レジストを所定形状にパターニングし、パターニングさ
れたフォトレジストをマスクとして絶縁層10のエッチ
ングを行うことによりp+型素子分離領域3形成箇所上
の絶縁層10に開口部(図示せず)を形成し、プラズマ
アッシング等によりフォトレジストを除去する。
Next, a photoresist (not shown) is applied on the insulating layer 10 and is exposed and developed to pattern the photoresist into a predetermined shape. The patterned photoresist is used as a mask to form the insulating layer 10. An opening (not shown) is formed in the insulating layer 10 on the location where the p + -type element isolation region 3 is formed by etching, and the photoresist is removed by plasma ashing or the like.

【0019】次にボロン(B)等のp型不純物をデポ
し、酸化,ドライブ工程によりn型エピタキシャル層2
の表面からp型半導体基板1に到達するようにp+型素
子分離領域3を形成し、p型半導体基板1及びp+型素
子分離領域3により絶縁分離されたn型エピタキシャル
層2から成る素子形成領域4を形成する(図2
(a))。
Next, a p-type impurity such as boron (B) is deposited, and an n-type epitaxial layer 2 is formed by oxidation and drive steps.
A p + -type element isolation region 3 is formed so as to reach the p-type semiconductor substrate 1 from the surface of the device, and an element formation region including the n-type epitaxial layer 2 insulated and separated by the p-type semiconductor substrate 1 and the p + -type element isolation region 3 4 (FIG. 2)
(A)).

【0020】次に、素子形成領域4上の絶縁層10をエ
ッチングにより除去し、熱酸化等によりゲート酸化膜8
を形成し、後述するドレイン電極11形成箇所の下部及
びその近傍のゲート酸化膜8をエッチングにより除去し
て開口部13aを形成する。
Next, the insulating layer 10 on the element forming region 4 is removed by etching, and the gate oxide film 8 is formed by thermal oxidation or the like.
Is formed, and the gate oxide film 8 below and in the vicinity of a portion where a drain electrode 11 is formed, which will be described later, is removed by etching to form an opening 13a.

【0021】そして、n型エピタキシャル層2の開口部
13aが形成された面側全面にn型不純物が大量に拡散
されたポリシリコンを形成し、所定形状にパターニング
されたフォトレジスト(図示せず)をマスクとしてポリ
シリコンのエッチングを行うことにより、ポリシリコン
から成る絶縁ゲート9及び電極13を形成する(図2
(b))。このとき、電極13は、ドレイン電極11の
長手方向に対して垂直となるようにパターニングされて
いる。
A photoresist (not shown) is formed by forming polysilicon in which a large amount of n-type impurities are diffused over the entire surface of the n-type epitaxial layer 2 where the opening 13a is formed, and patterned into a predetermined shape. 2 is used as a mask to form an insulating gate 9 and an electrode 13 made of polysilicon.
(B)). At this time, the electrode 13 is patterned so as to be perpendicular to the longitudinal direction of the drain electrode 11.

【0022】次に、n型エピタキシャル層2の絶縁ゲー
ト9が形成された面側にフォトレジスト(図示せず)を
塗布し、露光,現像を行うことによりフォトレジストを
所定形状にパターニングする。
Next, a photoresist (not shown) is applied to the surface of the n-type epitaxial layer 2 on which the insulating gate 9 is formed, and the photoresist is patterned into a predetermined shape by performing exposure and development.

【0023】そして、パターニングされたフォトレジス
ト及び絶縁ゲート9をマスクとして、ボロン(B)等の
p型不純物をイオン注入し、フォトレジストを除去した
後、後工程で行うアニールにより素子形成領域4内の
内、ドレイン電極11の下部及びその近傍を除いた箇所
の、p+型素子分離領域3に隣接する箇所の素子形成領
域4の表面に露出し、かつ、素子形成領域4に内包され
るようにp型チャネル領域6を形成する。
Then, using the patterned photoresist and the insulating gate 9 as a mask, a p-type impurity such as boron (B) is ion-implanted, and the photoresist is removed. Among them, the portion excluding the lower portion of the drain electrode 11 and the vicinity thereof is exposed on the surface of the element forming region 4 adjacent to the p + -type element isolation region 3 and is included in the element forming region 4. A p-type channel region 6 is formed.

【0024】次に、所定形状にパターニングされたフォ
トレジスト(図示せず)をマスクとしてリン(P)等の
n型不純物をイオン注入し、フォトレジストを除去した
後、アニールを行うことにより素子形成領域4の略中央
に素子形成領域4の表面に露出するようにn+型ドレイ
ン領域5を形成するとともに、p+型素子分離領域3及
びp型チャネル領域6に内包され、かつ、素子形成領域
4の表面に露出するようにn+型ソース領域7を形成す
る(図2(c))。このアニール処理により、電極13
に大量に拡散されたn型不純物が素子形成領域4内に拡
散され、n+型不純物領域14が形成される。
Next, an n-type impurity such as phosphorus (P) is ion-implanted using a photoresist (not shown) patterned in a predetermined shape as a mask, the photoresist is removed, and annealing is performed to form an element. An n + -type drain region 5 is formed substantially at the center of the region 4 so as to be exposed on the surface of the element formation region 4, and is included in the p + -type device isolation region 3 and the p-type channel region 6. An n + type source region 7 is formed so as to be exposed on the surface (FIG. 2C). By this annealing treatment, the electrode 13
The n-type impurity diffused in a large amount is diffused into the element formation region 4 to form an n + -type impurity region 14.

【0025】最後に、n型エピタキシャル層2の絶縁ゲ
ート9が形成された面側全面にシリコン酸化膜等の絶縁
層10を形成し、n+型ドレイン領域5と電気的に接続
され、p+型素子分離領域3を跨いで隣接する素子形成
領域4まで延設されるようにアルミニウム(Al)等か
ら成るドレイン電極11を形成し、n+型ソース領域7
及びp+型素子分離領域3と電気的に接続されるように
アルミニウム(Al)等から成るソース電極12を形成
し、絶縁ゲート9と電気的に接続されるようにアルミニ
ウム(Al)等から成るゲート電極(図示せず)を形成
する。なお、絶縁ゲート9は、n+型ドレイン領域5と
n+型ソース領域7との間に介在するp型チャネル領域
6上にゲート酸化膜8を介して配置されている。
Finally, an insulating layer 10 such as a silicon oxide film is formed on the entire surface of the n-type epitaxial layer 2 on which the insulating gate 9 is formed, and is electrically connected to the n + -type drain region 5. A drain electrode 11 made of aluminum (Al) or the like is formed so as to extend to the adjacent element formation region 4 across the isolation region 3 and to form an n + type source region 7.
And a source electrode 12 made of aluminum (Al) or the like so as to be electrically connected to the p + -type element isolation region 3, and a gate made of aluminum (Al) or the like so as to be electrically connected to the insulated gate 9. An electrode (not shown) is formed. The insulating gate 9 is arranged on the p-type channel region 6 interposed between the n + -type drain region 5 and the n + -type source region 7 via the gate oxide film 8.

【0026】従って、本実施形態においては、電極13
が素子形成領域4の内、ドレイン電極11の下部及びそ
の近傍以外の領域とn+型不純物領域14を介してコン
タクトしているので、電極13はドレイン電極11が引
き出されていない領域の素子形成領域4と同電位とな
り、ドレイン電極11の下部及びその近傍の素子形成領
域4に対する電位の影響が抑制され、電位分布の均一化
が図られて高耐圧化が可能となる。
Therefore, in this embodiment, the electrode 13
Is in contact with a region other than the lower portion of the drain electrode 11 and its vicinity in the element formation region 4 via the n + -type impurity region 14, so that the electrode 13 is a region of the element formation region where the drain electrode 11 is not drawn out. 4, the potential of the element forming region 4 under the drain electrode 11 and the vicinity thereof is suppressed, and the potential distribution is made uniform, so that a high breakdown voltage can be achieved.

【0027】なお、本実施形態においては、電極13の
ドレイン電極11の長手方向に垂直な方向に対する長さ
が同じものを形成するようにしたが、これに限定される
必要はなく、例えば、図3に示すように素子形成領域4
の略中心から素子形成領域4の外周に向かうに従って、
電極13のドレイン電極11の長手方向に垂直な方向に
対する長さが長くなるように形成してもよい。つまり、
素子形成領域4の外周に向かうに従って、ドレイン電極
11と素子形成領域4との電位差が大きくなって空乏層
がさらに伸びるため、電極13をドレイン電極11から
より遠い箇所の素子形成領域4とn+型不純物領域14
を介してコンタクトさせることにより、よりドレイン電
極11の下部及びその近傍の素子形成領域4に対する電
位の影響が抑制され、電位分布の均一化が図られて高耐
圧化が可能となる。
In this embodiment, the electrode 13 is formed to have the same length in the direction perpendicular to the longitudinal direction of the drain electrode 11. However, the present invention is not limited to this. As shown in FIG.
From the approximate center to the outer periphery of the element forming region 4,
The electrode 13 may be formed such that the length in the direction perpendicular to the longitudinal direction of the drain electrode 11 is increased. That is,
As the potential difference between the drain electrode 11 and the element formation region 4 increases toward the outer periphery of the element formation region 4 and the depletion layer further extends, the electrode 13 is connected to the element formation region 4 farther from the drain electrode 11 and the n + type. Impurity region 14
, The influence of the potential on the lower part of the drain electrode 11 and the element forming region 4 near the drain electrode 11 is further suppressed, the potential distribution is made uniform, and the breakdown voltage can be increased.

【0028】また、本実施形態においては、ドレイン電
極11の下部及びその近傍にp型チャネル領域6を形成
しないようにしたが、必ずしもこれに限定される必要は
ない。
Further, in the present embodiment, the p-type channel region 6 is not formed below the drain electrode 11 and in the vicinity thereof, but it is not necessarily limited to this.

【0029】[0029]

【発明の効果】請求項1記載の発明は、第一導電型半導
体基板と、第一導電型半導体基板の一主表面上に形成さ
れ、表面から第一導電型半導体基板に到達するように形
成された高濃度第一導電型素子分離領域及び第一導電型
半導体基板により絶縁分離された第二導電型エピタキシ
ャル層から成る素子形成領域と、素子形成領域の表面に
露出するように素子形成領域内の略中心に形成された高
濃度第二導電型ドレイン領域と、高濃度第二導電型ドレ
イン領域に電気的に接続され、高濃度第一導電型素子分
離領域を跨いで他の素子形成領域に引き出されて成るド
レイン電極と、ドレイン電極の下部及びその近傍を除い
て高濃度第二導電型ドレイン領域を囲むとともに高濃度
第一導電型素子分離領域に隣接し、素子形成領域の表面
に露出するように素子形成領域内に形成された第一導電
型チャネル領域と、高濃度第一導電型素子分離領域及び
第一導電型チャネル領域に内包され、素子形成領域の表
面に露出するように素子形成領域内に形成された高濃度
第二導電型ソース領域と、高濃度第二導電型ソース領域
と高濃度第二導電型ドレイン領域との間に介在する前記
第一導電型チャネル領域上にゲート酸化膜を介して形成
された絶縁ゲートと、絶縁ゲートと電気的に接続される
ように形成されたゲート電極と、高濃度第二導電型ソー
ス領域及び高濃度第一導電型素子分離領域と電気的に接
続されるように形成されたソース電極と、素子形成領域
上に形成された絶縁層とを有して成る半導体装置におい
て、ドレイン電極の下部及びその近傍にドレイン電極の
長手方向に対して略垂直方向に長い形状の電極を複数形
成し、電極を高濃度第二導電型不純物領域を介して素子
形成領域とコンタクトさせたので、電極はドレイン電極
が引き出されていない領域の素子形成領域と同電位とな
り、ドレイン電極の下部及びその近傍の素子形成領域に
対する電位の影響が抑制され、電位分布の均一化が図ら
れて、素子分離領域を跨いで高電位のドレイン電極を配
線する場合においてもドレイン−ソース間の耐圧が低下
することのない半導体装置を提供することができた。
According to the first aspect of the present invention, the first conductive type semiconductor substrate is formed on one main surface of the first conductive type semiconductor substrate and formed so as to reach the first conductive type semiconductor substrate from the surface. An element formation region comprising a high-concentration first conductivity type device isolation region and a second conductivity type epitaxial layer insulated and separated by the first conductivity type semiconductor substrate; The high-concentration second conductivity type drain region formed substantially at the center of the semiconductor device and the high-concentration second conductivity type drain region are electrically connected to the other element formation regions across the high-concentration first conductivity type element isolation region. The extracted drain electrode and the high-concentration second-conductivity-type drain region are surrounded except for the lower portion and the vicinity of the drain electrode, and are adjacent to the high-concentration first-conductivity-type element isolation region and exposed on the surface of the element formation region. like The first conductivity type channel region formed in the element formation region, the high concentration first conductivity type element isolation region and the first conductivity type channel region are included in the element formation region so as to be exposed on the surface of the element formation region. A high-concentration second conductivity type source region formed on the first conductivity type channel region interposed between the high-concentration second conductivity type source region and the high-concentration second conductivity type drain region. An insulating gate formed through the gate, a gate electrode formed to be electrically connected to the insulating gate, and electrically connected to the high-concentration second conductivity type source region and the high-concentration first conductivity type element isolation region A semiconductor device having a source electrode formed so as to be formed, and an insulating layer formed on an element formation region, in a direction substantially perpendicular to a longitudinal direction of the drain electrode at and below the drain electrode. Long A plurality of electrodes are formed, and the electrodes are brought into contact with the element formation region via the high-concentration second conductivity type impurity region, so that the electrodes have the same potential as the element formation region where the drain electrode is not drawn out, and the drain The influence of the potential on the element formation region below the electrode and in the vicinity thereof is suppressed, the potential distribution is made uniform, and even when a high-potential drain electrode is wired across the element isolation region, the drain-source A semiconductor device without a decrease in breakdown voltage can be provided.

【0030】請求項2記載の発明は、請求項1記載の半
導体装置において、電極を、素子形成領域の略中心から
外周に向かうに従って、ドレイン電極の長手方向に対す
る長さを長くするようにしたので、更にドレイン電極の
下部及びその近傍の素子形成領域に対する電位の影響が
抑制され、電位分布の均一化が図られる。
According to a second aspect of the present invention, in the semiconductor device according to the first aspect, the length of the drain electrode in the longitudinal direction increases from substantially the center to the outer periphery of the element formation region. Further, the influence of the potential on the lower part of the drain electrode and the element formation region in the vicinity thereof is suppressed, and the potential distribution is made uniform.

【0031】請求項3記載の発明は、第一導電型半導体
基板上に、表面から第一導電型半導体基板に到達するよ
うに形成された高濃度第一導電型素子分離領域及び第一
導電型半導体基板により絶縁分離された第二導電型エピ
タキシャル層から成る素子形成領域を形成し、素子形成
領域の表面に露出するように素子形成領域内の略中心に
高濃度第二導電型ドレイン領域を形成し、高濃度第二導
電型ドレイン領域に電気的に接続され、高濃度第一導電
型素子分離領域を跨いで他の素子形成領域に引き出され
て成るドレイン電極を形成し、ドレイン電極の下部及び
その近傍を除いて高濃度第二導電型ドレイン領域を囲む
とともに高濃度第一導電型素子分離領域に隣接し、素子
形成領域の表面に露出するように素子形成領域内に第一
導電型チャネル領域を形成し、高濃度第一導電型素子分
離領域及び第一導電型チャネル領域に内包され、素子形
成領域の表面に露出するように素子形成領域内に高濃度
第二導電型ソース領域を形成し、高濃度第二導電型ソー
ス領域と高濃度第二導電型ドレイン領域との間に介在す
る第一導電型チャネル領域上にゲート酸化膜を介して絶
縁ゲートを形成し、絶縁ゲートと電気的に接続されるよ
うにゲート電極を形成し、高濃度第二導電型ソース領域
及び高濃度第一導電型素子分離領域と電気的に接続され
るようにソース電極を形成し、素子形成領域上に絶縁層
を形成して成る半導体装置の製造方法において、ドレイ
ン電極の下部及びその近傍にドレイン電極の長手方向に
対して略垂直方向に長い形状の、第二導電型不純物を含
んで成る電極を複数形成し、電極に含まれた第二導電型
不純物を素子形成領域に拡散させることにより高濃度第
二導電型不純物領域を形成し、電極を高濃度第二導電型
不純物領域を介して素子形成領域とコンタクトさせたの
で、電極はドレイン電極が引き出されていない領域の素
子形成領域と同電位となり、ドレイン電極の下部及びそ
の近傍の素子形成領域に対する電位の影響が抑制され、
電位分布の均一化が図られて、素子分離領域を跨いで高
電位のドレイン電極を配線する場合においてもドレイン
−ソース間の耐圧が低下することのない半導体装置の製
造方法を提供することができた。
According to a third aspect of the present invention, there is provided a high-concentration first conductivity type element isolation region formed on a first conductivity type semiconductor substrate so as to reach the first conductivity type semiconductor substrate from a surface. Forming an element formation region comprising a second conductivity type epitaxial layer insulated and separated by a semiconductor substrate, and forming a high concentration second conductivity type drain region substantially at the center of the element formation region so as to be exposed on the surface of the element formation region Forming a drain electrode that is electrically connected to the high-concentration second conductivity type drain region and is drawn out to another element formation region across the high-concentration first conductivity type element isolation region; Except for the vicinity of the high-concentration second-conductivity-type drain region except for the vicinity thereof, the first-conductivity-type channel region is adjacent to the high-concentration first-conductivity-type element isolation region and is exposed in the element formation region so as to be exposed on the surface of the element formation region. Forming a high-concentration second-conductivity-type source region in the element formation region so as to be included in the high-concentration first-conductivity-type element isolation region and the first-conductivity-type channel region and exposed on the surface of the element formation region. Forming an insulating gate via a gate oxide film on the first conductivity type channel region interposed between the high concentration second conductivity type source region and the high concentration second conductivity type drain region, and electrically connecting to the insulation gate. A gate electrode is formed so as to be connected, and a source electrode is formed so as to be electrically connected to the high-concentration second conductivity type source region and the high-concentration first conductivity type element isolation region, and is insulated on the element formation region. In a method of manufacturing a semiconductor device comprising forming a layer, a plurality of electrodes including a second conductivity type impurity are formed below and in the vicinity of the drain electrode, the shape being long in a direction substantially perpendicular to the longitudinal direction of the drain electrode. To the electrode Since the high concentration second conductivity type impurity region was formed by diffusing the doped second conductivity type impurity into the element formation region, and the electrode was brought into contact with the element formation region via the high concentration second conductivity type impurity region, The electrode has the same potential as the element formation region in the region where the drain electrode is not drawn out, and the influence of the potential on the element formation region below the drain electrode and in the vicinity thereof is suppressed,
It is possible to provide a method for manufacturing a semiconductor device in which the potential distribution is made uniform and the withstand voltage between the drain and the source does not decrease even when a high-potential drain electrode is wired across element isolation regions. Was.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係るLDMOSFETを
示す模式図であり、(a)は上面から見た状態を示す略
平面図であり、(b)は(a)におけるX−X’での略
断面図である。
FIGS. 1A and 1B are schematic views showing an LDMOSFET according to an embodiment of the present invention, wherein FIG. 1A is a schematic plan view showing a state viewed from above, and FIG. FIG.

【図2】本実施形態に係るLDMOSFETの製造工程
を示す略断面図である。
FIG. 2 is a schematic cross-sectional view showing a manufacturing process of the LDMOSFET according to the embodiment.

【図3】本発明の他の実施形態に係るLDMOSFET
を示す模式図であり、(a)は上面から見た状態を示す
略平面図であり、(b)は(a)におけるY−Y’での
略断面図である。
FIG. 3 shows an LDMOSFET according to another embodiment of the present invention.
(A) is a schematic plan view showing a state viewed from above, and (b) is a schematic cross-sectional view taken along the line YY 'in (a).

【図4】従来例に係るLDMOSFETを示す模式図で
あり、(a)は上面から見た状態を示す略平面図であ
り、(b)は(a)におけるZ−Z’での略断面図であ
る。
4A and 4B are schematic views showing an LDMOSFET according to a conventional example, in which FIG. 4A is a schematic plan view showing a state viewed from above, and FIG. 4B is a schematic cross-sectional view taken along line ZZ ′ in FIG. It is.

【図5】従来例に係るLDMOSFETの素子形成領域
の電位分布を示す模式図であり、(a)はドレイン電極
をp+型素子形成領域を跨いで外部に引き出さない場合
の電位分布を示す模式図であり、(b)はドレイン電極
をp+型素子形成領域を跨いで外部に引き出す場合の電
位分布を示す模式図である。
5A and 5B are schematic diagrams showing a potential distribution in an element formation region of an LDMOSFET according to a conventional example, and FIG. 5A is a schematic diagram showing a potential distribution when a drain electrode is not drawn out across ap + -type element formation region. (B) is a schematic diagram showing a potential distribution when the drain electrode is drawn out to the outside across the p + -type element formation region.

【符号の説明】[Explanation of symbols]

1 p型半導体基板 2 n型エピタキシャル層 3 p+型素子分離領域 4 素子形成領域 5 n+型ドレイン領域 6 p型チャネル領域 7 n+型ソース領域 8 ゲート酸化膜 9 絶縁ゲート 10 絶縁層 11 ドレイン電極 12 ソース電極 13 電極 13a 開口部 14 n+型不純物領域 REFERENCE SIGNS LIST 1 p-type semiconductor substrate 2 n-type epitaxial layer 3 p + -type element isolation region 4 element formation region 5 n + -type drain region 6 p-type channel region 7 n + -type source region 8 gate oxide film 9 insulated gate 10 insulating layer 11 drain electrode 12 source Electrode 13 Electrode 13a Opening 14 n + type impurity region

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第一導電型半導体基板と、該第一導電型
半導体基板の一主表面上に形成され、表面から前記第一
導電型半導体基板に到達するように形成された高濃度第
一導電型素子分離領域及び前記第一導電型半導体基板に
より絶縁分離された第二導電型エピタキシャル層から成
る素子形成領域と、該素子形成領域の表面に露出するよ
うに前記素子形成領域内の略中心に形成された高濃度第
二導電型ドレイン領域と、該高濃度第二導電型ドレイン
領域に電気的に接続され、前記高濃度第一導電型素子分
離領域を跨いで他の前記素子形成領域に引き出されて成
るドレイン電極と、該ドレイン電極の下部及びその近傍
を除いて前記高濃度第二導電型ドレイン領域を囲むとと
もに前記高濃度第一導電型素子分離領域に隣接し、前記
素子形成領域の表面に露出するように前記素子形成領域
内に形成された第一導電型チャネル領域と、前記高濃度
第一導電型素子分離領域及び第一導電型チャネル領域に
内包され、前記素子形成領域の表面に露出するように前
記素子形成領域内に形成された高濃度第二導電型ソース
領域と、該高濃度第二導電型ソース領域と前記高濃度第
二導電型ドレイン領域との間に介在する前記第一導電型
チャネル領域上にゲート酸化膜を介して形成された絶縁
ゲートと、該絶縁ゲートと電気的に接続されるように形
成されたゲート電極と、前記高濃度第二導電型ソース領
域及び高濃度第一導電型素子分離領域と電気的に接続さ
れるように形成されたソース電極と、前記素子形成領域
上に形成された絶縁層とを有して成る半導体装置におい
て、前記ドレイン電極の下部及びその近傍に前記ドレイ
ン電極の長手方向に対して略垂直方向に長い形状の電極
を複数形成し、該電極を高濃度第二導電型不純物領域を
介して前記素子形成領域とコンタクトさせたことを特徴
とする半導体装置。
A first conductive type semiconductor substrate; and a high-concentration first semiconductor substrate formed on one main surface of the first conductive type semiconductor substrate and formed to reach the first conductive type semiconductor substrate from the surface. An element formation region including a conductive type element isolation region and a second conductivity type epitaxial layer insulated and separated by the first conductivity type semiconductor substrate; and a substantially center in the element formation region so as to be exposed on a surface of the element formation region. The high-concentration second conductivity type drain region formed in the, and is electrically connected to the high-concentration second conductivity type drain region, straddling the high-concentration first conductivity type element isolation region to the other element formation region A drain electrode that is drawn out, surrounds the high-concentration second conductivity type drain region except for a lower portion of the drain electrode and its vicinity, and is adjacent to the high-concentration first conductivity type element isolation region; surface A first conductivity type channel region formed in the element formation region so as to be exposed to the high concentration first conductivity type device isolation region and the first conductivity type channel region; A high-concentration second-conductivity-type source region formed in the element formation region so as to be exposed, and the second high-concentration second-conductivity-type drain region interposed between the high-concentration second-conductivity-type source region and the high-concentration second-conductivity-type drain region. An insulated gate formed on the one conductivity type channel region via a gate oxide film; a gate electrode formed to be electrically connected to the insulated gate; In a semiconductor device having a source electrode formed so as to be electrically connected to a first conductivity type element isolation region and an insulating layer formed on the element formation region, a lower portion of the drain electrode And its A plurality of electrodes having a shape that is long in a direction substantially perpendicular to the longitudinal direction of the drain electrode are formed on the side, and the electrodes are brought into contact with the element formation region via a high-concentration second conductivity type impurity region. Semiconductor device.
【請求項2】 前記電極を、前記素子形成領域の略中心
から外周に向かうに従って、前記ドレイン電極の長手方
向に対する長さを長くするようにしたことを特徴とする
請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the length of the drain electrode in the longitudinal direction increases from a substantially center of the element formation region to an outer periphery of the element formation region.
【請求項3】 第一導電型半導体基板上に、表面から前
記第一導電型半導体基板に到達するように形成された高
濃度第一導電型素子分離領域及び前記第一導電型半導体
基板により絶縁分離された第二導電型エピタキシャル層
から成る素子形成領域を形成し、該素子形成領域の表面
に露出するように前記素子形成領域内の略中心に高濃度
第二導電型ドレイン領域を形成し、該高濃度第二導電型
ドレイン領域に電気的に接続され、前記高濃度第一導電
型素子分離領域を跨いで他の前記素子形成領域に引き出
されて成るドレイン電極を形成し、該ドレイン電極の下
部及びその近傍を除いて前記高濃度第二導電型ドレイン
領域を囲むとともに前記高濃度第一導電型素子分離領域
に隣接し、前記素子形成領域の表面に露出するように前
記素子形成領域内に第一導電型チャネル領域を形成し、
前記高濃度第一導電型素子分離領域及び第一導電型チャ
ネル領域に内包され、前記素子形成領域の表面に露出す
るように前記素子形成領域内に高濃度第二導電型ソース
領域を形成し、該高濃度第二導電型ソース領域と前記高
濃度第二導電型ドレイン領域との間に介在する前記第一
導電型チャネル領域上にゲート酸化膜を介して絶縁ゲー
トを形成し、該絶縁ゲートと電気的に接続されるように
ゲート電極を形成し、前記高濃度第二導電型ソース領域
及び高濃度第一導電型素子分離領域と電気的に接続され
るようにソース電極を形成し、前記素子形成領域上に絶
縁層を形成して成る半導体装置の製造方法において、前
記ドレイン電極の下部及びその近傍に前記ドレイン電極
の長手方向に対して略垂直方向に長い形状の、第二導電
型不純物を含んで成る電極を複数形成し、該電極に含ま
れた第二導電型不純物を前記素子形成領域に拡散させる
ことにより高濃度第二導電型不純物領域を形成し、前記
電極を前記高濃度第二導電型不純物領域を介して前記素
子形成領域とコンタクトさせたことを特徴とする半導体
装置の製造方法。
3. A high-concentration first-conductivity-type element isolation region formed on a first-conductivity-type semiconductor substrate so as to reach the first-conductivity-type semiconductor substrate from the surface and insulated by the first-conductivity-type semiconductor substrate. Forming an element formation region consisting of the separated second conductivity type epitaxial layer, forming a high concentration second conductivity type drain region substantially at the center of the element formation region so as to be exposed on the surface of the element formation region; A drain electrode electrically connected to the high-concentration second-conductivity-type drain region and extending to the other element formation region across the high-concentration first-conductivity-type element isolation region; Except for the lower part and the vicinity thereof, surrounding the high-concentration second conductivity type drain region, adjacent to the high-concentration first conductivity type element isolation region, and inside the element formation region so as to be exposed on the surface of the element formation region. Forming a first conductivity type channel region,
Included in the high-concentration first-conductivity-type element isolation region and the first-conductivity-type channel region, forming a high-concentration second-conductivity-type source region in the element formation region so as to be exposed on the surface of the element formation region, Forming an insulating gate via a gate oxide film on the first conductivity type channel region interposed between the high concentration second conductivity type source region and the high concentration second conductivity type drain region; Forming a gate electrode so as to be electrically connected; forming a source electrode so as to be electrically connected to the high-concentration second conductivity type source region and the high-concentration first conductivity type element isolation region; In a method for manufacturing a semiconductor device in which an insulating layer is formed on a formation region, a second conductivity type impurity having a shape elongated in a direction substantially perpendicular to a longitudinal direction of the drain electrode is provided below and near the drain electrode. Comprise A plurality of electrodes, and forming a high-concentration second-conductivity-type impurity region by diffusing a second-conductivity-type impurity contained in the electrode into the element formation region. A method for manufacturing a semiconductor device, comprising: contacting the element formation region via an impurity region.
JP4513997A 1997-02-28 1997-02-28 Semiconductor device and its manufacturing method Pending JPH10242455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4513997A JPH10242455A (en) 1997-02-28 1997-02-28 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4513997A JPH10242455A (en) 1997-02-28 1997-02-28 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JPH10242455A true JPH10242455A (en) 1998-09-11

Family

ID=12710958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4513997A Pending JPH10242455A (en) 1997-02-28 1997-02-28 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH10242455A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054756A (en) * 2007-08-27 2009-03-12 Shindengen Electric Mfg Co Ltd Field effect semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054756A (en) * 2007-08-27 2009-03-12 Shindengen Electric Mfg Co Ltd Field effect semiconductor device

Similar Documents

Publication Publication Date Title
KR100423249B1 (en) Horizontal type semiconductor device
US6639275B2 (en) Semiconductor device with vertical MOSFET
KR100363353B1 (en) Semiconductor device and manufacturing method thereof
US6110799A (en) Trench contact process
JP4860102B2 (en) Semiconductor device
US7906388B2 (en) Semiconductor device and method for manufacture
KR101418398B1 (en) High voltage semiconductor device having field shaping layer and method of fabricating the same
JP2001102576A (en) Semiconductor device
US6160288A (en) Vertical type misfet having improved pressure resistance
TWI414023B (en) Method for making a semiconductor device
JP2010258153A (en) Semiconductor device and manufacturing method thereof
US5970344A (en) Method of manufacturing semiconductor device having gate electrodes formed in trench structure before formation of source layers
US6022790A (en) Semiconductor process integration of a guard ring structure
JP2000216385A (en) Trench-gate type semiconductor device
JPH10242454A (en) Semiconductor device
JP2004363302A (en) Mosfet
JPH10242455A (en) Semiconductor device and its manufacturing method
JP2007324361A (en) Semiconductor device and its method for manufacturing
JPH1174517A (en) Semiconductor device
US6180981B1 (en) Termination structure for semiconductor devices and process for manufacture thereof
JPH10303421A (en) Semiconductor device and fabrication thereof
JPH10223886A (en) Semiconductor device
JPH10163489A (en) Semiconductor device and its manufacture
JPH09260503A (en) Semiconductor device
JPH10242452A (en) Semiconductor device and its manufacturing method