JPH10241676A - Manufacture of porous belt body - Google Patents

Manufacture of porous belt body

Info

Publication number
JPH10241676A
JPH10241676A JP9046093A JP4609397A JPH10241676A JP H10241676 A JPH10241676 A JP H10241676A JP 9046093 A JP9046093 A JP 9046093A JP 4609397 A JP4609397 A JP 4609397A JP H10241676 A JPH10241676 A JP H10241676A
Authority
JP
Japan
Prior art keywords
reduction
powder
porous
powder layer
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9046093A
Other languages
Japanese (ja)
Inventor
Kazusane Isaka
和実 井坂
Tatsuo Nagata
辰夫 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9046093A priority Critical patent/JPH10241676A/en
Publication of JPH10241676A publication Critical patent/JPH10241676A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance a powder filling factor in a powder layer without making reduction of carrier itself, so as to secure high productivity by setting reduction speed in a specified arrange in the case of successive press reduction in a lengthwise direction in the reduction of wide width face. SOLUTION: A powder layer in a predetermined thickness is applied to both top and bottom faces of a porous carrier, for instance, a punching metal 10 via a powder-applying process 12. The powder filling factor-enhanced porous belt body by a reduction device 20 is taken up by a take-up reel 22. At this time, the range of reduction speed is limited to 1 to 100mm/minute, preferably 10 to 50mm/minute. That is, in the case of press reduction, when pressurizing speed is increased, friction force between a tool contact face and the powder layer is enlarged, so that the elongation in a width direction and a lengthwise direction is suppressed such that filling density is enhanced. A reduction device is composed of a pair of flat dies, in which the direction can be conducted generally in a right angle direction against a wide width face, that is, in a thickness direction. In the case of reduction, preferably the width direction of the porous belt body is constrained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多孔質の担体を挟
んで両側に粉末層が形成されている多孔帯体の製造方
法、特に、二次電池用の電極材として利用できる多孔帯
体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a porous band having a powder layer formed on both sides of a porous carrier, and more particularly to a method for manufacturing a porous band which can be used as an electrode material for a secondary battery. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】例えば、水素吸蔵合金を用いた二次電池
用電極としては、多孔質の担体の両側に水素吸蔵合金粉
末層を設けることで構成される多孔帯体が使用される。
このような多孔帯体においては粉末層の充填率を向上さ
せることが電池容量を向上させるのに有効であることは
判明していることから、この粉末充填率をいかに改善す
ることが問題となっている。
2. Description of the Related Art For example, as an electrode for a secondary battery using a hydrogen storage alloy, a porous band formed by providing a hydrogen storage alloy powder layer on both sides of a porous carrier is used.
In such a porous strip, it has been found that improving the filling rate of the powder layer is effective for improving the battery capacity, so how to improve the powder filling rate becomes a problem. ing.

【0003】特開平3−77270 号公報には、圧延による
充填加工が示されており、圧延方向の伸びを抑制する目
的で直径3cm以上のロールを使用することが提案されて
いる。しかしながら、上記公報には、充填率の向上につ
いての具体的内容が開示されておらず、また、圧延では
機構上、大きな長手方向伸びが生じ、このひずみのため
に充填率は上昇しない。
Japanese Patent Application Laid-Open No. 3-77270 discloses a filling process by rolling, and it has been proposed to use a roll having a diameter of 3 cm or more in order to suppress elongation in the rolling direction. However, the above-mentioned publication does not disclose specific contents of the improvement of the filling rate, and the rolling causes mechanically large elongation in the longitudinal direction, and the filling rate does not increase due to this strain.

【0004】[0004]

【発明が解決しようとする課題】本発明は、粉末層を備
えた多孔帯体の製造方法において、粉末層における粉末
の充填率を向上させ、かつ高生産性を確保する技術の開
発が課題である。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a porous strip having a powder layer, which involves the development of a technique for improving the powder filling rate in the powder layer and ensuring high productivity. is there.

【0005】[0005]

【課題を解決するための手段】本発明者らは、幅広面に
おける圧下を長手方向において順次プレス圧下を行うに
際して、圧下速度を1〜100 mm/minとして行うことによ
り担体自体の圧下を行わずに粉末層における粉末充填率
を著しく改善できることを知り、本発明を完成した。
Means for Solving the Problems The inventors of the present invention have made it possible to reduce the width of the carrier in the longitudinal direction by sequentially reducing the pressing speed in the longitudinal direction at a rolling speed of 1 to 100 mm / min so that the carrier itself is not reduced. As a result, they found that the powder filling rate in the powder layer could be remarkably improved, and completed the present invention.

【0006】さらに、本発明者の知見によれば、幅方向
に拘束を加えずに圧下を加えると帯体は幅方向に最大で
5%延伸する。したがって、溝の幅を圧下前の帯体の幅
の5%以下とすると充填密度は抱束しない場合と比較し
て向上する。
Further, according to the knowledge of the present inventor, when a reduction is applied without applying a constraint in the width direction, the band is stretched at most 5% in the width direction. Therefore, when the width of the groove is set to 5% or less of the width of the band before rolling, the packing density is improved as compared with the case where no binding is performed.

【0007】かくして、本発明は、多孔質の担体を挟ん
で両側に粉末層が形成されている多孔帯体の製造方法に
おいて、該帯体を長手方向に走行させ、該帯体の広幅面
を挟んで設置された工具によって、該帯体の前記広幅面
に対して直角方向に加圧速度1〜100mm/分で圧下を順次
行うことを特徴とする多孔帯体の製造方法である。
Thus, the present invention relates to a method for producing a porous strip having a powder layer formed on both sides of a porous carrier, wherein the strip is run in the longitudinal direction, and the wide surface of the strip is removed. A method for producing a porous band, characterized in that rolling is sequentially performed at a pressing speed of 1 to 100 mm / min in a direction perpendicular to the wide surface of the band by a tool placed therebetween.

【0008】本発明の好適態様においては、使用する工
具のうち一方に該帯体の幅を抱束する形状を付与した工
具を用いてもよい。本発明のさらに別の態様によれば、
使用する工具の一方が粉末層との接触面が凸面をなすよ
うにしてもよい。なお、本発明において圧下に際しての
加工率、つまり圧下率は特に制限されないが、一般には
10〜40%、好ましくは15〜25%である。
[0008] In a preferred embodiment of the present invention, one of the tools to be used may be provided with a shape that ties up the width of the band. According to yet another aspect of the present invention,
One of the tools used may have a convex surface in contact with the powder layer. In the present invention, the processing rate during rolling, that is, the rolling rate is not particularly limited, but generally,
It is 10 to 40%, preferably 15 to 25%.

【0009】[0009]

【発明の実施の形態】図1は、本発明にかかる多孔帯体
の製造方法の模式的説明図であって、図中、多孔質担
体、例えばパンチングメタル10は粉末塗布の工程12を経
て、上下両面に所定厚さの粉末層が塗布される。次の乾
燥工程14によって粉末層は乾燥固化されが、この段階で
は、通常は塗布ペーストを乾燥しただけであるため、例
えば水素吸蔵合金粉末などの機能粉末の充填密度はかな
り小さくなっている。すでに述べたように、電極として
の特性は上述のような機能粉末の密度を可及的に大きく
することによって最大限に改善されるのであって、その
ような粉末の充填密度を大きくすることは電極特性の改
善に必要である。したがって、本発明にあっても、圧下
装置20によって粉末の充填率の向上が図られる。充填率
の改善された多孔帯体は巻取りリール22によって巻き取
られる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic explanatory view of a method for manufacturing a porous band according to the present invention. In the figure, a porous carrier, for example, a punching metal 10 is subjected to a powder coating step 12 through A powder layer having a predetermined thickness is applied to both upper and lower surfaces. In the subsequent drying step 14, the powder layer is dried and solidified. However, at this stage, since the applied paste is usually only dried, the packing density of the functional powder such as the hydrogen storage alloy powder is considerably reduced. As already mentioned, the characteristics as an electrode are maximally improved by increasing the density of the functional powder as described above as much as possible. Necessary for improving electrode characteristics. Therefore, even in the present invention, the filling ratio of the powder is improved by the rolling-down device 20. The porous strip having an improved filling factor is taken up by a take-up reel 22.

【0010】本発明にあっては、多孔帯体を圧下する
際、圧下率一定として圧下速度を上げると、該帯体の少
なくとも一方の面に設けた粉末層における粉末の充填密
度が上るが、帯体を構成する担体の圧下は起こらないこ
とを利用するものであって、そのための圧下速度の範囲
として、1〜100mm/min 、好ましくは10〜50mm/minの範
囲に限定するのである。
In the present invention, when the porous strip is reduced in pressure, if the rolling rate is increased with a constant reduction rate, the packing density of the powder in the powder layer provided on at least one surface of the strip increases. This is to take advantage of the fact that rolling of the carrier constituting the belt does not occur, and the range of the rolling speed for that purpose is limited to the range of 1 to 100 mm / min, preferably 10 to 50 mm / min.

【0011】つまり、プレス圧下に際して、加圧速度を
上げると工具接触面と粉末層の摩擦力が大きくなり、幅
方向や長手方向の延伸が抑制され充填密度が上るのであ
る。プレス装置自体は何ら制限されないが、一般的には
本発明にあっては例えば10〜100T程度の油圧プレスを使
用すればよい。
That is, when the pressing speed is increased at the time of press reduction, the frictional force between the tool contact surface and the powder layer increases, and the stretching in the width direction and the longitudinal direction is suppressed, and the packing density increases. The press itself is not limited at all, but generally, for example, a hydraulic press of about 10 to 100 T may be used in the present invention.

【0012】また、本発明にあって、圧下装置は多孔帯
体の粉末層の粉末の充填を実現できるものであれば特に
制限はないが、一般には幅広面に対して直角方向、つま
り厚さ方向に圧下を行うことのできる一対の平型から構
成される。圧下機構としては、所定の圧下速度が確保さ
れればよいが、油圧、水圧、クランク機構あるいは電磁
ソレノイド機構による幅広面に対して直角方向の運動を
利用することが好ましい。
In the present invention, the pressing device is not particularly limited as long as it can realize the filling of the powder in the powder layer of the porous band. It is composed of a pair of flat molds capable of rolling down in the direction. As the rolling-down mechanism, it is sufficient that a predetermined rolling-down speed is ensured, but it is preferable to use a hydraulic pressure, a hydraulic pressure, a motion perpendicular to a wide surface by a crank mechanism or an electromagnetic solenoid mechanism.

【0013】さらに、本発明における充填密度向上をさ
らに改善する手段として、上述のプレス圧下に際して、
多孔帯体の幅方向を抱束しながら、プレス圧下を行うよ
うにしてもよい。このように、多孔帯体を構成する担体
の幅方向の延伸を抑制することで、充填密度をさらに一
層改善できる。
Further, as means for further improving the packing density in the present invention, at the time of the above-mentioned pressing reduction,
The press reduction may be performed while tying the porous band in the width direction. As described above, by suppressing the stretching in the width direction of the carrier constituting the porous band, the packing density can be further improved.

【0014】このときの、幅方向の拘束は、形状として
は、溝を切る、壁を設ける等々、幅方向の延伸をとめる
方法であれば何でもよい。しかし、所定の幅の溝をつく
るのが現実的であることが判明した。
The constraint in the width direction at this time may be of any shape, such as cutting a groove, providing a wall, or the like, as long as the method stops the stretching in the width direction. However, it has been found to be feasible to create grooves of a predetermined width.

【0015】図2(a) 〜(c) はこのような態様の工具形
状の模式的説明図である。図2(a)では下型として平型
のプレス型30を用い、上方から平型のプレス型32で多孔
帯体34をプレス圧下するのである。図2(b) は、下型と
して溝付のプレス型40、下型の溝に見合う凸部を形成し
た上型42を用い、プレス圧下を行うのである。いずれの
場合も多孔帯体34は図面に対し直角方向に移動する。
FIGS. 2A to 2C are schematic explanatory views of the tool shape in such an embodiment. In FIG. 2 (a), a flat press die 30 is used as a lower die, and the porous strip 34 is pressed down from above by a flat press die 32. In FIG. 2 (b), press reduction is performed by using a press die 40 having a groove as a lower die and an upper die 42 having a convex portion corresponding to the groove of the lower die. In any case, the porous band 34 moves in a direction perpendicular to the drawing.

【0016】図2(c) では、平型の下型50に対して円形
型52を上方からプレス圧下するのである。このように、
工具の一方の粉末層との接触面を凸なる曲面にすると、
面圧が上り、より小さな荷重で製造できる。すなわち、
加圧能力の小さな設備でも使える利点がある。その場合
の曲面の形状は、例えば、帯体走向方向の断面が円形
状、放物線形状等でよい。
In FIG. 2C, the circular mold 52 is pressed down from above the flat mold 50. in this way,
If the contact surface of the tool with one powder layer is a convex curved surface,
Surface pressure rises and can be manufactured with smaller load. That is,
There is an advantage that it can be used with equipment with a small pressurizing capacity. In this case, the shape of the curved surface may be, for example, a circular cross section or a parabolic cross section in the belt running direction.

【0017】いずれの場合も、多孔帯体は間欠的に長方
向に走行する間に上述のようなプレス圧下が行われる。
本発明者の試験結果では、幅拘束を行うことなく圧下を
加えると多孔帯体は幅方向に最大で5%延伸する。
In any case, the above-described press reduction is performed while the porous strip intermittently travels in the longitudinal direction.
According to the test results of the present inventor, when a reduction is applied without restricting the width, the porous strip is stretched at most 5% in the width direction.

【0018】 つまり、( 圧下後の帯体の幅/元の帯体の幅) =1.05 したがって、図2(a) 〜(c) に示すように各種の手段で
拘束を加えながら圧下を行う場合、溝の幅を圧下前の帯
体の幅の5%以下とすると充填密度は抱束しない場合と
比較して向上する。さらに、溝の幅を帯体の幅が同一で
あれば一層効果が上る。
That is, (width of band after rolling / width of original band) = 1.05 Therefore, as shown in FIGS. 2 (a) to 2 (c), a case where rolling is performed while restraining by various means. When the width of the groove is set to 5% or less of the width of the band before the rolling, the packing density is improved as compared with the case where no binding is performed. Further, if the width of the groove is the same as the width of the band, the effect is further enhanced.

【0019】本発明のさらに好適な態様によれば、圧下
装置に用いる上述の工具を冷却すると、粉末層 (スラリ
ー状) の粘度が上り圧下時の延伸を抑制し充填密度が向
上する。
According to a further preferred aspect of the present invention, when the above-mentioned tool used in the rolling device is cooled, the viscosity of the powder layer (slurry) rises, suppressing stretching at the time of rolling and increasing the packing density.

【0020】有機バインダーを含むスラリーの粘度は温
度低下とともに増大するため、型を冷却することにより
圧下時の粉末層の流動を低減できる。粉末層を担体に塗
付後乾燥により該帯体が加熱されスラリー粘度が低下す
ることも考えられ、型を冷却しておくことで図1に示す
ような連続ライン上でも低温でプレスすることが可能で
ある。冷却温度としては型の温度が適当であり、望まし
くは5〜15℃がよい。
Since the viscosity of the slurry containing the organic binder increases as the temperature decreases, by cooling the mold, the flow of the powder layer during rolling can be reduced. It is also conceivable that the band is heated by applying the powder layer to the carrier after drying, and the viscosity of the slurry is lowered. Therefore, it is possible to press the mold at a low temperature even on a continuous line as shown in FIG. 1 by cooling the mold. It is possible. As the cooling temperature, the temperature of the mold is appropriate, and preferably 5 to 15 ° C.

【0021】その場合の冷却方法は、水、液体ガス
(N、Ar、空気他) を冷却媒体として使用するか、ペル
チエ素子のような熱電素子を冷却手段として使用する方
法といろいろある。それらを組合せて用いてもよい。
The cooling method in that case is water, liquid gas
(N, Ar, air, etc.) as a cooling medium or a thermoelectric element such as a Peltier element as a cooling means. They may be used in combination.

【0022】かくして、例えばガスアトマイズ粉末等の
球形状粉末は、インゴット材を粉砕した粉末より球形状
であるため粉末状態では10〜25%充填密度は高いが、ス
ラリーとして粉末層を形成した際は、球形であるために
流動性が高く、プレスあるいは圧延時の粉末流動が大き
く、圧下後の密度が粉末状態程には上らないという問題
があったが、本発明により流動性が抑えられ粉末層の密
度もインゴット粉砕より10〜25%向上する。
Thus, for example, a spherical powder such as a gas atomized powder has a higher packing density of 10 to 25% in a powder state because it has a more spherical shape than a powder obtained by pulverizing an ingot material. However, when a powder layer is formed as a slurry, Due to the spherical shape, the fluidity was high, the powder flow during pressing or rolling was large, and the density after rolling was not as high as the powder state. Is also improved by 10-25% compared to ingot grinding.

【0023】ここに、本発明にかかる多孔帯体の製造方
法についてさらに詳述すれば次の通りである。電極の作
製は、例えば、水素吸蔵合金粉末と有機物バインダー
を、適用な溶媒(例、水、アルコール類など) を用いて
スラリーまたはペースト状にし、これを電極基板として
機能する多孔質担体 (例えば、発泡金属板、多数の貫通
孔を持つパンチング板等の多孔質担体) に塗布し、乾燥
して溶媒を適度に除去した後、得られた多孔帯体をロー
ル加圧もしくはプレスして成形することにより行うこと
ができる。
Here, the method for producing a porous strip according to the present invention will be described in more detail as follows. For the production of the electrode, for example, a hydrogen storage alloy powder and an organic binder are converted into a slurry or paste using an appropriate solvent (e.g., water, alcohols, etc.), and a porous carrier functioning as an electrode substrate (e.g., After applying to a porous metal carrier, a porous carrier such as a punched plate having a large number of through-holes, drying and removing the solvent to an appropriate degree, the resulting porous strip is roll-pressed or pressed to form the sheet. Can be performed.

【0024】本発明において上述の水素吸蔵合金粉末、
有機物バインダーについては特に制限なく通常の二次電
池用の電極を作製することができるものであればいずれ
であってもよい。
In the present invention, the above-mentioned hydrogen storage alloy powder,
The organic binder is not particularly limited as long as it can produce an electrode for a normal secondary battery.

【0025】有機物バインダーの例は、ポリビニルアル
コール(PVA) 、ポリテトラフルオロエチレン(PTFE)、ポ
リエチレン(PE)、ポリエチレンオキサイド(PEO) 、カル
ボキシメチルセルロース(CMC) 等である。有機物バイン
ダーの使用量は、水素吸蔵合金粉末の結合に必要な範囲
内で少量とすることが好ましく、通常は合金粉末の0.1
〜5重量%程度がよい。多孔質担体としても、パンチン
グメタル、金属短繊維焼結体など、適宜材料を使用でき
る。
Examples of the organic binder include polyvinyl alcohol (PVA), polytetrafluoroethylene (PTFE), polyethylene (PE), polyethylene oxide (PEO), and carboxymethyl cellulose (CMC). The amount of the organic binder used is preferably a small amount within a range necessary for bonding of the hydrogen storage alloy powder.
About 5% by weight is preferable. As the porous carrier, a suitable material such as a punched metal and a sintered metal short fiber can be used.

【0026】かくして、本発明によれば、同一圧下量
(板厚減少量) において、<充填率>が向上し、<長手
方向伸び>は少ないことから、電極として用いた場合の
電池特性は大幅に改善され、しかも幅方向の延伸はな
く、高速プレスが可能となるなど、能率向上にも大きく
寄与するものである。次に、本発明をその実施例によっ
てさらに具体的に説明する。
Thus, according to the present invention, the same reduction amount
In (Sheet thickness reduction), <filling ratio> is improved and <longitudinal elongation> is small, so that the battery characteristics when used as an electrode are greatly improved, and there is no stretching in the width direction. This greatly contributes to efficiency improvement. Next, the present invention will be described more specifically with reference to examples.

【0027】[0027]

【実施例】本実施例では、Mm1.0Ni3.55Co0.75Mn0.4Al
0.3 という化学組成をもつAB5 型の水素吸蔵合金を用い
た。この水素吸蔵合金の作製に用いた原料は、純度99.9
%のフレーク状Ni、純度99.8%の電解Co、純度99.9%の
ショット状Al、純度99.8%の板状電解Mn、純度99.8%以
上のミッシュメタル (Mm:La=28%、Ce=48%、Nd=18
%、Pr=6%) であった。
EXAMPLE In this example, Mm 1.0 Ni 3.55 Co 0.75 Mn 0.4 Al
The AB 5 type hydrogen storage alloy having a chemical composition of 0.3 was used. The raw material used to make this hydrogen storage alloy has a purity of 99.9
% Flake Ni, 99.8% pure electrolytic Co, 99.9% pure shot Al, 99.8% pure plate Mn, 99.8% or more misch metal (Mm: La = 28%, Ce = 48%, Nd = 18
%, Pr = 6%).

【0028】これらの原料を所定比率に混合し、急冷凝
固法であるArガスアトマイズ法 (75kg/ch)により水素吸
蔵合金の球形粉末 (アトマイズ粉) を、また高周波誘導
加熱真空溶解法により鋳造したインゴット(100kg/ch)の
機械粉砕 (Arガス雰囲気中、ディスクグラインダーで粗
粉砕後にアトリッションミルで微粉砕) により水素吸蔵
合金の不定形粉末 (粉砕粉) をそれぞれ作製した。アト
マイズ粉の急冷歪除去のために純度99.99 %のAr雰囲気
中で900 ℃×4hrの熱処理を施した。得られたそれぞれ
の水素吸蔵合金粉末は75μm径の篩を通過するサイズの
ものだけを選別して試験に用いた。
These raw materials were mixed at a predetermined ratio, and spherical powder (atomized powder) of a hydrogen storage alloy was cast by an Ar gas atomizing method (75 kg / ch), which is a rapid solidification method, and an ingot was cast by a high frequency induction heating vacuum melting method. (100 kg / ch) mechanical pulverization (in an Ar gas atmosphere, coarse pulverization with a disk grinder followed by fine pulverization with an attrition mill) to produce amorphous powders (pulverized powders) of the hydrogen storage alloy. In order to remove quenching strain of the atomized powder, a heat treatment at 900 ° C. for 4 hours was performed in an Ar atmosphere having a purity of 99.99%. Each of the obtained hydrogen-absorbing alloy powders having a size passing through a sieve having a diameter of 75 μm was selected and used in the test.

【0029】電極作製に際しては、得られた粉末に、ダ
イキン工業製PTFE (ポリテトラフルオロエチレン) ディ
スパージョン液 (商品名D-1)を0.8 重量%混合し、水を
分散媒として12重量%混合して、電極へ塗布するスラリ
ーを準備した。
In preparing the electrode, 0.8% by weight of a PTFE (polytetrafluoroethylene) dispersion liquid (trade name: D-1) manufactured by Daikin Industries, and 12% by weight of water as a dispersion medium were mixed with the obtained powder. Then, a slurry to be applied to the electrode was prepared.

【0030】このスラリーを厚さ0.08mm、幅50mm、長さ
10mのパンチングプレート (鉄製で厚み約10μmのNiメ
ッキを施したもの) の両面に均等に塗布して、多孔帯体
全厚0.65mmとした。パンチングプレートのサイズは本
実施例に用いた治具サイズにより決められるものであ
り、実際の量産時にはより幅が広く、長さも長い形状で
も加工可能であり、連続的にコイルに巻いたプレートを
順次アンコイルして加工することも可能である。
This slurry was prepared to have a thickness of 0.08 mm, a width of 50 mm, and a length of
It was evenly applied to both sides of a 10 m punching plate (made of iron and plated with Ni having a thickness of about 10 μm) to give a total thickness of the porous band of 0.65 mm. The size of the punching plate is determined by the size of the jig used in the present embodiment, and it is possible to process wider and longer shapes in actual mass production. It is also possible to work by uncoiling.

【0031】スラリーをパンチングプレートに塗布した
後、Ar雰囲気中80℃×10分の乾燥処理を施し本発明の圧
下加工方法を適用し、加工後の密度が5g/cc以上であれ
ば十分な充填特性改善が得られたと判断した。
After the slurry is applied to the punching plate, a drying treatment is performed in an Ar atmosphere at 80 ° C. for 10 minutes, and the reduction processing method of the present invention is applied. If the density after processing is 5 g / cc or more, sufficient filling is performed. It was determined that the characteristics were improved.

【0032】実施例1 本例は、図2(a) に示すように、多孔帯体の加工を行う
工具が上下型ともに平板型の場合の例を示すものであ
る。
Embodiment 1 In this embodiment, as shown in FIG. 2 (a), an example is shown in which both the upper and lower tools for processing the porous strip are flat.

【0033】上下の型はともにプレスに固定されてお
り、該帯体を移動させることにより連続的に加圧するこ
とが可能である。本例ではプレス圧下時の加圧速度を変
えて充填密度を比較した。結果は表1にまとめて示す。
The upper and lower molds are both fixed to a press, and can be continuously pressed by moving the band. In this example, the packing densities were compared by changing the pressing speed during the pressing. The results are summarized in Table 1.

【0034】表中、球形状粉の流動性が大きいために、
折角粉末状態で充填密度が大きくなっているにもかかわ
らず、粉末が流れてしまって従来例の圧延では、インゴ
ット粉砕粉の場合と同等の充填密度になってしまう。
In the table, since the flowability of the spherical powder is large,
In spite of the fact that the packing density in the powder state is high, the powder flows and the packing density in the conventional rolling becomes the same as in the case of the ingot pulverized powder.

【0035】[0035]

【表1】 [Table 1]

【0036】なお、加圧量は、0.65mm厚→0.45mm厚の0.
20mm(粉末層は両面合計で0.58mm→0.38mm)実施例2 本例では、図2(b) に示すように、多孔帯体の幅方向を
抱束することによる充填密度向上の効果を確認するため
に、下型に該帯体の長手方向に深さ10mmで幅を表2に示
すように変えた溝を形成し、上型には圧下時、該溝に嵌
合するように、該溝幅に見合う幅をもち、高さ12mmの凸
部を形成したものを用いた。なお、上型の凸部は必ずし
も必要ではなく平型でもよい。その場合は、該溝の深さ
を圧下後の帯体の厚みに合わせて浅くする必要がある。
The amount of pressurization is from 0.65 mm thickness to 0.45 mm thickness.
Example 2 In this example, as shown in FIG. 2 (b), the effect of improving the packing density by tying the porous band in the width direction was confirmed. In order to do so, a groove having a depth of 10 mm and a width changed as shown in Table 2 is formed in the lower mold in the longitudinal direction of the band body, and the upper mold is fitted with the groove so as to fit into the groove at the time of pressing down. A protrusion having a width corresponding to the groove width and having a height of 12 mm was used. In addition, the convex part of the upper die is not always necessary, and may be a flat type. In that case, it is necessary to make the depth of the groove shallow according to the thickness of the strip after the rolling.

【0037】プレス圧下時の加圧速度:10mm/分、加工
前帯体幅:50mm、加圧量は実施例1と同様の0.65mm厚→
0.45mm厚とした。結果は表2にまとめて示す。
Pressing speed at the time of pressing down: 10 mm / min, band width before processing: 50 mm, pressing amount: 0.65 mm thickness as in Example 1 →
The thickness was 0.45 mm. The results are summarized in Table 2.

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【発明の効果】以上説明してきたように、本発明によれ
ば、粉末の充填率は従来のものと比較してほぼ10%以上
も改善され、その結果、電極特性としての例えば電極容
量は10%以上も改善がみられ、これは二次電池の特性と
して考えれば、10%増の使用時間延長を意味するのであ
って、本発明の斯界における寄与は大きなものである。
As described above, according to the present invention, the filling rate of powder is improved by about 10% or more as compared with the conventional powder, and as a result, the electrode capacity, for example, the electrode capacity is reduced by 10%. % Or more, which means a 10% increase in use time when considered as a characteristic of the secondary battery, and the contribution of the present invention in the art is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる多孔帯体の製造方法の模式的説
明図である。
FIG. 1 is a schematic explanatory view of a method for producing a porous strip according to the present invention.

【図2】図2(a) 〜(c) は、それぞれ本発明において使
用する工具形状の模式的説明図である。
FIGS. 2 (a) to 2 (c) are schematic explanatory diagrams of tool shapes used in the present invention, respectively.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 多孔質の担体を挟んで両側に粉末層が形
成されている多孔帯体の製造方法において、該帯体を長
手方向に走行させ、該帯体の広幅面を挟んで設置された
工具によって、該帯体の前記広幅面に対して直角方向に
加圧速度1〜100mm/分で圧下を順次行うことを特徴とす
る多孔帯体の製造方法。
1. A method for producing a porous strip having a powdery layer formed on both sides of a porous carrier, wherein the strip is run in a longitudinal direction, and is placed across a wide surface of the strip. A method for producing a porous strip, wherein the rolling is performed sequentially at a pressure of 1 to 100 mm / min in a direction perpendicular to the wide surface of the strip by a tool.
【請求項2】 請求項1の製造方法において、使用する
工具のうち一方に該帯体の幅を抱束する形状を付与した
工具を用いることを特徴とする多孔帯体の製造方法。
2. The method according to claim 1, wherein one of the tools to be used is provided with a tool having a shape for tying the width of the band.
JP9046093A 1997-02-28 1997-02-28 Manufacture of porous belt body Withdrawn JPH10241676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9046093A JPH10241676A (en) 1997-02-28 1997-02-28 Manufacture of porous belt body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9046093A JPH10241676A (en) 1997-02-28 1997-02-28 Manufacture of porous belt body

Publications (1)

Publication Number Publication Date
JPH10241676A true JPH10241676A (en) 1998-09-11

Family

ID=12737384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9046093A Withdrawn JPH10241676A (en) 1997-02-28 1997-02-28 Manufacture of porous belt body

Country Status (1)

Country Link
JP (1) JPH10241676A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035869A (en) * 2012-08-08 2014-02-24 Toyota Industries Corp Electrode manufacturing method, and electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035869A (en) * 2012-08-08 2014-02-24 Toyota Industries Corp Electrode manufacturing method, and electrode

Similar Documents

Publication Publication Date Title
CA2488364C (en) Method for producing highly porous metallic moulded bodies close to the desired final contours
US20110020662A1 (en) Sintered porous metal body and a method of manufacturing the same
KR101340113B1 (en) Method of manufacturing powder metal plates
CN104903031A (en) Porous aluminum sintered compact
JP2004520483A (en) Method for producing metal foam or metal composite with improved shock, heat and sound absorption properties
CN104994975A (en) Aluminum material for sintering, method for producing aluminum material for sintering, and method for producing porous aluminum sintered compact
KR890014774A (en) Method for producing flat articles from metal powders and alloy plates produced by the method
JPH10241676A (en) Manufacture of porous belt body
US4849163A (en) Production of flat products from particulate material
CN105849829A (en) Method of manufacturing rare earth magnet
EP0011981B1 (en) Method of manufacturing powder compacts
CN105103246B (en) The method for manufacturing rare-earth magnet
CN1206059C (en) Metal compositie plate strap and its manufacturing method
JP2588538B2 (en) Manufacturing method of gas diffusion electrode
JPH02250920A (en) Production of rare earth element-transition element -b magnet by forging
RU2218628C2 (en) Way to manufacture contact plates
Burgos et al. Manufacturing of a Magnetocaloric Component by Uniaxial Pressing and Sintering of La-Fe-Co-Si Alloy Powders Produced by Gas Atomization
US3231373A (en) Production of high density compacts
Hashimoto et al. Deformation behavior of stainless steel particles under compressive load
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
CN104313377B (en) A kind of high specific gravity tungsten alloy material and preparation method thereof
JP2006009067A (en) Compression-shaped block with metal cutting powder and its shaping method
JPS6230804A (en) Multi-layer sintering method for sintered hard material powder and ferrous metallic powder by powder hot press method
JPH03229832A (en) Manufacture of nb-al intermetallic compound
JPH0347904A (en) Manufacture of strip-state porous metal plate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040511