JPH10241937A - Magnetic recording medium and magnetic recorder using it - Google Patents

Magnetic recording medium and magnetic recorder using it

Info

Publication number
JPH10241937A
JPH10241937A JP4036997A JP4036997A JPH10241937A JP H10241937 A JPH10241937 A JP H10241937A JP 4036997 A JP4036997 A JP 4036997A JP 4036997 A JP4036997 A JP 4036997A JP H10241937 A JPH10241937 A JP H10241937A
Authority
JP
Japan
Prior art keywords
film
magnetic
recording medium
magnetic recording
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4036997A
Other languages
Japanese (ja)
Inventor
Kazusukatsu Igarashi
万壽和 五十嵐
Tomoo Yamamoto
朋生 山本
Kazuyoshi Yoshida
和悦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4036997A priority Critical patent/JPH10241937A/en
Publication of JPH10241937A publication Critical patent/JPH10241937A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a magnetic recording medium having a high coercive force and a high squareness ratio by improving the in-plane orientational property by using a Cr alloy film formed on a highly oriented Cr film as the substrate of a successively epitaxially grown magnetic film. SOLUTION: After a bcc (100)-oriented Cr film 5 is formed on a nonmagnetic substrate 11, a Cr alloy film 6 is formed on the Cr film 5 and the in-plane orientation property of the film 6 is improved. At the time of forming the films 5 and 6, the thickness of the film 5 is adjusted to about 5-80nm and the optimum thickness of the film 6 is decided to about 1-20nm from the relation among the magnitudes of the lattice constants of the films 5 and 6 and a magnetic film 13. The lattice constant of the film 6 is adjusted to 2.95Å by adding at least one kind of element selected from among Ti, Si, Mo, V, W, Ta, Zr, Mn, Au, Ag, Pd, Cu, Ir, Re, and Ga to Cr which is the main component of the film 6. Therefore, medium noise can be reduced by suppressing disturbances at bit boundaries.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気記録装置および
それを用いる磁気記録媒体に関する。
The present invention relates to a magnetic recording device and a magnetic recording medium using the same.

【0002】[0002]

【従来の技術】情報化社会の進行と共に、日常的に扱う
情報量は増加の一途を辿っている。これに伴って、磁気
記録装置に対する高密度,高記録容量化の要求が強くな
っている。代表的な磁気記録装置である磁気ディスク装
置を高密度化していった場合、一般に、従来の電磁誘導
型磁気ヘッドでは、再生出力が低下し、再生が困難にな
る。このため、特開昭51−44917 号公報記載の様に、記
録用磁気ヘッドと再生用磁気ヘッドを別にし、再生用磁
気ヘッドとして、高記録密度化した場合にも高い出力の
得られる磁気抵抗効果を利用した磁気ヘッドを用いるこ
とが検討されている。
2. Description of the Related Art With the progress of the information society, the amount of information handled on a daily basis is steadily increasing. Along with this, there is a strong demand for higher density and higher recording capacity for magnetic recording devices. When the density of a magnetic disk device, which is a typical magnetic recording device, is increased, in general, the reproduction output of a conventional electromagnetic induction type magnetic head is reduced, making reproduction difficult. For this reason, as described in Japanese Patent Application Laid-Open No. 51-44917, a recording magnetic head and a reproducing magnetic head are separated from each other. Use of a magnetic head utilizing the effect has been studied.

【0003】この磁気抵抗効果型の磁気ヘッドは再生出
力が高く、かつ、ヘッドの抵抗が低いため発生する熱雑
音が小さい。このため、従来、電磁誘導型磁気ヘッドか
ら発生する大きなノイズに隠れていた磁気記録媒体に起
因するノイズが装置全体のノイズに対して大きな割合を
占めるようになる。したがって、磁気抵抗効果型磁気ヘ
ッドを用いて高記録密度化を実現するためには、磁気記
録媒体に起因するノイズ(媒体ノイズ)を低減する必要
がある。
The magnetoresistive head has a high reproduction output and low thermal noise due to the low resistance of the head. Therefore, the noise caused by the magnetic recording medium, which has been hidden by the large noise generated from the electromagnetic induction type magnetic head, occupies a large proportion of the noise of the entire apparatus. Therefore, in order to achieve high recording density using a magnetoresistive head, it is necessary to reduce noise (medium noise) caused by a magnetic recording medium.

【0004】媒体ノイズは、ビット境界から発生する反
磁界によりビット境界自身が鋸状に乱れてしまうために
発生すると考えられ、高密度に記録しようとすればする
ほど、大きくなってしまう。この媒体ノイズを低減する
方法として、特開平8−63734号記載の磁性粒子を微細化
する方法がある。さらに、特開平8−138228 号記載の高
磁気異方性エネルギ材料を用いて微細化による熱揺らぎ
の影響を低減する方法が検討されている。
It is considered that the medium noise is generated because the bit boundary itself is distorted in a sawtooth shape due to the demagnetizing field generated from the bit boundary. The higher the recording density is, the larger the medium noise becomes. As a method for reducing the medium noise, there is a method for reducing the size of magnetic particles described in JP-A-8-63734. Further, a method of reducing the influence of thermal fluctuation due to miniaturization by using a high magnetic anisotropic energy material described in Japanese Patent Application Laid-Open No. 8-138228 has been studied.

【0005】[0005]

【発明が解決しようとする課題】高磁気異方性エネルギ
材料は、従来のCoCrTa系磁性材料に比べて格子定
数が大きく、下地にCr膜を用いると格子ミスマッチが
起こり、保磁力が低下する。下地にCr合金膜を用いる
と、面内配向性が低下し、十分な保磁力や角型比が得ら
れず、問題である。
The high magnetic anisotropic energy material has a larger lattice constant than the conventional CoCrTa-based magnetic material. If a Cr film is used as an underlayer, a lattice mismatch occurs, and the coercive force decreases. If a Cr alloy film is used as a base, in-plane orientation decreases, and a sufficient coercive force and squareness cannot be obtained, which is a problem.

【0006】本発明の目的は、Cr合金膜の面内配向性
を向上し、高い保磁力や角型比を得ることにより、高密
度記録に好適な磁気記録媒体、およびこれを用いて1平
方インチあたり1.5 ギガビット以上の記録密度を実現
する磁気記録装置を提供することにある。
An object of the present invention is to improve the in-plane orientation of a Cr alloy film and obtain a high coercive force and a squareness ratio, so that a magnetic recording medium suitable for high-density recording and a square recording medium using the same are used. It is an object of the present invention to provide a magnetic recording apparatus which realizes a recording density of 1.5 gigabits per inch or more.

【0007】[0007]

【課題を解決するための手段】上記目的は、高配向Cr
膜上にCr合金膜を形成したものを、これに続いてエピ
タキシャル成長する磁性膜の下地とすることによって達
成される。
The object of the present invention is to provide a highly oriented Cr.
This is achieved by forming a Cr alloy film on the film as a base for a magnetic film which is subsequently epitaxially grown.

【0008】図1を用いて本発明の原理を説明する。非
磁性基板11の上に形成されたCr膜5はbcc(10
0)配向が発達しており、これに続いてCr合金膜6を
形成すると、エピタキシャル成長してbcc(100)配
向が発達する。このとき、Cr合金膜6のバルクの格子
定数は、Cr膜5のそれに比べて大きめであるので、C
r合金膜6表面の格子定数は、Cr合金膜6が厚くなる
に従って大きくなり、バルクの値に近づくと考えられ
る。そこで、Cr合金膜6のバルクの格子定数を磁性膜
13のhcp構造c軸長の1/√2倍より大きめにして
おけば、Cr合金膜6が厚くなり過ぎて配向が乱れる前
に、格子ミスマッチがなくなる厚さとなり、異方性磁界
の低減を抑制できる。
The principle of the present invention will be described with reference to FIG. The Cr film 5 formed on the non-magnetic substrate 11 has a bcc (10
0) Orientation has been developed, and when the Cr alloy film 6 is subsequently formed, it is epitaxially grown and the bcc (100) orientation is developed. At this time, since the bulk lattice constant of the Cr alloy film 6 is larger than that of the Cr film 5,
It is considered that the lattice constant of the surface of the r alloy film 6 increases as the thickness of the Cr alloy film 6 increases, and approaches the bulk value. Therefore, if the bulk lattice constant of the Cr alloy film 6 is set to be larger than 1 / √2 times the c-axis length of the hcp structure of the magnetic film 13, the lattice constant becomes large before the Cr alloy film 6 becomes too thick and the orientation is disturbed. The thickness is such that the mismatch is eliminated, and the reduction of the anisotropic magnetic field can be suppressed.

【0009】Cr膜5は、5nm以上あれば、bcc
(100)配向がある程度発達する。80nmを超えると
磁性膜13の粒が大きくなり過ぎて、媒体ノイズが増大
するので好ましくない。bcc(100)配向が十分発達
し、かつ、媒体ノイズが小さいのは、Cr膜5が15n
m以上,50nm未満の時である。
If the Cr film 5 has a thickness of 5 nm or more, bcc
The (100) orientation develops to some extent. If the thickness exceeds 80 nm, the grains of the magnetic film 13 become too large, and the medium noise increases. The reason why the bcc (100) orientation is sufficiently developed and the medium noise is small is that the Cr film 5 has a thickness of 15n.
m or more and less than 50 nm.

【0010】Cr合金膜6の最適厚さは、Cr膜5とC
r合金膜6と磁性膜13の格子定数の大小関係より定ま
る。磁性膜13が同じときには、Cr合金膜6の格子定
数が大きいほど薄くできる。ただし、Cr膜5とCr合
金膜6の格子定数の差が大きくなるほどエピタキシャル
成長しにくくなり、格子ミスマッチが6%を超えるとエ
ピタキシャル成長しない。このときのCr合金膜6の厚
さは、1nm程度である。一方、Cr合金膜6を20n
mを超えて厚くすると、十分bcc(100)配向の発達
したCr膜5上のCr合金膜6でも表面の配向が乱れて
しまう。Cr合金膜6の格子定数が2.95Å 未満だ
と、異方性磁界が大きな磁性膜では、Cr合金膜6を2
0nm以上成長させる必要がある。Cr合金膜6の格子
定数が2.95ÅになるCrの組成は、Tiのような原子半
径が比較的小さい添加元素で85at%程度、Wのよう
な原子半径が比較的大きな添加元素で95at%程度で
ある。
[0010] The optimum thickness of the Cr alloy film 6 is the same as that of the Cr film 5 and C
It is determined from the magnitude relation between the lattice constants of the r alloy film 6 and the magnetic film 13. When the magnetic films 13 are the same, the larger the lattice constant of the Cr alloy film 6, the thinner it can be. However, as the difference between the lattice constants of the Cr film 5 and the Cr alloy film 6 increases, epitaxial growth becomes more difficult. If the lattice mismatch exceeds 6%, epitaxial growth does not occur. At this time, the thickness of the Cr alloy film 6 is about 1 nm. On the other hand, the Cr alloy film 6
If the thickness exceeds m, the orientation of the surface of the Cr alloy film 6 on the Cr film 5 having sufficiently developed bcc (100) orientation will be disturbed. If the lattice constant of the Cr alloy film 6 is less than 2.95 °, the Cr alloy film 6 may be 2
It is necessary to grow 0 nm or more. The composition of Cr at which the lattice constant of the Cr alloy film 6 becomes 2.95 ° is about 85 at% for an additive element having a relatively small atomic radius such as Ti, and about 95 at% for an additive element having a relatively large atomic radius such as W. It is.

【0011】磁性膜13のhcp構造c軸長をLm,C
r合金層6のbcc構造格子定数をLcとするとき、
0.72Lm<Lc<0.79Lmの関係があると、上記
条件が満たされる。
The c-axis length of the hcp structure of the magnetic film 13 is represented by Lm, C
When the bcc structure lattice constant of the r alloy layer 6 is Lc,
If 0.72Lm <Lc <0.79Lm, the above condition is satisfied.

【0012】Cr合金膜の組成は、Crのほか、Ti,
Si,Mo,V,W,Ta,Zr,Mn,Au,Ag,
Pd,Cu,Ir,W,Re,Gaの中から選ばれた少
なくとも一つの元素を含むと、bcc構造で格子定数が
Crより大きくなる。磁性膜に含まれる元素と同じもの
が入っているとエピタキシャル成長が起りやすくなる。
特にTi,Si,Mo,Vを含んでいる場合には、粒の
大きさがそろうので、ノイズが下げられる。
The composition of the Cr alloy film is Cr, Ti,
Si, Mo, V, W, Ta, Zr, Mn, Au, Ag,
When at least one element selected from Pd, Cu, Ir, W, Re, and Ga is included, the lattice constant becomes larger than Cr in the bcc structure. If the same element as that contained in the magnetic film is contained, epitaxial growth is likely to occur.
In particular, when Ti, Si, Mo, and V are included, noise is reduced because the size of the grains is uniform.

【0013】磁性膜は、hcp構造のCoを主成分とす
る合金で、CrとPt,Pd,Smを含むことにより、
高異方性エネルギ材料となる。このときc軸長は、P
t,Pd,Smを含まない場合に比べて1%程度大き
い。さらに好ましくはTa,Ti,Zr,Ni,Fe,
Mn,Au,Ag,Cu,Ir,W,Re,Gaの中か
ら選ばれた少なくとも一つの元素を含んでいると、成膜
条件を変えることなく静磁気特性を変えられるので、装
置仕様に合わせるのに有用である。なかでも、Ta,T
iを含む場合には、Crの偏析を促進し磁性粒子間の相
互作用を下げるので、ノイズが下がる。特にTaの含有
率が6at%以上あると、磁性粒子自身の細分化が促進
され、ノイズが下がる。Cr偏析の促進には、Zr,A
u,Ag,Cu,Irも有効である。磁性膜が非磁性膜
によって2つ層に分割されている場合にも、熱揺らぎを
抑制する本発明は有効である。
The magnetic film is an alloy mainly composed of hcp structure Co and contains Cr, Pt, Pd, and Sm.
It becomes a highly anisotropic energy material. At this time, the c-axis length is P
It is about 1% larger than the case where t, Pd, and Sm are not included. More preferably, Ta, Ti, Zr, Ni, Fe,
When at least one element selected from Mn, Au, Ag, Cu, Ir, W, Re, and Ga is included, the magnetostatic characteristics can be changed without changing the film forming conditions, and thus, it is adjusted to the device specifications. Useful for Above all, Ta, T
When i is contained, the segregation of Cr is promoted and the interaction between the magnetic particles is reduced, so that the noise is reduced. In particular, when the content of Ta is 6 at% or more, the fragmentation of the magnetic particles themselves is promoted, and the noise is reduced. To promote Cr segregation, Zr, A
u, Ag, Cu, Ir are also effective. The present invention that suppresses thermal fluctuation is effective even when the magnetic film is divided into two layers by the nonmagnetic film.

【0014】保護膜16,潤滑膜17は、磁気ディスク
に一般に用いられているものをそのまま用いる。
As the protective film 16 and the lubricating film 17, those generally used for magnetic disks are used as they are.

【0015】基板11は非磁性で、通常、円板状であ
り、表面にNi−P合金をメッキしたAl−Mg合金,
Ti合金,強化ガラス、あるいは、有機樹脂,セラミッ
クス等が用いられる。
The substrate 11 is a non-magnetic, usually disk-shaped, Al-Mg alloy having a surface plated with a Ni-P alloy,
Ti alloy, tempered glass, organic resin, ceramics, or the like is used.

【0016】ヘッド走行方向は、円板の円周方向とな
る。この方向に測定した残留磁束密度Brと磁性膜の総
膜厚δとの積Brδの値が100Gμmを超えると、再
生感度の高いMR型又はGMR型の磁気ヘッドが不安定
になる場合がある。
The head traveling direction is the circumferential direction of the disk. If the value of the product Brδ of the residual magnetic flux density Br measured in this direction and the total film thickness δ of the magnetic film exceeds 100 Gm, the MR or GMR magnetic head having high reproduction sensitivity may become unstable.

【0017】本発明の磁気記録媒体は高記録密度でも、
媒体ノイズを小さくできるので、再生感度の高いMR型
又はGMR型の磁気ヘッドと組み合わせることにより、
1平方インチあたり1.5 ギガビット以上の高い記録密
度でも記録再生が可能である。
The magnetic recording medium of the present invention has a high recording density,
Since the medium noise can be reduced, by combining with an MR or GMR type magnetic head having high reproduction sensitivity,
Recording and reproduction are possible even at a high recording density of 1.5 gigabits or more per square inch.

【0018】[0018]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)以下、本発明の多層膜磁気記録媒体の一実
施例を図1を用いて説明する。本実施例の磁気記録媒体
は、表面にNi−P合金をメッキしたAl−Mg合金,
Ti合金,強化ガラス、あるいは、有機樹脂,セラミッ
クス等で構成される非磁性基板11の上に、スパッタリ
ング法により形成された、第1Cr下地膜5,第2Cr
Mo下地膜6,磁性膜13、および、カーボン保護膜1
6と、さらにその上に形成された潤滑膜17により構成
される。
(Embodiment 1) An embodiment of the multilayer magnetic recording medium of the present invention will be described below with reference to FIG. The magnetic recording medium of this embodiment is an Al-Mg alloy having a surface plated with a Ni-P alloy,
A first Cr underlayer film 5 and a second Cr film formed by a sputtering method on a nonmagnetic substrate 11 made of a Ti alloy, tempered glass, or an organic resin, ceramics, or the like.
Mo base film 6, magnetic film 13, and carbon protective film 1
6 and a lubricating film 17 formed thereon.

【0019】ここで、CrMo下地膜6のCr組成は7
9at%で、磁性膜13は厚さ20nmのCo−18a
t%Cr−8at%Pt合金膜である。ガラス基板上に
単独で、Cr合金および磁性膜を300nm程度成長さ
せ、X線回折測定を行い、Cr合金はbcc構造で格子
定数が2.957Å 、磁性膜はhcp構造でc軸長が
4.146Åであることが分かった。
Here, the Cr composition of the CrMo underlayer 6 is 7
At 9 at%, the magnetic film 13 is made of Co-18a having a thickness of 20 nm.
It is a t% Cr-8at% Pt alloy film. A Cr alloy and a magnetic film are grown alone on a glass substrate by about 300 nm, and X-ray diffraction measurement is performed. The Cr alloy has a lattice constant of 2.957 ° in a bcc structure, and the magnetic film has a ccp length of 4.957 in a hcp structure. It turned out to be 146 °.

【0020】カーボン保護層16の厚さは10nmとし
た。また、潤滑層17は吸着性のパーフルオロアルキル
エーテルである。また、Ni−P合金膜の代わりにW−
Siなどのアモルファス合金膜をスパッタリング法によ
り形成してもよい。
The thickness of the carbon protective layer 16 was 10 nm. Further, the lubricating layer 17 is an adsorbing perfluoroalkyl ether. Also, instead of the Ni-P alloy film, W-
An amorphous alloy film such as Si may be formed by a sputtering method.

【0021】下地膜の厚さの組み合わせに対する磁気特
性は、保磁力(図2)および角型比(図3)のようにな
った。
The magnetic properties for the combinations of the thicknesses of the underlayers were as follows: coercive force (FIG. 2) and squareness ratio (FIG. 3).

【0022】磁性膜の材質としては、上記CoCrPt
の代わりに、CoCrPtTa,CoCrPtTi,C
oCrFe,CoCr,CoCrIr,CoCrW,C
oCrSmTa,CoNiZr,CoCrTaあるいは
CoNiCrを用いた場合にも同等の効果が得られた。
The material of the magnetic film is CoCrPt.
Instead of CoCrPtTa, CoCrPtTi, C
oCrFe, CoCr, CoCrIr, CoCrW, C
The same effect was obtained when oCrSmTa, CoNiZr, CoCrTa or CoNiCr was used.

【0023】(実施例2)以下、本発明の多層膜磁気記
録媒体の他の一実施例を図1を用いて説明する。本実施
例の磁気記録媒体は、表面にNi−P合金をメッキした
Al−Mg合金,Ti合金,強化ガラス、あるいは、有
機樹脂,セラミックス等で構成される非磁性基板11の
上に、スパッタリング法により形成された、第1Cr下
地膜5,第2CrTi下地膜6,磁性膜13、および、
C保護層16と、さらにその上に形成された潤滑層17
により構成される。
(Embodiment 2) Another embodiment of the multilayer magnetic recording medium of the present invention will be described below with reference to FIG. The magnetic recording medium of the present embodiment is formed by sputtering a non-magnetic substrate 11 made of an Al-Mg alloy, a Ti alloy, a tempered glass, an organic resin, a ceramic, or the like, the surface of which is plated with a Ni-P alloy. A first Cr underlayer 5, a second CrTi underlayer 6, a magnetic film 13, and
C protective layer 16 and further a lubricating layer 17 formed thereon
It consists of.

【0024】ここで、磁性膜13は厚さ30nmのCo
−16at%Cr−6at%Ta合金層である。C保護
層16の厚さは30nmとした。また、潤滑層17は吸
着性のパーフルオロアルキルエーテルである。
Here, the magnetic film 13 is made of a 30 nm-thick Co
-16 at% Cr-6 at% Ta alloy layer. The thickness of the C protective layer 16 was 30 nm. Further, the lubricating layer 17 is an adsorbing perfluoroalkyl ether.

【0025】Cr合金膜6の最適厚さは、Cr膜5とC
r合金膜6と磁性膜13の格子定数の大小関係より定ま
る。磁性膜13が同じときには、Cr合金膜6の格子定
数が大きいほど薄くできた。ただし、Cr膜5とCr合
金膜6の格子定数の差が大きくなるほどエピタキシャル
成長しにくくなり、格子ミスマッチが6%を超えるとエ
ピタキシャル成長しない。このときのCr合金膜6の厚
さは、1nm程度である。一方、Cr合金膜6を20n
mを超えて厚くすると、十分bcc(100)配向の発達
したCr膜5上のCr合金膜6でも表面の配向が乱れて
しまう。Cr合金膜6の格子定数が2.95Å 未満だ
と、異方性磁界が大きな磁性膜では、Cr合金膜6を2
0nm以上成長させる必要がある。Cr合金膜6の格子
定数が2.95ÅになるCrの組成は83at%であった。
Wのような原子半径が比較的大きな元素を添加する場合
には、95at%程度である。
The optimum thickness of the Cr alloy film 6 is determined by the difference between the Cr film 5 and the C film.
It is determined from the magnitude relation between the lattice constants of the r alloy film 6 and the magnetic film 13. When the magnetic films 13 are the same, the smaller the lattice constant of the Cr alloy film 6, the thinner the film. However, as the difference between the lattice constants of the Cr film 5 and the Cr alloy film 6 increases, epitaxial growth becomes more difficult. If the lattice mismatch exceeds 6%, epitaxial growth does not occur. At this time, the thickness of the Cr alloy film 6 is about 1 nm. On the other hand, the Cr alloy film 6
If the thickness exceeds m, the orientation of the surface of the Cr alloy film 6 on the Cr film 5 having sufficiently developed bcc (100) orientation will be disturbed. If the lattice constant of the Cr alloy film 6 is less than 2.95 °, the Cr alloy film 6 may be 2
It is necessary to grow 0 nm or more. The composition of Cr at which the lattice constant of the Cr alloy film 6 became 2.95% was 83 at%.
When an element having a relatively large atomic radius such as W is added, the content is about 95 at%.

【0026】磁性膜13のhcp構造c軸長をLm,C
r合金層6のbcc構造格子定数をLcとするとき、
0.72Lm<Lc<0.79Lmの関係があると、上記
条件が満たされる。
The c-axis length of the hcp structure of the magnetic film 13 is represented by Lm, C
When the bcc structure lattice constant of the r alloy layer 6 is Lc,
If 0.72Lm <Lc <0.79Lm, the above condition is satisfied.

【0027】Cr合金膜6の組成は、Crのほか、T
i,Si,Mo,V,W,Ta,Zr,Mn,Au,A
g,Pd,Cu,Ir,W,Re,Gaの中から選ばれ
た少なくとも一つの元素を含むと、bcc構造で格子定
数がCrより大きくなる。磁性膜13に含まれる元素と
同じものが入っているとエピタキシャル成長が起りやす
くなる。特にTi,Si,Mo,Vを含んでいる場合に
は、粒の大きさがそろうので、ノイズが下げられる。
The composition of the Cr alloy film 6 is, in addition to Cr, T
i, Si, Mo, V, W, Ta, Zr, Mn, Au, A
When at least one element selected from g, Pd, Cu, Ir, W, Re, and Ga is included, the lattice constant becomes larger than Cr in the bcc structure. If the same element as that contained in the magnetic film 13 is contained, epitaxial growth is likely to occur. In particular, when Ti, Si, Mo, and V are included, noise is reduced because the size of the grains is uniform.

【0028】磁性膜13は、hcp構造のCoを主成分
とする合金で、CrとPt,Pd,Smを含むことによ
り、高異方性エネルギ材料となる。このときc軸長は、
Pt,Pd,Smを含まない場合に比べて1%程度大き
かった。さらにTa,Ti,Zr,Ni,Fe,Mn,
Au,Ag,Cu,Ir,W,Re,Gaの中から選ば
れた少なくとも一つの元素を含んでいると、成膜条件を
変えることなく静磁気特性を変えられた。なかでも、T
a,Tiを含む場合には、Crの偏析を促進し磁性粒子
間の相互作用を下げるので、ノイズが下がる。特にTa
の含有率が6at%以上あると、磁性粒子自身の細分化
が促進され、ノイズが下がる。Cr偏析の促進には、Z
r,Au,Ag,Cu,Irも有効である。
The magnetic film 13 is an alloy having a hcp structure containing Co as a main component, and contains Cr, Pt, Pd, and Sm to become a material with high anisotropic energy. At this time, the c-axis length is
It was about 1% larger than the case without Pt, Pd and Sm. Further, Ta, Ti, Zr, Ni, Fe, Mn,
When at least one element selected from Au, Ag, Cu, Ir, W, Re, and Ga was included, the magnetostatic properties could be changed without changing the film forming conditions. Above all, T
When a and Ti are contained, the segregation of Cr is promoted and the interaction between magnetic particles is reduced, so that noise is reduced. Especially Ta
When the content is 6 at% or more, the fragmentation of the magnetic particles themselves is promoted, and the noise is reduced. To promote Cr segregation, Z
r, Au, Ag, Cu, Ir are also effective.

【0029】磁性膜13をCrやCなどの非磁性膜によ
って2つ層に分割してやると、媒体ノイズを5割程度低
減することが可能であった。断面のSEM観察では上層
の磁性膜は下層の磁性膜の柱状構造をそのまま受け継い
で成長しており、磁性粒子の数が実質的に2倍となって
いると考えられる。磁性膜13を多層化する場合には、
媒体S/Nが良くなる。
If the magnetic film 13 is divided into two layers by a nonmagnetic film such as Cr or C, it is possible to reduce medium noise by about 50%. In the SEM observation of the cross section, it is considered that the upper magnetic film is grown while inheriting the columnar structure of the lower magnetic film as it is, and the number of magnetic particles is substantially doubled. When the magnetic film 13 is multilayered,
The medium S / N is improved.

【0030】(実施例3)本発明の磁気記録媒体は、高
面内配向で保磁力,角型比が高いので、高記録密度で
も、媒体ノイズを小さくでき、再生感度の高いMR型又
はGMR型の磁気ヘッドと組み合わせることにより、1
平方インチあたり1.5 ギガビット以上の高い記録密度
でも記録再生が可能である。
(Embodiment 3) Since the magnetic recording medium of the present invention has a high in-plane orientation and a high coercive force and a high squareness ratio, the medium noise can be reduced even at a high recording density, and an MR type or GMR having high reproduction sensitivity. Combined with a magnetic head of
Recording and reproduction are possible even at a high recording density of 1.5 gigabits or more per square inch.

【0031】実施例1または2に示した媒体を基板の両
面に形成したディスク4枚を使用し、Co−Ni−Fe
もしくはCo−Ta−Zr合金を記録用磁極材とし、再
生部にMR効果またはGMR効果を有する複合型薄膜磁
気ヘッド7個とNi−Fe合金を記録再生用磁極とする
サーボ用の薄膜ヘッドとを組み合わせた磁気記録装置を
試作した。本装置は、平面図4(a)及びA−A′断面
図4(b)に示すように磁気記録媒体81,磁気記録媒
体駆動部82,磁気ヘッド83,磁気ヘッド駆動部8
4,記録再生信号系85などの部品から構成される。こ
の磁気記録装置を使用し、浮上スペーシング40nmに
おいてエラーが発生するまでの平均時間を求めたとこ
ろ、信頼性が高いことを実証できた。また、本実施例で
試作した磁気記録装置はヘッド浮上量が低いため、信号
の記録再生における位相マージンが広くなり、従来媒体
を用いた浮上スペーシング80nmの装置に比べて面記
録密度を3倍に高めることができ、小型で大容量の磁気
記録装置を提供できた。本装置を用いてトラック幅が2
μm以下のMRヘッドで再生した場合に150kBPI
以上の高い記録密度においてS/Nが4以上、さらにオ
ーバーライト(O/W)特性が26dB以上の大容量磁
気記録装置が得られた。GMRヘッドで再生した場合に
も同等以上の効果が得られた。
Using four disks on which the medium shown in Example 1 or 2 was formed on both sides of the substrate, Co-Ni-Fe
Alternatively, a composite thin-film magnetic head having a Co-Ta-Zr alloy as a recording magnetic pole material and having an MR effect or a GMR effect in a reproducing portion, and a servo thin-film head using a Ni-Fe alloy as a recording / reproducing magnetic pole are used. A prototype of the combined magnetic recording device was manufactured. As shown in a plan view 4A and an AA 'sectional view 4B, the magnetic recording medium 81, the magnetic recording medium drive 82, the magnetic head 83, and the magnetic head drive 8
4, components such as a recording / reproducing signal system 85. Using this magnetic recording device, the average time until an error occurred at a flying spacing of 40 nm was determined, and it was proved that the reliability was high. Also, the magnetic recording device prototyped in this example has a low head flying height, so that the phase margin in recording and reproducing signals is widened, and the surface recording density is three times that of a conventional flying spacing 80 nm device using a medium. Thus, a small-sized and large-capacity magnetic recording device could be provided. When the track width is 2
150kBPI when reproduced with MR head of μm or less
At the above high recording density, a large-capacity magnetic recording apparatus having an S / N of 4 or more and an overwrite (O / W) characteristic of 26 dB or more was obtained. The same or better effect was obtained when reproducing with a GMR head.

【0032】[0032]

【発明の効果】本発明によれば、ビット境界の乱れを抑
えて媒体ノイズを低減し、高密度記録に好適な磁気記録
媒体、およびこれを用いて1平方インチあたり1.5 ギ
ガビット以上の超高密度大容量の磁気記録装置に対応し
た磁気記録媒体を提供することができる。
According to the present invention, a magnetic recording medium suitable for high-density recording by suppressing disturbance of bit boundaries to reduce medium noise, and an ultra-high-density recording medium of 1.5 gigabits or more per square inch using the magnetic recording medium. A magnetic recording medium compatible with a high-density, large-capacity magnetic recording device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気記録媒体の層構造を示す断面図。FIG. 1 is a sectional view showing a layer structure of a magnetic recording medium according to the present invention.

【図2】本発明の一実施例におけるCrおよびCr合金
層の厚さと磁性層の保持力の相関を示すグラフ。
FIG. 2 is a graph showing a correlation between the thickness of a Cr and Cr alloy layer and the coercive force of a magnetic layer in one embodiment of the present invention.

【図3】本発明の一実施例におけるCrおよびCr合金
層の厚さと磁性層の角型比の相関を示すグラフ。
FIG. 3 is a graph showing the correlation between the thickness of the Cr and Cr alloy layers and the squareness ratio of the magnetic layer in one embodiment of the present invention.

【図4】本発明の一実施例の磁気記録装置の縦断面構造
を示す図。
FIG. 4 is a view showing a longitudinal sectional structure of a magnetic recording apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2…Cr合金下地層、5…Cr下地層、11…非磁性基
板、13…磁性膜、16…C保護層、17…潤滑層、1
8…構造制御膜、81…磁気記録媒体、82…磁気記録
媒体駆動部、83…磁気ヘッド、84…磁気ヘッド駆動
部、85…記録再生信号系。
2 Cr underlayer, 5 Cr underlayer, 11 nonmagnetic substrate, 13 magnetic film, 16 C protective layer, 17 lubricating layer, 1
8 Structure control film, 81 Magnetic recording medium, 82 Magnetic recording medium drive, 83 Magnetic head, 84 Magnetic head drive, 85 Recording / reproducing signal system.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】基板上に下地膜,磁性膜,保護膜,潤滑膜
の順に積層された磁気記録媒体において、上記下地膜
は、5nm以上,80nm未満、好ましくは、15nm
以上,50nm未満のCr層に続いて積層された、1n
m以上,20nm未満のCrを主成分としTi,Si,
Mo,V,W,Ta,Zr,Mn,Au,Ag,Pd,
Cu,Ir,Re,Gaの中から選ばれた少なくとも一
つの元素を含む合金層から構成されることを特徴とする
磁気記録媒体。
1. A magnetic recording medium having a base film, a magnetic film, a protective film, and a lubricating film laminated in that order on a substrate, wherein the base film has a thickness of 5 nm or more and less than 80 nm, preferably 15 nm.
As described above, the 1n layer laminated following the Cr layer of less than 50 nm
m, and less than 20 nm Cr as a main component, Ti, Si,
Mo, V, W, Ta, Zr, Mn, Au, Ag, Pd,
A magnetic recording medium comprising an alloy layer containing at least one element selected from Cu, Ir, Re, and Ga.
【請求項2】Crを主成分とする合金層は、bcc構造
で格子定数(a軸長)が2.95Å以上ある請求項1に記
載の磁気記録媒体。
2. The magnetic recording medium according to claim 1, wherein the alloy layer mainly composed of Cr has a bcc structure and a lattice constant (a-axis length) of 2.95 ° or more.
【請求項3】磁性膜はhcp構造のCoを主成分とする
合金でCrと(Pt,Pd,Sm)の中から選ばれた少
なくとも一つの元素を含有し、さらに好ましくはTa,
Ti,Zr,Ni,Fe,Mn,Au,Ag,Cu,I
r,W,Re,Gaの中から選ばれた少なくとも一つの
元素を含んでいる請求項1または2に記載の磁気記録媒
体。
3. The magnetic film according to claim 1, wherein the magnetic film is an alloy mainly composed of Co having an hcp structure and contains at least one element selected from the group consisting of Cr and (Pt, Pd, Sm).
Ti, Zr, Ni, Fe, Mn, Au, Ag, Cu, I
3. The magnetic recording medium according to claim 1, comprising at least one element selected from r, W, Re, and Ga.
【請求項4】磁性膜のhcp構造c軸長をLm,Crを
主成分とする合金層のbcc構造格子定数をLcとする
とき、0.71Lm<Lc<0.74Lmである請求項3
に記載の磁気記録媒体。
4. When the c-axis length of the hcp structure of the magnetic film is Lm and the lattice constant of the bcc structure of the alloy layer mainly composed of Cr is Lc, 0.71 Lm <Lc <0.74 Lm.
3. The magnetic recording medium according to claim 1.
【請求項5】磁気記録媒体と、磁気記録媒体駆動部と、
磁気ヘッドと、磁気ヘッド駆動部と、記録再生信号処理
系を有する磁気記録装置に用いる磁気記録媒体におい
て、ヘッド走行方向に測定した残留磁束密度Brと磁性
膜の総膜厚δとの積Brδの値が100Gμm以下であ
る請求項1,2,3または4に記載の磁気記録媒体。
5. A magnetic recording medium, a magnetic recording medium driving unit,
In a magnetic recording medium used for a magnetic recording device having a magnetic head, a magnetic head driving unit, and a recording / reproducing signal processing system, the product Brδ of the residual magnetic flux density Br measured in the head running direction and the total film thickness δ of the magnetic film is obtained. 5. The magnetic recording medium according to claim 1, wherein the value is 100 Gm or less.
【請求項6】磁気記録媒体と、磁気記録媒体駆動部と、
磁気ヘッドと、磁気ヘッド駆動部と、記録再生信号処理
系を有する磁気記録装置において、再生用磁気ヘッドと
して磁気抵抗効果型ヘッドまたは巨大磁気抵抗効果型ヘ
ッドを用い、請求項1,2,3,4または5に記載の磁
気記録媒体を用いる磁気記録装置。
6. A magnetic recording medium, a magnetic recording medium driving unit,
4. A magnetic recording apparatus having a magnetic head, a magnetic head driving section, and a recording / reproducing signal processing system, wherein a magnetoresistive head or a giant magnetoresistive head is used as a reproducing magnetic head. A magnetic recording apparatus using the magnetic recording medium according to 4 or 5.
JP4036997A 1997-02-25 1997-02-25 Magnetic recording medium and magnetic recorder using it Pending JPH10241937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4036997A JPH10241937A (en) 1997-02-25 1997-02-25 Magnetic recording medium and magnetic recorder using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4036997A JPH10241937A (en) 1997-02-25 1997-02-25 Magnetic recording medium and magnetic recorder using it

Publications (1)

Publication Number Publication Date
JPH10241937A true JPH10241937A (en) 1998-09-11

Family

ID=12578739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4036997A Pending JPH10241937A (en) 1997-02-25 1997-02-25 Magnetic recording medium and magnetic recorder using it

Country Status (1)

Country Link
JP (1) JPH10241937A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099189A (en) * 2007-10-16 2009-05-07 Hitachi Ltd Dot-patterned structure, magnetic recording medium and method for production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099189A (en) * 2007-10-16 2009-05-07 Hitachi Ltd Dot-patterned structure, magnetic recording medium and method for production thereof

Similar Documents

Publication Publication Date Title
US7625643B2 (en) Magnetic recording medium, magnetic storage apparatus and recording method
KR101740708B1 (en) Magnetic recording media with enhanced writability and thermal stability
US20090073599A1 (en) Perpendicular magnetic recording medium and magnetic recording and reproducing apparatus using the same
JP2002109720A (en) Perpendicular magnetic recording medium and magnetic storage device using this
JP2005251373A (en) Magnetic recording medium, manufacturing method of the same, and magnetic storage device
JP2005032353A (en) Magnetic recording medium, magnetic storage, and method of recording of magnetic recording medium
JP3919047B2 (en) Perpendicular magnetic recording medium
JP4772015B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP4624838B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic storage device
JP2001283428A (en) Perpendicular magnetic recording medium and perpendicular magnetic recording/reproducing device
JP3359706B2 (en) Magnetic recording media
JP3625865B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP2003067909A (en) Perpendicular magnetic recording medium
JPH10241937A (en) Magnetic recording medium and magnetic recorder using it
JP2004310944A (en) Vertical magnetic recording medium and magnetic storage device
JP2002324313A (en) Manufacturing method of magnetic recording medium
JP2004178708A (en) Magnetic recording medium and magnetic recorder
JPH08249640A (en) Magnetic recording medium and magnetic recording device
JPH09265619A (en) Magnetic recording medium, its production and magnetic storage device
JP2001250223A (en) Magnetic recording medium and magnetic recorder
WO1996027187A1 (en) Magnetic recording medium and magnetic storage device
JP2000339657A (en) Magnetic recording medium
JPH10289437A (en) Magnetic recording medium and magnetic storage device
JPH0863734A (en) Magnetic recording medium and magnetic recording and reproducing device formed by using the same
US20060019125A1 (en) Magnetic recording medium and production method thereof as well as magnetic disc device