JPH10239452A - Rainfall and snowfall forecasting device - Google Patents

Rainfall and snowfall forecasting device

Info

Publication number
JPH10239452A
JPH10239452A JP9043502A JP4350297A JPH10239452A JP H10239452 A JPH10239452 A JP H10239452A JP 9043502 A JP9043502 A JP 9043502A JP 4350297 A JP4350297 A JP 4350297A JP H10239452 A JPH10239452 A JP H10239452A
Authority
JP
Japan
Prior art keywords
prediction
rainfall
value
predicted
snowfall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9043502A
Other languages
Japanese (ja)
Inventor
Setsuyuki Hongo
節之 本郷
Isamu Yoroisawa
勇 鎧沢
Koichi Watanabe
浩一 渡辺
Masahiro Tokioka
正浩 時岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N T T SOFTWARE KK
Nippon Telegraph and Telephone Corp
NTT Software Corp
Original Assignee
N T T SOFTWARE KK
Nippon Telegraph and Telephone Corp
NTT Software Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N T T SOFTWARE KK, Nippon Telegraph and Telephone Corp, NTT Software Corp filed Critical N T T SOFTWARE KK
Priority to JP9043502A priority Critical patent/JPH10239452A/en
Publication of JPH10239452A publication Critical patent/JPH10239452A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure an accurate forecasting even in the case of generation of new echo pattern and the hard movement thereof by evaluating the accuracy of a forecasting value generated by a neural circuit network and the accuracy of a forecasting value generated by use of moving vector from a radar image, and then determining a final forecasting value. SOLUTION: A neural circuit network model forecasting mechanism 101 sends an obtained forecasting value 301 to an output control mechanism 103. A mutual correlation model forecasting mechanism 102 obtains a moving vector making a mutual correlation value, from two sheets of echo patterns at an arbitral time interval from a meteological radar. A forecasting value obtained from the moving vector and a vector 302 are fed to the output control mechanism 103. The mechanism 103 performs comparison between the forecasting value 301 and vector 302 and an actually measured image, and an elapse of time where the forecasting accuracy of the former is made superior to that of the latter is obtained. The passing time is used as a threshold, and the forecasting value of the forecasting mechanism 102 is adopted as a final forecast image until the time passes from the start of forecasting, and thereafter the forecasting value of the forecasting mechanism 101 is adopted as the final forecast image.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、計測された気象レ
ーダー画像から気象のダイナミクスを学習する神経回路
網モデルを有する気象予測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a weather forecasting apparatus having a neural network model for learning weather dynamics from a measured weather radar image.

【0002】[0002]

【従来の技術】従来、計測された気象レーダー画像を神
経回路網モデルに与えることにより降雨降雪域を表すエ
コーパターンの動きを学習させ、学習後の神経回路網モ
デルを用いて気象レーダー画像を予測する方式/装置が
考案されていた(例えば、特開平7−20255号公報
「並列計算型気象レーダー画像予測装置」、特開平7−
63861号公報「並列計算型気象降雨レーダー画像予
測装置」、特開平7−128456号公報「非線形並列
計算型気象レーダー画像予測装置」)。
2. Description of the Related Art Conventionally, a measured radar image is given to a neural network model to learn the movement of an echo pattern representing a rainfall and snowfall area, and a weather radar image is predicted using the learned neural network model. (For example, Japanese Patent Application Laid-Open No. 7-20255, "Parallel calculation type weather radar image prediction device", and Japanese Patent Application Laid-Open No.
No. 63861, “Parallel calculation type weather radar image prediction device”, and JP-A-7-128456 “Nonlinear parallel calculation type weather radar image prediction device”).

【0003】これらの装置では、積和計算ユニットを持
つ神経回路網モデルに、計測されたレーダー画像を与え
て、気象ダイナミックスを学習させ、学習後の神経回路
網モデルを用いて、気象レーダー画像の各格子点におけ
る一定時間後の降雨降雪量を予測し、この予測値を入力
として再度神経回路網モデルを用いた一定時間後の降雨
降雪量を予測することを繰り返すことで、数時間程度先
までの予測値を求めている。
In these apparatuses, a measured radar image is given to a neural network model having a product-sum calculation unit to train weather dynamics, and a weather radar image is trained using the trained neural network model. By predicting the amount of rainfall and snowfall after a certain time at each grid point of the above, and repeatedly predicting the amount of rainfall and snowfall after a certain time using the neural network model using this prediction value as input Up to the predicted value.

【0004】これらの装置では、気象のダイナミクスを
学習させるためには一定時間分の気象レーダー画像を神
経回路網モデルに与える必要があり、降雨降雪開始時の
ような十分な気象レーダー画像データーが得られていな
い段階では、神経回路網モデルの学習が十分に行われて
いないために十分な予測精度が得られないという欠点が
ある。また、気象レーダー画像中のエコーパターンの移
動速度が早い場合には、神経回路網モデルを用いて得ら
れた予測結果を入力として再度予測処理を繰り返すこと
から予測時間が長くなると十分な精度が得られないとい
う欠点がある。また、特開平8−50181号公報「降
雨移動予測装置」では、気象レーダー画像から「複数の
手法」で移動ベクトルを推定し、その結果に基づいて
「最適移動ベクトル」を求めるという概念を核とした降
雨予測装置が公開されている。
In these apparatuses, it is necessary to provide a weather radar image for a certain period of time to a neural network model in order to learn weather dynamics, and sufficient weather radar image data such as when rainfall and snowfall starts is obtained. At a stage where it is not performed, there is a disadvantage that sufficient prediction accuracy cannot be obtained because learning of the neural network model is not sufficiently performed. In addition, when the moving speed of the echo pattern in the weather radar image is high, the prediction process is repeated again with the prediction result obtained using the neural network model as input, so that sufficient accuracy can be obtained when the prediction time becomes long. There is a disadvantage that it cannot be done. Japanese Patent Laid-Open Publication No. Hei 8-50181, entitled "Rainfall Movement Prediction Apparatus," has a concept of estimating a movement vector from weather radar images by "a plurality of methods" and obtaining an "optimum movement vector" based on the result. A rainfall prediction device has been released.

【0005】その最適な移動ベクトルの算出は「複数の
移動ベクトルに基づいて現在の最適ベクトルを求める
際、各移動ベクトルを直交する2方向に分解して前記2
方向成分を求め、各移動ベクトルのうち最も多い成分に
より最適移動ベクトルを求める」という方法によるもの
である。
[0005] The calculation of the optimum movement vector is described as follows. "When obtaining the current optimum vector based on a plurality of movement vectors, each movement vector is decomposed in two orthogonal directions.
A direction component is obtained, and an optimum movement vector is obtained from the largest component among the movement vectors. "

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、上記
のような気象レーダー画像を用いた降雨降雪予測装置に
おいて、新たなエコーパターンの発生時やエコーパター
ンの移動が激しい場合にも適応でき、上記のような移動
ベクトルの成分分解や、ヒストグラム(最も多い成分の
算出)も用いることなく、予測精度の良い降雨降雪予測
装置を提供することにある。
SUMMARY OF THE INVENTION The object of the present invention can be applied to a rainfall / snowfall prediction device using a weather radar image as described above, even when a new echo pattern is generated or when the echo pattern moves rapidly. Another object of the present invention is to provide a rainfall / snowfall prediction device with good prediction accuracy without using the above-described component decomposition of the movement vector and the histogram (calculation of the most common component).

【0007】[0007]

【課題を解決するための手段】本発明の降雨降雪予測装
置は、神経回路網モデルに気象レーダー画像を与えて気
象ダイナミックスを学習させ、学習後の神経回路網モデ
ルを用いて、降雨降雪量の短時間予測を行う装置におい
て、任意の時間間隔をおいて計測された二つの気象レー
ダー画像の複数の組を神経回路網モデルに学習させ、学
習後の神経回路網モデルを用いて、短時間後の降雨降雪
量予測を行う第1の予測手段と任意の時間間隔をおいて
計測された二つの気象レーダー画像から、該気象レーダ
ー画像中のエコーパターンの移動ベクトルを計算し、こ
の移動ベクトルから、短時間後の降雨降雪量を予測する
第2の予測手段から得られる降雨降雪情報の予測値と、
気象レーダーから得られる降雨降雪情報の実測値と、予
測開始後の経過時間及び移動ベクトルを比較評価して、
上記予測手段から得られた予測降雨降雪量の予測値とし
て出力制御を行う第3の予測手段を有することを特徴と
する。
A rainfall and snowfall prediction apparatus according to the present invention is provided with a weather radar image to a neural network model to learn weather dynamics, and uses the trained neural network model to learn the amount of rainfall and snowfall. In a device that performs short-term prediction of, a plurality of sets of two weather radar images measured at an arbitrary time interval are trained by a neural network model, and a short-time From the first prediction means for predicting later rainfall and snowfall and two weather radar images measured at an arbitrary time interval, a movement vector of an echo pattern in the weather radar image is calculated, and from this movement vector, A predicted value of rainfall snowfall information obtained from a second prediction means for predicting a rainfall snowfall amount after a short time;
By comparing and evaluating the measured value of the rainfall and snowfall information obtained from the weather radar, the elapsed time and the movement vector since the start of the prediction,
The present invention is characterized in that there is provided a third predicting means for performing output control as a predicted value of the predicted rainfall and snowfall obtained from the predicting means.

【0008】また、前記第3の予測手段は、前記第1の
予測手段と第2の予測手段に対して、予測対象とするレ
ーダー画像を入力し、各々の予測値を求め、実測画像と
の予測精度の比較を行い、第1の予測手段の予測精度
が、第2の予測手段の予測精度よりも良くなるまでの予
測開始からの経過時間を求める処埋を大量のレーダー画
像について行う評価手段と、前記評価手段により得られ
た経過時間をしきい値とし、予測開始から前記しきい値
に達するまでは、第2の予測手段による予測値を予測降
雨降雪量として出力し、前記しきい値を越える時刻以降
を第1の予測手段による予測値を予測降雨降雪量として
出力する制御手段を含む。
[0008] The third predicting means inputs a radar image to be predicted to the first predicting means and the second predicting means, obtains each predicted value, and calculates a predicted value of the radar image. Evaluating means for comparing prediction accuracy and performing processing for obtaining an elapsed time from the start of prediction until the prediction accuracy of the first prediction means becomes better than the prediction accuracy of the second prediction means for a large amount of radar images. The elapsed time obtained by the evaluation means as a threshold, and from the start of prediction until the threshold is reached, the prediction value of the second prediction means is output as the predicted rainfall and snowfall, And control means for outputting a predicted value by the first predicting means as predicted rainfall and snowfall after the time exceeding.

【0009】また、前記第3の予測手段は、前記第1の
予測手段と第2の予測手段に対して、予測対象とするレ
ーダー画像を入力し、各々の予測値を求め、実測画像と
の予測精度の比較を行い、予測精度のより良好な予測手
段の予測値を適用領域表に編集する編集手段と、前記適
用領域表に基づき、経過時間と共に該当予測手段の予測
値を予測降雨降雪量として出力する制御手段を含む。
Further, the third predicting means inputs a radar image to be predicted to the first predicting means and the second predicting means, obtains each predicted value, and calculates a predicted value of the radar image. An editing unit that compares the prediction accuracy and edits the prediction value of the prediction unit with a better prediction accuracy into an application area table; and, based on the application area table, calculates the prediction value of the prediction unit along with the elapsed time based on the predicted rainfall and snowfall. Control means for outputting as

【0010】更に、前記第3の予測手段に、第1の予測
手段と第2予測手段に対して、予測対象とするレーダー
画像を入力して得られる各々の予測値を一定時間分蓄積
する蓄積手段と、前記一定時間の経過後に得られる実測
値を用いて、CSI値を各時刻毎に算定する算定手段
と、N個の点を通るLagrangeの式で与えられる
次数N−1の補間多項式により予測時刻と各時刻におけ
るそれぞれのCSI値を通る次数N−1の補間多項式
を、前記予測値に対して求める算式手段と、前記補間多
項式を用いて、任意時間後のCSI値を予測し、この予
測結果により予測値を補間値として出力する補間手段を
含むものでもよい。
[0010] Further, the third predicting means stores, for the first predicting means and the second predicting means, respective predicted values obtained by inputting a radar image to be predicted for a predetermined time. Means, calculating means for calculating the CSI value at each time using the actually measured value obtained after the lapse of the predetermined time, and interpolation polynomial of degree N-1 given by Lagrange's equation passing through N points. The CSI value after an arbitrary time is predicted by using an equation means for obtaining an interpolation polynomial of degree N-1 passing through the prediction time and each CSI value at each time with respect to the prediction value, and using the interpolation polynomial. Interpolation means for outputting a predicted value as an interpolated value based on the prediction result may be included.

【0011】更に、前記第3の予測手段は、第1の予測
手段と第2の予測手段の起動と停止の制御を行うこと
で、必要な予測手段のみを動作させるものでもよい。
Further, the third predicting means may control only the necessary predicting means by starting and stopping the first predicting means and the second predicting means.

【0012】更にまた、前記予測精度は、相対応する実
測画像と予測画像の領域について、「共に降雨の領域」
の「共に降雨の領域」と「実測と予測の降雨領域の相反
する2つの領域」との和に対する比率で定義される的中
率を示すCSI値を用いてもよい。
[0012] Furthermore, the prediction accuracy may be such that “the area of both rainfall” and “the area of rainfall” correspond to the corresponding area of the actually measured image and the corresponding area of the predicted image.
A CSI value indicating a hit rate defined by a ratio to the sum of “the regions both raining” and “the two opposite regions of the actual measurement and the prediction rainfall” may be used.

【0013】また、前記第3の予測手段は、第1の予測
手段と第2予測手段に対して、予測対象とするレーダー
画像を入力して得られる各々の予測値を一定時間分蓄積
する蓄積手段と、前記一定時間の経過後に得られる実測
値を用いて、CSI値を各時刻毎に算定する算定手段
と、N個の点を通るLagrangeの式で与えられる
次数N−1の補間多項式により予測時刻と各時刻におけ
るそれぞれのCSI値を通る次数N−1の補間多項式
を、前記予測値に対して求める算式手段と、前記補間多
項式を用いて、任意時間後のCSI値を予測し、この予
測結果により予測値を補間値として出力する補間手段
と、前記補間多項式を用いた予測値が前記第2の予測手
段の予測値と比較して前記予測精度が高ければ該予測値
を予測降雨降雪量として出力する制御手段を含む第3の
予測手段でもよい。
Further, the third predicting means stores, for the first predicting means and the second predicting means, respective predicted values obtained by inputting a radar image to be predicted for a predetermined time. Means, calculating means for calculating the CSI value at each time using the actually measured value obtained after the lapse of the predetermined time, and interpolation polynomial of degree N-1 given by Lagrange's equation passing through N points. The CSI value after an arbitrary time is predicted by using an equation means for obtaining an interpolation polynomial of degree N-1 passing through the prediction time and each CSI value at each time with respect to the prediction value, and using the interpolation polynomial. An interpolating means for outputting a predicted value as an interpolated value according to a prediction result; and, if the predicted value using the interpolating polynomial is higher than the predicted value of the second predicting means, the predicted value is predicted rainfall and snowfall. As quantity Or the third prediction means including control means for force.

【0014】[0014]

【発明の実施の形態】本発明の実施例について図面を参
照して説明する。図1は本予測装置の一実施例の構成図
であり。本装置は、神経回路網モデル予測機構101、
相互相関モデル予測機構102、出力制御機構103か
ら構成される。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of an embodiment of the present prediction device. This device includes a neural network model prediction mechanism 101,
It comprises a cross-correlation model prediction mechanism 102 and an output control mechanism 103.

【0015】神経回路網モデル予測機構101は、一定
時間(h)毎に到着する気象レーダーからのエコーパタ
ーンについて、神経回路網モデルにより、ある時刻Tと
T+hの対のエコーパターンの学習を複数回行い、この
学習終了後の神経回路網モデルを用いて、一定時間
(h)先の予測値を求め、得られた予測値を入力として
再度一定時間先(h、合計で2h先)の予測を行うこと
を繰り返すことで、任意の時点の予測値を得る。本機構
内で動作する神経回路網モデルは、1層の入力層、複数
の中間層、1層の出力層を持つ層状のネットワークを構
成し、各層はユニット、重み、バイアス値から構成され
る。ユニットは前の層のユニットの出力値(N個)と該
ユニットが持つ重みの積和を求め、バイアス値を加算し
た値を出力する。入力層、中間層、出力層の構成、ユニ
ットの積和の計算方法は様々な手法が適用可能であり、
本発明で限定するものではない。本機構は得られた予測
値301を出力制御機構103に転送する。
The neural network model predicting mechanism 101 learns a pair of echo patterns at a certain time T and T + h a plurality of times by using a neural network model for an echo pattern from a weather radar arriving at regular time intervals (h). Then, using the neural network model after the learning is completed, a prediction value for a certain time (h) is obtained, and a prediction for a certain time (h, 2h ahead in total) is performed again using the obtained prediction value as an input. By repeating the operation, a predicted value at an arbitrary time point is obtained. The neural network model operating in this mechanism constitutes a layered network having one input layer, a plurality of intermediate layers, and one output layer, and each layer is composed of units, weights, and bias values. The unit obtains the product sum of the output value (N) of the unit of the previous layer and the weight of the unit, and outputs a value obtained by adding the bias value. Various methods can be applied to the input layer, the intermediate layer, the configuration of the output layer, and the method of calculating the product sum of units.
It is not limited by the present invention. This mechanism transfers the obtained predicted value 301 to the output control mechanism 103.

【0016】相互相関モデル予測機構102は、一定時
間(h)毎に到着する気象レーダーからのエコーパター
ンについて、任意の時間間隔(ΔT)をおいた2枚のエ
コーパターンから、例えば参考文献1で示される方法に
より、相互相関値を計算し、相互相関値を最大にする移
動ベクトルを求める。この移動ベクトルを用いて、任意
の時間後の予測値を得る。相互相関値の算定にあたって
は、気象レーダーがカバーする全領域を1つとして算定
する方法、全領域を任意の複数領域に分割し、各領域に
ついて移動ベクトルを算定したものを合成する方法が適
用可能であり、本発明は任意の線形予測手法と組み合わ
せることができる。本機構は得られた予測値及び移動ベ
クトル302を出力制御機構103に転送する。 「参考文献1:遊馬芳雄、菊池克弘、今久、”簡易気象
レーダーによるエコーの移動速度について”、北海道大
学地球物理学研究報告、44、pp.23〜34」 出力制御機構103は、実測画像201及び神経回路網
モデル予測機構101、相互相関モデル予測機構102
から転送された各々の予測結果301、302を用い
て、最終的な予測画像202を、予測地域、予測時期、
使用可能な計算機パワー等を考慮して、以下のいずれか
の方法により決定する。
The cross-correlation model predicting mechanism 102 calculates the echo pattern from the weather radar arriving at regular time intervals (h) from two echo patterns at an arbitrary time interval (ΔT). According to the method shown, a cross-correlation value is calculated, and a movement vector that maximizes the cross-correlation value is obtained. Using this movement vector, a predicted value after an arbitrary time is obtained. When calculating the cross-correlation value, a method of calculating the entire area covered by the weather radar as one, or a method of dividing the entire area into arbitrary multiple areas and calculating the movement vector for each area and combining them is applicable The present invention can be combined with any linear prediction method. This mechanism transfers the obtained predicted value and the movement vector 302 to the output control mechanism 103. "Reference 1: Yoshio Yuma, Katsuhiro Kikuchi, Imahisa," On the moving speed of echoes by a simple weather radar ", Hokkaido University Geophysical Research Report, 44, pp. 23-34." 201, neural network model prediction mechanism 101, cross-correlation model prediction mechanism 102
Using the respective prediction results 301 and 302 transferred from the
It is determined by any of the following methods in consideration of available computer power and the like.

【0017】なお、以下の方法は、「神経回路モデル」
によって予測した予測値の推移から得られる降雨降雪量
の移動ベクトルと、「任意の手段」によって予測した降
雨降雪量の移動ベクトルとを「比較」することによっ
て、いずれかの予測値のみの選択や両者の荷重平均、し
きい値処理などの組み合わせ処理を行う技術を核として
降雨降雪量を予測するもので、公知の「複数の移動ベク
トルに基づいて現在の最適ベクトルを求める際、各移動
ベクトルを直交する2方向に分解して前記2方向成分を
求め、各移動ベクトルのうち最も多い成分により最適移
動ベクトルを求める」という方法による移動ベクトルの
成分分解や、ヒストグラム(最も多い成分の算出)を用
いる方法ではない。
The following method is called a “neural circuit model”.
By comparing the movement vector of the rainfall and snowfall obtained from the transition of the prediction value predicted by the above with the movement vector of the rainfall and snowfall predicted by “arbitrary means”, it is possible to select only one of the prediction values. It is a technique that predicts the amount of rainfall and snowfall based on the technology of performing a combination process such as weight average of both, threshold value processing, etc., and it is known that `` when finding the current optimal vector based on a plurality of Decomposition into two orthogonal directions to obtain the two-direction components, and to determine the optimum motion vector from the largest component of each motion vector ", and use a histogram (calculation of the most component). Not a way.

【0018】方法1:神経回路網モデル予測機構101
と相互相関モデル予測機構102に対して、予測対象と
するレーダー画像を入力し、各々の予測値を求め、実測
画像との比較を行い、前者の予測精度が、後者の予測精
度よりも良くなるまでの予測開始からの経過時間を求め
る処埋を大量のレーダー画像について評価する。この結
果得られた経過時間をしきい値とし、予測開始からこの
時間が経過するまでは、相互相関モデル予測機構102
の予測値を最終予測画像とし、その後は神経回路網モデ
ル予測機構101の予測値を最終予測画像とする。
Method 1: Neural Network Model Prediction Mechanism 101
And the cross-correlation model prediction mechanism 102, the radar image to be predicted is input, each predicted value is obtained, and the measured value is compared with the actually measured image, and the prediction accuracy of the former is better than the prediction accuracy of the latter The processing to find the elapsed time from the start of prediction up to is evaluated for a large number of radar images. The elapsed time obtained as a result is set as a threshold value, and the cross-correlation model prediction mechanism 102
Is used as the final predicted image, and then the predicted value of the neural network model prediction mechanism 101 is used as the final predicted image.

【0019】さらに、出力制御機構103は、制御情報
303を用いて、神経回路網モデル予測機構101と相
互相関モデル予測機構102の起動、停止の制御を行う
ことで、必要な予測機構のみが動作するように制御す
る。
Further, the output control mechanism 103 controls the start and stop of the neural network model prediction mechanism 101 and the cross-correlation model prediction mechanism 102 using the control information 303, so that only the necessary prediction mechanism operates. To control.

【0020】なお、予測精度の比較は以下で定義される
CSI(Critical Success Inde
x)を用いて行うが、誤差二乗和など任意の評価基準を
用いることも可能である。
The prediction accuracy is compared with the CSI (Critical Success Index) defined below.
x), but it is also possible to use any evaluation criterion such as the sum of squared errors.

【0021】[0021]

【数1】 ここで N11:実測画像が降雨領域で予測画像も降雨領域 N10:実測画像が降雨領域で無い領域、予測画像は降
雨領域 N01:実測画像が降雨領域で、予測画像は降雨領域で
無い領域 方法2:上記と同様に、予測対象のレーダー画像を用い
た事前分析により、相互相関モデル予測機構102から
得られる移動ベクトルと、神経回路網モデル予測機10
1と相互相関モデル予測機構102の予測値と実測画像
との比較を行うことにより、移動ベクトルと2つの予測
機構の適用領域表を求め、この適用領域表に基づき、最
終予測画像202を得る。
(Equation 1) Here, N11: a measured image is a rainfall region and a predicted image is also a rainfall region N10: a region where the measured image is not a rainfall region, and a predicted image is a rainfall region N01: a region where the measured image is a rainfall region and the predicted image is not a rainfall region Method 2 In the same manner as described above, the motion vector obtained from the cross-correlation model prediction mechanism 102 and the neural network model predictor 10 are obtained by the preliminary analysis using the radar image to be predicted.
By comparing 1 with the predicted value of the cross-correlation model prediction mechanism 102 and the actual measurement image, a motion vector and an application area table of the two prediction mechanisms are obtained, and a final predicted image 202 is obtained based on the application area table.

【0022】さらに、出力制御機構103は、制御情報
303を用いて、神経回路網モデル予測機構101の起
動、停止の制御を行うことで、予測計算負荷の削減を図
ることを可能とする。
Further, the output control mechanism 103 controls the start and stop of the neural network model prediction mechanism 101 by using the control information 303, so that the prediction calculation load can be reduced.

【0023】なお、予測精度の比較は上記と同様CSI
を用いて行うが、そのほかの評価関数を用いることも方
法1と同様に可能である。
The prediction accuracy is compared with the CSI as described above.
, But other evaluation functions can be used in the same manner as in the method 1.

【0024】方法3:神経回路網モデル予測機構101
と相互相関モデル予測機構102に対して、予測対象と
するレーダー画像を入力して得られる各々の予測値30
1及び302を一定時間(x1 、x2 、・・・xn )分
蓄積する。次にこの時間が経過後に得られる実測値を用
いて、前述のCSI値を各時刻毎に算定する。
Method 3: Neural Network Model Prediction Mechanism 101
And a predicted value 30 obtained by inputting a radar image to be predicted to the cross-correlation model prediction mechanism 102.
1 and 302 are accumulated for a fixed time (x 1 , x 2 ,..., X n ). Next, the above-mentioned CSI value is calculated for each time using the actually measured value obtained after the lapse of this time.

【0025】N個の点y1 =F(x1 )、y2 =F(x
2 )、・・・yN =F(xn )を通る次数N−1の補間
多項式は、以下のLagrangeの式で与えられるこ
とが知られている。
N points y 1 = F (x 1 ), y 2 = F (x
2 ),... It is known that an interpolation polynomial of degree N−1 passing through y N = F (x n ) is given by the following Lagrange equation.

【0026】[0026]

【数2】 上記の式に従い、予測時刻X1 、X2 、・・・Xn と各
時刻におけるCSI値CSI1 、CSI2 、...CS
n を通る次数N−1の補間多項式を、予測値301と
予測値302に対して求める。この補間多項式を用い
て、任意時間後のCSI値を予測し、この予測結果によ
り、より良い精度を出力すると期待できる予測機構の予
測結果を最終予測結果となるように出力制御する。補間
多項式を用いた評価結果が得られるまでの間は無条件に
相互相関モデル予測機構102の予測値を最終予測画像
202とする。
(Equation 2) According to the above equation, the predicted times X 1 , X 2 ,... X n and the CSI values CSI 1 , CSI 2 ,. . . CS
The interpolating polynomial of order N-1 through I n, obtains the prediction value 301 and the predicted value 302. Using this interpolation polynomial, the CSI value after an arbitrary time is predicted, and based on the prediction result, the output of the prediction mechanism that can be expected to output better accuracy is controlled to be the final prediction result. Until the evaluation result using the interpolation polynomial is obtained, the predicted value of the cross-correlation model prediction mechanism 102 is unconditionally set as the final predicted image 202.

【0027】なお、本実施例では、神経回路網モデル予
測機構、相互相関モデル予測機構の2つを用いて説明し
たが他の予測機構を併用して出力制御を行うこと、各予
測機構から得られる予測値を選択出力するばかりではな
く、加重平均するような出力制御を行うことへも容易に
拡張できる。
Although the present embodiment has been described using the neural network model predicting mechanism and the cross-correlation model predicting mechanism, output control is performed by using other predicting mechanisms together. In addition to selectively outputting predicted values to be output, output control such as weighted averaging can be easily extended.

【0028】[0028]

【発明の効果】従来の神経回路網モデルを用いた降雨降
雪予測装置では、降雨降雪開始時など神経回路網モデル
が十分な実レーダー画像の学習を終了するまで、もしく
は、計測レーダー画像中のエコーパターンの移動が早い
場合には、精度の良い予測結果が得られないという欠点
があった。
In the rainfall / snowfall prediction apparatus using the conventional neural network model, the neural network model does not complete the learning of the actual radar image, such as at the start of the rainfall, or the echo in the measured radar image. If the movement of the pattern is fast, there is a drawback that accurate prediction results cannot be obtained.

【0029】本発明では、神経回路網モデルを用いた予
測手段と、任意の時間間隔をおいて得られたレーダー画
像から相互相関値の計算を行い求めた移動ベクトルを用
いて予測する手段と、これら複数の予測値の精度を評価
し、最終予測値の出力制御を行う第三の手段により、神
経回路網モデルでは十分な精度が得られない場合にも精
度良い予測結果を得ることができる。
According to the present invention, prediction means using a neural network model, and means for predicting using a movement vector obtained by calculating a cross-correlation value from radar images obtained at arbitrary time intervals, By the third means for evaluating the accuracy of the plurality of predicted values and controlling the output of the final predicted value, an accurate predicted result can be obtained even when the neural network model cannot obtain sufficient accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の降雨降雪予測装置の一実施例のブロッ
ク図である。
FIG. 1 is a block diagram of one embodiment of a rainfall / snowfall prediction device of the present invention.

【符号の説明】[Explanation of symbols]

101 神経回路網モデル予測機構 102 相互相関モデル予測機構 103 選択出力機構 201 実測画像(入力データ) 202 予測画像(出力データ) 301 神経回路網モデル予測機構が出力する予測値 302 相互相関モデル予測機構が出力する予測値と
移動ベクトル 303 出力制御機構が予測機構を制御する制御情報
Reference Signs List 101 Neural network model prediction mechanism 102 Cross-correlation model prediction mechanism 103 Selection output mechanism 201 Actual measurement image (input data) 202 Predicted image (output data) 301 Predicted value output from neural network model prediction mechanism 302 Cross-correlation model prediction mechanism Predicted value to be output and movement vector 303 Control information for controlling the prediction mechanism by the output control mechanism

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 浩一 神奈川県横浜市中区山下町223番1 エ ヌ・ティ・ティ・ソフトウェア株式会社内 (72)発明者 時岡 正浩 神奈川県横浜市中区山下町223番1 エ ヌ・ティ・ティ・ソフトウェア株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Koichi Watanabe 223-1 Yamashita-cho, Naka-ku, Yokohama-shi, Kanagawa Prefecture Inside NTT Software Corporation (72) Inventor Masahiro Tokioka Yamashita, Naka-ku, Yokohama-shi, Kanagawa Prefecture 223-1 Cho, NTT Software Corporation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 神経回路網モデルに気象レーダー画像を
与えて気象ダイナミックスを学習させ、学習後の神経回
路網モデルを用いて、降雨降雪量の短時間予測を行う装
置において、 任意の時間間隔をおいて計測された二つの気象レーダー
画像の複数の組を神経回路網モデルに学習させ、学習後
の神経回路網モデルを用いて、短時間後の降雨降雪量予
測を行う第1の予測手段と任意の時間間隔をおいて計測
された二つの気象レーダー画像から、該気象レーダー画
像中のエコーパターンの移動ベクトルを計算し、この移
動ベクトルから、短時間後の降雨降雪量を予測する第2
の予測手段から得られる降雨降雪情報の予測値と、気象
レーダーから得られる降雨降雪情報の実測値と、予測開
始後の経過時間及び移動ベクトルを比較評価して、上記
予測手段から得られた予測降雨降雪量の予測値として出
力制御を行う第3の予測手段を有することを特徴とする
降雨降雪予測装置。
An apparatus for learning weather dynamics by giving a weather radar image to a neural network model and performing a short-term prediction of rainfall and snowfall using the trained neural network model, comprising: Prediction means for making a neural network model learn a plurality of sets of two meteorological radar images measured at a time, and using the neural network model after learning to predict rainfall and snowfall shortly afterward. And calculating a movement vector of an echo pattern in the weather radar image from the two weather radar images measured at an arbitrary time interval, and predicting the amount of rainfall and snowfall after a short time from the movement vector.
The predicted value of the rainfall and snowfall information obtained from the prediction means, the measured value of the rainfall and snowfall information obtained from the weather radar, and the elapsed time and the movement vector after the start of the prediction are compared and evaluated. A rainfall and snowfall prediction device, comprising: third prediction means for performing output control as a predicted value of rainfall and snowfall.
【請求項2】 前記第3の予測手段が、 前記第1の予測手段と第2の予測手段に対して、予測対
象とするレーダー画像を入力し、各々の予測値を求め、
実測画像との予測精度の比較を行い、第1の予測手段の
予測精度が、第2の予測手段の予測精度よりも良くなる
までの予測開始からの経過時間を求める処埋を大量のレ
ーダー画像について行う評価手段と、 前記評価手段により得られた経過時間をしきい値とし、
予測開始から前記しきい値に達するまでは、第2の予測
手段による予測値を予測降雨降雪量として出力し、前記
しきい値を越える時刻以降を第1の予測手段による予測
値を予測降雨降雪量として出力する制御手段を含む第3
の予測手段を有する請求項1記載の降雨降雪予測装置。
2. The third predicting means inputs a radar image to be predicted to the first predicting means and the second predicting means, and obtains respective predicted values,
A comparison of the prediction accuracy with the measured image is performed, and the processing for obtaining the elapsed time from the start of the prediction until the prediction accuracy of the first prediction unit becomes better than the prediction accuracy of the second prediction unit is performed on a large amount of radar images. Evaluation means to perform, the elapsed time obtained by the evaluation means as a threshold,
From the start of prediction until the threshold is reached, the predicted value of the second predictor is output as the predicted rainfall snowfall, and after the time exceeding the threshold, the predicted value of the first predictor is calculated as the predicted rainfall. Third including control means for outputting as a quantity
2. The rainfall and snowfall prediction device according to claim 1, further comprising:
【請求項3】 前記第3の予測手段が、 前記第1の予測手段と第2の予測手段に対して、予測対
象とするレーダー画像を入力し、各々の予測値を求め、
実測画像との予測精度の比較を行い、予測精度のより良
好な予測手段の予測値を適用領域表に編集する編集手段
と、 前記適用領域表に基づき、経過時間と共に該当予測手段
の予測値を予測降雨降雪量として出力する制御手段を含
む第3の予測手段を有する請求項1記載の降雨降雪予測
装置。
3. The third predicting means inputs a radar image to be predicted to the first predicting means and the second predicting means, and calculates respective predicted values,
Comparing the prediction accuracy with the actually measured image, editing means for editing the prediction value of the prediction means with better prediction accuracy into the applicable area table, and, based on the applicable area table, the predicted value of the corresponding prediction means together with the elapsed time. The rainfall and snowfall prediction device according to claim 1, further comprising third prediction means including control means for outputting the predicted rainfall amount.
【請求項4】 前記第3の予測手段が、 第1の予測手段と第2の予測手段の起動と停止の制御を
行うことで、必要な予測手段のみを動作させる第3の予
測手段を有する請求項1〜3の何れかに記載の降雨降雪
予測装置。
4. The third predicting unit has a third predicting unit that controls only the necessary predicting unit by controlling the start and stop of the first predicting unit and the second predicting unit. The rainfall and snowfall prediction device according to claim 1.
【請求項5】 前記予測精度が、 相対応する実測画像と予測画像の領域について、「共に
降雨の領域」の「共に降雨の領域」と「実測と予測の降
雨領域の相反する2つの領域」との和に対する比率で定
義される的中率を示すCSI値を用いて予測精度とする
請求項2または3記載の降雨降雪予測装置。
5. The prediction accuracy is as follows: For regions of the actually measured image and the predicted image corresponding to each other, “both regions of rainfall” and “two regions of rainfall both of actual measurement and prediction” of “region of both rainfall” 4. The rainfall and snowfall prediction device according to claim 2, wherein the prediction accuracy is determined using a CSI value indicating a hit ratio defined as a ratio with respect to a sum of the rainfall and snowfall.
【請求項6】 前記第3の予測手段が、 第1の予測手段と第2予測手段に対して、予測対象とす
るレーダー画像を入力して得られる各々の予測値を一定
時間分蓄積する蓄積手段と、 前記一定時間の経過後に得られる実測値を用いて、CS
I値を各時刻毎に算定する算定手段と、 N個の点を通るLagrangeの式で与えられる次数
N−1の補間多項式により予測時刻と各時刻におけるそ
れぞれのCSI値を通る次数N−1の補間多項式を、前
記予測値に対して求める算式手段と、 前記補間多項式を用いて、任意時間後のCSI値を予測
し、この予測結果により予測値を補間値として出力する
補間手段と、 前記補間多項式を用いた予測値が前記第2の予測手段の
予測値と比較して前記予測精度が高ければ該予測値を予
測降雨降雪量として出力する制御手段を含む第3の予測
手段を有する請求項1記載の降雨降雪予測装置。
6. The storage device according to claim 3, wherein the third predictor stores, for the first predictor and the second predictor, a predicted value obtained by inputting a radar image to be predicted for a predetermined time. Means, using an actual measurement value obtained after the lapse of the predetermined time,
Calculating means for calculating an I value for each time; and an interpolation polynomial of an order N-1 given by Lagrange's equation passing through N points, the prediction time and the order N-1 passing through the respective CSI values at each time. Formula means for obtaining an interpolation polynomial for the predicted value; interpolating means for predicting a CSI value after an arbitrary time using the interpolation polynomial, and outputting a predicted value as an interpolation value based on the prediction result; A third predicting unit including a control unit that outputs the predicted value as a predicted rainfall amount if the predicted value using the polynomial is higher than the predicted value of the second predicting unit and the prediction accuracy is high. 1. The rainfall and snowfall prediction device according to 1.
【請求項7】 前記第3の予測手段が、 第1の予測手段と第2予測手段に対して、予測対象とす
るレーダー画像を入力して得られる各々の予測値を一定
時間分蓄積する蓄積手段と、 前記一定時間の経過後に得られる実測値を用いて、CS
I値を各時刻毎に算定する算定手段と、 N個の点を通るLagrangeの式で与えられる次数
N−1の補間多項式により予測時刻と各時刻におけるそ
れぞれのCSI値を通る次数N−1の補間多項式を、前
記予測値に対して求める算式手段と、 前記補間多項式を用いて、任意時間後のCSI値を予測
し、この予測結果により予測値を補間値として出力する
補間手段を含む第3の予測手段を有する請求項2または
3記載の降雨降雪予測装置。
7. The storage device according to claim 3, wherein the third prediction unit stores, for a certain period of time, a prediction value obtained by inputting a radar image to be predicted for the first prediction unit and the second prediction unit. Means, using an actual measurement value obtained after the lapse of the predetermined time,
Calculating means for calculating an I value for each time; and an interpolation polynomial of an order N-1 given by Lagrange's equation passing through N points, the prediction time and the order N-1 passing through the respective CSI values at each time. A third means including an equation means for obtaining an interpolation polynomial for the predicted value, and an interpolation means for predicting a CSI value after an arbitrary time by using the interpolation polynomial, and outputting a predicted value as an interpolation value based on the prediction result. The rainfall / snowfall prediction device according to claim 2 or 3, further comprising:
JP9043502A 1997-02-27 1997-02-27 Rainfall and snowfall forecasting device Pending JPH10239452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9043502A JPH10239452A (en) 1997-02-27 1997-02-27 Rainfall and snowfall forecasting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9043502A JPH10239452A (en) 1997-02-27 1997-02-27 Rainfall and snowfall forecasting device

Publications (1)

Publication Number Publication Date
JPH10239452A true JPH10239452A (en) 1998-09-11

Family

ID=12665506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9043502A Pending JPH10239452A (en) 1997-02-27 1997-02-27 Rainfall and snowfall forecasting device

Country Status (1)

Country Link
JP (1) JPH10239452A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129159A (en) * 2007-11-22 2009-06-11 Hitachi Ltd Time series prediction system
CN107292386A (en) * 2016-04-11 2017-10-24 福特全球技术公司 Detected using the rainwater of the view-based access control model of deep learning
JP2019125251A (en) * 2018-01-18 2019-07-25 ヤフー株式会社 Information processor, data structure, information processing method, and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129159A (en) * 2007-11-22 2009-06-11 Hitachi Ltd Time series prediction system
CN107292386A (en) * 2016-04-11 2017-10-24 福特全球技术公司 Detected using the rainwater of the view-based access control model of deep learning
JP2019125251A (en) * 2018-01-18 2019-07-25 ヤフー株式会社 Information processor, data structure, information processing method, and program

Similar Documents

Publication Publication Date Title
CN110223517B (en) Short-term traffic flow prediction method based on space-time correlation
Sfetsos A comparison of various forecasting techniques applied to mean hourly wind speed time series
JP4661250B2 (en) Prediction method, prediction device, and prediction program
Hu et al. A framework for probabilistic generic traffic scene prediction
US20070265841A1 (en) Information processing apparatus, information processing method, and program
CN106933649A (en) Virtual machine load predicting method and system based on rolling average and neutral net
CN115742855A (en) Electric automobile remaining mileage prediction method and device, electric automobile and medium
Wan Ahmad et al. Arima model and exponential smoothing method: A comparison
Samanta et al. Learning elastic memory online for fast time series forecasting
EP3783538A1 (en) Analysing interactions between multiple physical objects
Zhang et al. Simulation of an adaptive model based on AIC and BIC ARIMA predictions
JPH10239452A (en) Rainfall and snowfall forecasting device
Latif Evaluating deep learning and machine learning algorithms for forecasting daily pan evaporation during COVID-19 pandemic
CN111291189A (en) Text processing method and device and computer readable storage medium
Chang et al. Traffic-flow forecasting using a 3-stage model
JPH0581228A (en) Method for constituting neural network and learning/ recollecting system
CN111291922B (en) Hybrid data stream flow distribution prediction method based on dynamic time window
JPH06161989A (en) Prediction device
Tan et al. Freeway short-term travel time prediction based on dynamic tensor completion
Jo The connectionist approach to multivariables forecasting of precipitation with virtual term generation schemes
Mohd Safar et al. Rainfall intensity forecast using ensemble artificial neural network and data fusion for tropical climate
Roy et al. Adaptive observation strategies for forecast error minimization
JPH0990057A (en) Weather forecasting equipment
JPH09145851A (en) Meteorological forecasting device
JPH10311883A (en) Method and device for forecasting meteorological image and recording medium recording meteorological image forecast program

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040128