JPH10239287A - Turbine rotor blade built-in part supersonic flaw-detecting device - Google Patents

Turbine rotor blade built-in part supersonic flaw-detecting device

Info

Publication number
JPH10239287A
JPH10239287A JP9042425A JP4242597A JPH10239287A JP H10239287 A JPH10239287 A JP H10239287A JP 9042425 A JP9042425 A JP 9042425A JP 4242597 A JP4242597 A JP 4242597A JP H10239287 A JPH10239287 A JP H10239287A
Authority
JP
Japan
Prior art keywords
saddle
blade
inspected
shaped portion
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9042425A
Other languages
Japanese (ja)
Inventor
Sumio Kogure
澄夫 木暮
Kazuo Sato
和夫 佐藤
Yoji Yoshida
洋司 吉田
Hiroaki Chiba
弘明 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP9042425A priority Critical patent/JPH10239287A/en
Publication of JPH10239287A publication Critical patent/JPH10239287A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2693Rotor or turbine parts

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately detect a defective part without being restricted by the shape of a blade built-in part. SOLUTION: Supersonic waves from a probe 7 for detecting flaw are applied from the base part side surface side of a blade leg part 33a toward a boundary position 12 where a blade built-in parts are adjacent one another, are reflected by the end face of an adjacent saddle type part 32 and are directed toward a protrusion 32b for detecting the presence of a defective part 10. As compared with a conventional technique for applying ultrasonic waves from the base part side of the saddle type part 32a in a turbine rotor 30, reflecting the supersonic waves by the tip of the saddle type part 32a, and hence detecting a defective part, ultrasonic waves can be positively applied to the protrusion 32b without being affected by the geometrical shape and dimensions of the wheel base part side and the blade built-in part and hence the defective part 10 can be detected accurately.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、タービンロータに
植え込まれた羽根の植込部に超音波を照射し、該植込部
に発生している亀裂などの欠陥部を検出するのに好適な
タービンロータ羽根植込部超音波探傷装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable for irradiating an implanted portion of a blade implanted in a turbine rotor with ultrasonic waves and detecting a defect such as a crack generated in the implanted portion. The present invention relates to an ultrasonic flaw detector for a turbine rotor blade implantation part.

【0002】[0002]

【従来の技術】図8に一般の蒸気タービンに使用される
タービンロータ30を示している。即ち、このタービン
ロータ30は図8の如く、軸31の途中位置にホイール
32が所定数固定され、そのホイール32の外周部に羽
根33が植え込まれている。この場合、ホイール32の
外周部にはその拡大図にて示す如く、階段状をなすと共
に先端に至るに従い次第に幅を狭めて形成された突起3
2bを有する鞍型部32aが形成される一方、羽根33
には脚部33aが突設されると共に、その脚部33aに
前記鞍型部32aと対応する形状に形成されたフック溝
33bが形成され、これらフック溝33bに鞍型部32
aが嵌合して組付けられることにより、羽根植込部が構
成されている。
2. Description of the Related Art FIG. 8 shows a turbine rotor 30 used in a general steam turbine. That is, as shown in FIG. 8, the turbine rotor 30 has a predetermined number of wheels 32 fixed at an intermediate position of a shaft 31, and blades 33 are implanted on the outer periphery of the wheel 32. In this case, on the outer peripheral portion of the wheel 32, as shown in an enlarged view, a projection 3 formed in a step shape and having a width gradually reduced toward the tip end.
The saddle-shaped portion 32a having the 2b is formed while the blade 33
Are formed with leg portions 33a, and hook grooves 33b formed in a shape corresponding to the saddle-shaped portions 32a are formed in the leg portions 33a, and the saddle-shaped portions 32 are formed in these hook grooves 33b.
By fitting and assembling “a”, the blade implant portion is formed.

【0003】このような鞍型部32a先端の突起32b
には、高応力が作用するため、その健全性を確認する必
要があり、そのため、超音波探傷検査が適用されてい
る。特に、多数の羽根33が植え込まれた鞍型部32に
あっては、羽根33のフック溝33bとの境界位置に相
当する突起32bに亀裂が発生した例が報告されてい
る。
[0003] Such a projection 32b at the tip of the saddle-shaped portion 32a.
, It is necessary to confirm its soundness because high stress acts on it, and therefore, ultrasonic inspection is applied. Particularly, in the saddle-shaped portion 32 in which a large number of blades 33 are implanted, an example in which a crack is generated in the projection 32b corresponding to the boundary position between the blade 33 and the hook groove 33b is reported.

【0004】従来技術の超音波探傷装置は、特開平4−
274754号公報に開示されており、図9に示すよう
に、超音波探触子34をホイール鞍型部32の基部側に
当て、その状態で超音波35をホイール基部側から鞍型
部32aの先端に向かって照射すると、該超音波35が
鞍型部先端で反射し、反射超音波36が突起32bに向
かうことにより、突起32bに亀裂が発生しているか否
かを判定し、これにより、亀裂発生を検出するようにし
ている。
A conventional ultrasonic flaw detector is disclosed in Japanese Unexamined Patent Publication No.
As shown in FIG. 9, the ultrasonic probe 34 is applied to the base side of the wheel saddle-shaped portion 32, and in this state, ultrasonic waves 35 are applied to the saddle-shaped portion 32a from the wheel base side. When radiated toward the tip, the ultrasonic waves 35 are reflected at the saddle-shaped portion distal ends, and the reflected ultrasonic waves 36 are directed to the projections 32b, thereby determining whether or not cracks are generated in the projections 32b. Crack occurrence is detected.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記に示す
従来の超音波探傷装置にあっては、図9に示す如く、タ
ービンロータホイール32の鞍型部32aの基部側から
超音波35を照射し、その超音波35が鞍型部32aの
先端で反射することにより亀裂を検出しているが、超音
波探触子34を当てるホイール基部側や鞍型部32aの
幾何学的形状及び寸法によっては、亀裂などの欠陥部に
超音波ビームが到達しなくなることがある。
By the way, in the conventional ultrasonic flaw detector described above, as shown in FIG. 9, ultrasonic waves 35 are irradiated from the base side of the saddle-shaped portion 32a of the turbine rotor wheel 32. The crack is detected by the reflection of the ultrasonic waves 35 at the tip of the saddle-shaped portion 32a. However, depending on the geometrical shape and dimensions of the wheel base and the saddle-shaped portion 32a on which the ultrasonic probe 34 is applied. In some cases, the ultrasonic beam may not reach a defect such as a crack.

【0006】例えば図10に示すように、鞍型部32a
の基部側に超音波探触子34を設置し、かつ鞍型部32
aの先端で超音波を反射させる方式の従来技術において
は、超音波探触子34から出射される超音波35のビー
ム路に羽根脚部33aの先端部33c等が位置すること
があり、そのため、超音波35を鞍型部先端で反射させ
ることができないので、欠陥部に超音波ビームが到達せ
ず、装置を活用することができない問題がある。
[0006] For example, as shown in FIG.
The ultrasonic probe 34 is installed on the base side of the
In the conventional technique of reflecting the ultrasonic wave at the tip of a, the tip 33c of the blade leg 33a and the like may be located in the beam path of the ultrasound 35 emitted from the ultrasound probe 34. Since the ultrasonic wave 35 cannot be reflected at the saddle-shaped portion tip, there is a problem that the ultrasonic beam does not reach the defective portion and the device cannot be used.

【0007】しかも、鞍型部先端に超音波35を反射さ
せることができたとしても、その超音波ビーム路が長く
なる場合もあり、そのため、それだけ超音波が減衰され
るばかりでなく超音波が拡がってしまい、ノイズが増加
する結果、亀裂等の欠陥部を正確に検出することが困難
となる問題がある。
Further, even if the ultrasonic wave 35 can be reflected at the tip of the saddle-shaped portion, the ultrasonic beam path may be long, so that not only the ultrasonic wave is attenuated but also the ultrasonic wave is As a result, noise is increased, and as a result, there is a problem that it is difficult to accurately detect a defective portion such as a crack.

【0008】本発明の目的は、上記従来技術の問題点に
鑑み、超音波ビームを照射したとき、ホイール鞍型部及
び羽根脚部の形状に拘わることがないばかりでなく、減
衰やノイズ等が発生することなく所望の位置に超音波を
確実に照射し、欠陥部を的確に検出することができるタ
ービンロータ羽根植込部超音波探傷装置を提供すること
にある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, it is an object of the present invention to not only be irrelevant to the shapes of the wheel saddle portion and the blade legs when irradiating an ultrasonic beam, but also to reduce attenuation and noise. It is an object of the present invention to provide a turbine rotor blade implanted ultrasonic inspection device capable of reliably irradiating an ultrasonic wave to a desired position without generating the defect and accurately detecting a defective portion.

【0009】[0009]

【課題を解決するための手段】本発明では、タービンロ
ータの外周に軸方向に沿って複数設けられた鞍型部と該
鞍型部に嵌合して組付けられた羽根とからなる羽根植込
部に超音波を照射し、鞍型部の突起に存在している亀裂
などの欠陥部を検出する探傷装置において、タービンロ
ータの検査対象である羽根植込部を水に含浸させ、該羽
根植込部における鞍型部の突起と羽根の脚部との間の隙
間に水を充満させる水槽と、該羽根植込部における鞍型
部の突起と羽根の脚部間の隙間に水が充満した状態にあ
るとき、検査対象である羽根植込部とこれと隣接する羽
根植込部と間の境界位置に、検査対象である鞍型部の先
端側側面から超音波を照射し、該超音波が前記隣接する
鞍型部の端面で反射して検査対象である鞍型部の突起に
向かい、突起に存在する欠陥部の有無を検出する検出手
段とを有することを特徴とするものである。
According to the present invention, there is provided a blade plant comprising a plurality of saddle-shaped portions provided on an outer periphery of a turbine rotor along an axial direction and blades fitted and assembled to the saddle-shaped portions. In a flaw detector that irradiates ultrasonic waves to the insertion portion and detects a defect such as a crack existing in the projection of the saddle-shaped portion, the blade implantation portion to be inspected for the turbine rotor is impregnated with water, A water tank that fills a gap between a projection of the saddle-shaped portion and a leg of the blade in the implantation portion, and a gap between the projection of the saddle-shaped portion and the leg of the blade in the blade implantation portion is filled with water. When in the state, the ultrasonic wave is irradiated from the tip side surface of the saddle-shaped portion to be inspected to the boundary position between the blade-implanted portion to be inspected and the adjacent blade-implanted portion. The sound wave is reflected by the end face of the adjacent saddle-shaped portion, travels toward the projection of the saddle-shaped portion to be inspected, and is located on the projection. It is characterized in that it has a detection means for detecting the presence or absence of a defect to be.

【0010】[0010]

【発明の実施の形態】以下、本発明の一実施例を図1乃
至図7により説明する。この実施例の超音波探傷装置
は、超音波の感度を良好にするため、検査対象としての
羽根植込部を水に含浸させ、その状態で羽根植込部の鞍
型部32aと羽根脚部33a間に水が充満したとき、超
音波を被検出部に照射させることにより亀裂などの欠陥
部10を検出するようにしており、概略的には図1に示
すように、タービンロータ32の羽根植込部を水浸させ
る水槽1と、検出手段を有する走査台2と、検出器の検
出に基づいて亀裂等の欠陥部10の有無を判定する判定
処理部(符示せず)とを備えて構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. In order to improve the sensitivity of ultrasonic waves, the ultrasonic flaw detector of this embodiment impregnates the blade implanted portion as an inspection target with water, and in this state, the saddle-shaped portion 32a of the blade implanted portion and the blade leg portion. When water is filled between the nozzles 33a, a defect 10 such as a crack is detected by irradiating the detection target with an ultrasonic wave. As shown schematically in FIG. A water tank 1 for immersing the implanted part, a scanning table 2 having a detection means, and a determination processing part (not shown) for determining the presence or absence of a defect 10 such as a crack based on detection of a detector are provided. It is configured.

【0011】水槽1は、検査に際し、タービンロータ3
0の羽根植込部を含浸させるためのものであり、水槽1
の水が羽根植込部における鞍型部32aの突起32bと
羽根脚部33aとの間に毛細管現象によって浸入し、両
者の間隙11に充満するようにしている。
The water tank 1 contains a turbine rotor 3 for inspection.
0 for impregnating the blade implant portion.
Is infiltrated between the projection 32b of the saddle-shaped portion 32a in the blade-implanted portion and the blade leg 33a by capillary action, so as to fill the gap 11 therebetween.

【0012】走査台2は、検査時、タービンロータ30
に設けられているホイール32の基部であるリム32d
上を、その外周に沿って移動するものであり、本例では
リム32d上を転動するマグネット製のローラ2aを有
し、該ローラ2aがリム32上で吸着しながら転動して
移動する。
At the time of inspection, the scanning table 2
Rim 32d which is the base of the wheel 32 provided in
In the present example, the roller 2a has a magnet roller 2a that rolls on the rim 32d, and the roller 2a rolls and moves while adsorbing on the rim 32. .

【0013】この走査台2には図1に示すように、アー
ム3を介して取付けられた探傷ヘッド4に検出手段が配
設されている。即ち、この検出手段は図1〜図3に示す
如く、羽根脚部境界検出センサ5と水浸確認用探触子6
と探傷用探触子7とからなっている。
As shown in FIG. 1, the scanning table 2 is provided with detecting means on a flaw detection head 4 mounted via an arm 3. That is, as shown in FIGS. 1 to 3, the detecting means includes a blade leg boundary detecting sensor 5 and a water immersion confirming probe 6.
And a flaw detection probe 7.

【0014】ここで、羽根脚部境界検出センサ5は、図
2(b),(c)及び図3に示すように、亀裂などの欠
陥部10を検査するのに際し、その欠陥部10の位置を
特定するための基準となる位置を設定するためのもので
あり、互いに隣接する羽根植込部の境界位置12、即
ち、検査対象である羽根植込部のホイール鞍型部32a
に嵌合している羽根脚部33aと、それと隣り合う羽根
植込部の羽根脚部33aとの境界位置12を検出するよ
うにしている。
Here, as shown in FIGS. 2 (b), 2 (c) and 3, the blade leg boundary detecting sensor 5 detects the position of the defect 10 when inspecting the defect 10 such as a crack. The boundary position 12 between the adjacent blade implants, that is, the wheel saddle-shaped portion 32a of the blade implant to be inspected is set.
The boundary position 12 between the blade leg 33a fitted into the blade leg 33a and the blade leg 33a of the blade implantation part adjacent thereto is detected.

【0015】具体的には前記羽根脚部境界検出センサ5
は、例えば図4(a)に示すように、羽根フック溝33
bの表面側に配置される検知コイル51と、該検知コイ
ル51から離れた位置に配置されるバランスコイル52
と、それら各コイルと接続された計測用ブリッジ53と
からなっており、検査に際し、羽根脚部境界検出センサ
5が、互いに隣接する羽根脚部33aの境界位置12に
移動すると、計測用ブリッジ53のバランスが崩れ、該
ブリッジ53より同図(b)に示す如く信号電圧eoが
出力される。この信号電圧eoは、境界位置12上で最
大となり、境界位置12から離れると低下する山形状の
波形となるので、この最大値を計測用ブリッジ53によ
り検出することで境界位置12の位置を正確に検出する
ようにしている。
Specifically, the blade leg boundary detection sensor 5
4A, for example, as shown in FIG.
b, and a balance coil 52 disposed at a position distant from the detection coil 51.
And a measuring bridge 53 connected to each coil. When the blade leg boundary detecting sensor 5 moves to the boundary position 12 between the adjacent blade legs 33a during the inspection, the measuring bridge 53 And the bridge 53 outputs a signal voltage eo from the bridge 53 as shown in FIG. The signal voltage eo becomes maximum at the boundary position 12 and becomes a mountain-shaped waveform that decreases as the distance from the boundary position 12 increases. To be detected.

【0016】水浸確認用探触子6は、後述する探傷用探
触子7から照射される超音波の通りを良好にするため、
検査対象の部位、即ち図2及び図3に示すように、検出
すべき部分のホイール鞍型部32aと、これと嵌合して
いる羽根脚部33aとの間の間隙11に超音波6aを照
射することにより、水槽1内の水が羽根脚部33aとホ
イール鞍型部32aの突起32bとの間に充満している
か否かを判定するものである。この場合、水浸確認用探
触子6は、図2(a),(c)に示す如く、鞍型部32
aにおいて欠陥部10が発生していると予想される突起
32bに対し、直交する方向から超音波6aを照射する
ことにより、羽根脚部33aと鞍型部32aのフック部
32bに水が充満しているか否かを判定する。
The probe 6 for confirming the water immersion improves the ultrasonic wave emitted from the probe 7 for flaw detection described later.
As shown in FIGS. 2 and 3, the ultrasonic wave 6a is applied to the gap 11 between the wheel saddle-shaped portion 32a to be detected and the blade leg 33a fitted to the portion to be detected. The irradiation determines whether or not the water in the water tank 1 is filled between the blade leg 33a and the projection 32b of the wheel saddle-shaped portion 32a. In this case, as shown in FIGS. 2 (a) and 2 (c), the probe 6
a, ultrasonic waves 6a are irradiated from a direction orthogonal to the projections 32b in which the defective portions 10 are expected to have occurred, so that the blade legs 33a and the hook portions 32b of the saddle-shaped portions 32a are filled with water. Is determined.

【0017】探傷用探触子7は、ホイール鞍型部32a
において突起32bに亀裂などの欠陥部10が存在して
いるか否かを検出するものである。さらに詳しく述べる
と、この探傷用探触子7は、図1に示すように、検査す
べき羽根33及びホイール32部分が水槽7内に入れら
れた状態にあって、かつ図2及び図3に示すように、羽
根脚部境界検出センサ5により、検査しようとしている
ホイール鞍型部32a側の羽根脚部33aとこれと隣接
する羽根脚部33aとの境界位置12を検出すると共
に、水浸確認用探触子6により検査しようとしているホ
イール鞍型部32aとこれと嵌合する羽根脚部33aと
の間隙20に水が充満しているのを検出したとき、検査
しようとしている羽根脚部33aの基部側面側から境界
位置12に向かって超音波7aを照射すると、該超音波
7aが境界位置12にある隣りの羽根脚部の端面13で
反射し、その反射した超音波7bが羽根脚部33a及び
鞍型部18を経て該鞍型部18の突起32bに向かうこ
とにより、突起32bに亀裂などの欠陥部10が存在し
ているか否かを検出するようにしている。
The probe 7 for flaw detection includes a wheel saddle-shaped portion 32a.
Is to detect whether or not a defect 10 such as a crack exists in the projection 32b. More specifically, as shown in FIG. 1, the probe for flaw detection 7 has the blade 33 and the wheel 32 to be inspected put in the water tank 7, and FIGS. As shown in the figure, the blade leg boundary detection sensor 5 detects the boundary position 12 between the blade leg 33a on the wheel saddle type portion 32a to be inspected and the blade leg 33a adjacent to the wheel saddle portion 32a. When it is detected that the gap 20 between the wheel saddle-shaped portion 32a to be inspected by the probe 6 and the blade leg 33a fitted thereto is filled with water, the blade leg 33a to be inspected. When the ultrasonic wave 7a is irradiated from the base side surface toward the boundary position 12, the ultrasonic wave 7a is reflected by the end face 13 of the adjacent blade leg at the boundary position 12, and the reflected ultrasonic wave 7b is reflected by the blade leg portion. 33a and By toward the projection 32b of 該鞍 type portion 18 through the mold unit 18, so as to detect whether a defect 10, such as cracks in the projections 32b are present.

【0018】なお、図2(a)において、φは探傷用探
触子7から照射されたときの超音波7aを上から見た照
射角度であり、同図(c)において、θは探傷用探触子
7からの超音波照射角度と反射超音波7bとのなす角度
である。
In FIG. 2A, φ is the irradiation angle of the ultrasonic wave 7a when irradiated from the flaw detection probe 7 when viewed from above, and in FIG. This is the angle between the ultrasonic wave irradiation angle from the probe 7 and the reflected ultrasonic wave 7b.

【0019】そして、水浸確認用探触子6及び探傷用探
触子7で検出されたデータは超音波探傷器8に取り込ま
れて増幅され、該超音波探傷器8を介しデータ収録処理
装置9で処理されることにより、前述した如く水が充満
しているか否かや欠陥部10の有無を判定し、また互い
に隣接する羽根脚部33bの境界位置12の位置判定や
欠陥部10の位置特定を行うようにしている。
The data detected by the water immersion confirmation probe 6 and the flaw detection probe 7 are taken into the ultrasonic flaw detector 8 and amplified, and the data is recorded and processed through the ultrasonic flaw detector 8. 9 to determine whether or not water is full and whether or not there is a defective portion 10 as described above, and also to determine the position of the boundary position 12 between the mutually adjacent blade legs 33b and the position of the defective portion 10. I am trying to do specific.

【0020】この超音波探傷器8とデータ収録処理装置
9とにより前記判定処理部が構成され、該判定処理部は
例えば図1,図2に示すように、超音波探傷器8の入力
部に探傷用探触子7及び水浸確認用探触子6の出力部が
それぞれ接続され、超音波探傷器8の出力部がデータ収
録処理装置9の入力部に接続されている。また、データ
収録処理部9には図示していないが、例えばCRT等か
らなる表示手段やデータ内容を記録するためのプリンタ
等が設けられ、表示手段によりオペレータが観察するよ
うにも構成されている。
The ultrasonic flaw detector 8 and the data recording processor 9 constitute the above-mentioned judgment processing unit. The judgment processing unit is connected to the input unit of the ultrasonic flaw detector 8 as shown in FIGS. The output units of the flaw detection probe 7 and the water immersion confirmation probe 6 are connected to each other, and the output unit of the ultrasonic flaw detector 8 is connected to the input unit of the data recording processing device 9. Although not shown in the figure, the data recording processing unit 9 is provided with a display means such as a CRT, a printer for recording data contents, and the like, so that an operator can observe the display means. .

【0021】次に、上記の如き構成の探傷用探触子7,
水浸確認用探触子6と羽根脚部境界検出センサ5との具
体的構造について図5に基づき述べる。即ち、図5
(b),(c)に示すように、探傷ヘッド4は、羽根脚
部境界検出センサ5を装着したフレーム41を有し、該
フレーム41の途中部分に送りねじ42の一端部が連結
されると共に、その送りねじ42の他端部にハンドル4
3が取付けられ、送りねじ42がハンドル43の操作に
よって軸周りに回転可能に支持されている。また、送り
ねじ42の途中位置には弾力性サポート44を介し探傷
用探触子7が装着され、羽根脚部境界検出センサ5が境
界位置12に位置決めされたとき、オペレータがハンド
ル43を操作して送りねじ42を軸周りに回転させ、探
傷用探触子7が送りねじ42上を軸方向に沿って移動す
ることにより、ホイール鞍型部32aの検査すべき突起
32bに位置決めするようにしている。
Next, the flaw detecting probe 7,
The specific structure of the water immersion checking probe 6 and the blade leg boundary detection sensor 5 will be described with reference to FIG. That is, FIG.
As shown in (b) and (c), the flaw detection head 4 has a frame 41 on which the blade leg boundary detection sensor 5 is mounted, and one end of a feed screw 42 is connected to an intermediate portion of the frame 41. The handle 4 is attached to the other end of the feed screw 42.
3 is attached, and the feed screw 42 is supported so as to be rotatable around the axis by operating the handle 43. The flaw detection probe 7 is mounted at an intermediate position of the feed screw 42 via an elastic support 44, and when the blade leg boundary detection sensor 5 is positioned at the boundary position 12, the operator operates the handle 43. Then, the feed screw 42 is rotated around the axis, and the flaw-detecting probe 7 is moved along the axial direction on the feed screw 42 so as to be positioned on the projection 32b of the wheel saddle type portion 32a to be inspected. I have.

【0022】これは、探傷用探触子7が超音波を照射す
る角度が一定であり、羽根脚部境界検出センサ5との間
の距離が図6(a)に示す如く小さいと、照射された超
音波7aの反射ビーム7bが検査対象の突起32bから
手前側に向かい、また羽根脚部境界検出センサ5との間
の距離が同図(b)に示す如く大きすぎると、反射ビー
ム7bが突起32bの後方側に向かってしまうので、ハ
ンドル43の操作により、探傷用探触子7の位置を適度
に選定する必要があるためである。
This is because when the angle at which the flaw detection probe 7 emits ultrasonic waves is constant and the distance between the flaw detection probe 7 and the blade leg boundary detection sensor 5 is small as shown in FIG. If the reflected beam 7b of the ultrasonic wave 7a moves toward the near side from the projection 32b to be inspected and the distance between the reflected beam 7b and the blade leg boundary detection sensor 5 is too large as shown in FIG. This is because it is necessary to appropriately select the position of the flaw detection probe 7 by operating the handle 43 because it moves toward the rear side of the projection 32b.

【0023】従って、探傷用探触子7は、フレーム4
1,送りねじ42,ハンドル43,弾力性サポート44
からなる支持機構により、羽根脚部境界検出センサ5に
対する位置を調整可能に構成されている。そして、図5
では水浸確認用探触子2が図示されていないが、基本的
には探傷用探触子7と同様に取付けられ、同様に位置決
めされる構造である。
Therefore, the probe for flaw detection 7 comprises the frame 4
1, feed screw 42, handle 43, elastic support 44
The position with respect to the blade leg boundary detection sensor 5 can be adjusted by the support mechanism composed of. And FIG.
Although the water immersion confirmation probe 2 is not shown in the figure, the probe is basically mounted and positioned similarly to the flaw detection probe 7.

【0024】なお、参考までに述べると、探傷用探触子
7により亀裂などの欠陥部を検出する原理は、図7に示
す如きであり、鞍型部32aの突起32bに超音波が照
射された場合、何も障害がなければ、突起32bの外周
面で進行方向がわずかに変わるだけで進行波7a′とし
て前方に伝搬してしまうが、突起32bに欠陥部10が
存在すると、該欠陥部10の影響により反射してしま
い、その大部分が反射ビーム7bとして入射ルートを逆
にたどって探傷用探触子7で受信されることとなる。
Incidentally, for reference, the principle of detecting a defect such as a crack by the flaw detector 7 is as shown in FIG. 7, and the projection 32b of the saddle-shaped portion 32a is irradiated with ultrasonic waves. If there is no obstacle, the traveling direction is slightly changed on the outer peripheral surface of the projection 32b and propagates forward as a traveling wave 7a '. However, if the defect 10 exists in the projection 32b, the defect The light is reflected by the influence of 10, and most of the light is received by the flaw detector 7 following the incident route in the reverse direction as the reflected beam 7b.

【0025】実施例の超音波探傷装置は、上記の如き構
成よりなるので、次にその取扱について述べる。検査に
際しては、タービンロータ30に設けられている鞍型部
32aとこれに取付けられている羽根33とからなる羽
根植込部を水槽1内の水に含浸させ、水が鞍型32aと
羽根33との間の間隙11から浸入して両者間に充満さ
せておく。
Since the ultrasonic flaw detector according to the embodiment has the above-described configuration, its handling will be described below. At the time of the inspection, the water in the water tank 1 is impregnated with the blade implanted portion composed of the saddle-shaped portion 32a provided on the turbine rotor 30 and the blade 33 attached thereto. To fill the gap between the two.

【0026】その水の充満状態にあるとき、タービンロ
ータ30のリム32d上に走査台2を取付け、該走査台
2を移動すると共に、任意の羽根植込部に側面から欠陥
検出器としての羽根脚部境界検出センサ5,水浸確認用
探触子6,探傷用探触子7を支持機構により位置決めす
る。この場合、水浸確認用探触子6により、検査対象で
ある羽根植込部の鞍型部32aの突起32bと羽根脚部
33aと間の間隙11に水が充満していることを確認
し、また羽根脚部境界検出センサ5により、検査対象と
なる羽根植込部とこれに隣接する羽根羽根植込部との境
界位置12を確認した後、探傷用探触子7により、検査
対象の羽根植込部に超音波を照射する。
When the water is full, the scanning table 2 is mounted on the rim 32d of the turbine rotor 30, the scanning table 2 is moved, and a blade as a defect detector is inserted into an arbitrary blade implantation portion from the side. The leg boundary detection sensor 5, the water immersion confirmation probe 6, and the flaw detection probe 7 are positioned by the support mechanism. In this case, the water immersion confirmation probe 6 confirms that water is filled in the gap 11 between the projection 32b of the saddle-shaped portion 32a of the blade implantation portion to be inspected and the blade leg 33a. After the blade leg boundary detection sensor 5 confirms the boundary position 12 between the blade implantation portion to be inspected and the blade blade implantation portion adjacent thereto, the inspection object 7 is inspected by the flaw detection probe 7. Irradiate the blades with ultrasonic waves.

【0027】この場合、探傷用探触子7は、超音波を羽
根植込部における羽根脚部33aの基部側面側から互い
に隣接する境界位置12に向かって照射し、該超音波が
境界位置12で隣接する鞍型部32aの端面で反射する
と共に、該反射した超音波7bが鞍型部突起32bに向
かうので、突起32bに亀裂などの欠陥部10が存在す
るか否かを検出することができる。
In this case, the flaw detection probe 7 irradiates the ultrasonic waves from the base side surface side of the blade leg 33a in the blade implanting part toward the boundary position 12 adjacent to each other, and the ultrasonic waves are irradiated. Since the reflected ultrasonic waves 7b are reflected by the end face of the adjacent saddle-shaped portion 32a and the reflected ultrasonic waves 7b are directed to the saddle-shaped portion projection 32b, it is possible to detect whether or not a defect 10 such as a crack exists in the projection 32b. it can.

【0028】そして、検査対象の検査が済むと、タービ
ンロータ30が軸周りに所定角度で回転して位置決めさ
れ、新たな検査対象部位を上述のと同様にして検査する
ことにより、全ての羽根植込部を検査することとなる。
When the inspection of the inspection object is completed, the turbine rotor 30 is rotated and positioned at a predetermined angle around the axis, and a new inspection site is inspected in the same manner as described above. Inspection section will be inspected.

【0029】このように、実施例においては、探傷用探
触子7からの超音波が、羽根脚部33aの基部側面側か
ら、羽根植込部が互いに隣接する境界位置12に向かっ
て照射し、隣接する鞍型部32aの端面13あで反射し
て突起32bに向かうことにより欠陥部10の存在の有
無を検出するようにしたので、タービンロータ30にお
いて鞍型部32aの基部側から超音波を照射し、その超
音波が鞍型部32aの先端で反射することにより欠陥部
を検出する従来技術に比較すると、ホイール基部側や羽
根植込部の幾何学的形状及び寸法に左右されることがな
く、超音波を確実に突起32bに照射することができ、
欠陥部10を的確に検出することができる。しかも、超
音波を上述の如く照射すると、ビーム長を短くできるの
で、ビームが減衰するおそれがないばかりでなく、その
ビームにノイズ等が発生するおそれもなく、欠陥部10
の検出を安定して行うことができる。
As described above, in the embodiment, the ultrasonic wave from the flaw detection probe 7 is irradiated from the base side surface of the blade leg 33a toward the boundary position 12 where the blade implanted portions are adjacent to each other. Since the presence or absence of the defective portion 10 is detected by being reflected by the end surface 13 of the adjacent saddle-shaped portion 32a and traveling toward the projection 32b, the ultrasonic wave from the base side of the saddle-shaped portion 32a in the turbine rotor 30 is detected. And the ultrasonic wave is reflected at the tip of the saddle-shaped portion 32a to detect a defective portion. Without, it is possible to reliably irradiate the projection 32b with ultrasonic waves,
The defective portion 10 can be accurately detected. Moreover, when the ultrasonic wave is irradiated as described above, the beam length can be shortened, so that not only the beam is not attenuated but also the noise is not generated in the beam, and the defect 10
Can be detected stably.

【0030】また図示実施例では、検出手段として、羽
根植込部における鞍型部32aの突起32bと羽根33
の脚部33aとの間の間隙に水が充満しているか否かを
検出する水浸確認用探触子6と、欠陥部10の有無を検
出する探傷用探触子7と、検査対象の羽根植込部とこれ
と隣接する羽根植込部との境界位置12を検出し、かつ
探傷用探触子7の検出位置を特定する羽根脚部境界位置
検出センサ5とを有し、それらが特有の検出機能をもつ
ことにより欠陥部検出を行い得るので、欠陥部10の検
出を安定してかつ良好に行うことができる。しかも、こ
れら水浸確認用探触子6,探傷用探触7,羽根脚部境界
位置検出センサ5は走査台2に設けられた探傷ヘッド4
に取付けられ、かつ支持機構により、羽根脚部境界位置
検出センサ5に対して水浸確認用探触子6及び探傷用探
触子7の位置を調節可能に支持されているので、それら
5〜7を検査対象部位に対し容易に位置決めすることが
できる。
In the embodiment shown in the drawings, as the detecting means, the protrusion 32b of the saddle-shaped portion 32a and the blade 33
Probe 6 for detecting whether or not the gap is filled with water, a probe 6 for detecting immersion, a probe 7 for detecting whether or not there is a defective portion 10, and a probe for inspection. A blade leg boundary position detection sensor 5 for detecting a boundary position 12 between the blade implantation portion and the adjacent blade implantation portion and specifying a detection position of the flaw detector 7; Since a defective portion can be detected by having a specific detection function, the defective portion 10 can be detected stably and satisfactorily. In addition, the water immersion confirmation probe 6, the flaw detection probe 7, and the blade leg boundary position detection sensor 5 are provided by a flaw detection head 4 provided on the scanning table 2.
And the support mechanism supports the positions of the water immersion confirmation probe 6 and the flaw detection probe 7 with respect to the blade leg boundary position detection sensor 5 so as to be adjustable. 7 can be easily positioned with respect to the inspection target site.

【0031】[0031]

【発明の効果】以上述べたように、本発明の請求項1,
2によれば、検出手段からの超音波が検査対象である羽
根脚部の基部側面側から、該羽根植込部と隣接する羽根
脚部の境界位置に向かって照射し、隣接する鞍型部の端
面で反射して検査対象の突起に向かうことにより欠陥部
の存在の有無を検出するように構成したので、ホイール
基部側や羽根植込部の幾何学的形状及び寸法に左右され
ることがなく、超音波を確実に検査対象に照射すること
ができ、欠陥部を的確に検出することができる効果があ
り、しかもビーム長を短くできることにより、ビームが
減衰するおそれがないばかりでなく、そのビームにノイ
ズ等が発生するおそれもなく、安定した検出を行うこと
ができる効果がある。特に、請求項2によれば、検出手
段の各々が特有の検出機能をもつことにより欠陥部検出
を行い得るので、欠陥部検出を安定してかつ良好に行う
ことができる。
As described above, according to the first and second aspects of the present invention,
According to 2, the ultrasonic wave from the detection means is irradiated from the base side surface side of the blade leg to be inspected toward the boundary position of the blade leg adjacent to the blade implanted portion, and the adjacent saddle-shaped portion is irradiated. It is configured to detect the presence or absence of a defect by reflecting on the end surface of the wheel and heading toward the projection to be inspected, so it may be affected by the geometric shape and dimensions of the wheel base side and the blade implantation part. In addition, it is possible to reliably irradiate the inspection object with ultrasonic waves, and it is possible to accurately detect a defective portion.Besides, since the beam length can be shortened, not only does the beam not be attenuated, but also There is an effect that stable detection can be performed without the risk of generating noise or the like in the beam. In particular, according to the second aspect, since each of the detecting means has a specific detecting function, the defective portion can be detected, so that the defective portion can be detected stably and satisfactorily.

【0032】また、請求項3によれば、検出手段は、タ
ービンロータのリム上でその外周に沿って移動可能な走
査台に取付けられ、かつ検出手段の羽根脚部境界検出セ
ンサに対し水浸確認用探触子及び探傷用探触子の位置を
調節し得る支持機構を有するので、羽根脚部境界検出セ
ンサ,水浸確認用探触子,探傷用探触子の各々を検査対
象部位に対し容易に位置決めできる効果がある。
According to a third aspect of the present invention, the detecting means is mounted on a scanning table movable along the outer periphery of the rim of the turbine rotor, and is immersed in water relative to the blade leg boundary detecting sensor of the detecting means. Since it has a support mechanism that can adjust the positions of the checking probe and the flaw detecting probe, each of the blade leg boundary detection sensor, the water immersion checking probe, and the flaw detecting probe can be used as inspection target parts. On the other hand, there is an effect that positioning can be easily performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の超音波探傷装置の一実施例を示す概略
図。
FIG. 1 is a schematic view showing one embodiment of an ultrasonic flaw detector according to the present invention.

【図2】タービンロータ羽根植込部に水浸確認用探触子
及び探傷用探触子により超音波を照射したときの説明
図。
FIG. 2 is an explanatory diagram when ultrasonic waves are irradiated to a turbine rotor blade implanted portion by a water immersion confirmation probe and a flaw detection probe.

【図3】タービンロータ羽根植込部に検出器としての羽
根脚部境界検出センサと水浸確認用探触子と探傷用探触
子とをタービンロータ羽根植込部に取付けると共に、各
探触子から照射される超音波ビームの状態を示す説明用
斜視図。
FIG. 3 A blade leg boundary detection sensor as a detector, a water immersion confirmation probe, and a flaw detection probe are attached to the turbine rotor blade implanting portion, and each probe is attached to the turbine rotor blade implanting portion. FIG. 3 is an explanatory perspective view showing a state of an ultrasonic beam emitted from a child.

【図4】羽根脚部境界検出センサの構成を示す説明図
(a)及びその出力波形を示す説明図(b)。
FIGS. 4A and 4B are an explanatory diagram showing a configuration of a blade leg boundary detection sensor and an explanatory diagram showing an output waveform thereof.

【図5】羽根脚部境界検出センサと探傷用探触子との支
持機構を示す説明図。
FIG. 5 is an explanatory view showing a support mechanism of a blade leg boundary detection sensor and a flaw detection probe.

【図6】被検査対象物に対し、羽根脚部境界検出センサ
と探傷用探触子間の距離を変えた場合における超音波ビ
ームの方向を示す説明図。
FIG. 6 is an explanatory diagram showing the direction of an ultrasonic beam when the distance between the blade leg boundary detection sensor and the flaw detection probe is changed with respect to the inspection object.

【図7】探傷用探触子からの超音波による亀裂等の欠陥
部検出原理を示す説明図。
FIG. 7 is an explanatory view showing the principle of detecting a defect such as a crack by ultrasonic waves from a flaw detection probe.

【図8】蒸気タービンロータと、そのホイール及び羽根
の取付構造とを示す説明図。
FIG. 8 is an explanatory view showing a steam turbine rotor and a structure for mounting wheels and blades thereof.

【図9】従来技術の超音波探傷装置の一例を示す説明
図。
FIG. 9 is an explanatory view showing an example of a conventional ultrasonic flaw detector.

【図10】従来技術の超音波探傷装置を用いた場合の不
具合を示す説明図。
FIG. 10 is an explanatory view showing a problem when a conventional ultrasonic flaw detector is used.

【符号の説明】[Explanation of symbols]

1…水槽、2…走査台、4…探傷ヘッド、5…羽根脚部
境界検出センサ、6…水浸確認用探触子、7…探傷用探
触子、8…超音波探傷器、9…データ収録処理装置、1
0…欠陥部、11…境界位置、12…互いに隣接する羽
根植込部の境界位置、30…タービンロータ、32…ホ
イール、32a…鞍型部、32b…突起、33…羽根、
33a…脚部、33b…、フック溝。
DESCRIPTION OF SYMBOLS 1 ... Water tank, 2 ... Scanning table, 4 ... Flaw detection head, 5 ... Blade leg boundary detection sensor, 6 ... Water immersion confirmation probe, 7 ... Flaw detection probe, 8 ... Ultrasonic flaw detector, 9 ... Data recording processing device, 1
0: defective portion, 11: boundary position, 12: boundary position between adjacent blade implant portions, 30: turbine rotor, 32: wheel, 32a: saddle-shaped portion, 32b: protrusion, 33: blade,
33a ... leg, 33b ..., hook groove.

フロントページの続き (72)発明者 吉田 洋司 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 (72)発明者 千葉 弘明 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内Continued on the front page (72) Inventor Yoji Yoshida 3-2-1 Sachimachi, Hitachi City, Ibaraki Prefecture Inside Hitachi Engineering Co., Ltd. (72) Inventor Hiroaki Chiba 3-1-1 Sachimachi, Hitachi City, Ibaraki Stock Inside the Hitachi Plant of Hitachi, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 タービンロータの外周に軸方向に沿って
複数設けられた鞍型部と該鞍型部に嵌合して組付けられ
た羽根とからなる羽根植込部に超音波を照射し、鞍型部
の突起に存在している亀裂などの欠陥部を検出する探傷
装置において、タービンロータの検査対象である羽根植
込部を水に含浸させ、該羽根植込部における鞍型部の突
起と羽根の脚部との間の隙間に水を充満させる水槽と、
該羽根植込部における鞍型部の突起と羽根の脚部間の隙
間に水が充満した状態にあるとき、検査対象である羽根
植込部とこれと隣接する羽根植込部と間の境界位置に、
検査対象である鞍型部の先端側側面から超音波を照射
し、該超音波が前記隣接する鞍型部の端面で反射して検
査対象である鞍型部の突起に向かい、突起に存在する欠
陥部の有無を検出する検出手段とを有することを特徴と
するタービンロータ羽根植込部超音波探傷装置。
An ultrasonic wave is applied to a blade implanting portion including a plurality of saddle-shaped portions provided on an outer periphery of a turbine rotor along an axial direction and blades fitted and assembled to the saddle-shaped portion. In a flaw detection device for detecting a defect such as a crack present in a projection of a saddle-shaped portion, a blade implanted portion to be inspected for a turbine rotor is impregnated with water, and the saddle-shaped portion of the blade implanted portion is inspected. A water tank that fills the gap between the projection and the leg of the blade with water,
When the gap between the projection of the saddle-shaped portion and the leg of the blade in the blade implantation portion is filled with water, the boundary between the blade implantation portion to be inspected and the adjacent blade implantation portion. position,
Ultrasonic waves are radiated from the tip side surface of the saddle portion to be inspected, and the ultrasonic waves are reflected on the end surface of the adjacent saddle portion, face the projections of the saddle portion to be inspected, and are present on the projections. And a detecting means for detecting the presence / absence of a defective portion.
【請求項2】 タービンロータの外周に軸方向に沿って
複数設けられた鞍型部と該鞍型部に嵌合して組付けられ
た羽根とからなる羽根植込部に超音波を照射し、鞍型部
の突起に存在している亀裂などの欠陥部を検出する探傷
装置において、タービンロータの検査対象である羽根植
込部を水に含浸させ、該羽根植込部における鞍型部の突
起と羽根の脚部との間の隙間に水を充満させる水槽と、
該羽根植込部における鞍型部の突起と羽根の脚部間の隙
間に水が充満した状態にあるとき、検査対象である羽根
植込部とこれと隣接する羽根植込部と間の境界位置に、
検査対象である鞍型部の先端側側面から超音波を照射
し、該超音波が前記隣接する鞍型部の端面で反射して検
査対象である鞍型部の突起に向かい、突起に存在する欠
陥部の有無を検出する検出手段とを有し、該検出手段
は、検査対象である鞍型部の突起と羽根の脚部間の隙間
に水が充満しているか否かを検出する水浸確認用探触子
と、検査対象である鞍型部とこれと隣接する鞍型部と間
の境界位置に、検査対象である鞍型部の先端側側面から
超音波を照射し、該超音波が前記隣接する鞍型部の端面
で反射して検査対象である鞍型部の突起に向かい、突起
に存在する欠陥部の有無を検出する探傷用探触子と、検
査対象である鞍型部とこれと隣接する鞍型部との間の境
界位置を検出し、かつ探傷用探触子による超音波の照射
位置を特定する羽根脚部境界検出器とからなることを特
徴とするタービンロータ羽根植込部超音波探傷装置。
2. An ultrasonic wave is applied to a blade implanting portion including a plurality of saddle-shaped portions provided on an outer periphery of a turbine rotor along an axial direction and blades fitted and assembled to the saddle-shaped portion. In a flaw detection device for detecting a defect such as a crack present in a projection of a saddle-shaped portion, a blade implanted portion to be inspected for a turbine rotor is impregnated with water, and the saddle-shaped portion of the blade implanted portion is inspected. A water tank that fills the gap between the projection and the leg of the blade with water,
When the gap between the projection of the saddle-shaped portion and the leg of the blade in the blade implantation portion is filled with water, the boundary between the blade implantation portion to be inspected and the adjacent blade implantation portion. position,
Ultrasonic waves are radiated from the tip side surface of the saddle portion to be inspected, and the ultrasonic waves are reflected on the end surface of the adjacent saddle portion, face the projections of the saddle portion to be inspected, and are present on the projections. Detecting means for detecting the presence or absence of a defective portion, wherein the detecting means detects whether or not a gap between the projection of the saddle-shaped portion to be inspected and the leg of the blade is filled with water. Ultrasonic waves are applied to the boundary between the probe for confirmation and the saddle-shaped portion to be inspected and the adjacent saddle-shaped portion from the tip side surface of the saddle-shaped portion to be inspected. A flaw detection probe that reflects from the end face of the adjacent saddle-shaped portion toward the projection of the saddle-shaped portion to be inspected, and detects the presence or absence of a defect existing in the projection; and a saddle-shaped portion to be inspected. Wing leg for detecting the boundary position between the probe and its adjacent saddle-shaped portion and specifying the ultrasonic irradiation position of the flaw-detecting probe Boundary detector and a turbine rotor blade implanting portion ultrasonic inspection apparatus characterized by comprising a.
【請求項3】 前記検出手段は、タービンロータのリム
上でその外周に沿って移動可能な走査台に取付けられ、
かつ検出手段の羽根脚部境界検出センサに対し水浸確認
用探触子及び探傷用探触子の位置を調節し得る支持機構
を有することを特徴とする請求項1または2に記載した
タービンロータ羽根植込部超音波探傷装置。
3. The detection means is mounted on a scan table movable on a rim of a turbine rotor along an outer periphery thereof,
3. The turbine rotor according to claim 1, further comprising a support mechanism capable of adjusting the positions of the probe for detecting water immersion and the probe for flaw detection with respect to the blade leg boundary detection sensor of the detection means. Ultrasonic flaw detector for blade implant.
JP9042425A 1997-02-26 1997-02-26 Turbine rotor blade built-in part supersonic flaw-detecting device Pending JPH10239287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9042425A JPH10239287A (en) 1997-02-26 1997-02-26 Turbine rotor blade built-in part supersonic flaw-detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9042425A JPH10239287A (en) 1997-02-26 1997-02-26 Turbine rotor blade built-in part supersonic flaw-detecting device

Publications (1)

Publication Number Publication Date
JPH10239287A true JPH10239287A (en) 1998-09-11

Family

ID=12635717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9042425A Pending JPH10239287A (en) 1997-02-26 1997-02-26 Turbine rotor blade built-in part supersonic flaw-detecting device

Country Status (1)

Country Link
JP (1) JPH10239287A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009282042A (en) * 2009-08-31 2009-12-03 Hitachi Ltd Turbine fork ultrasonic flaw detector and method
EP3139004A1 (en) * 2015-09-02 2017-03-08 General Electric Technology GmbH Turbine blade with ultrasonic wave scattering feature

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009282042A (en) * 2009-08-31 2009-12-03 Hitachi Ltd Turbine fork ultrasonic flaw detector and method
EP3139004A1 (en) * 2015-09-02 2017-03-08 General Electric Technology GmbH Turbine blade with ultrasonic wave scattering feature
WO2017036797A1 (en) * 2015-09-02 2017-03-09 General Electric Technology Gmbh Turbine blade with ultrasonic wave scattering feature
CN107923252A (en) * 2015-09-02 2018-04-17 通用电器技术有限公司 Turbo blade with ultrasonic scatterer feature
US10648950B2 (en) 2015-09-02 2020-05-12 General Electric Company Turbine blade with ultrasonic wave scattering feature
CN107923252B (en) * 2015-09-02 2020-10-27 通用电器技术有限公司 Turbine blade with ultrasonic scattering features

Similar Documents

Publication Publication Date Title
CA2379108C (en) Method and device for inspecting pipelines
US7428842B2 (en) Phased array ultrasonic testing system and methods of examination and modeling employing the same
CA2201227C (en) Method and system for laser ultrasonic imaging of an object
JP5448092B2 (en) Ultrasonic flaw detection method and apparatus for welds
JP2010530528A (en) Automatic nondestructive inspection method and apparatus for tubular axles with varying inner and outer diameter shapes
WO2016024475A1 (en) Ultrasonic flaw-detection method and device for blade groove in turbine rotor disc
KR20130048795A (en) Phased array ultrasonic inspection system for turbine and generator rotor bore
JP6761331B2 (en) Ultrasonic flaw detectors and methods for composite materials
JP3714960B2 (en) Ultrasonic flaw inspection method and apparatus for discs shrink-fitted on shaft
JP2009204368A (en) Blade groove inspection method of turbine rotor
US11733211B2 (en) Method and device for testing a component non-destructively
JPH10239287A (en) Turbine rotor blade built-in part supersonic flaw-detecting device
US9213019B2 (en) Method of determining a size of a defect using an ultrasonic linear phased array
JP3390748B2 (en) Ultrasonic flaw detector for turbine rotor blade implanted part and flaw detection method using the same
KR20220034889A (en) Ultrasonic Inspection Systems and Ultrasonic Inspection Methods
WO2017007822A1 (en) Method and system for inspecting a rail wheel with phased array probes
JPH1137982A (en) Position detector for manual ultrasonic flaw-detector
JP3759050B2 (en) Ultrasonic probe holder, ultrasonic flaw detector, and ultrasonic flaw detection method for tubular body
JPH11264813A (en) Ultrasonic flaw detecting device and method therefor
JP7150648B2 (en) Ultrasonic flaw detection device, ultrasonic flaw detection method, and ultrasonic flaw detection program
JP2022517470A (en) Devices for photoacoustic imaging and corresponding control methods
JP2020159884A (en) Ultrasonic flaw detector and ultrasonic flaw detection method
JP4931872B2 (en) Turbine blade
JP2020063976A (en) Inspection method of windmill blade
JP4271898B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method