JPH10241698A - Alkaline storage battery electrode and manufacture thereof - Google Patents

Alkaline storage battery electrode and manufacture thereof

Info

Publication number
JPH10241698A
JPH10241698A JP9037577A JP3757797A JPH10241698A JP H10241698 A JPH10241698 A JP H10241698A JP 9037577 A JP9037577 A JP 9037577A JP 3757797 A JP3757797 A JP 3757797A JP H10241698 A JPH10241698 A JP H10241698A
Authority
JP
Japan
Prior art keywords
nickel
core material
substrate
diameter
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9037577A
Other languages
Japanese (ja)
Inventor
Toru Inagaki
徹 稲垣
Hiroki Takeshima
宏樹 竹島
Kazushige Sugimoto
一茂 杉本
Hideo Kaiya
英男 海谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9037577A priority Critical patent/JPH10241698A/en
Publication of JPH10241698A publication Critical patent/JPH10241698A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To enhance the adhesion strength of core material and a porous body so as to suppress the pole plate deformation or the falling-out of the active material at an active material impregnation time and to enhance an efficiency discharge characteristic by forming fine recesses and protrusions of a specific diameter and depth on the surface layer of conductive core material. SOLUTION: Nickel porous bodies 2 contained in a nickel slurry are hooked with fine recesses and protrusions 1 on the core material surface of a bored steel plate 3, so that the contact area of the bored steel plate 3 and the nickel porous bodies 2 is increased. Therefore, substrate strength after sintering is enhanced, and the deformation of an pole plate or the falling-out of active material in respective processes such as active material impregnation, formation, battery group constitution can be suppressed. With respect to 2 to 3μm average particle diameter of the nickel porous bodies 2, when the diameter of the core material surface recesses and protrusions 1 is 0.01μm or less, a pore diameter is too small, and reversely, when the diameter is 10μm or more, the pore diameter is too large so that the nickel powder 2 cannot be efficiently hooked with the core material surface. Therefore, the diameter of the recesses and protrusions is set to be 0.01 to 10μm, and the depth, to be 0.1 to 5μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はアルカリ蓄電池用電
極、特に焼結式電極とその製造法に関するものである。
The present invention relates to an electrode for an alkaline storage battery, and more particularly to a sintered electrode and a method for producing the same.

【0002】[0002]

【従来の技術】アルカリ蓄電池は通信機、OA機器ある
いは電動工具などの携帯化が進むとともに市場規模を拡
大してきたが、さらなる高容量化、高性能化の要求が強
い。
2. Description of the Related Art Alkaline storage batteries have been expanding their market scale as portable devices such as communication devices, office automation equipment, and power tools have been developed. However, there is a strong demand for higher capacity and higher performance.

【0003】アルカリ蓄電池用電極の形状は製造法によ
って二つに大別され、電極の芯材にカルボニルニッケル
粉末と増粘剤とを混練したペーストを塗着し、これを焼
結した基板に活物質を電気的、化学的に含浸することに
よって得られる焼結式と、発泡メタル、ニッケル不織布
などの金属多孔体あるいはパンチングメタル、エキスパ
ンドメタルなどの二次元芯材に活物質を含むペーストを
充填または塗着して得られるペースト式がある。焼結式
はペースト式と比較して、容量は低いが大電流での充放
電特性に優れているといった特徴がある。
[0003] The shape of an electrode for an alkaline storage battery is roughly classified into two types according to the manufacturing method. A paste obtained by kneading a carbonyl nickel powder and a thickener on a core material of the electrode is applied to a substrate obtained by sintering the paste. A sintering method obtained by electrically and chemically impregnating a substance, and filling a paste containing an active material into a porous metal such as foamed metal or nickel nonwoven fabric or a two-dimensional core material such as punching metal or expanded metal. There is a paste type obtained by coating. The sintering method has a feature that the capacity is lower than that of the paste method, but the charge and discharge characteristics at a large current are excellent.

【0004】焼結式基板においても高容量化の要求に応
えるため、基板の多孔度を向上させる試みがなされてい
る。しかし、多孔度を増加させると、芯材と多孔体との
密着性が低下し、活物質含浸工程、化成工程など各工程
での基板の変形、ニッケル多孔体及び活物質の脱落が問
題となる。
Attempts have been made to improve the porosity of sintered substrates in order to meet the demand for higher capacity in sintered substrates. However, when the porosity is increased, the adhesion between the core material and the porous body is reduced, and the deformation of the substrate in each step such as the active material impregnation step, the chemical conversion step, and the dropout of the nickel porous body and the active material become problems. .

【0005】そこで、芯材と多孔体との密着性を向上さ
せる試みとして、特開昭51−59348号公報には、
鉄板に5〜20A/dm2 の電流密度でニッケルメッキ
して鉄板表面に粗大なメッキ析出物を生成させた芯材に
粉末ニッケルを付着して焼結する方法が提案されてい
る。また、特公昭60−41426号公報には、芯材に
平均粒径0.1μm以下の焼結用金属粉と粘着剤とから
なるスラリーを塗布した後、これを乾燥、焼結し、次い
でこの焼結層の表面に平均粒径1.5〜4.5μmの焼
結用金属粉と粘着剤とからなるスラリーを塗布した後、
これを乾燥、焼結する方法が提案されている。また特開
昭55−97403号公報には、芯材に線径20μm以
下のニッケルまたはニッケルメッキした金属繊維を予め
焼結し、その上にニッケル粉末を焼結する方法が提案さ
れている。
Therefore, as an attempt to improve the adhesion between the core material and the porous body, Japanese Patent Application Laid-Open No.
A method has been proposed in which nickel is plated on an iron plate at a current density of 5 to 20 A / dm < 2 >, and powdered nickel is attached to a core material having a coarse plating precipitate formed on the surface of the iron plate and sintered. Further, Japanese Patent Publication No. 60-41426 discloses that after a slurry composed of a metal powder for sintering having an average particle size of 0.1 μm or less and an adhesive is applied to a core material, the slurry is dried and sintered, and then this After applying a slurry comprising a metal powder for sintering having an average particle size of 1.5 to 4.5 μm and an adhesive on the surface of the sintered layer,
Drying and sintering methods have been proposed. Japanese Patent Application Laid-Open No. 55-97403 proposes a method in which nickel or nickel-plated metal fiber having a wire diameter of 20 μm or less is sintered in advance on a core material, and nickel powder is sintered thereon.

【0006】[0006]

【発明が解決しようとする課題】上記の試みのうち鉄板
表面に粗大なメッキ析出物を生成させた芯材を使用する
方法では、芯材表面の凹凸が小さいため多孔体と芯材と
の密着性は向上しない。また、0.1μm以下の焼結用
金属粉、あるいは線径20μm以下の金属繊維を焼結す
る方法では芯材近傍に基板多孔度の低い焼結体層が形成
され、基板全体の多孔度が減少するため電池容量が低下
する問題点を有している。
In the above-mentioned method using a core material in which coarse plating deposits are formed on the surface of an iron plate, the adhesion between the porous body and the core material is small because the surface of the core material has small irregularities. Sex does not improve. In the method of sintering a metal powder for sintering of 0.1 μm or less or a metal fiber having a wire diameter of 20 μm or less, a sintered body layer having low substrate porosity is formed near the core material, and the porosity of the entire substrate is reduced. There is a problem that the battery capacity decreases due to the decrease.

【0007】本発明は、上述したような問題点を解決す
るものであって、芯材と多孔体との密着強度を向上させ
ることにより、活物質含浸、化成、電池群構成時の極板
の変形あるいは活物質の脱落の抑制、さらに効率放電特
性の向上を目的とする。
The present invention solves the above-mentioned problems, and improves the adhesion strength between a core material and a porous body, thereby impregnating an active material, forming an active material, and forming an electrode plate when forming a battery group. It aims at suppressing deformation or falling off of the active material and further improving the efficiency discharge characteristics.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明では導電性芯材の表面層に直径0.01〜1
0μm、深さ0.1〜5μmの微細な凹凸が設けてある
焼結式基板を用いたアルカリ蓄電池用電極を使用する。
芯材表面の微細な凹凸にニッケルスラリーに含まれるニ
ッケル粉末が引掛かり、芯材とニッケル粉末との接触面
積が増加する。そのため焼結後の基板強度が向上し、活
物質含浸などの各工程での極板の変形あるいは活物質の
脱落を抑制することができる。ニッケル粉末の平均粒径
が2〜3μmであるのに対して、芯材表面の凹凸の直径
が0.01μm以下の場合は孔径が小さすぎ、逆に10
μm以上では大きすぎるため、ニッケル粉末を芯材表面
に効率よく繋留することができない。
In order to solve the above-mentioned problems, in the present invention, the surface layer of the conductive core material has a diameter of 0.01 to 1 mm.
An electrode for an alkaline storage battery using a sintered substrate provided with fine irregularities of 0 μm and a depth of 0.1 to 5 μm is used.
The nickel powder contained in the nickel slurry is caught by the fine irregularities on the surface of the core material, and the contact area between the core material and the nickel powder increases. Therefore, the strength of the substrate after sintering is improved, and deformation of the electrode plate or falling off of the active material in each step such as impregnation of the active material can be suppressed. When the average particle diameter of the nickel powder is 2 to 3 μm and the diameter of the irregularities on the surface of the core material is 0.01 μm or less, the pore diameter is too small.
If it is more than μm, it is too large, so that the nickel powder cannot be efficiently anchored on the surface of the core material.

【0009】また導電性芯材の表面の凹凸は焼結後にも
形状が維持されるため、この凹凸へも活物質が充填され
る。そのため、従来の焼結式基板とほぼ同等の活物質充
填量を確保することができる。
Further, since the shape of the irregularities on the surface of the conductive core material is maintained after sintering, the irregularities are filled with the active material. Therefore, it is possible to secure an active material filling amount substantially equal to that of the conventional sintered substrate.

【0010】本発明の電極の製造法は次の通りである。
水溶性ポリマーを添加したメッキ液を用いて導電性芯材
に電気メッキを施し、導電性芯材の両面を水溶性ポリマ
ーとニッケルとが共存する共析メッキ膜で被覆する。そ
の後焼成して水溶性ポリマーをメッキ膜から脱離させて
芯材表面に微細な凹凸を形成する。次いで、この芯材の
両面にニッケル粉末と増粘剤とからなるニッケルスラリ
ーを塗布し、乾燥、焼結工程を経ることで焼結式基板が
得られる。この焼結式基板に電気的、あるいは化学的手
法により活物質を含浸することでアルカリ蓄電池用電極
が得られる。
The method for producing the electrode of the present invention is as follows.
The conductive core material is electroplated using a plating solution to which a water-soluble polymer has been added, and both surfaces of the conductive core material are covered with a eutectoid plating film in which a water-soluble polymer and nickel coexist. Thereafter, baking is performed to remove the water-soluble polymer from the plating film to form fine irregularities on the surface of the core material. Subsequently, a nickel slurry composed of a nickel powder and a thickener is applied to both surfaces of the core material, followed by drying and sintering steps to obtain a sintered substrate. An electrode for an alkaline storage battery is obtained by impregnating the sintered substrate with an active material by an electric or chemical method.

【0011】[0011]

【発明の実施の形態】請求項1に記載の発明は、アルカ
リ蓄電池用電極について規定したものであり、基板中央
部に配された導電性芯材とニッケル多孔体からなる焼結
式基板に活物質を充填した電極であって、導電性芯材の
表面層には直径0.01〜10μm、深さ0.1〜5μ
mの微細な凹凸が設けてある焼結式基板を用いたアルカ
リ蓄電池用電極が得られる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 is directed to an electrode for an alkaline storage battery, and is applied to a sintered substrate composed of a conductive core material and a nickel porous body disposed at the center of the substrate. An electrode filled with a substance, wherein the surface layer of the conductive core material has a diameter of 0.01 to 10 μm and a depth of 0.1 to 5 μm.
Thus, an electrode for an alkaline storage battery using a sintered substrate provided with m fine irregularities is obtained.

【0012】請求項3に記載の発明は、請求項1のアル
カリ蓄電池用電極の製造法について規定したものであ
り、基板多孔度を減少させることなく芯材とニッケル多
孔体との密着性が改善できるため、基板の集電効率が向
上する。その結果、この基板を使用した電池の大電流で
の充放電特性が向上する。
According to a third aspect of the present invention, there is provided a method for manufacturing an electrode for an alkaline storage battery according to the first aspect, wherein the adhesion between the core material and the nickel porous body is improved without reducing the substrate porosity. As a result, the current collection efficiency of the substrate is improved. As a result, the charge / discharge characteristics of the battery using this substrate at high current are improved.

【0013】[0013]

【実施例】厚み60μm、開孔径が1mm、開孔率が1
8%の穿孔鋼板の両面に2.0μmのニッケルメッキを
施した。さらに、電解メッキにより、この両面を厚さ
2.0μmのニッケル−水溶性ポリマー複合メッキ膜で
被覆した。電解メッキの条件は浴組成:硫酸ニッケル六
水和物240g/l、塩化ニッケル六水和物45g/
l、ほう酸35g/l、ポリエーテルアミン25g/
l、浴温度:50℃、電流密度:10A/dm2 で行っ
た。この芯材の両面にINCO社製のカルボニルニッケ
ル粉末(Type255)100部と3wt%濃度のメ
チルセルロース水溶液100部とを混練したスラリーを
全体の厚みが1.3mmになるように塗布し、100℃
で10分間乾燥した。これを窒素−水素雰囲気において
900℃で5分間焼結することで焼結式基板aを作製し
た。この基板断面の拡大模式図を図1に示す。図中1は
ニッケル−水溶性ポリマー複合メッキおよび焼成により
形成された芯材表面の凹凸、2はニッケル多孔体、3は
芯材の主体をなす穿孔鋼板である。 次に得られた基板
aを、硝酸ニッケルに対して体積比で2%の硝酸コバル
トを添加した硝酸ニッケル/コバルト水溶液(pH:
2.0、液温度:80℃)に10分間浸漬した後、10
0℃で10分間乾燥し、水酸化ナトリウム水溶液(比
重:1.2g/cc、液温度80℃)に20分間浸漬す
るサイクルを8サイクル繰り返して活物質である水酸化
ニッケルを含浸した。このようにして得られたニッケル
極を幅35mm、長さ200mmに裁断し、一部にリー
ド板をスポット溶接してニッケル極4とした。このニッ
ケル極4の容量は1600mAhである。
EXAMPLE A thickness of 60 μm, an opening diameter of 1 mm, and an opening ratio of 1
2.0 μm nickel plating was applied to both sides of an 8% perforated steel plate. Further, both surfaces were covered with a 2.0 μm thick nickel-water-soluble polymer composite plating film by electrolytic plating. Electroplating conditions were bath composition: nickel sulfate hexahydrate 240 g / l, nickel chloride hexahydrate 45 g /
1, boric acid 35 g / l, polyetheramine 25 g /
1, bath temperature: 50 ° C., current density: 10 A / dm 2 . A slurry obtained by kneading 100 parts of carbonyl nickel powder (Type 255) manufactured by INCO and 100 parts of a 3 wt% concentration aqueous methylcellulose solution was applied to both surfaces of the core material so that the total thickness was 1.3 mm, and 100 ° C.
For 10 minutes. This was sintered at 900 ° C. for 5 minutes in a nitrogen-hydrogen atmosphere to produce a sintered substrate a. FIG. 1 shows an enlarged schematic view of the cross section of the substrate. In the figure, reference numeral 1 denotes an unevenness on the surface of a core material formed by nickel-water-soluble polymer composite plating and firing, 2 denotes a nickel porous body, and 3 denotes a perforated steel plate which mainly forms the core material. Next, the obtained substrate a was treated with a nickel nitrate / cobalt aqueous solution (pH:
2.0, liquid temperature: 80 ° C.) for 10 minutes.
After drying at 0 ° C. for 10 minutes, a cycle of immersion in an aqueous solution of sodium hydroxide (specific gravity: 1.2 g / cc, liquid temperature: 80 ° C.) for 20 minutes was repeated eight times to impregnate nickel hydroxide as an active material. The nickel electrode thus obtained was cut into a width of 35 mm and a length of 200 mm, and a lead plate was spot-welded to a part thereof to obtain a nickel electrode 4. The capacity of the nickel electrode 4 is 1600 mAh.

【0014】負極にはカドミウム極5を用い、ニッケル
極4とカドミウム極5との間にナイロン不織布セパレー
タ6を介在させて渦巻状に捲回し、SC型の電池ケース
7に収納した。その後、比重1.30の水酸化カリウム
に30g/lの水酸化リチウム一水和物を溶解したアル
カリ電解液を所定量注入し、正極端子を固定した封口板
8でケース開口部を封口して図2に示すような密閉型ニ
ッケル−カドミウム蓄電池Aを構成した。
A cadmium electrode 5 was used as the negative electrode. The cadmium electrode 5 was spirally wound with a nylon nonwoven fabric separator 6 interposed between the nickel electrode 4 and the cadmium electrode 5 and housed in an SC type battery case 7. Thereafter, a predetermined amount of an alkaline electrolyte obtained by dissolving 30 g / l of lithium hydroxide monohydrate in potassium hydroxide having a specific gravity of 1.30 was injected, and the case opening was sealed with a sealing plate 8 to which the positive electrode terminal was fixed. A sealed nickel-cadmium storage battery A as shown in FIG. 2 was constructed.

【0015】比較例として次のような基板および電池を
作製した。厚み60μm、開孔径が1mm、開孔率が1
8%の穿孔鋼板の両面に3.0μmのニッケルメッキを
施した。この芯材の両面に実施例と同様にニッケルスラ
リーを塗布し、乾燥、焼結を経て焼結式基板bを作製
し、この基板bを使用して電池Bを作製した。
The following substrates and batteries were prepared as comparative examples. Thickness 60 μm, opening diameter 1 mm, opening ratio 1
3.0 μm nickel plating was applied to both sides of an 8% perforated steel plate. Nickel slurry was applied to both surfaces of this core material in the same manner as in the example, dried and sintered to produce a sintered substrate b, and a battery B was produced using this substrate b.

【0016】得られた焼結式基板a,bについて次のよ
うな試験を行い、芯材とニッケル多孔体との密着強度を
評価した。
The following tests were performed on the obtained sintered substrates a and b to evaluate the adhesion strength between the core material and the nickel porous body.

【0017】(試験1)基板a,bを10×100mm
に裁断し、これを直径2mmの鉄線にずらしながら巻き
つけることを10回繰り返した。試験前後の重量減少率
は、基板aでは3%、基板bでは10%であった。この
結果から基板aは基板bに比べて芯材とニッケル多孔体
との密着強度が向上したことがわかる。
(Test 1) Substrates a and b are 10 × 100 mm
This was repeatedly wound ten times while being shifted to an iron wire having a diameter of 2 mm. The weight reduction ratio before and after the test was 3% for the substrate a and 10% for the substrate b. From this result, it can be understood that the substrate a has improved adhesion strength between the core material and the nickel porous body as compared with the substrate b.

【0018】(試験2)碁盤目試験に準じて基板a,b
を50×50mmに裁断し、基板の片面のニッケル多孔
体に2mm幅の格子状の切れ目を入れた。この場合は基
板a,bともにニッケル多孔体の剥離は観察されなかっ
た。次に、これにガムテープを貼り付け、剥がすことを
3回繰り返した。このときの重量減少率は、基板aでは
0.1%、基板bでは30%であった。このことからも
基板aは基板bと比較して芯材とニッケル多孔体との密
着強度が向上したことがわかる。
(Test 2) Substrates a and b according to the grid test
Was cut into 50 × 50 mm, and a grid-shaped cut having a width of 2 mm was made in the nickel porous body on one side of the substrate. In this case, peeling of the nickel porous body was not observed for both the substrates a and b. Next, sticking and peeling of a gum tape were repeated three times. The weight reduction rate at this time was 0.1% for the substrate a and 30% for the substrate b. This also indicates that the substrate a has improved adhesion strength between the core material and the nickel porous body as compared with the substrate b.

【0019】次に電池A,Bの放電特性の評価を行っ
た。1CmAで72分間充電した後、10Aで0.8V
まで放電したときの放電曲線を図3に示す。この結果よ
り電池Aでは芯材とニッケル多孔体との密着性が改善さ
れたため集電機能が高まり、電池Bよりも放電特性が向
上したことがわかる。
Next, the discharge characteristics of the batteries A and B were evaluated. After charging for 72 minutes at 1 CmA, 0.8 V at 10 A
FIG. 3 shows a discharge curve when the battery was discharged to the maximum. From this result, it can be seen that in the battery A, the adhesion between the core material and the nickel porous body was improved, so that the current collecting function was enhanced, and the discharge characteristics were improved as compared with the battery B.

【0020】[0020]

【発明の効果】本発明によれば、従来の焼結式基板と比
較して基板多孔度を低下させることなく導電性芯材とニ
ッケル多孔体との密着性を改善することで、基板強度が
向上して極板作製時のニッケル多孔体の剥離が抑制され
るとともに、優れた高率放電特性を持つアルカリ蓄電池
用電極が得られる。
According to the present invention, the strength of the substrate is improved by improving the adhesion between the conductive core material and the nickel porous body without lowering the porosity of the substrate as compared with the conventional sintered type substrate. As a result, an electrode for an alkaline storage battery having excellent high-rate discharge characteristics can be obtained while suppressing exfoliation of the nickel porous body during production of the electrode plate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例での基板の拡大断面模式図FIG. 1 is an enlarged schematic cross-sectional view of a substrate according to an embodiment of the present invention.

【図2】同実施例での電池の概略断面図FIG. 2 is a schematic cross-sectional view of the battery in the example.

【図3】同電池の放電曲線図FIG. 3 is a discharge curve diagram of the battery.

【符号の説明】[Explanation of symbols]

1 芯材表面の凹凸 2 ニッケル多孔体 3 穿孔鋼板 4 ニッケル極 5 カドミウム極 6 セパレータ 7 電池ケース 8 封口板 DESCRIPTION OF SYMBOLS 1 Unevenness of core material surface 2 Nickel porous body 3 Perforated steel plate 4 Nickel electrode 5 Cadmium electrode 6 Separator 7 Battery case 8 Sealing plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 海谷 英男 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hideo Kaiya 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板中央部に配された導電性芯材とニッケ
ル多孔体からなる焼結式基板に活物質を充填した電極で
あって、前記導電性芯材の表面層には直径0.01〜1
0μm、深さ0.1〜5μmの微細な凹凸が設けてある
焼結式基板を用いたアルカリ蓄電池用電極。
An electrode in which a sintered substrate composed of a conductive core material and a nickel porous body disposed at a central portion of a substrate is filled with an active material, and a surface layer of the conductive core material has a diameter of 0.1 mm. 01-1
An electrode for an alkaline storage battery using a sintered substrate provided with fine irregularities of 0 μm and a depth of 0.1 to 5 μm.
【請求項2】前記導電性芯材は、金属ニッケルからなる
平板、あるいは金属ニッケルで被覆されている鉄製平
板、またはこれらに穿孔した部材のうちの1つである請
求項1に記載のアルカリ蓄電池用電極。
2. The alkaline storage battery according to claim 1, wherein said conductive core material is one of a flat plate made of metallic nickel, a flat plate made of iron coated with metallic nickel, and a member perforated therethrough. Electrodes.
【請求項3】基板中央部に配された導電性芯材とニッケ
ル多孔体からなる焼結式基板に活物質を充填した電極の
製造法であって、電気メッキによりニッケルと水溶性ポ
リマーとを共析させて、金属ニッケル、金属ニッケルで
被覆されている鉄製平板、またはこれらに穿孔した部材
のうちの1つである導電性芯材の表面を被覆する工程
と、この導電性芯材を焼成して水溶性ポリマーを脱離す
る工程を経た多孔質ニッケル被覆芯材の両面に、ニッケ
ル粉末と増粘剤からなるスラリーを塗布する工程と、こ
れを還元雰囲気において800〜1100℃で焼結する
工程とから焼結式基板を形成し、この焼結式基板に活物
質を充填してなるアルカリ蓄電池用電極の製造法。
3. A method for producing an electrode in which an active material is filled in a sintered substrate comprising a conductive core material and a nickel porous body disposed in a central portion of a substrate, wherein nickel and a water-soluble polymer are electroplated. Eutectoid metal nickel, an iron flat plate coated with metal nickel, or a step of coating the surface of a conductive core material that is one of members perforated therein, and firing the conductive core material. Applying a slurry comprising nickel powder and a thickener to both surfaces of a porous nickel-coated core material having undergone a step of desorbing a water-soluble polymer, and sintering the slurry at 800 to 1100 ° C. in a reducing atmosphere. A method for producing an electrode for an alkaline storage battery, comprising forming a sintered substrate from the steps and filling the sintered substrate with an active material.
JP9037577A 1997-02-21 1997-02-21 Alkaline storage battery electrode and manufacture thereof Pending JPH10241698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9037577A JPH10241698A (en) 1997-02-21 1997-02-21 Alkaline storage battery electrode and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9037577A JPH10241698A (en) 1997-02-21 1997-02-21 Alkaline storage battery electrode and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH10241698A true JPH10241698A (en) 1998-09-11

Family

ID=12501401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9037577A Pending JPH10241698A (en) 1997-02-21 1997-02-21 Alkaline storage battery electrode and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH10241698A (en)

Similar Documents

Publication Publication Date Title
JP2993886B2 (en) Anode and cathode for alkaline storage battery and method for producing the same
US6099991A (en) Electrode for alkaline storage batteries and process for producing the same
JP2004063297A (en) Negative electrode for alkaline storage battery, its manufacturing method, and alkaline storage battery using it
JP3019094B2 (en) Method for producing electrode for alkaline storage battery
JPH08124579A (en) Manufacture of metallic porous material and electrode for storage battery
US6150056A (en) Alkaline storage battery and method for producing an electrode used therefor
JPH10241698A (en) Alkaline storage battery electrode and manufacture thereof
JP3460509B2 (en) Manufacturing method of alkaline storage battery and its electrode
JP2000285922A (en) Alkaline storage battery, and manufacture of its electrode
EP0403052B1 (en) Nickel electrode and alkaline battery using the same
US6803148B2 (en) Nickel positive electrode plate and akaline storage battery
JP3781058B2 (en) Battery electrode substrate and manufacturing method thereof
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP3424501B2 (en) Manufacturing method of alkaline storage battery and its electrode
JP3941341B2 (en) Alkaline battery and nickel plate
JPH10162835A (en) Electrode for alkaline storage battery and manufacture thereof
JPH10112326A (en) Electrode for alkaline secondary battery
JP3451888B2 (en) Manufacturing method of alkaline storage battery and its electrode
JP3440753B2 (en) Manufacturing method of alkaline storage battery and its electrode
JPH0410181B2 (en)
JPH1140148A (en) Alkaline storage battery and manufacture of electrode thereof
JP3446539B2 (en) Manufacturing method of alkaline storage battery and its electrode
JPH10334898A (en) Alkaline storage battery, its electrode and manufacture thereof
JPH10334902A (en) Alkaline storage battery and manufacture of its electrode
JPH11102698A (en) Alkaline storage battery and manufacture of electrode thereof