JPH10241666A - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary batteryInfo
- Publication number
- JPH10241666A JPH10241666A JP9042516A JP4251697A JPH10241666A JP H10241666 A JPH10241666 A JP H10241666A JP 9042516 A JP9042516 A JP 9042516A JP 4251697 A JP4251697 A JP 4251697A JP H10241666 A JPH10241666 A JP H10241666A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- thin film
- secondary battery
- electrolyte secondary
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ポータブル用電子
機器の電源等に用いられる非水電解液二次電池に関し、
特に正極の改良に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery used as a power source for portable electronic equipment, and the like.
In particular, it relates to improvement of a positive electrode.
【0002】[0002]
【従来の技術】近年、ビデオテープレコーダ、通信機器
等の各種電子機器の小型軽量化に伴い、それらの電源と
して高エネルギー密度の二次電池の要求が高まってきて
いる。2. Description of the Related Art In recent years, with the reduction in size and weight of various electronic devices such as video tape recorders and communication devices, there has been an increasing demand for secondary batteries having a high energy density as power sources for these devices.
【0003】炭素質材料を負極として用いた非水電解液
二次電池は、高電圧、高エネルギー密度を有することか
ら、広く民生用電子機器等の電源に用いられており、研
究・開発が盛んに行われている。このような炭素質材料
を負極に用いた非水電解液二次電池においては、LiC
oO2やLiNiO2等のリチウム含有遷移金属酸化物を
正極に用いた4V系二次電池が実現されている。A non-aqueous electrolyte secondary battery using a carbonaceous material as a negative electrode has a high voltage and a high energy density, and is therefore widely used as a power source for consumer electronic devices, and has been actively researched and developed. It has been done. In a non-aqueous electrolyte secondary battery using such a carbonaceous material for the negative electrode, LiC
A 4V secondary battery using a lithium-containing transition metal oxide such as oO 2 or LiNiO 2 for a positive electrode has been realized.
【0004】また、負極にリチウム金属やリチウム合金
を用い、正極にリチウム複合酸化物を用いた二次電池
も、次世代二次電池として開発が進められている。[0004] Secondary batteries using a lithium metal or lithium alloy for the negative electrode and a lithium composite oxide for the positive electrode are also being developed as next-generation secondary batteries.
【0005】しかしながら、現在、上述した非水電解液
二次電池は、その充放電特性が電極の理論容量から期待
されるものに未だ及んでいないのが実情である。これら
非水電解液二次電池においては、携帯型電子機器の拡大
等に伴い、充放電特性の更なる向上が強く望まれてい
る。However, at present, the above-mentioned non-aqueous electrolyte secondary battery does not yet have the charging / discharging characteristics that are expected from the theoretical capacity of the electrode. In these non-aqueous electrolyte secondary batteries, further improvement in charge / discharge characteristics is strongly desired with the expansion of portable electronic devices and the like.
【0006】[0006]
【発明が解決しようとする課題】このように充放電特性
が電極の理論容量から期待されるものに及ばない原因
は、種々考えられるが、充電過程の電極−電解液界面に
おける不可逆な副反応が原因の一つとして考えられる。There are various possible causes for the charging / discharging characteristics not being as expected from the theoretical capacity of the electrode. However, irreversible side reactions at the electrode-electrolyte interface during the charging process are considered. It is considered as one of the causes.
【0007】そこで、本発明は、このような従来の実情
に鑑みて提案されたものであり、充電過程の電極−電解
液界面における不可逆な副反応を抑制し、充放電特性に
優れた非水電解液二次電池を提供することを目的とする
ものである。Accordingly, the present invention has been proposed in view of such conventional circumstances, and suppresses irreversible side reactions at the electrode-electrolyte interface during the charging process, and provides a non-aqueous solution having excellent charge / discharge characteristics. An object of the present invention is to provide an electrolyte secondary battery.
【0008】[0008]
【課題を解決するための手段】本発明者らは、上述した
課題を解決するために、鋭意検討を重ねた結果、正極表
面を薄膜で被膜することにより、充電過程の電極−電解
液界面における副反応が抑制され、充放電特性が向上す
ることを見いだした。Means for Solving the Problems The inventors of the present invention have made intensive studies in order to solve the above-mentioned problems, and as a result, by coating the surface of the positive electrode with a thin film, the electrode-electrolyte interface in the charging process has been obtained. It has been found that side reactions are suppressed and charge / discharge characteristics are improved.
【0009】すなわち、本発明に係る非水電解液二次電
池は、軽金属イオンをドープ・脱ドープ可能な材料から
なる負極及び正極と、軽金属の塩からなる電解質を非水
溶媒に溶解した非水電解液とからなる非水電解液二次電
池において、正極の表面が薄膜により被覆されているこ
とを特徴とする。That is, the non-aqueous electrolyte secondary battery according to the present invention comprises a negative electrode and a positive electrode made of a material capable of doping and dedoping light metal ions, and a non-aqueous solution obtained by dissolving an electrolyte made of a light metal salt in a non-aqueous solvent. A nonaqueous electrolyte secondary battery comprising an electrolyte, wherein the surface of the positive electrode is covered with a thin film.
【0010】本発明に係る非水電解液二次電池において
は、正極が薄膜により被膜されてなることから、充電過
程の電極−電解液界面における副反応が抑制され、充放
電特性に優れたものとなる。In the nonaqueous electrolyte secondary battery according to the present invention, since the positive electrode is coated with a thin film, a side reaction at the electrode-electrolyte interface during the charging process is suppressed, and the battery has excellent charge / discharge characteristics. Becomes
【0011】ところで、上記薄膜は、膜厚が0.1nm
〜5μmであることが好ましい。薄膜の膜厚が5μmを
越えた場合には、実効抵抗が大きく、電池特性を劣化さ
せる。また、薄膜の膜厚が0.1nm未満の場合には、
充電時の電極−電解液界面における副反応を抑制する効
果が小さい。The above thin film has a thickness of 0.1 nm.
It is preferably about 5 μm. When the thickness of the thin film exceeds 5 μm, the effective resistance is large, and the battery characteristics are deteriorated. When the thickness of the thin film is less than 0.1 nm,
The effect of suppressing side reactions at the electrode-electrolyte interface during charging is small.
【0012】また、上記薄膜は、炭素質材料からなるこ
とが好ましい。さらに、上記薄膜は、プラズマ化学気相
析出法により成膜されてなることが好ましい。Preferably, the thin film is made of a carbonaceous material. Further, the thin film is preferably formed by a plasma enhanced chemical vapor deposition method.
【0013】[0013]
【発明の実施の形態】以下、本発明に係る非水電解液二
次電池について詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a non-aqueous electrolyte secondary battery according to the present invention will be described in detail.
【0014】本発明に係る非水電解液二次電池は、軽金
属イオンをドープ・脱ドープ可能な材料からなる負極及
び正極と、軽金属の塩からなる電解質を非水溶媒に溶解
した非水電解液とからなる非水電解液二次電池におい
て、正極の表面が薄膜により被覆されていることを特徴
とするものである。The non-aqueous electrolyte secondary battery according to the present invention comprises a negative electrode and a positive electrode made of a material capable of doping and undoping light metal ions, and a non-aqueous electrolyte obtained by dissolving an electrolyte made of a light metal salt in a non-aqueous solvent. Wherein the surface of the positive electrode is covered with a thin film.
【0015】本発明に係る非水電解液二次電池において
は、正極が薄膜により被膜されてなることから、充電時
の電極−電解液界面における副反応が抑制され、充放電
特性に優れたものとなる。In the nonaqueous electrolyte secondary battery according to the present invention, since the positive electrode is coated with a thin film, side reactions at the electrode-electrolyte interface during charging are suppressed, and the battery has excellent charge / discharge characteristics. Becomes
【0016】ところで、上記薄膜は、膜厚が0.1nm
〜5μmであることが好ましい。薄膜の膜厚が5μmを
越えた場合には、実効抵抗が大きく、電池特性を劣化さ
せる。また、薄膜の膜厚が0.1nm未満の場合には、
充電時の電極−電解液界面における副反応を抑制する効
果が小さい。したがって、薄膜の膜厚は、0.1nm〜
5μmが好ましく、作業効率の点から1μm程度がより
好ましい。The thin film has a thickness of 0.1 nm.
It is preferably about 5 μm. When the thickness of the thin film exceeds 5 μm, the effective resistance is large, and the battery characteristics are deteriorated. When the thickness of the thin film is less than 0.1 nm,
The effect of suppressing side reactions at the electrode-electrolyte interface during charging is small. Therefore, the thickness of the thin film is from 0.1 nm to
It is preferably 5 μm, and more preferably about 1 μm from the viewpoint of working efficiency.
【0017】また、上記正極を被膜する薄膜材料として
は、特に限定されるものではないが、イオン伝導性を有
し、電子伝導率が103S/cm以下の無機化合物又は
有機化合物であることが好ましく、10-10S/cm以
下がより好ましい。電子伝導率が103S/cm以上に
なると、薄膜表面で電気化学反応が進行してしまい、正
極の表面改質の意味をなさないため好ましくない。The thin film material for coating the positive electrode is not particularly limited, but is preferably an inorganic compound or an organic compound having ionic conductivity and an electronic conductivity of 10 3 S / cm or less. , Preferably 10 -10 S / cm or less. If the electron conductivity is 10 3 S / cm or more, an electrochemical reaction proceeds on the surface of the thin film, and it does not make sense to modify the surface of the positive electrode.
【0018】薄膜材料としては、例示するならば、炭化
水素[(CH)n]、フッ化炭素[(CF)n]等の炭素
質材料や、通常の遷移金属酸化物、塩化チオニル[SO
Cl2]等の無機化合物を用いることができる。また、
ポリエチレンオキシド、ポリプロピレンオキシド、ポリ
エチレンサクシネート、ポリエチレンイミン、ポリアル
キレンスルフィド等のイオン伝導性を有する有機化合物
を用いることができる。いずれを用いても同様の効果を
得ることができるが、特に炭素質材料を用いることが好
ましい。Examples of the thin film material include carbonaceous materials such as hydrocarbons [(CH) n ] and fluorocarbons [(CF) n ], ordinary transition metal oxides, and thionyl chloride [SO
Cl 2 ]. Also,
Organic compounds having ion conductivity such as polyethylene oxide, polypropylene oxide, polyethylene succinate, polyethylene imine, and polyalkylene sulfide can be used. The same effect can be obtained by using any of them, but it is particularly preferable to use a carbonaceous material.
【0019】さらに、上記薄膜は、プラズマ化学気相析
出法により成膜されてなることが好ましい。プラズマ化
学気相析出法により得られた薄膜は、均一な薄膜である
点、基盤の凹凸に対して回り込みがよく成膜できる薄膜
である点、またパラメータのコントロールにより容易に
膜厚、膜質を制御できる薄膜であるという点から好まし
く用いられる。Further, the thin film is preferably formed by a plasma enhanced chemical vapor deposition method. The thin film obtained by plasma-enhanced chemical vapor deposition is a uniform thin film, a thin film that can be formed well around the unevenness of the substrate, and the thickness and film quality can be easily controlled by controlling the parameters. It is preferably used because it is a thin film that can be formed.
【0020】なお、本発明に係る非水電解液二次電池に
使用される正極としては、軽金属イオンをドープ・脱ド
ープ可能な材料であれば、特に限定されるものではな
い。The positive electrode used in the nonaqueous electrolyte secondary battery according to the present invention is not particularly limited as long as it is a material capable of doping and undoping light metal ions.
【0021】例示するならば、一般的に用いられる二酸
化マンガン、五酸化バナジウム等の遷移金属酸化物や、
硫化鉄、硫化チタン等の遷移金属カルコゲン化物、さら
には、LixMO2(但し、Mは、Co、Ni又はMn等
の遷移金属を表し、0.5≦x≦1である。)、或いは
LiNipM1qM2rO2(但し、M1、M2は、Al、
Mn、Fe、Ni、Co、Cr、Ti、Znから選ばれ
る少なくとも1種の元素、又はP、B等の非金属元素で
もよい。さらにp+q+r=1である。)で表せるリチ
ウム複合酸化物を用いることができる。特に、高電圧、
高エネルギー密度が得られ、サイクル特性にも優れるこ
とから、リチウム・コバルト複合酸化物やリチウム・ニ
ッケル複合酸化物を用いることが望ましい。For example, generally used transition metal oxides such as manganese dioxide and vanadium pentoxide,
Transition metal chalcogenides such as iron sulfide and titanium sulfide, and further Li x MO 2 (where M represents a transition metal such as Co, Ni or Mn and 0.5 ≦ x ≦ 1), or LiNi p M1 q M2 r O 2 (where M1 and M2 are Al,
At least one element selected from Mn, Fe, Ni, Co, Cr, Ti, and Zn, or a nonmetallic element such as P or B may be used. Furthermore, p + q + r = 1. ) Can be used. In particular, high voltage,
It is desirable to use a lithium-cobalt composite oxide or a lithium-nickel composite oxide because high energy density is obtained and cycle characteristics are excellent.
【0022】一方、負極としても、軽金属をドープ・脱
ドープ可能な材料であれば、特に限定されるものではな
い。On the other hand, the negative electrode is not particularly limited as long as it is a material capable of doping and undoping a light metal.
【0023】例示するならば、リチウム、ナトリウム等
のアルカリ金属や、充放電反応に伴いリチウム等のアル
カリ金属をドープ・脱ドープする材料を用いることがで
きる。後者の例としては、ポリアセチレン、ポリピロー
ル等の導電性ポリマー、又は熱分解炭素類、コークス類
(石油コークス、ピッチコークス、石炭コークス等)、
カーボンブラック(アセチレンブラック等)、ガラス状
炭素、有機高分子材料焼成体(有機高分子材料を500
℃以上の適当な温度で不活性ガス気流中、或いは真空中
で焼成したもの)、炭素繊維等の炭素質材料を用いるこ
とができる。特に、単位体積当たりのエネルギー密度が
大きい点から、炭素質材料を用いることが望ましい。For example, a material that can be doped with or dedoped with an alkali metal such as lithium and sodium or an alkali metal such as lithium during a charge / discharge reaction can be used. Examples of the latter include conductive polymers such as polyacetylene and polypyrrole, or pyrolytic carbons, cokes (petroleum coke, pitch coke, coal coke, etc.),
Carbon black (acetylene black, etc.), glassy carbon, organic polymer material fired body (organic polymer material 500
(A material baked in an inert gas stream at a suitable temperature of at least ℃ or in a vacuum) or a carbonaceous material such as carbon fiber. In particular, it is desirable to use a carbonaceous material because of its high energy density per unit volume.
【0024】また、非水電解液は、有機溶媒と電解質と
を適宜組み合わせて調整される。これら有機溶媒や電解
質としては、この種の電池に用いられるものであればい
ずれも用いることができる。The non-aqueous electrolyte is adjusted by appropriately combining an organic solvent and an electrolyte. Any of these organic solvents and electrolytes can be used as long as they are used for this type of battery.
【0025】例示するならば、有機溶媒としては、プロ
ピレンカーボネート、エチレンカーボネート、ジエチル
カーボネート、ジメチルカーボネート、1,2−ジメト
キシエタン、1,2−ジエトキシエタン、γ−ブチロラ
クトン、テトラヒドロフラン、2−メチルテトラヒドロ
フラン、1,3−ジオキソラン、4−メチル−1,3−
ジオキソラン、ジエチルエーテル、スルホラン、メチル
スルホラン、アセトニトリル、プロピオニトリル、アニ
ソール、酢酸エステル、酪酸エステル、プロピオ酸エス
テル等が挙げられる。For example, as the organic solvent, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran , 1,3-dioxolan, 4-methyl-1,3-
Examples include dioxolan, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile, anisole, acetate, butyrate, and propioate.
【0026】電解質としては、LiClO4、LiAs
F6、LiPF6、LiBF4、LiB(C6H5)4、CH
3SO3Li、CF3SO3Li、LiCl、LiBr等が
挙げられる。As the electrolyte, LiClO 4 , LiAs
F 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH
3 SO 3 Li, CF 3 SO 3 Li, LiCl, LiBr and the like.
【0027】[0027]
【実施例】本発明の好適な実施例を実験結果に基づいて
説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described based on experimental results.
【0028】実施例1 図1に、本実施例で作製するコイン型二次電池を示す。 Embodiment 1 FIG. 1 shows a coin-type secondary battery manufactured in this embodiment.
【0029】まず、始めに円板状正極1を次のように作
製した。LiOH・H2OとNiOを組成比Li/Ni
=1となるように混合し、乾燥空気中900℃にて5時
間焼成して、リチウム・ニッケル複合酸化物LiNiO
2を得た。このリチウム複合酸化物を正極活物質として
90重量部、導電剤として黒鉛7重量部、結着剤として
ポリフッ化ビニリデン3重量部を混合し、ジメチルホル
ムアミドを溶媒として混練、乾燥して正極ミックスを調
整した。そして、この正極ミックス60mgを集電体で
あるアルミニウムメッシュとともに加圧成型し、直径1
5.5mmの円板状正極1を得た。First, a disk-shaped positive electrode 1 was prepared as follows. Composition ratio Li / Ni of LiOH.H 2 O and NiO
= 1 and calcined in dry air at 900 ° C for 5 hours to obtain lithium-nickel composite oxide LiNiO
Got two . 90 parts by weight of this lithium composite oxide as a positive electrode active material, 7 parts by weight of graphite as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder are mixed, kneaded with dimethylformamide as a solvent, and dried to prepare a positive electrode mix. did. Then, 60 mg of this positive electrode mix was pressure-molded together with an aluminum mesh as a current collector, and a diameter of 1 mg was obtained.
A disk-shaped positive electrode 1 of 5.5 mm was obtained.
【0030】その後、以下のようにして正極1の表面改
質を行った。ガラス製ベルジャ及びステンレス製フラン
ジからなる反応容器内にステンレス製の平行平板電極を
対向させて配置し、カソード電極上に先の正極1を設置
した。そして、反応容器内にエチレンガスを10ml/
分でフローさせた状態で、排気により反応器内の圧力を
0.08Torrに保ちながら、加速電圧0.7kV、
電流7mAの直流電力を平行平板電極に印加し、プラズ
マ化学気相析出法により1分間成膜を行った。これによ
り、表面を薄膜2で被覆された正極1を得た。Thereafter, the surface of the positive electrode 1 was modified as follows. A parallel plate electrode made of stainless steel was placed in a reaction vessel consisting of a bell jar made of glass and a flange made of stainless steel so as to face each other, and the positive electrode 1 was placed on the cathode electrode. Then, 10 ml of ethylene gas was introduced into the reaction vessel.
In a state where the flow rate is set to be minute, while maintaining the pressure in the reactor at 0.08 Torr by exhaust, the acceleration voltage is 0.7 kV,
A direct current power of 7 mA was applied to the parallel plate electrodes, and a film was formed for one minute by a plasma chemical vapor deposition method. Thus, the positive electrode 1 whose surface was covered with the thin film 2 was obtained.
【0031】次に、厚さ1.85mmのリチウム箔を円
板状に打ち抜き、これを負極3とした。そして、負極3
を負極集電体4に圧着した。ここで、リチウム量は、正
極1の最大充電能力の数百倍であり、正極1の電気化学
性能を制限するわけではない。Next, a lithium foil having a thickness of 1.85 mm was punched into a disc shape, and this was used as a negative electrode 3. And the negative electrode 3
To the negative electrode current collector 4. Here, the amount of lithium is several hundred times the maximum charging capacity of the positive electrode 1, and does not limit the electrochemical performance of the positive electrode 1.
【0032】次に、正極集電体5に正極1を載せ、正極
1の上にポリプロピレン製多孔質膜からなるセパレータ
6を載置した。これに、炭酸プロピレンと炭酸ジメチル
との混合溶媒(容量比で1:1である。)にLiPF6
を1mol/lの割合で溶解してなる電解液を注液し、
先の負極3が圧着された負極集電体4を載せ、ガスケッ
ト7によりかしめて封口した。これにより、直径20m
m、厚さ2.5mmのコイン型二次電池(実施例電池
1)が得られた。Next, the positive electrode 1 was placed on the positive electrode current collector 5, and a separator 6 made of a porous polypropylene film was placed on the positive electrode 1. Then, LiPF 6 was added to a mixed solvent of propylene carbonate and dimethyl carbonate (volume ratio is 1: 1).
Is injected at a rate of 1 mol / l into the electrolyte,
The negative electrode current collector 4 to which the negative electrode 3 was crimped was mounted, and was caulked with a gasket 7 and sealed. Thereby, diameter 20m
Thus, a coin-type secondary battery (Example Battery 1) having a thickness of 2.5 mm and a thickness of 2.5 mm was obtained.
【0033】実施例2 プラズマ化学気相析出法による処理時間を2分間とし
た。これ以外は、実施例1と同様にしてコイン型二次電
池(実施例電池2)を作製した。 Example 2 The processing time by the plasma enhanced chemical vapor deposition was set to 2 minutes. Except for this, the coin-type secondary battery (Example Battery 2) was manufactured in the same manner as Example 1.
【0034】実施例3 プラズマ化学気相析出法による処理時間を5分間とし
た。これ以外は、実施例1と同様にしてコイン型二次電
池(実施例電池3)を作製した。 Example 3 The processing time by the plasma enhanced chemical vapor deposition was set to 5 minutes. Except for this, the coin-type secondary battery (Example Battery 3) was manufactured in the same manner as Example 1.
【0035】実施例4 LiOH・H2OとCoOとを組成比Li/Co=1と
なるように混合し、乾燥空気中900℃にて5時間焼成
して、リチウム・コバルト複合酸化物LiCoO2を得
た。これを正極活物質とした以外は、実施例1と同様に
してコイン型二次電池(実施例電池4)を作製した。 Example 4 LiOH.H 2 O and CoO were mixed at a composition ratio of Li / Co = 1 and fired in dry air at 900 ° C. for 5 hours to obtain a lithium-cobalt composite oxide LiCoO 2. I got A coin-type secondary battery (Example Battery 4) was produced in the same manner as in Example 1 except that this was used as the positive electrode active material.
【0036】比較例1 実施例1と同じ正極活物質を用い、プラズマ化学気相析
出法による正極1の表面改質を行わなかった。これ以外
は、実施例1と同様にしてコイン型二次電池(比較例電
池1)を作製した。 Comparative Example 1 The same positive electrode active material as in Example 1 was used, and the surface of the positive electrode 1 was not modified by plasma enhanced chemical vapor deposition. Except for this, the coin-type secondary battery (Comparative Battery 1) was manufactured in the same manner as in Example 1.
【0037】比較例2 実施例4と同じ正極活物質を用い、プラズマ化学気相析
出法による正極1の表面改質を行わなかった。これ以外
は、実施例4と同様にしてコイン型二次電池(比較例電
池2)を作製した。 Comparative Example 2 The same positive electrode active material as in Example 4 was used, and the surface modification of the positive electrode 1 by plasma enhanced chemical vapor deposition was not performed. Except for this, the coin-type secondary battery (Comparative Battery 2) was manufactured in the same manner as in Example 4.
【0038】以上作製された実施例電池1〜4の正極
を、電子顕微鏡で観察した結果、いずれの正極も均一な
薄膜により被膜されていることが確認された。薄膜の膜
厚は、実施例電池1及び実施例電池4で1μm、実施例
電池2で2μm、実施例電池3で5μmであった。X線
光電子分光法による分析の結果、薄膜は炭素質の組成構
造を有することが確認された。また、いずれも電子伝導
率は、10-10S/cm以下であった。As a result of observing the positive electrodes of the batteries of Examples 1 to 4 manufactured as described above with an electron microscope, it was confirmed that all the positive electrodes were coated with a uniform thin film. The thickness of the thin film was 1 μm for Example Battery 1 and Example Battery 4, 2 μm for Example Battery 2, and 5 μm for Example Battery 3. As a result of analysis by X-ray photoelectron spectroscopy, it was confirmed that the thin film had a carbonaceous composition structure. In each case, the electron conductivity was 10 −10 S / cm or less.
【0039】充放電試験の条件 作製された実施例電池1〜4及び比較例電池1〜2の充
放電試験を以下の条件で行った。 Charge / Discharge Test Conditions The charge / discharge tests of the fabricated Example batteries 1 to 4 and Comparative example batteries 1 and 2 were performed under the following conditions.
【0040】充電は、500μA(電流密度0.26m
A/cm2)で定電流充電を電池電圧が4.2Vになる
まで行い、次いで4.2Vの定電圧充電を総計の充電時
間が20時間になるまで行った。放電は、電池電圧が
2.5Vになるまで行った。Charging is performed at 500 μA (current density 0.26 m
(A / cm 2 ), constant-current charging was performed until the battery voltage reached 4.2 V, and then constant-voltage charging at 4.2 V was performed until the total charging time reached 20 hours. Discharging was performed until the battery voltage reached 2.5V.
【0041】充放電特性の検討 上述した充放電試験の条件で得られた各電池の薄膜の膜
厚、充放電容量及び充放電効率を表1に示す。Examination of Charge / Discharge Characteristics Table 1 shows the thickness, charge / discharge capacity and charge / discharge efficiency of the thin film of each battery obtained under the conditions of the charge / discharge test described above.
【0042】[0042]
【表1】 [Table 1]
【0043】表1の結果から、実施例電池1〜3は、比
較例電池1に比べて、放電容量及び充放電効率ともに優
れていることがわかる。同様に、実施例電池4は、比較
例電池2に比べて、放電容量及び充放電効率に優れてい
ることがわかる。一方、実施例電池1〜4は、比較例電
池1〜2に比べて充電容量が減少している。これは、薄
膜が被膜されることにより、電解液の分解などの充電時
の分解反応が抑制された結果と考えられる。一方、実施
例電池1〜4では、充電時の反応物の電極表面への生成
が抑制され、電池の内部抵抗の増大が抑制されるため、
放電容量が向上している。このように、実施例電池1〜
4においては、充電容量の減少及び放電容量の増加によ
り、充放電効率が向上している。From the results shown in Table 1, it is understood that the batteries of Examples 1 to 3 are superior to the battery 1 of Comparative Example in both of the discharge capacity and the charge / discharge efficiency. Similarly, it can be seen that Example Battery 4 is superior to Comparative Example Battery 2 in discharge capacity and charge / discharge efficiency. On the other hand, the batteries of Examples 1 to 4 have a smaller charge capacity than the batteries of Comparative Examples 1 and 2. This is considered to be a result of suppressing the decomposition reaction at the time of charging such as decomposition of the electrolytic solution by coating the thin film. On the other hand, in the batteries 1 to 4 of the present invention, generation of a reactant on the electrode surface during charging is suppressed, and an increase in the internal resistance of the battery is suppressed.
The discharge capacity has been improved. Thus, Example batteries 1 to
In No. 4, the charge / discharge efficiency is improved due to the decrease in the charge capacity and the increase in the discharge capacity.
【0044】したがって、このコイン型二次電池におい
ては、正極の表面を炭素質薄膜により被膜することで、
正極−電解液界面における副反応が抑制され、充放電特
性を向上させることができる。また、実施例電池1〜4
の結果から、上述した効果は、処理時間すなわち薄膜の
膜厚によらず、1分の処理時間すなわち1μmの膜厚で
十分であることがわかる。Therefore, in this coin-type secondary battery, the surface of the positive electrode is coated with a carbonaceous thin film,
Side reactions at the positive electrode-electrolyte interface can be suppressed, and the charge / discharge characteristics can be improved. In addition, Example batteries 1 to 4
It can be seen from the results that the above-mentioned effect is sufficient with a processing time of 1 minute, that is, a film thickness of 1 μm, regardless of the processing time, that is, the thickness of the thin film.
【0045】[0045]
【発明の効果】以上の説明からも明らかなように、本発
明に係る非水電解液二次電池は、正極が薄膜により被膜
されてなることから、充電時の電極−電解液界面におけ
る副反応を抑制することができ、充放電特性を向上させ
ることができる。As is clear from the above description, since the nonaqueous electrolyte secondary battery according to the present invention has a positive electrode coated with a thin film, a side reaction at the electrode-electrolyte interface at the time of charging is performed. Can be suppressed, and the charge / discharge characteristics can be improved.
【図1】本発明を適用したコイン型二次電池の構成を示
す断面図である。FIG. 1 is a cross-sectional view illustrating a configuration of a coin-type secondary battery to which the present invention is applied.
1 正極、2 薄膜、3 負極、4 負極集電体、5
正極集電体、6 セパレータ、7 ガスケット1 positive electrode, 2 thin film, 3 negative electrode, 4 negative electrode current collector, 5
Cathode current collector, 6 separator, 7 gasket
Claims (5)
材料からなる負極及び正極と、軽金属の塩からなる電解
質を非水溶媒に溶解した非水電解液とからなる非水電解
液二次電池において、 正極の表面が薄膜により被覆されていることを特徴とす
る非水電解液二次電池。1. A non-aqueous electrolyte secondary battery comprising a negative electrode and a positive electrode made of a material capable of doping / dedoping a light metal ion, and a non-aqueous electrolyte obtained by dissolving an electrolyte made of a light metal salt in a non-aqueous solvent. A non-aqueous electrolyte secondary battery, wherein the surface of the positive electrode is covered with a thin film.
であることを特徴とする請求項1記載の非水電解液二次
電池。2. The thin film has a thickness of 0.1 nm to 5 μm.
The non-aqueous electrolyte secondary battery according to claim 1, wherein
特徴とする請求項1記載の非水電解液二次電池。3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the thin film is made of a carbonaceous material.
より成膜されてなることを特徴とする請求項1記載の非
水電解液二次電池。4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the thin film is formed by a plasma chemical vapor deposition method.
徴とする請求項1記載の非水電解液二次電池。5. The non-aqueous electrolyte secondary battery according to claim 1, wherein the light metal is lithium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9042516A JPH10241666A (en) | 1997-02-26 | 1997-02-26 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9042516A JPH10241666A (en) | 1997-02-26 | 1997-02-26 | Nonaqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10241666A true JPH10241666A (en) | 1998-09-11 |
Family
ID=12638248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9042516A Withdrawn JPH10241666A (en) | 1997-02-26 | 1997-02-26 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10241666A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010010080A (en) * | 2008-06-30 | 2010-01-14 | Sony Corp | Negative electrode, secondary battery, and their manufacturing method |
JP2010225561A (en) * | 2009-03-25 | 2010-10-07 | Tdk Corp | Lithium ion secondary battery |
CN102299316A (en) * | 2011-09-08 | 2011-12-28 | 浙江吉能电池科技有限公司 | Layered oxide lithium ion battery anode and preparation method thereof |
CN113036091A (en) * | 2021-04-22 | 2021-06-25 | 远景动力技术(江苏)有限公司 | Carbon-coated ternary positive pole piece and preparation method and application thereof |
-
1997
- 1997-02-26 JP JP9042516A patent/JPH10241666A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010010080A (en) * | 2008-06-30 | 2010-01-14 | Sony Corp | Negative electrode, secondary battery, and their manufacturing method |
JP2010225561A (en) * | 2009-03-25 | 2010-10-07 | Tdk Corp | Lithium ion secondary battery |
CN102299316A (en) * | 2011-09-08 | 2011-12-28 | 浙江吉能电池科技有限公司 | Layered oxide lithium ion battery anode and preparation method thereof |
CN113036091A (en) * | 2021-04-22 | 2021-06-25 | 远景动力技术(江苏)有限公司 | Carbon-coated ternary positive pole piece and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102277734B1 (en) | Negative electrode active material for lithium secondary battery, negative electrode for lithium secondry battery and lithium secondary battery comprising the same | |
KR101626570B1 (en) | Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery | |
JP4837614B2 (en) | Lithium secondary battery | |
KR101201804B1 (en) | Negative active for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
US20200321612A1 (en) | Negative electrode for lithium secondary battery, method of preparing the same, and lithium secondary battery including negative electrode for lithium secondary battery | |
KR20180083272A (en) | Non-aqueous electrolyte solution and lithium secondary battery comprising the same | |
KR20190046425A (en) | Positive electrode active material for secondary battery, method for preparing the same and lithium secondary battery comprising the same | |
KR100834053B1 (en) | Cathode, and lithium secondary battery and hybrid capacitor comprising same | |
KR20150116330A (en) | Rechargeable lithium battery | |
US7150940B2 (en) | Lithium ion secondary battery | |
JP3624578B2 (en) | Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery | |
KR20180086140A (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising the same | |
US20220294037A1 (en) | Method for manufacturing secondary battery | |
US9153842B2 (en) | Rechargeable lithium battery including positive electrode including activated carbon and electrolyte containing propylene carbonate | |
KR20190078991A (en) | Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same | |
CN113678297A (en) | Lithium secondary battery | |
KR101802482B1 (en) | Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same | |
KR20180086141A (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising the same | |
KR20230071384A (en) | Negative electrode and secondary battery comprising the same | |
KR20220109699A (en) | Method for manufacturing secondary battery | |
US20220255150A1 (en) | Method of manufacturing secondary battery | |
JP2014149969A (en) | Current collector for battery and battery | |
JPH10241666A (en) | Nonaqueous electrolyte secondary battery | |
KR20220023149A (en) | Cyclic ester diol derivatives, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery | |
US20230054932A1 (en) | Negative electrode active material, negative electrode including same, secondary battery including same and method for preparing negative electrode active material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20040511 |