JPH10241618A - Observation and machining method by charged beam and device therefor - Google Patents

Observation and machining method by charged beam and device therefor

Info

Publication number
JPH10241618A
JPH10241618A JP4186297A JP4186297A JPH10241618A JP H10241618 A JPH10241618 A JP H10241618A JP 4186297 A JP4186297 A JP 4186297A JP 4186297 A JP4186297 A JP 4186297A JP H10241618 A JPH10241618 A JP H10241618A
Authority
JP
Japan
Prior art keywords
charged beam
thin film
observation
conductive thin
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4186297A
Other languages
Japanese (ja)
Inventor
Norimasa Nishimura
規正 西村
Junzo Azuma
淳三 東
Akira Shimase
朗 嶋瀬
Michinobu Mizumura
通伸 水村
Yuichi Hamamura
有一 濱村
Mikio Hongo
幹雄 本郷
Katsuro Mizukoshi
克郎 水越
Yasuhiro Koizumi
裕弘 古泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4186297A priority Critical patent/JPH10241618A/en
Publication of JPH10241618A publication Critical patent/JPH10241618A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the charge increase of charged beam and accurately detect a defect to machine and detect surely by observing a defective part of an insulating pattern formed on a board, after locally selecting and forming a conductive thin film around the defective part. SOLUTION: A circuit pattern forming shading film 2 and a deep-drilling type phase shifter 3 are formed at a circuit pattern forming part of a transparent board 1 to aim at exposure of high resolution. In case this phase shifter 3 has a defective part 4, the defective part 4 is previously detected by a defect inspecting device. On the basis of the coordinates of a defect position, focused ion beams 6 are irradiated to the peripheral part, which spraying CVD gas from a gas nozzle 5, and a conductive thin film 8 of 50mm or less such as W is formed and grounded. The focused ion beams 6 are then irradiated, and after detecting a defect 4 by a secondary particle detector 7, the defect 4 is eliminated. After correcting the defect 4, the thin film 8 is dissolved with 9 washing liquid, such an ammonia solution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は荷電ビームによる観
察,加工方法に関する。
[0001] The present invention relates to an observation and processing method using a charged beam.

【0002】[0002]

【従来の技術】半導体の高集積化に伴い、より微細なパ
ターンを低コストで露光するために、位相シフトマスク
の実用化が進められている。この位相シフトマスクの一
例を図5に示す。同図で、透明基板1上に回路パターン
形成用の遮光膜2、さらに深掘り型の位相シフタ3が回
路パターン形成予定領域上に交互に設けられている。図
5の(a)に示すように、位相シフタ3を透過した光は
隣り合うパターンを透過した光と位相がπずれるため
に、パターン境界での光の干渉により高解像度の露光が
可能になるようになっている。
2. Description of the Related Art As semiconductors become more highly integrated, phase shift masks are being put to practical use in order to expose finer patterns at lower cost. FIG. 5 shows an example of this phase shift mask. In FIG. 1, a light-shielding film 2 for forming a circuit pattern and a deep-diffusion type phase shifter 3 are alternately provided on a region where a circuit pattern is to be formed on a transparent substrate 1. As shown in FIG. 5A, the light transmitted through the phase shifter 3 has a phase shift of π from the light transmitted through an adjacent pattern, so that high-resolution exposure is possible due to interference of light at the pattern boundary. It has become.

【0003】ところが、図5の(b)に示すように、位
相シフタ3上に欠陥4が存在すると、欠陥部を透過した
光の位相振幅が大きくずれて、そのまま素子上に欠陥が
転写されてしまう。このため、この欠陥を検出し修正す
る事が、位相シフトマスクの実用化で重要な課題になっ
ている。図5の(b)に示した位相シフタ3上の欠陥4
は欠陥検査装置により欠陥の位置を検出し、その欠陥位
置の座標データに基づき、欠陥があると思われる周辺部
分に静電レンズにより集束された荷電ビームを走査しな
がら照射して、基板から放出される二次電子或は二次イ
オンを二次粒子検出器により検出し、マスク表面の観察
を行った後、特開平4−449に記載されるイオンビー
ムを使用する方法などによって欠陥部分を修正する。ま
た、この際マスク基板への荷電ビームによるダメージを
防ぐ事も重要である。
However, as shown in FIG. 5B, when a defect 4 exists on the phase shifter 3, the phase amplitude of the light transmitted through the defective portion is greatly shifted, and the defect is transferred to the element as it is. I will. Therefore, detecting and correcting this defect has become an important issue in the practical use of a phase shift mask. Defect 4 on phase shifter 3 shown in FIG.
Uses a defect inspection device to detect the position of a defect, irradiates a charged beam focused by an electrostatic lens on a peripheral part that seems to be defective while scanning it, and emits it from the substrate based on the coordinate data of the defect position. The secondary electron or secondary ion is detected by a secondary particle detector, the mask surface is observed, and the defective portion is corrected by a method using an ion beam described in JP-A-4-449. I do. At this time, it is also important to prevent the mask substrate from being damaged by the charged beam.

【0004】[0004]

【発明が解決しようとする課題】図5の(b)に示した
位相シフタ3上の欠陥4は集束した荷電ビームを走査し
ながら照射して、基板から放出される二次電子或は二次
イオンを検出し、マスク表面の観察を行い、特開平4−
449に記載されるように欠陥部のみに集束イオンビー
ムを照射,走査し欠陥部を削りとる方法などによって修
正する。しかし、マスク自体が絶縁性であるため照射さ
れた荷電ビームの電荷はアースに逃げることなく、マス
ク表面に蓄積(チャージアップ)されて、照射される荷
電ビームが反発するため二次粒子像は次第にずれたり、
放電して二次粒子像に白すじが入る等欠陥部の観察は困
難となる。例えば、荷電ビームとして、イオンビームを
用いた場合、チャージアップを防止する手段の一つとし
て電子シャワーを用いて基板表面に蓄積されたイオンを
中和する方法がある。しかし、電子シャワーが加工部に
照射されるように構成する必要があることと、電子シャ
ワーを用いているため、二次粒子像として二次電子を検
出した像が得られず、二次イオンを検出した像でしか観
察できない。その場合二次イオンの収率が一次イオンの
数%と低いためコントラストの高い像が得られないなど
の課題が残る。このため、欠陥部分の検出及び修正加工
位置精度の低下が生じてしまう。
The defect 4 on the phase shifter 3 shown in FIG. 5 (b) is irradiated with a focused charged beam while scanning it, and secondary electrons or secondary electrons emitted from the substrate are emitted. Detect ions and observe the mask surface.
As described in 449, the defect is corrected by a method of irradiating a focused ion beam to only the defect and scanning the same to remove the defect. However, since the mask itself is insulative, the charge of the irradiated charged beam does not escape to the ground, but is accumulated (charged up) on the mask surface, and the charged particle beam rebounds, so that the secondary particle image gradually becomes larger. Slipped,
Observation of a defect such as white streaks in the secondary particle image due to discharge becomes difficult. For example, when an ion beam is used as a charged beam, there is a method of neutralizing ions accumulated on the substrate surface using an electron shower as one of means for preventing charge-up. However, it is necessary to irradiate the processed part with the electron shower, and since the electron shower is used, an image in which the secondary electrons are detected cannot be obtained as a secondary particle image. Observation is possible only with the detected image. In this case, there remains a problem that an image with high contrast cannot be obtained because the yield of secondary ions is as low as several percent of the primary ions. For this reason, the detection of the defective portion and the accuracy of the correction processing position are reduced.

【0005】本発明の目的は、絶縁物を含む基板上の欠
陥を高精度かつ簡便に検出,修正することのできる基板
加工方法とそれを実施するための装置を提供することに
ある。
It is an object of the present invention to provide a substrate processing method capable of detecting and correcting a defect on a substrate including an insulator with high accuracy and ease, and an apparatus for implementing the method.

【0006】[0006]

【課題を解決するための手段】絶縁物を含む基板上の欠
陥観察で二次粒子像の観察が困難になるのは基板自体が
絶縁性であるため、照射された荷電ビームの電荷がアー
スに逃げることなく、基板表面に蓄積(チャージアッ
プ)されて、照射される荷電ビームが反発されてしまう
ためである。したがって、基板自体を導電性に変え接地
すればチャージアップを防ぐことができる。これは、基
板表面に導電性の薄膜を設け接地することにより達成さ
れる。
The difficulty in observing a secondary particle image when observing a defect on a substrate containing an insulator is that the charge of the irradiated charged beam is grounded because the substrate itself is insulative. This is because the charge beam is accumulated (charged up) on the substrate surface without escaping, and the irradiated charged beam is repelled. Therefore, if the substrate itself is made conductive and grounded, charge-up can be prevented. This is achieved by providing a conductive thin film on the substrate surface and grounding.

【0007】[0007]

【発明の実施の形態】以下、本発明の各実施例を図面を
用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0008】<第1実施例>本発明の第1実施例とし
て、位相シフトマスクの欠陥上に導電性薄膜を形成し、
位相シフタの欠陥を検出,修正する方法を図1を用いて
説明する。同図で1は透明基板、2は導電性遮光膜、3
は位相シフタ、4は欠陥である。前述したように位相シ
フタ3に欠陥4があると、欠陥部を透過した光の位相振
幅は大きくずれてしまう。そこで、この欠陥修正に集束
イオンビーム6を用いる。まず、あらかじめ欠陥検査装
置により欠陥の位置を検出し、その欠陥位置の座標デー
タに基づき、欠陥があると思われる周辺部分にガスノズ
ル5からCVDガスを吹き付けながら、集束イオンビー
ムを照射して導電性薄膜8を形成する。CVDガスとし
ては、例えば、W(CO)6を用いW膜を形成する。この
時、導電性薄膜の膜厚は欠陥の形状が埋もれてしまわな
い程度であり、50nm以下が望ましい。また、導電性薄
膜は欠陥と思われる部分から基板ホルダにより接地され
ている導電性遮光膜までデポするか、導電性薄膜を含む
導電膜をプローバ等により直接接地する必要がある。そ
の後、集束イオンビーム6を走査し、形成した導電性薄
膜の表面から放出される二次粒子を二次粒子検出器7に
より検出して、走査イオン像を観察する。この走査イオ
ン像により、位相シフタの欠陥4の位置を検出し、集束
イオンビーム6の照射領域を設定し、欠陥部のみに集束
イオンビーム6を照射して欠陥4を除去,修正する。修
正後薄膜8はアンモニア等薄膜を十分溶融する溶液9で
洗浄,除去する。
<First Embodiment> As a first embodiment of the present invention, a conductive thin film is formed on a defect of a phase shift mask,
A method of detecting and correcting a defect of the phase shifter will be described with reference to FIG. In the figure, 1 is a transparent substrate, 2 is a conductive light shielding film, 3
Is a phase shifter, and 4 is a defect. As described above, when the phase shifter 3 has the defect 4, the phase amplitude of the light transmitted through the defective portion is largely shifted. Therefore, the focused ion beam 6 is used for this defect correction. First, a defect inspection apparatus detects the position of a defect in advance, and irradiates a focused ion beam with a focused ion beam while blowing a CVD gas from a gas nozzle 5 to a peripheral portion considered to be defective based on coordinate data of the defect position. A thin film 8 is formed. A W film is formed using, for example, W (CO) 6 as a CVD gas. At this time, the thickness of the conductive thin film is such that the shape of the defect is not buried, and is preferably 50 nm or less. In addition, it is necessary to deposit the conductive thin film from a portion considered to be defective to the conductive light-shielding film grounded by the substrate holder, or to directly ground the conductive film including the conductive thin film by a prober or the like. Thereafter, the focused ion beam 6 is scanned, secondary particles emitted from the surface of the formed conductive thin film are detected by the secondary particle detector 7, and the scanned ion image is observed. Based on the scanned ion image, the position of the defect 4 of the phase shifter is detected, the irradiation area of the focused ion beam 6 is set, and the focused ion beam 6 is irradiated only on the defect portion to remove and correct the defect 4. After the correction, the thin film 8 is washed and removed with a solution 9 that sufficiently melts the thin film such as ammonia.

【0009】<第2実施例>本発明の第2実施例とし
て、アルゴンイオン照射によって位相シフトマスクの欠
陥上にタングステン等の導電性を持った薄膜を用いて欠
陥検出し、修正する方法を図2を用いて説明する。位相
シフタ3上の欠陥4を欠陥検査装置により検出し、その
欠陥位置の座標データに基づき、欠陥があると思われる
周辺部分にガスノズル5からCVDガスとして例えばW
(CO)6ガスを吹き付けながら、アルゴンイオンガン1
0によりアルゴンイオンを照射してタングステン薄膜8
を形成する。この時、第1実施例と同様、タングステン
薄膜8の膜厚は欠陥4の形状が埋もれてしまわない程度
であり、50nm以下が望ましい。また、タングステン薄
膜8は欠陥と思われる部分から基板ホルダにより接地さ
れている導電性遮光膜までデポするか、導電性薄膜を含
む導電膜をプローバ等により直接接地する必要がある。
その後、第1実施例と同様に例えば集束イオンビーム6
を用いて欠陥4を観察,修正し、修正後タングステン薄
膜8はアンモニア溶液9により除去する。
<Second Embodiment> As a second embodiment of the present invention, a method of detecting and correcting defects using a conductive thin film such as tungsten on a defect of a phase shift mask by irradiating with argon ions will be described. 2 will be described. A defect 4 on the phase shifter 3 is detected by a defect inspection device, and based on coordinate data of the defect position, a gas nozzle 5 is used as a CVD gas at a peripheral portion considered to have a defect, for example, W gas.
Argon ion gun 1 while blowing (CO) 6 gas
Irradiate with argon ions by tungsten thin film 8
To form At this time, as in the first embodiment, the thickness of the tungsten thin film 8 is such that the shape of the defect 4 is not buried, and is preferably 50 nm or less. Further, it is necessary to deposit the tungsten thin film 8 from a portion considered to be defective to the conductive light-shielding film grounded by the substrate holder, or to ground the conductive film including the conductive thin film directly with a prober or the like.
Thereafter, similarly to the first embodiment, for example, the focused ion beam 6
The defect 4 is observed and corrected using the method described above. After the correction, the tungsten thin film 8 is removed with an ammonia solution 9.

【0010】なお、構成方法は図6に示す構成方法と同
等な物になる。
The configuration method is equivalent to the configuration method shown in FIG.

【0011】<第3実施例>本発明の第3実施例とし
て、レーザCVDによって位相シフトマスクの欠陥上に
モリブデン等の導電性を持った薄膜を形成した後、欠陥
検出し、修正する方法を図3を用いて説明する。まず、
位相シフトマスクをレーザCVD装置内に導入し、レー
ザCVD装置のチャンバ内にCVDガス12を充填す
る。CVDガス12として、例えばMo(CO)6を用い
る。しかる後、前述のように位相シフタ3上の欠陥4を
欠陥検査装置により検出し、その欠陥位置の座標データ
に基づき、欠陥があると思われる周辺部分にレーザ11
を照射してMo薄膜8を形成する。この時上記第1実施
例と同様、Mo薄膜8の膜厚は欠陥の形状が埋もれてし
まわない程度であり、50nm以下が望ましい。また、M
o薄膜8は欠陥4と思われる部分から接地されている導
電性遮光膜までデポする必要がある。その後、上記実施
例と同様に例えば集束イオンビーム6を用いて欠陥4を
観察,修正後Mo薄膜8はアンモニア溶液により除去す
る。
<Third Embodiment> As a third embodiment of the present invention, a method for detecting and correcting defects after forming a conductive thin film such as molybdenum on the defects of a phase shift mask by laser CVD. This will be described with reference to FIG. First,
The phase shift mask is introduced into the laser CVD apparatus, and the chamber of the laser CVD apparatus is filled with the CVD gas 12. As the CVD gas 12, for example, Mo (CO) 6 is used. Thereafter, as described above, the defect 4 on the phase shifter 3 is detected by the defect inspection device, and the laser 11 is applied to a peripheral portion considered to be defective based on the coordinate data of the defect position.
To form the Mo thin film 8. At this time, as in the first embodiment, the thickness of the Mo thin film 8 is such that the shape of the defect is not buried, and is preferably 50 nm or less. Also, M
The o thin film 8 needs to be deposited from a portion considered to be the defect 4 to a conductive light shielding film that is grounded. Thereafter, similarly to the above embodiment, the defect 4 is observed using, for example, a focused ion beam 6, and after the correction, the Mo thin film 8 is removed with an ammonia solution.

【0012】<第4実施例>本発明の第4実施例とし
て、位相シフトマスクの欠陥上にパラジウム錯体等の導
電性を持った薄膜を用いて欠陥検出し、修正する方法を
図4を用いて説明する。位相シフタ3上の欠陥4を欠陥
検査装置により検出し、その欠陥位置の座標データに基
づき、欠陥があると思われる周辺部分にマイクロピペッ
ト13からパラジウム錯体14を微量塗布し、レーザ1
1を照射して、熱分解によりPd薄膜8を形成する。こ
の時上記第1実施例と同様、Pd薄膜8の膜厚は欠陥4
の形状が埋もれてしまわない程度であり、50nm以下が
望ましい。また、Pd薄膜8は欠陥4と思われる部分か
ら接地されている導電性遮光膜までデポする必要があ
る。その後、上記実施例と同様に例えば集束イオンビー
ム6を用いて欠陥4を観察,修正後Pd薄膜8は熱硫酸
により除去する。
<Fourth Embodiment> As a fourth embodiment of the present invention, a method of detecting and correcting a defect using a conductive thin film such as a palladium complex on a defect of a phase shift mask will be described with reference to FIG. Will be explained. A defect 4 on the phase shifter 3 is detected by a defect inspection apparatus, and a small amount of a palladium complex 14 is applied from a micropipette 13 to a peripheral portion considered to be defective based on the coordinate data of the defect position.
Irradiation 1 is performed to form a Pd thin film 8 by thermal decomposition. At this time, as in the first embodiment, the thickness of the Pd thin film 8 is
Is not buried, and is preferably 50 nm or less. In addition, it is necessary to deposit the Pd thin film 8 from the portion considered to be the defect 4 to the grounded conductive light shielding film. Then, similarly to the above embodiment, the defect 4 is observed using, for example, a focused ion beam 6, and after correction, the Pd thin film 8 is removed with hot sulfuric acid.

【0013】<第5実施例>本発明の第5実施例とし
て、液晶TFT基板上の欠陥を検出,修正する方法を説
明する。プロジェクタ等1画素あたりの大きさが小さい
液晶TFTのデータ線若しくはゲート線の一部に断線が
生じた場合、TFT基板は線欠陥を生じる。そこで、こ
の欠陥を検出する方法として荷電ビームを用いる。ま
ず、あらかじめ欠陥検査装置により欠陥の位置を検出
し、その欠陥位置の座標データに基づき、欠陥があると
思われる部分を実施例1ないし4を用いて観察,修正後
導電性薄膜を除去する。
<Fifth Embodiment> As a fifth embodiment of the present invention, a method for detecting and correcting a defect on a liquid crystal TFT substrate will be described. When a break occurs in a part of a data line or a gate line of a liquid crystal TFT having a small size per pixel such as a projector, a TFT substrate has a line defect. Therefore, a charged beam is used as a method for detecting this defect. First, the position of a defect is detected in advance by a defect inspection device, and based on the coordinate data of the defect position, a portion considered to be defective is observed and corrected using the first to fourth embodiments, and then the conductive thin film is removed.

【0014】<第6実施例>本発明の第6実施例とし
て、LSI基板表面が絶縁層で覆われている場合の観
察,加工方法を述べる。LSI基板表面が絶縁層で覆わ
れている場合、位相シフトマスクの例と同様にチャージ
アップが発生し、二次粒子像の観察が困難となる。そこ
で、実施例1ないし4を用いて欠陥があると思われる部
分に導電性薄膜を形成した後、観察、必要に応じて諸々
の処理(例えば欠陥部の修正など)を行い、導電性薄膜
を除去する。また、LSI基板の場合、多層構造での下
層欠陥を検出する方法として、例えば集束イオンビーム
で断面加工後、断面観察面に導電性薄膜を形成して接地
した後、断面観察を行う事も可能である。
<Sixth Embodiment> As a sixth embodiment of the present invention, an observation and processing method when the surface of an LSI substrate is covered with an insulating layer will be described. When the surface of the LSI substrate is covered with an insulating layer, charge-up occurs as in the case of the phase shift mask, making it difficult to observe a secondary particle image. Therefore, after forming a conductive thin film on a portion which seems to have a defect using Examples 1 to 4, observation and various processing (for example, correction of a defective portion) are performed as necessary, and the conductive thin film is formed. Remove. In the case of an LSI substrate, as a method of detecting a lower layer defect in a multilayer structure, for example, after processing a cross section with a focused ion beam, a conductive thin film is formed on a cross section observation surface and grounded, and then cross section observation can be performed. It is.

【0015】<第7実施例>本発明の第7実施例とし
て、アルゴンイオン照射によって位相シフトマスクの欠
陥上にカーボン等の導電性を持った薄膜を用いて欠陥検
出し、修正する方法を図6を用いて説明する。前述のよ
うに位相シフタ上の欠陥を欠陥検査装置により検出し、
その欠陥位置の座標データに基づき、欠陥があると思わ
れる周辺部分にガスノズル5からCVDガスとして例え
ばピレン(C1610)やナフタリン(C108)等のカ
ーボンを多く含む昇華性のガス15を吹き付けながら、
アルゴンイオンガン10によりアルゴンイオンを照射し
てカーボン薄膜を形成する。この時第1実施例と同様、
カーボン薄膜8の膜厚は欠陥4の形状が埋もれてしまわ
ない程度であり、50nm以下が望ましい。また、カーボ
ン薄膜8は欠陥と思われる部分から基板ホルダにより接
地されている導電性遮光膜までデポするか、導電性薄膜
を含む導電膜をプローバ等により直接接地する必要があ
る。その後、第1実施例と同様に例えば集束イオンビー
ムを用いて欠陥を観察,修正する。修正後カーボン薄膜
8はアルゴンイオンガン10のアルゴンガス16を酸素
ガス17に変え、酸素を照射することで除去したり、基
板を酸素雰囲気中で加熱若しくは紫外線照射するか、プ
ラズマによるアッシングで除去する。
<Seventh Embodiment> As a seventh embodiment of the present invention, a method for detecting and correcting defects by using a conductive thin film such as carbon on defects of a phase shift mask by irradiating with argon ions will be described. 6 will be described. As described above, the defect on the phase shifter is detected by the defect inspection device,
A sublimation gas containing a large amount of carbon such as pyrene (C 16 H 10 ) or naphthalene (C 10 H 8 ) as a CVD gas from a gas nozzle 5 to a peripheral portion considered to have a defect based on the coordinate data of the defect position. While spraying 15,
Irradiation of argon ions with an argon ion gun 10 forms a carbon thin film. At this time, as in the first embodiment,
The thickness of the carbon thin film 8 is such that the shape of the defect 4 is not buried, and is desirably 50 nm or less. Further, it is necessary to deposit the carbon thin film 8 from a portion considered to be defective to the conductive light shielding film grounded by the substrate holder, or to ground the conductive film including the conductive thin film directly with a prober or the like. Thereafter, defects are observed and corrected using, for example, a focused ion beam as in the first embodiment. After the correction, the carbon thin film 8 is removed by changing the argon gas 16 of the argon ion gun 10 to oxygen gas 17 and irradiating with oxygen, heating the substrate in an oxygen atmosphere or irradiating ultraviolet rays, or removing by ashing with plasma.

【0016】また、この時の装置構成は図7のように予
備室20にイオンガンチャンバ28を設けカーボン薄膜
を形成,除去する構成や図8のようにプロセスチャンバ
18内にイオンガンチャンバ28を設けプロセスチャン
バ内でカーボン薄膜を形成,除去する構成方法も考えら
れる。
In this case, the ion gun chamber 28 is provided in the preliminary chamber 20 to form and remove the carbon thin film as shown in FIG. 7 or the ion gun chamber 28 is provided in the process chamber 18 as shown in FIG. A configuration method for forming and removing a carbon thin film in the chamber is also conceivable.

【0017】<第8実施例>本発明の第8実施例とし
て、実施例で形成した導電性薄膜の接地方法についてプ
ローバでより正確に接地する方法を図9に示す。
<Eighth Embodiment> As an eighth embodiment of the present invention, FIG. 9 shows a method of grounding a conductive thin film formed in the embodiment more accurately with a prober.

【0018】まず、実施例のように、導電性薄膜8を欠
陥と思われる部分に形成する。この時、欠陥の観察に支
障をきたさない部分の導電性薄膜の膜厚aを0.1〜0.
5μm程度に厚く形成する。その後、膜厚の厚い部分に
接地されたプローバ29を導電性薄膜を貫通しないよう
にbの高さ分だけ下げて接触させ接地する。ここで、プ
ローバとしてSTMプローバを用いて導電性薄膜の膜厚
を観察し、膜厚の厚い部分にSTMプローバ29を導電
性薄膜を貫通しない様にbの高さ分だけ下げて接触させ
接地するとより正確に接地できる。接地後は欠陥がある
と思われる周辺部分に静電レンズにより集束された荷電
ビームを走査しながら照射して、基板から放出される二
次電子或は二次イオンを二次粒子検出器により検出し、
観察,加工を行う。
First, as in the embodiment, a conductive thin film 8 is formed on a portion considered to be defective. At this time, the thickness a of the conductive thin film in a portion that does not hinder the observation of defects is set to 0.1 to 0.1.
It is formed as thick as about 5 μm. Thereafter, the prober 29, which is grounded at the thicker portion, is lowered by the height of b so as not to penetrate the conductive thin film and is grounded. Here, the thickness of the conductive thin film is observed using an STM prober as a prober, and the STM prober 29 is lowered by the height of b so as not to penetrate the conductive thin film at a thicker portion, and is grounded. More accurate grounding. After grounding, the surrounding area that seems to be defective is irradiated with a charged beam focused by an electrostatic lens while scanning, and secondary electrons or secondary ions emitted from the substrate are detected by a secondary particle detector And
Observe and process.

【0019】<第9実施例>本発明の第9実施例とし
て、実施例で形成した導電性薄膜の接地方法について、
スパッタにより導電性薄膜を局所的に形成し接地する方
法を図10に示す。基板1の外側に近い部分に導電性の
膜8がある場合でその導電性は接地された基板ホルダと
接触させる事により接地できるが、中央部の孤立パター
ンは接地できない。そのため、スリットのある回転でき
る板30を基板1の上部に置き、スリット部分を欠陥部
を含む位置の上部にあわせ、導電性薄膜形成用のターゲ
ット31をアルゴンガス16雰囲気中でスパッタして導
電性薄膜を基板の中央部から接地された外側の導電膜ま
で形成し接地する。スリットのある板は必ずしも回転す
る必要はなく1軸方向或は2軸方向に移動出来るもので
あっても良い。接地後は欠陥があると思われる周辺部分
に静電レンズにより集束された荷電ビームを走査しなが
ら照射して、基板から放出される二次電子或は二次イオ
ンを二次粒子検出器により検出し、観察,加工を行う。
<Ninth Embodiment> As a ninth embodiment of the present invention, a method for grounding the conductive thin film formed in the embodiment will be described.
FIG. 10 shows a method of forming a conductive thin film locally by sputtering and grounding the conductive thin film. When there is a conductive film 8 near the outside of the substrate 1, the conductivity can be grounded by contacting the grounded substrate holder, but the isolated pattern at the center cannot be grounded. Therefore, the rotatable plate 30 having the slit is placed on the upper portion of the substrate 1, the slit portion is aligned with the position including the defect, and the target 31 for forming a conductive thin film is sputtered in an argon gas 16 atmosphere to form a conductive film. A thin film is formed from the center of the substrate to the outer conductive film that is grounded, and grounded. The plate having the slit does not necessarily need to be rotated, and may be movable in one axis direction or two axis directions. After grounding, the surrounding area that seems to be defective is irradiated with a charged beam focused by an electrostatic lens while scanning, and secondary electrons or secondary ions emitted from the substrate are detected by a secondary particle detector And observe and process.

【0020】<第10実施例>本発明の第10実施例と
して、実施例で形成した導電性薄膜のチャージアップを
荷電ビームの相殺により防ぐ方法を図11,図12に示
す。実施例のように、導電性薄膜8を欠陥と思われる部
分に形成する。また、基板の裏面にも導電性膜32を局
所的或は全面に形成する。その後、欠陥の観察を例えば
イオンビーム6を用いて行う場合は図11のように基板
の端の導電性薄膜を含む導電膜に観察に使う荷電ビーム
とは逆の性質のビーム、この場合は電子ビーム33を照
射する。図12はこの電子ビームを観察に影響のない程
度の導電性薄膜を含む導電膜に斜めから入射させたもの
である。この時、基板の裏面の導電性膜と基板表面にお
ける容量、或は電圧を測定器34によりモニタしながら
基板表面に電荷の蓄積がなくなるように電子ビームの電
流値を変化させる。ここで、電子ビームの加速電圧は二
次電子の放出が少なくなる必要があり、1keV以下にす
るのが望ましい。その後、実施例と同様に基板から放出
される二次電子或は二次イオンを二次粒子検出器により
検出し、観察,加工を行う。
<Tenth Embodiment> As a tenth embodiment of the present invention, a method for preventing the charge-up of the conductive thin film formed in the embodiment by canceling the charged beam is shown in FIGS. As in the embodiment, the conductive thin film 8 is formed at a portion considered to be defective. Also, a conductive film 32 is formed locally or on the entire back surface of the substrate. After that, when the defect is observed using, for example, the ion beam 6, a beam having a property opposite to that of a charged beam used for observation on a conductive film including a conductive thin film at the edge of the substrate as shown in FIG. The beam 33 is irradiated. FIG. 12 shows the electron beam obliquely incident on a conductive film including a conductive thin film that does not affect observation. At this time, while monitoring the capacitance or voltage on the conductive film on the back surface of the substrate and the surface of the substrate with the measuring device 34, the current value of the electron beam is changed so that the accumulation of charges on the substrate surface is eliminated. Here, the acceleration voltage of the electron beam is required to reduce the emission of secondary electrons, and is desirably 1 keV or less. Thereafter, secondary electrons or secondary ions emitted from the substrate are detected by a secondary particle detector, and observation and processing are performed as in the embodiment.

【0021】<第11実施例>本発明の第11実施例と
して、実施例で形成した導電性薄膜の接地方法につい
て、導電性のシート或はメッシュにより接地する方法を
述べる。実施例のように、導電性薄膜を欠陥があると思
われる部分に形成する。導電性薄膜を含む導電膜は観
察,加工領域の外まで導出し、観察,加工領域以外の場
所まで導出し、観察に支障をきたさないようにする。そ
の後、観察,加工に支障が無いように接地された導電性
のシート或はメッシュを一部または全面に被せ、これに
より接地する。この時、シート及びメッシュは基板表面
を傷付けない物が望ましい。接地後は欠陥があると思わ
れる周辺部分に静電レンズにより集束された荷電ビーム
を走査しながら照射して、基板から放出される二次電子
或は二次イオンを二次粒子検出器により検出し、観察,
加工を行う。
<Eleventh Embodiment> As an eleventh embodiment of the present invention, a method of grounding a conductive thin film formed in the embodiment with a conductive sheet or mesh will be described. As in the embodiment, a conductive thin film is formed on a portion considered to be defective. The conductive film including the conductive thin film is led out of the observation and processing area, and is led to a place other than the observation and processing area so as not to hinder the observation. Thereafter, a conductive sheet or mesh grounded so as not to hinder observation and processing is covered on a part or the whole surface, and thereby grounded. At this time, it is desirable that the sheet and the mesh do not damage the substrate surface. After grounding, the surrounding area that seems to be defective is irradiated with a charged beam focused by an electrostatic lens while scanning, and secondary electrons or secondary ions emitted from the substrate are detected by a secondary particle detector And observe,
Perform processing.

【0022】ここで、マスク基板へのダメージを防ぐ方
法として特開平8−123012号公報に記載されるよ
うに修正前にマスク全面あるいは加工部周辺に平坦な面
を有するコート膜をマスク上に設けられた遮光膜パター
ンまたは位相シフタ層によって形成された段差よりも
1.2倍以上の膜厚で形成する方法も挙げられるが、平
坦な膜や膜厚の厚いものは二次粒子検出を困難にする。
このため実施例のようにマスク基板へのダメージを防ぎ
一様に薄い50nm程度の膜が良い。
Here, as a method for preventing damage to the mask substrate, a coating film having a flat surface on the entire surface of the mask or on the periphery of the processed portion is provided on the mask before correction as described in JP-A-8-122012. There is also a method of forming a film having a film thickness 1.2 times or more as large as the step formed by the light-shielding film pattern or the phase shifter layer, but a flat film or a film having a large film thickness makes secondary particle detection difficult. I do.
For this reason, it is preferable to use a uniformly thin film of about 50 nm to prevent damage to the mask substrate as in the embodiment.

【0023】[0023]

【発明の効果】本発明によれば、絶縁物を含む基板の観
察,加工が容易に出来る。特に位相シフトマスク上の欠
陥を容易に検出,修正できる。また、二次粒子像を検出
する際にマスク自体が導電性の膜で保護されるためイオ
ン源の打ち込みが減少し、チャージアップしないため二
次電子像,二次イオン像のどちらによる観察も可能であ
り、導電膜に適当なものを選ぶ事によって二次粒子の収
率も向上する。さらに、導電性の薄膜は後の洗浄工程で
十分に溶融するものや簡単に除去できるものを選べば導
電膜による汚染もなくなる。
According to the present invention, observation and processing of a substrate containing an insulator can be easily performed. In particular, defects on the phase shift mask can be easily detected and corrected. In addition, the mask itself is protected by a conductive film when detecting the secondary particle image, which reduces ion source implantation and prevents charge-up, enabling observation using either a secondary electron image or a secondary ion image. By selecting an appropriate conductive film, the yield of secondary particles can be improved. In addition, if the conductive thin film is selected from a material that can be sufficiently melted in a later washing step or a material that can be easily removed, contamination by the conductive film is eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の修正方法の説明図。FIG. 1 is an explanatory diagram of a correction method according to a first embodiment of the present invention.

【図2】本発明の第2実施例の修正方法の説明図。FIG. 2 is an explanatory diagram of a correction method according to a second embodiment of the present invention.

【図3】本発明の第3実施例の修正方法の説明図。FIG. 3 is an explanatory diagram of a correction method according to a third embodiment of the present invention.

【図4】本発明の第4実施例の修正方法の説明図。FIG. 4 is an explanatory diagram of a correction method according to a fourth embodiment of the present invention.

【図5】位相シフトマスクの一例の説明図。FIG. 5 is a diagram illustrating an example of a phase shift mask.

【図6】本発明の第2,第7実施例の修正方法の説明
図。
FIG. 6 is an explanatory diagram of a correction method according to the second and seventh embodiments of the present invention.

【図7】本発明の第7実施例の修正方法の説明図。FIG. 7 is an explanatory diagram of a correction method according to a seventh embodiment of the present invention.

【図8】本発明の第7実施例の修正方法の説明図。FIG. 8 is an explanatory diagram of a correction method according to a seventh embodiment of the present invention.

【図9】本発明の第8実施例の修正方法の説明図。FIG. 9 is an explanatory diagram of a correction method according to an eighth embodiment of the present invention.

【図10】本発明の第9実施例の修正方法の説明図。FIG. 10 is an explanatory diagram of a correction method according to a ninth embodiment of the present invention.

【図11】本発明の第10実施例の修正方法の説明図。FIG. 11 is an explanatory diagram of a correction method according to a tenth embodiment of the present invention.

【図12】本発明の第10実施例の修正方法の説明図。FIG. 12 is an explanatory diagram of a correction method according to a tenth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…透明基板、2…導電性遮光膜、3…位相シフタ、4
…欠陥部分、5…ガスノズル、6…集束イオンビーム、
7…二次粒子検出器、8…導電性薄膜、9…洗浄用液
体。
DESCRIPTION OF SYMBOLS 1 ... Transparent substrate, 2 ... Conductive light shielding film, 3 ... Phase shifter, 4
... defect part, 5 ... gas nozzle, 6 ... focused ion beam,
7: secondary particle detector, 8: conductive thin film, 9: cleaning liquid.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水村 通伸 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 (72)発明者 濱村 有一 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 (72)発明者 本郷 幹雄 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 (72)発明者 水越 克郎 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 (72)発明者 古泉 裕弘 東京都小平市上水本町五丁目20番1号株式 会社日立製作所半導体事業部内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshinobu Mizumura 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Inside of Hitachi, Ltd. Hitachi, Ltd., Production Technology Laboratory (72) Inventor Mikio Hongo 292, Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Hitachi, Ltd. Production Technology Laboratory (72) Katsuo Mizukoshi 292, Yoshida-cho, Totsuka-ku, Yokohama, Kanagawa Hitachi, Ltd. Production Technology Research Laboratories (72) Inventor Hirohiro Koizumi 5--20-1, Kamimizuhonmachi, Kodaira-shi, Tokyo Semiconductor Company, Hitachi, Ltd.

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】荷電ビームによって絶縁物を含む基板を観
察,加工する際、上記荷電ビームの電荷の蓄積を防止す
るための導電性薄膜を局所的に選択,形成する事を特徴
とする荷電ビームによる観察,加工方法。
1. A charged beam, wherein a conductive thin film for preventing accumulation of charges of the charged beam is locally selected and formed when observing and processing a substrate containing an insulator by the charged beam. Observation and processing methods.
【請求項2】荷電ビームによって絶縁物を含む基板を観
察,加工する際、上記荷電ビームの電荷の蓄積を防止す
るための導電性薄膜を所望の領域にガスノズルによりC
VDガスを吹き付け上記荷電ビームにより形成すること
を特徴とする荷電ビームによる観察,加工方法。
2. When a substrate containing an insulator is observed and processed by a charged beam, a conductive thin film for preventing accumulation of charges of the charged beam is formed on a desired region by a gas nozzle.
An observation and processing method using a charged beam, wherein the charged beam is formed by spraying a VD gas.
【請求項3】荷電ビームによって絶縁物を含む基板を観
察,加工する際、上記荷電ビームの電荷の蓄積を防止す
るための導電性薄膜を所望の領域にガスノズルによりC
VDガスを吹き付けイオンガスにより形成することを特
徴とする荷電ビームによる観察,加工方法。
3. When a substrate containing an insulator is observed and processed by a charged beam, a conductive thin film for preventing accumulation of charges of the charged beam is formed on a desired region by a gas nozzle.
An observation and processing method using a charged beam, wherein a VD gas is formed by spraying ion gas.
【請求項4】荷電ビームによって絶縁物を含む基板を観
察,加工する際、上記荷電ビームの電荷の蓄積を防止す
るための導電性薄膜を所望の領域にCVDガスを充満さ
せレーザにより形成することを特徴とする荷電ビームに
よる観察,加工方法。
4. When observing and processing a substrate containing an insulator by using a charged beam, a conductive thin film for preventing accumulation of charges of the charged beam is formed by filling a desired region with a CVD gas and using a laser. Observation and processing method using charged beam characterized by the following.
【請求項5】荷電ビームによって絶縁物を含む基板を観
察,加工する際、上記荷電ビームの電荷の蓄積を防止す
るための導電性薄膜を所望の領域にマイクロピペットに
より錯体を微量塗布しレーザにより形成することを特徴
とする荷電ビームによる観察,加工方法。
5. When observing and processing a substrate containing an insulator by using a charged beam, a conductive thin film for preventing accumulation of charges of the charged beam is applied to a desired region with a micro-pipette of a small amount of a complex and a laser is used. An observation and processing method using a charged beam characterized by forming.
【請求項6】荷電ビームによって絶縁物を含む基板を観
察,加工する際、上記荷電ビームの電荷の蓄積を防止す
るために50nm以下の薄い導電性薄膜を局所的に選択,
形成する事を特徴とする荷電ビームによる観察,加工方
法。
6. When observing and processing a substrate containing an insulator with a charged beam, a thin conductive thin film having a thickness of 50 nm or less is locally selected to prevent accumulation of charges of the charged beam.
Observation and processing method using charged beam characterized by forming.
【請求項7】荷電ビームによって絶縁物を含む基板を観
察,加工する際、上記荷電ビームの電荷の蓄積を防止す
るために50nm以下の薄い導電性薄膜を所望の領域にガ
スノズルによりCVDガスを吹き付け上記荷電ビームに
より形成することを特徴とする荷電ビームによる観察,
加工方法。
7. When observing and processing a substrate containing an insulator by using a charged beam, a CVD gas is sprayed by a gas nozzle onto a desired region with a thin conductive thin film of 50 nm or less in order to prevent accumulation of charges of the charged beam. Observation by a charged beam, characterized by being formed by the charged beam,
Processing method.
【請求項8】荷電ビームによって絶縁物を含む基板を観
察,加工する際、上記荷電ビームの電荷の蓄積を防止す
るために50nm以下の薄い導電性薄膜を所望の領域にガ
スノズルによりCVDガスを吹き付けイオンガスにより
形成することを特徴とする荷電ビームによる観察,加工
方法。
8. When observing and processing a substrate containing an insulator by using a charged beam, a CVD gas is sprayed onto a desired region with a thin conductive film having a thickness of 50 nm or less from a gas nozzle in order to prevent accumulation of charges of the charged beam. An observation and processing method using a charged beam, characterized by being formed by an ion gas.
【請求項9】荷電ビームによって絶縁物を含む基板を観
察,加工する際、上記荷電ビームの電荷の蓄積を防止す
るために50nm以下の薄い導電性薄膜を所望の領域にC
VDガスを充満させレーザにより形成することを特徴と
する荷電ビームによる観察,加工方法。
9. When observing and processing a substrate containing an insulator by using a charged beam, a thin conductive thin film of 50 nm or less is deposited on a desired region to prevent accumulation of charges of the charged beam.
An observation and processing method using a charged beam, wherein the method is formed by filling a VD gas and using a laser.
【請求項10】荷電ビームによって絶縁物を含む基板を
観察,加工する際、上記荷電ビームの電荷の蓄積を防止
するために50nm以下の薄い導電性薄膜を所望の領域に
マイクロピペットにより錯体を微量塗布しレーザにより
形成することを特徴とする荷電ビームによる観察,加工
方法。
10. When observing and processing a substrate containing an insulator by using a charged beam, a thin conductive thin film having a thickness of 50 nm or less is deposited in a desired area with a micropipette to prevent accumulation of charges of the charged beam. An observation and processing method using a charged beam, wherein the method is applied and formed by a laser.
【請求項11】請求項1,2,3,4,5,6,7,
8,9または10において、上記薄膜は下地となる絶縁
物よりも二次電子或は二次イオンの放出が多い荷電ビー
ムによる観察,加工方法。
11. The method of claim 1, 2, 3, 4, 5, 6, 7,
In 8, 9, or 10, the observation and processing method using a charged beam in which the thin film emits more secondary electrons or secondary ions than an insulating material serving as a base.
【請求項12】請求項1,2,3,4,5,6,7,
8,9または10の電荷の蓄積を防止するための上記導
電性薄膜は直接、或は間接的に接地できる所に接続され
ている荷電ビームによる観察,加工方法。
12. The method of claim 1, 2, 3, 4, 5, 6, 7,
An observation and processing method using a charged beam which is connected to a place where the conductive thin film for preventing the accumulation of the charge of 8, 9 or 10 can be directly or indirectly grounded.
【請求項13】請求項1,2,3,4,5,6,7,
8,9または10の電荷の蓄積を防止するための上記導
電性薄膜の接地方法において、上記導電性薄膜を含む導
電膜をあらかじめ接地されたプローブを接触させ接地す
る荷電ビームによる観察,加工方法。
13. The method of claim 1, 2, 3, 4, 5, 6, 7,
The method for grounding a conductive thin film for preventing the accumulation of electric charge of 8, 9 or 10 according to the method of observing and processing a conductive film including the conductive thin film by using a charged beam which is brought into contact with a previously grounded probe and grounded.
【請求項14】請求項1,2,3,4,5,6,7,
8,9または10の電荷の蓄積を防止するための上記導
電性薄膜の接地方法において、接地された基板ホルダと
基板上の導電膜を接触させ、その接地された上記導電膜
と観察領域の絶縁物が上記導電性薄膜を介して導通する
荷電ビームによる観察,加工方法。
14. The method of claim 1, 2, 3, 4, 5, 6, 7,
In the above-described method for grounding a conductive thin film for preventing the accumulation of charges of 8, 9, or 10, the grounded substrate holder is brought into contact with a conductive film on a substrate, and the grounded conductive film is insulated from an observation region. An observation and processing method using a charged beam through which an object is conducted through the conductive thin film.
【請求項15】請求項1,2,3,4,5,6,7,
8,9または10の電荷の蓄積を防止するための上記導
電性薄膜の接地方法において、観察に用いる荷電ビーム
とは逆の性質の荷電ビームを上記導電性薄膜を含む導電
膜に電荷の蓄積がなくなるよう照射する荷電ビームによ
る観察,加工方法。
15. The method of claim 1, 2, 3, 4, 5, 6, 7,
In the above-mentioned method of grounding a conductive thin film for preventing the accumulation of charges of 8, 9 or 10, the charge beam having a property opposite to that of a charged beam used for observation is accumulated in a conductive film containing the conductive thin film. Observation and processing method using charged beam to irradiate.
【請求項16】請求項1,2,3,4,5,6,7,
8,9または10の電荷の蓄積を防止するための上記導
電性薄膜の接地方法において、接地された導電膜が絶縁
体の層の下にある場合は、その絶縁層を除去した上で導
電性薄膜を形成し接地する荷電ビームによる観察,加工
方法。
16. The method of claim 1, 2, 3, 4, 5, 6, 7,
In the above-described method for grounding a conductive thin film for preventing the accumulation of charges of 8, 9, or 10, when the grounded conductive film is under an insulator layer, the insulating layer is removed and the conductive film is removed. Observation and processing method using a charged beam that forms a thin film and grounds.
【請求項17】請求項1,2,3,4,5,6,7,
8,9または10の電荷の蓄積を防止するための上記導
電性薄膜の接地方法において、導電性薄膜を含む導電膜
を観察,加工領域の外まで導出し、観察,加工領域以外
の場所に接地された導電性のシート或はメッシュを被
せ、これにより接地する荷電ビームによる観察,加工方
法。
17. The method of claim 1, 2, 3, 4, 5, 6, 7,
In the above-mentioned method of grounding a conductive thin film for preventing the accumulation of charges of 8, 9 or 10, the conductive film including the conductive thin film is led out of the observation and processing region, and grounded in a place other than the observation and processing region. Observation and processing method using a charged beam that covers the grounded conductive sheet or mesh and grounds it.
【請求項18】電子ビーム,イオンビーム等のエネルギ
ビームを発生するエネルギビーム源と、集束光学系,ス
テージ,二次粒子検出系,導電性薄膜デポ系、それらを
駆動制御するコントローラとを具備し、基板上に設けら
れた所定の絶縁性パターンを含む上記基板を加工するた
めの装置であって、上記ステージ上の基板の所望の領域
にエネルギビームを照射すると共に、所望の領域の状態
を二次粒子検出により観察できるようにしたことを特徴
とする荷電ビームによる観察,加工方法。
18. An energy beam source for generating an energy beam such as an electron beam or an ion beam, a focusing optical system, a stage, a secondary particle detection system, a conductive thin film deposition system, and a controller for driving and controlling them. An apparatus for processing the substrate including a predetermined insulating pattern provided on the substrate, the method including irradiating a desired area of the substrate on the stage with an energy beam and simultaneously changing a state of the desired area. An observation and processing method using a charged beam, characterized in that observation can be performed by detecting secondary particles.
JP4186297A 1997-02-26 1997-02-26 Observation and machining method by charged beam and device therefor Pending JPH10241618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4186297A JPH10241618A (en) 1997-02-26 1997-02-26 Observation and machining method by charged beam and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4186297A JPH10241618A (en) 1997-02-26 1997-02-26 Observation and machining method by charged beam and device therefor

Publications (1)

Publication Number Publication Date
JPH10241618A true JPH10241618A (en) 1998-09-11

Family

ID=12620070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4186297A Pending JPH10241618A (en) 1997-02-26 1997-02-26 Observation and machining method by charged beam and device therefor

Country Status (1)

Country Link
JP (1) JPH10241618A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313274A (en) * 2001-04-17 2002-10-25 Seiko Instruments Inc Antistatic method and charged particle irradiation device
KR100622805B1 (en) 2004-12-29 2006-09-18 동부일렉트로닉스 주식회사 Method for reducing the charge-up ion of focused ion beam apparatu
CN100397609C (en) * 2006-08-04 2008-06-25 北京中星微电子有限公司 Focusing ion beam modifying integrated circuit method and integrated circuit
JP2008158499A (en) * 2006-11-29 2008-07-10 Sii Nanotechnology Inc Method of correcting photomask defect
JP2011198763A (en) * 2010-03-19 2011-10-06 Carl Zeiss Nts Gmbh Generation method of sample image
WO2016075759A1 (en) * 2014-11-11 2016-05-19 株式会社日立ハイテクノロジーズ Charged particle beam apparatus, electron microscope and sample observation method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313274A (en) * 2001-04-17 2002-10-25 Seiko Instruments Inc Antistatic method and charged particle irradiation device
KR100622805B1 (en) 2004-12-29 2006-09-18 동부일렉트로닉스 주식회사 Method for reducing the charge-up ion of focused ion beam apparatu
CN100397609C (en) * 2006-08-04 2008-06-25 北京中星微电子有限公司 Focusing ion beam modifying integrated circuit method and integrated circuit
JP2008158499A (en) * 2006-11-29 2008-07-10 Sii Nanotechnology Inc Method of correcting photomask defect
JP2011198763A (en) * 2010-03-19 2011-10-06 Carl Zeiss Nts Gmbh Generation method of sample image
US8957371B2 (en) 2010-03-19 2015-02-17 Carl Zeiss Microscopy Gmbh Producing images of a specimen
WO2016075759A1 (en) * 2014-11-11 2016-05-19 株式会社日立ハイテクノロジーズ Charged particle beam apparatus, electron microscope and sample observation method

Similar Documents

Publication Publication Date Title
US4503329A (en) Ion beam processing apparatus and method of correcting mask defects
US6753538B2 (en) Electron beam processing
KR930007369B1 (en) Focused ion beam processing
US7276693B2 (en) Inspection method and apparatus using charged particle beam
US4548883A (en) Correction of lithographic masks
Wagner Applications of focused ion beams
USRE33193E (en) Ion beam processing apparatus and method of correcting mask defects
JP2014016355A (en) Method and device for charged particle beam inspection
EP0599367B1 (en) Focused ion beam processing with charge control
US8815474B2 (en) Photomask defect correcting method and device
US8257887B2 (en) Photomask defect correcting method and device
US5912468A (en) Charged particle beam exposure system
US6525317B1 (en) Reduction of charging effect and carbon deposition caused by electron beam devices
JPH10241618A (en) Observation and machining method by charged beam and device therefor
EP0320292B1 (en) A process for forming a pattern
JP2000036273A (en) Charged particle detection method and its device and treating method by charged particle beam and its device
US4902530A (en) Method of correcting a pattern film
JP2000010260A (en) Method for correcting black defect of mask correction apparatus
JP2008134603A (en) Method of correcting photomask defect
JP3051909B2 (en) Pattern film repair method and apparatus
JP4759146B2 (en) Apparatus and method for secondary electron emission microscope with double beam
JPS6293934A (en) Inspection device
JP3908516B2 (en) Photomask defect repair device using ion beam
JP2000047371A (en) Charge neutralization method for convergent ion beam device
JP3908530B2 (en) Photomask white defect correction method