JPH10237972A - Wall construction of building - Google Patents

Wall construction of building

Info

Publication number
JPH10237972A
JPH10237972A JP4275397A JP4275397A JPH10237972A JP H10237972 A JPH10237972 A JP H10237972A JP 4275397 A JP4275397 A JP 4275397A JP 4275397 A JP4275397 A JP 4275397A JP H10237972 A JPH10237972 A JP H10237972A
Authority
JP
Japan
Prior art keywords
air
wall
walls
building
permeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4275397A
Other languages
Japanese (ja)
Other versions
JP3389442B2 (en
Inventor
Akira Umeboshino
晁 梅干野
Masanori Sugawara
正則 菅原
Seikan In
聖皖 尹
Ineko Tanaka
稲子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIGASHI NIPPON HOUSE KK
Original Assignee
HIGASHI NIPPON HOUSE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIGASHI NIPPON HOUSE KK filed Critical HIGASHI NIPPON HOUSE KK
Priority to JP04275397A priority Critical patent/JP3389442B2/en
Publication of JPH10237972A publication Critical patent/JPH10237972A/en
Application granted granted Critical
Publication of JP3389442B2 publication Critical patent/JP3389442B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve natural ventilating properties and moisture permeability. SOLUTION: A room 3 is formed on the inside by walls such as side walls 1, roof walls 2 installed to the upper sections of the side walls 1, etc., in the building. The roof walls 2 are constituted while forming external walls 4 and internal walls 5 at that time, air passages 6, in which air is flowed, are formed among the external walls 4 and the internal walls 5, air introducing port sections 7, from which air is introduced to the air passages 6, are formed on the lower sides of the roof walls 2, and air exhaust-port sections 8 discharging air from the air passages 6 are shaped on the upper sides of the roof walls 2. The internal walls 5 are configured by using air- permeable wall bodies H, in which a plurality of porous sheets 13 having a large number of penetrated pinholes and being made of aluminum foil are laminated through core materials and air layers 15 are formed among the porous sheets 13, and the air-permeable wall bodies H are protected while being faced at intervals in the porous sheets 13 on the outsides of the air-permeable wall bodies H. Protective boards 17, to which a large number of through-holes 16 are formed, are mounted, and the vapor resistance of the porous sheets 13 on the indoor sides of the air-permeable wall bodies H is set at a large value and the vapor resistance of the porous sheets 13 on the outdoor side at a small value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、側壁,屋根壁等の
内部に室を形成する建物の壁構造に係り、特に、必要な
自然換気量を確保しながら適切な断熱,透湿を行なうこ
とのできる建物の壁構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wall structure of a building in which a room is formed inside a side wall, a roof wall, etc., and in particular, to perform appropriate heat insulation and moisture permeability while securing a necessary natural ventilation. The wall structure of a building that can do

【0002】[0002]

【従来の技術】従来、建物の壁の材料として、本願出願
人が先に提案したものが知られている(例えば、特開平
6−306969号公報掲載)。これは、貫通した小孔
を多数有したアルミ箔製の多孔シートを、格子状に形成
されたコア材を介して複数積層し、この多孔シート間に
空気層を形成して構成されている。そして、空気層を多
層に設けることにより、断熱性を確保するとともに、小
孔を通して通気させることにより、自然換気もできるよ
うにしている。
2. Description of the Related Art Conventionally, as a material for a wall of a building, a material proposed by the applicant of the present application has been known (for example, Japanese Unexamined Patent Publication No. Hei 6-306969). This is configured by laminating a plurality of porous sheets made of aluminum foil having a large number of small holes through a core material formed in a lattice shape, and forming an air layer between the porous sheets. By providing an air layer in multiple layers, heat insulation is ensured and natural ventilation can be performed by ventilating through small holes.

【0003】[0003]

【発明が解決しようとする課題】ところで、このような
先行技術に係る壁材料を、そのまま単に建物の壁構造に
適用しても、自然換気性や透湿性等の点で、必ずしも、
充分な性能を発揮できることにはならないという実情が
あった。本発明は、このような事情に鑑みて為されたも
ので、自然換気性や透湿性をより一層向上させることの
できる建物の壁構造を提供することを目的とする。
By the way, even if such a wall material according to the prior art is simply applied to a wall structure of a building as it is, it is not always necessary in terms of natural ventilation and moisture permeability.
There was a fact that it was not possible to demonstrate sufficient performance. The present invention has been made in view of such circumstances, and an object of the present invention is to provide a wall structure of a building that can further improve natural ventilation and moisture permeability.

【0004】[0004]

【課題を解決するための手段】このような課題を解決す
るため、本発明の建物の壁構造は、側壁,該側壁の上部
に設けられる屋根壁等の壁によって内部に室を形成する
建物の当該壁の構造において、上記壁を、外壁と内壁と
を備えて構成し、該外壁と内壁との間に空気が流通する
空気通路を設け、上記内壁を、貫通した小孔を多数有し
た多孔シートをコア材を介して複数積層し該多孔シート
間に空気層を形成した通気性壁体を用いて構成してい
る。これにより、内外温度差が生じあるいは外部風圧に
よる差圧が生じると、室内の空気が通気性壁体の多孔シ
ートの小孔を通って排気され、あるいは空気通路の空気
が多孔シートの小孔から吸気され、この排気及び吸気に
よって、室内の換気が行なわれていく。
In order to solve such problems, a wall structure of a building according to the present invention is provided for a building having a room formed therein by walls such as side walls and a roof wall provided above the side walls. In the structure of the wall, the wall includes an outer wall and an inner wall, an air passage through which air flows between the outer wall and the inner wall is provided, and the inner wall has a plurality of small holes penetrating therethrough. A plurality of sheets are laminated with a core material interposed therebetween, and the air-permeable wall is formed by forming an air layer between the porous sheets. Thus, when a temperature difference between the inside and outside is generated or a pressure difference due to the external wind pressure is generated, the indoor air is exhausted through the small holes of the porous sheet of the permeable wall, or the air of the air passage is discharged from the small holes of the porous sheet. The air is taken in, and the room is ventilated by the exhaust and the intake air.

【0005】この場合、上記壁の下方側に上記空気通路
に空気を導入する空気導入口部を設け、上記壁の上方側
に上記空気通路から空気を排出する空気排出口部を設け
たことが有効である。また、上記通気性壁体の外側に多
孔シートに間隔を隔てて対面して該通気性壁体を保護す
るとともに、多数の通孔が設けられた保護ボードを備え
たことが有効である。
In this case, an air inlet for introducing air into the air passage is provided below the wall, and an air outlet for discharging air from the air passage is provided above the wall. It is valid. In addition, it is effective to provide a protective board provided with a large number of through holes, while protecting the gas permeable wall by facing the porous sheet at an interval outside the gas permeable wall.

【0006】そして、必要に応じ、上記通気性壁体の室
内側の多孔シートの透湿抵抗を大きくし、室外側の多孔
シートの透湿抵抗を小さく設定した構成としている。こ
れにより、冬季等に水蒸気圧の高い室内側表面で防湿が
図られ、屋外側で放湿が容易に行なわれ、結露の発生が
防止される。この場合、上記通気性壁体の最も室内側に
位置する多孔シートの透湿抵抗のみを、他の多孔シート
の透湿抵抗よりも大きく設定した構成として良い。ま
た、必要に応じ、上記通気性壁体の多孔シートをアルミ
箔で形成している。
If necessary, the moisture permeability of the porous sheet on the indoor side of the air-permeable wall is increased, and the moisture permeability of the porous sheet on the outdoor side is reduced. Thereby, moisture is prevented on the indoor side surface having a high water vapor pressure in winter or the like, moisture is easily released on the outdoor side, and the occurrence of dew condensation is prevented. In this case, only the moisture permeation resistance of the porous sheet located closest to the indoor side of the air-permeable wall may be set to be larger than the moisture permeation resistance of the other porous sheets. If necessary, the porous sheet of the breathable wall is formed of aluminum foil.

【0007】[0007]

【発明の実施の形態】以下、添付図面に基づいて本発明
の実施の形態に係る建物の壁構造を説明する。図1及び
図2には、本発明の実施の形態に係る建物の壁構造を示
している。この建物の壁構造は、側壁1,側壁1の上部
に設けられる屋根壁2等の壁によって内部に室3を形成
する建物の当該壁の構造であって、実施の形態において
は、屋根壁2に本発明を適用している。屋根壁2は、左
右に傾斜する2面の勾配屋根壁で構成される。屋根面は
鉛直壁面に比べて面積が広いことや家具など不特定な障
害物がないこと、そして過剰な換気があっても天井から
生活高さまての混合拡散によりコールドドラフトの危険
性が小さいことから、自然換気機能を持たせるには有効
な部位と考えられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A wall structure of a building according to an embodiment of the present invention will be described below with reference to the accompanying drawings. 1 and 2 show a wall structure of a building according to an embodiment of the present invention. The wall structure of this building is a structure of a wall in which a room 3 is formed by walls such as a side wall 1 and a roof wall 2 provided above the side wall 1, and in the embodiment, the roof wall 2 The present invention is applied to the present invention. The roof wall 2 is composed of two inclined roof walls that are inclined left and right. The roof surface is larger than the vertical wall surface, there are no unspecified obstacles such as furniture, and even if there is excessive ventilation, the risk of cold draft due to mixed diffusion from the ceiling to the living height is small. Therefore, it is considered to be an effective site for providing a natural ventilation function.

【0008】屋根壁2は、外壁4と内壁5とを備えて構
成されている。この外壁4と内壁5との間には空気が流
通する空気通路6が設けられている。屋根壁2の下方側
である軒下には、空気通路6に空気を導入する空気導入
口部7が設けられており、屋根壁2の上方側である、屋
根頂部には空気通路6から空気を排出する空気排出口部
8が設けられている。9は屋根の頂部に沿って設けられ
空気通路6に連通する換気口10を左右に有したダクト
状の越屋根である。11は越屋根9内に設けられ換気口
10から流入する外部風の風圧に応じて開度が可変に開
閉し、左右の風の流通を調整する複数の弁板である。な
お、実施の形態においては、雨仕舞は含まれないものと
し、雨仕舞の下の通気層から壁の室内側表面までを壁構
造の範囲としている。
The roof wall 2 has an outer wall 4 and an inner wall 5. An air passage 6 through which air flows is provided between the outer wall 4 and the inner wall 5. An air inlet 7 for introducing air into the air passage 6 is provided below the eaves below the roof wall 2, and air is supplied from the air passage 6 to the roof top above the roof wall 2. An air outlet 8 for discharging air is provided. Reference numeral 9 denotes a duct-shaped rooftop provided along the top of the roof and having left and right ventilation ports 10 communicating with the air passage 6. Reference numeral 11 denotes a plurality of valve plates which are provided in the roof 9 and whose opening is variably opened / closed in accordance with the wind pressure of the external wind flowing from the ventilation opening 10 to adjust the flow of the left and right winds. In the embodiment, it is assumed that the rain is not included, and the range from the ventilation layer under the rain to the indoor surface of the wall is defined as the range of the wall structure.

【0009】内壁5は、図2に示すように、貫通した小
孔12を多数有した多孔シート13をコア材14を介し
て複数積層し該多孔シート13間に空気層15を形成し
た通気性壁体Hを用いて構成されている。通気性壁体H
の多孔シート13はアルミ箔で形成されている。コア材
14は木材等を用いて、格子状,ハニカム状やネット状
に形成されている。多孔シート13の数は、例えば、2
〜36枚の範囲で設定され、空気層15の幅が、例え
ば、3〜20mmの範囲の適宜の数値に定められるよう
にコア材14の厚さが設定されている。そして、全体の
厚さが、例えば、30〜110mmの範囲になるように
形成されている。また、この通気性壁体Hの外側には、
多孔シート13に間隔を隔てて対面して該通気性壁体H
を保護するとともに、多数の通孔16が設けられた保護
ボード17が設けられている。保護ボード17の厚さ
は、例えば、2〜5mmに定められ、通孔16は、例え
ば、直径が8〜16mm、間隔が40〜60mmに定め
られている。
As shown in FIG. 2, the inner wall 5 is formed by laminating a plurality of porous sheets 13 having a large number of small holes 12 therethrough through a core material 14 and forming an air layer 15 between the porous sheets 13. It is configured using a wall H. Breathable wall H
Is formed of aluminum foil. The core material 14 is formed in a lattice shape, a honeycomb shape, or a net shape using wood or the like. The number of the porous sheets 13 is, for example, 2
The thickness of the core material 14 is set so that the width of the air layer 15 is set to an appropriate numerical value in the range of, for example, 3 to 20 mm. And it is formed so that the whole thickness may be in the range of, for example, 30 to 110 mm. Also, on the outside of the permeable wall H,
The air permeable wall H faces the porous sheet 13 at an interval.
And a protection board 17 provided with a large number of through holes 16 is provided. The thickness of the protection board 17 is set to, for example, 2 to 5 mm, and the diameter of the through holes 16 is set to, for example, 8 to 16 mm and the interval is set to 40 to 60 mm.

【0010】更に、通気性壁体Hの室内側の多孔シート
13の透湿抵抗は、室外側の多孔シート13の透湿抵抗
よりも大きく設定されている。実施の形態においては、
通気性壁体Hの最も室内側に位置する多孔シート13
(1枚目)の透湿抵抗のみを、他の多孔シート(2枚目
からn枚目)の透湿抵抗よりも大きく設定している。即
ち、通気性壁体Hの最も室内側に位置する多孔シート1
3の透湿係数のみを、他の多孔シート13の透湿係数よ
りも小さく設定している。詳しくは、通気性壁体Hは多
孔シート13による多層空気層15を有しているので、
壁体全体の単位面積当たりの相当開口面積はシート1枚
1枚の透気抵抗の和で決定される。一方、壁体内部の透
湿抵抗分布は、最も室内側で抵抗を大きくし、屋外は放
湿し易い構造とすると内部結露防止に効果的である。そ
こで、透湿係数が開口率に比例することから、最も室内
側の多孔シート13の開口率を小さくし、壁体の透気抵
抗を負担させる。よって、壁体全体の単位面積当たりの
相当開口面積は最も室内側の多孔シートの透気特性で決
まることになる。例えば、室内側から1枚目の多孔シー
ト13の孔径を0.8〜1.2mm,孔間隔を19〜2
7.0mmとし、2枚目以降の多孔シート13の孔径を
0.2〜0.3mm,孔間隔を0.8〜1.2mmとす
る等、通気性壁体Hの最も室内側に位置する多孔シート
13の透湿抵抗のみを、他の多孔シート13の透湿抵抗
よりも大きく設定している。
Further, the moisture permeation resistance of the porous sheet 13 on the indoor side of the permeable wall H is set to be larger than the moisture permeation resistance of the porous sheet 13 on the outdoor side. In the embodiment,
The porous sheet 13 located at the most indoor side of the permeable wall H
Only the moisture permeation resistance of the (first sheet) is set to be larger than the moisture permeation resistance of the other porous sheets (the second to n-th sheets). That is, the porous sheet 1 located closest to the indoor side of the breathable wall H
Only the moisture permeability coefficient of No. 3 is set to be smaller than the moisture permeability coefficients of the other porous sheets 13. Specifically, since the air-permeable wall H has the multilayer air layer 15 made of the porous sheet 13,
The equivalent opening area per unit area of the entire wall is determined by the sum of the air resistance of each sheet. On the other hand, the moisture permeation resistance distribution inside the wall is effective in preventing internal dew condensation if the resistance is maximized on the indoor side and the structure is easy to release moisture outdoors. Then, since the moisture permeability coefficient is proportional to the opening ratio, the opening ratio of the porous sheet 13 closest to the room is reduced, and the air permeability resistance of the wall is borne. Therefore, the equivalent opening area per unit area of the entire wall is determined by the air permeability of the porous sheet closest to the room. For example, the hole diameter of the first porous sheet 13 from the indoor side is 0.8 to 1.2 mm and the hole interval is 19 to 2 mm.
7.0 mm, the hole diameter of the second and subsequent porous sheets 13 is 0.2 to 0.3 mm, the hole interval is 0.8 to 1.2 mm, and the like. Only the moisture permeation resistance of the porous sheet 13 is set to be higher than the moisture permeation resistance of the other porous sheets 13.

【0011】従って、この実施の形態に係る建物の壁構
造によれば、換気駆動力は、外部風および内外温度差で
ある。外部風が微弱なときの温度差換気では、屋根壁の
高度差により空気は屋根面の下部から流入し、上部から
流出する径路が生ずる。外部風が2〜3m/s以上の場
合は、内外温度差よりも外部風圧による差圧が卓越する
ため外部風を駆動力として、空気が一方の屋根面からも
う一方へ流れることで室内が換気される。このように
壁,床での換気に期待せず、屋根面のみで換気量が確保
される。即ち、内外温度差が生じあるいは外部風圧によ
る差圧が生じると、室内の空気が通気性壁体Hの多孔シ
ート13の小孔12を通って排気され、あるいは空気通
路6の空気が多孔シート13の小孔12から吸気され、
この排気及び吸気によって、室内の換気が行なわれてい
く。
Therefore, according to the wall structure of the building according to this embodiment, the ventilation driving force is an external wind and an internal / external temperature difference. In temperature difference ventilation when the external wind is weak, air flows in from the lower part of the roof surface and flows out from the upper part due to the difference in altitude of the roof wall. When the external wind is 2 to 3 m / s or more, the differential pressure due to the external wind pressure is more prominent than the internal / external temperature difference, so that the external wind is used as the driving force, and the air flows from one roof surface to the other to ventilate the room. Is done. Thus, ventilation is secured only on the roof surface without expecting ventilation on walls and floors. That is, when a temperature difference between the inside and outside is generated or a pressure difference due to an external wind pressure is generated, the indoor air is exhausted through the small holes 12 of the porous sheet 13 of the permeable wall H, or the air of the air passage 6 is removed from the porous sheet 13. Is sucked through the small holes 12 of
The ventilation and ventilation of the room are performed by the exhaust air and the intake air.

【0012】この場合、通気性壁体Hは多孔シート13
による多層空気層15を有しているので、換気が緩やか
に行なわれ、そのため、充分な断熱性能を持ちつつ、壁
面全体での換気や透湿が行なわれ、不決感を感じさせな
い室内気温分布が形成される。また、この場合、冬季等
において内部結露が生じにくくなる。即ち、通気性壁体
Hの最も室内側に位置する多孔シート13の透湿抵抗の
みを、他の多孔シート13の透湿抵抗よりも大きく設定
しているので、冬季に水蒸気圧の高い室内側表面で防湿
が図られ、屋外側は放湿し易くなるので、結露の発生が
防止されるのである。
In this case, the permeable wall H is formed of the porous sheet 13.
The multi-layer air layer 15 allows ventilation to be performed gently. Therefore, while having sufficient heat insulation performance, ventilation and moisture permeation are performed on the entire wall surface, and the room temperature distribution that does not cause inconsistency is felt. Is formed. Further, in this case, internal dew condensation hardly occurs in winter or the like. That is, since only the moisture permeation resistance of the porous sheet 13 located closest to the indoor side of the air permeable wall H is set to be higher than the moisture permeation resistance of the other porous sheets 13, the indoor side having a high water vapor pressure in winter Moisture is prevented on the surface, and moisture is easily released on the outdoor side, thereby preventing the occurrence of dew condensation.

【0013】[0013]

【実施例】次に、本発明の実施例について説明する。 [実施例1]この実施例は、「夏期に高温多湿で、しか
も冬期に気温が継続的に氷点下とならないまでも暖房を
必要とする地域」の建物を対象とし、多孔シートの孔
径、孔間隔、枚数、そして部材の厚さにより、以下の機
能 (1)空調設備を用いず、自然の状態で必要最低限の換
気量が常に得られる。 (2)充分な断熱性能を持つ。 (3)壁面全体での換気、透湿を行う。 (4)内部結露による実害を生じない。 (5)不決感を感じさせない室内気温分布を形成する。 を同時に満足するよう設計した。
Next, an embodiment of the present invention will be described. [Example 1] This example is directed to a building in an "area where the temperature is high and humid in summer and heating is required even in winter when the temperature does not drop below freezing", and the hole diameter and hole interval of the perforated sheet are used. Depending on the number of sheets, the number of parts, and the thickness of the members, the following functions can be obtained. (1) A minimum necessary ventilation volume can always be obtained in a natural state without using air conditioning equipment. (2) It has sufficient heat insulation performance. (3) Provide ventilation and moisture permeation on the entire wall. (4) No actual harm due to internal condensation. (5) Form an indoor temperature distribution that does not give a sense of independence. Was designed to satisfy at the same time.

【0014】図3に示すように、延床面積120m2
総2階建て、5寸勾配の切妻屋根の住宅を設定し、図1
に示すように、屋根壁2を、上記実施の形態と同様に、
外壁4と内壁5とを空気通路6を挟んで設けて構成し
た。また、換気計算の際に壁,床の隙間は無く、室内も
1室として扱う。建物が必要換気量を確保するときの風
速条件を、ここでは地域気候を考慮したものとして、1
2〜1 月の東京の標準気象データにおける風速の最頻値
から、3m/sとした。屋根面の風圧係数を風上側0.
2、風下側−0.5で一様分布と設定すると、これによ
る勾配屋根面の差圧は2.0Paである。更に、20℃
の内外温度差(屋外0℃、室内20℃)により棟部と軒
部で2.2Paの差が生じていることを考慮し、換気回
数0.5回/h(196.5m3 /h)が得られるよう
な勾配屋根面の単位面積当たりの相当開口面積(以降、
αAと記す)を求めたところ、9.2cm2 /m2 であ
った。
As shown in FIG. 3, the total floor area is 120 m 2 ,
A two-story house with a five-slope gabled roof was set up, and Fig. 1
As shown in FIG. 5, the roof wall 2 is
The outer wall 4 and the inner wall 5 are provided with the air passage 6 interposed therebetween. In the calculation of ventilation, there is no gap between the wall and the floor, and the room is treated as one room. The wind speed conditions when the building secures the required ventilation volume are as follows.
It was set to 3 m / s from the mode value of wind speed in the standard weather data of Tokyo from February to January. Set the wind pressure coefficient of the roof surface to
2. If a uniform distribution is set at -0.5 on the leeward side, the differential pressure on the sloped roof surface is 2.0 Pa. In addition, 20 ° C
Considering that there is a difference of 2.2 Pa between the ridge and eaves due to the temperature difference between inside and outside (0 ° C outdoors, 20 ° C indoors), the ventilation rate is 0.5 times / h (196.5m 3 / h) Equivalent opening area per unit area of the sloped roof surface such that
αA) was 9.2 cm 2 / m 2 .

【0015】ここで得られたαAを用いて、冬季の室内
空気汚染について検討した。12〜1月の東京における
標準気象データの風速値から1 時間ごとの屋根面の透気
量Qi (m3 /h、iは時刻を表す)を求め、単室モデ
ルを想定した次式から、時刻毎の室内CO2 濃度変化量
Δpi,i+1 (ppm/h)を算出した。CO2 濃度の初
期値は700ppmとした。
Using the obtained αA, indoor air pollution in winter was examined. From the wind speed value of the standard weather data in Tokyo from December to January, the air permeability Q i (m 3 / h, i represents time) of the roof surface every hour was calculated from the following formula assuming a single-room model. The amount of change in indoor CO 2 concentration Δpi , i + 1 (ppm / h) at each time was calculated. The initial value of the CO 2 concentration was 700 ppm.

【0016】[0016]

【数1】 (Equation 1)

【0017】ただし、k:室内のCO2 発生量(家族4
人と機器による発生を考慮して0.07m3 /hとし
た) p0 :屋外のCO2 濃度(=300ppm) Qr :室容積(393m3 ) この結果、短期滞在許容濃度1000ppmを越える室
内濃度を示したのは、全2160時間中わずか10時間
であった。
Here, k: the amount of CO 2 generated in the room (family 4
Taking into account the generation by human and equipment 0.07 m 3 / h and the) p 0: outdoor CO 2 concentration (= 300ppm) Q r: chamber volume (393m 3) As a result, indoor exceeding short stay OEL 1000ppm Only 10 hours of the total 2160 hours showed concentration.

【0018】次に、孔径と透気量の関係について考察す
ると、通気性壁体は多孔シートによる多層空気層なの
で、壁体全体のαAはシート1枚1枚の透気抵抗の和で
決定される。一方、壁体内部の透湿抵抗分布は、最も室
内側で抵抗を大きくし、屋外は放湿し易い構造とすると
内部結露防止に効果的である。そこで、透湿係数が開口
率に比例することから、最も室内側のシートの開口率を
小さくし、壁体の透気抵抗を負担させる。よって、壁体
のαAは最も室内側のシートの透気特性で決まることに
なる。多孔シートの孔径の透気量への影響を検討するた
めに、刃形オリフイスのレイノルズ数(以降、Re記
す)および開口率と流量係数の関係に基づき図4乃至図
6を作成した。このときRe<1では外挿値を用いた。
Re<100の範囲では、流量係数がReに対し単調増
加するので、開口率が等しい場合、図4及び図5に示す
ように、等しい差圧に対しては孔径の大きいシートの方
が流量係数も大きく、したがって透気量も多くなる。
Next, considering the relationship between the pore diameter and the air permeability, the air permeability wall is a multi-layer air layer made of a porous sheet, so that αA of the entire wall is determined by the sum of the air resistance of each sheet. You. On the other hand, the moisture permeation resistance distribution inside the wall is effective in preventing internal dew condensation if the resistance is maximized on the indoor side and the structure is easy to release moisture outdoors. Therefore, since the moisture permeability coefficient is proportional to the opening ratio, the opening ratio of the sheet on the indoor side is reduced to bear the air permeability resistance of the wall. Therefore, the αA of the wall is determined by the air permeability of the sheet closest to the room. 4 to 6 were prepared based on the relationship between the Reynolds number (hereinafter referred to as Re) of the blade-shaped orifice and the relationship between the opening ratio and the flow coefficient in order to examine the effect of the hole diameter of the porous sheet on the air permeability. At this time, an extrapolated value was used for Re <1.
In the range of Re <100, the flow coefficient monotonically increases with respect to Re. Therefore, when the aperture ratios are equal, as shown in FIGS. Therefore, the air permeability increases.

【0019】しかし、必要換気量の設計に用いた風圧
2.0Paで必要な透気量5.9m3/hm2 が得られ
るように開口率を設定すると、図6に示すように、東京
の高さ10mで超過頻度0%となる風速10m/sに対
応する風圧22.2Paでは、孔径0.1mmのシート
は孔径1.0mmのシートの1.9倍の透気量を示す。
孔径4.0mmのシートでは風圧22.2Paにおいて
Reが1000を越え、乱流直前の値となるので断熱へ
の配慮より、孔径は1.0〜3.0mmが最も適当と結
論づけられる。この実施例では、通気性壁体のαAおよ
び多孔シートの孔径について最適な値を検討し、それぞ
れ9.2cm2 /m2 ,1.0〜3.0mmと決定し
た。
However, when the opening ratio is set so that the required air permeability of 5.9 m 3 / hm 2 is obtained at the wind pressure of 2.0 Pa used for the design of the required ventilation, as shown in FIG. At a wind pressure of 22.2 Pa corresponding to a wind speed of 10 m / s at which the excess frequency becomes 0% at a height of 10 m, a sheet having a hole diameter of 0.1 mm exhibits a gas permeability 1.9 times that of a sheet having a hole diameter of 1.0 mm.
In a sheet having a hole diameter of 4.0 mm, Re exceeds 1000 at a wind pressure of 22.2 Pa, which is a value immediately before a turbulent flow. Therefore, it is concluded that a hole diameter of 1.0 to 3.0 mm is most appropriate from consideration of heat insulation. In this example, optimal values were examined for the αA of the air-permeable wall and the pore size of the porous sheet, and were determined to be 9.2 cm 2 / m 2 and 1.0 to 3.0 mm, respectively.

【0020】[実施例2]この実施例は、外部風によっ
て透気する場合の壁体の熱的特性および内部結露特性を
確認するために、壁体の面方向の空気,熱,湿気移動量
は透過量に比べて無視できるほど小さいものと仮定し
て、1次元数値計算よる検討を行ない、通気性壁体の設
計値を得た。この実施例で用いた多孔シートよる多層空
気層の質点系モデルを図7に示す。設定温度湿度条件
は、東京における冬季の夜間を想定して、屋外20℃、
60%、室内0℃、60%とした。
[Embodiment 2] In this embodiment, the amount of air, heat, and moisture transfer in the plane direction of the wall is checked in order to confirm the thermal characteristics and the internal dew condensation characteristics of the wall when air is permeable by an external wind. Assuming that is small enough to be ignored as compared with the amount of permeation, a study by one-dimensional numerical calculation was performed to obtain a design value of the permeable wall. FIG. 7 shows a mass point model of a multi-layer air layer made of the porous sheet used in this example. The set temperature and humidity conditions are as follows: 20 ° C outdoors, assuming the nighttime of winter in Tokyo.
60%, room temperature 0 ° C, 60%.

【0021】参考のために、空気・熱・湿気の移動量計
算に係る計算式を示す。 (1)空気移動 壁体の両表面に生じる室内外差圧に比べ、空気層内空気
の温度差による浮力は無視できると考え、壁体内を通過
する空気量V[m3 /s・m2 ]は、
For reference, a calculation formula for calculating the movement amount of air, heat, and humidity is shown. (1) Air movement Compared to the indoor and outdoor differential pressure generated on both surfaces of the wall, the buoyancy due to the temperature difference of the air in the air layer is considered to be negligible, and the amount of air passing through the wall V [m 3 / s · m 2] ]

【0022】[0022]

【数2】 (Equation 2)

【0023】[0023]

【数3】 (Equation 3)

【0024】で与える。なお、アルミ箔の微小孔の流量
係数c[−]に関しては刃型オリフィスを想定し、Re
数および流れ断面の面積比依存性を考慮する。 記号A:単位面積あたりの開口面積[m2 /m2 ], ρ:空気密度(=1.293/(1+0.00367
T))[Kg/m3 ] P:気圧[Pa] 添字r:室内、o:屋外、t:天井面高さ
[0024] The flow coefficient c [-] of the micropores of the aluminum foil is assumed to be a blade-type orifice,
Consider the number and the area ratio dependence of the flow cross section. Symbol A: Opening area per unit area [m 2 / m 2 ], ρ: Air density (= 1.293 / (1 + 0.00367)
T)) [Kg / m 3 ] P: Atmospheric pressure [Pa] Subscript r: indoor, o: outdoor, t: ceiling height

【0025】(2)熱移動 アルミ箔表面の対流熱伝達率αc [W/m2 ・℃]は空
気層内空気の流れを層流と仮定して、流路管内の強制対
流層流熱伝達の式およびヌセルト数Nuから求める。 Nu=αc ・d/λ=7.54 ∴αc =3.77λ/D (∵d=4D/2=2D) 向かい合うアルミ箔表面間の放射熱伝達率αr [W/m
2 ・℃]は、次式により求める。 αr j,j+1=εj,j+1 σ[(Tsj +273.15)+
(Tsj+1 +273.15)]×[(Tsj +273.
15)2 +(Tsj+1 +273.15)2 ] ただし 1/εj,j+1 =1/εj +1/εj+1 −1 空気の移動に伴う熱移動E[W/m2 ・℃]は、次式か
ら求める。 Ek,k+1 =VCpρ(Tk −Tk+1 ) 記号 d:管断面の相当直径[m] D:空気層厚さ[m] εj :アルミ箔jの放射率[−] Tsj :アルミ箔jの表面温度[℃] σ:シュテファン−ボルツマン常数(=5.67×10
-8)[W/m2 ・K4 ] Cp:定圧比熱[J/g・℃] T:空気層kの気温[℃]
(2) Heat transfer The convective heat transfer coefficient α c [W / m 2 · ° C.] on the surface of the aluminum foil is based on the forced convective laminar heat inside the flow pipe, assuming that the flow of air in the air layer is laminar. It is determined from the transfer equation and the Nusselt number Nu. Nu = α c · d / λ = 7.54 ∴α c = 3.77λ / D (∵d = 4D / 2 = 2D) radiation heat transfer coefficient between the opposing aluminum foil surface α r [W / m
2 ° C] is determined by the following equation. α r j, j + 1 = ε j, j + 1 σ [(Ts j +273.15) +
(Ts j + 1 +273.15)] × [(Ts j +273.15)
15) 2 + (Ts j + 1 +273.15) 2 ] 1 / ε j, j + 1 = 1 / ε j + 1 / ε j + 1 −1 Heat transfer E [W / m 2 due to air movement [° C] is obtained from the following equation. E k, k + 1 = VCpρ (T k −T k + 1 ) symbol d: equivalent diameter of pipe section [m] D: air layer thickness [m] ε j : emissivity of aluminum foil j [-] Ts j : Surface temperature of the aluminum foil j [° C.] σ: Stefan-Boltzmann constant (= 5.67 × 10
-8 ) [W / m 2 · K 4 ] Cp: Specific heat at constant pressure [J / g · ° C] T: Temperature of air layer k [° C]

【0026】(3)湿気移動 空気層kからk+1空気の移動に伴う湿気移動Wa[g
/s・m2 ]、および水蒸気圧差による湿気移動Wp
[g/s・m2 ]は、次式を用いる。 Wak,k+1 =VXk
(3) Moisture movement Moisture movement Wa [g due to the movement of k + 1 air from the air layer k
/ S · m 2 ], and the moisture transfer Wp due to the water vapor pressure difference
[G / s · m 2 ] uses the following equation. Wa k, k + 1 = VX k

【0027】[0027]

【数4】 (Equation 4)

【0028】 記号 Xk :空気層kの容積絶対湿度[g/m3 ] Ps:孔あきアルミ箔の透湿係数[g/m2 ・h・mm
Hg] Pv:2枚の孔あきアルミ箔に挟まれた空気層の透湿係
数[g/m2 ・h・mmHg]
Symbol X k : absolute volume humidity of air layer k [g / m 3 ] Ps: moisture permeability coefficient of perforated aluminum foil [g / m 2 · h · mm]
Hg] Pv: moisture permeability coefficient [g / m 2 · h · mmHg] of the air layer sandwiched between two perforated aluminum foils

【0029】次に、通気性壁体の相当熱貫流率について
説明する。図8は、壁体において4.8m3 /hm2
(無風時における最大透気量)の流出および流入方向の
透気量があるときの、壁体厚さおよびアルミ箔枚数と相
当熱貫流率との関係を示している。アルミ箔枚数が10
枚を越える頃に各壁厚における相当熱貫流率はほぼ頭打
ちとなっており、断熱性能への影響の度合いは、アルミ
箔枚数よりも部材厚さに大きく依存している。ただし、
壁厚が6cmの場合でもアルミ箔が11枚のとき、流出
時で0.38w/m2 ℃,流入時で0.34w/m2
の相当熱貫流率が得られるので、以降はこの仕様のみを
扱う。
Next, the equivalent heat transmission coefficient of the permeable wall will be described. FIG. 8 shows 4.8 m 3 / hm 2 on the wall.
The figure shows the relationship between the wall thickness, the number of aluminum foils, and the equivalent heat transmission coefficient when there is an airflow in the outflow and inflow directions (maximum airflow when there is no wind). Aluminum foil number is 10
As the number of sheets increases, the equivalent heat transmission coefficient at each wall thickness almost reaches a plateau, and the degree of influence on the heat insulation performance depends more on the member thickness than on the number of aluminum foils. However,
When the wall thickness is aluminum foil of 11 sheets, even if the 6 cm, at the time of outflow 0.38w / m 2 ℃, 0.34w / m 2 ℃ with time flows
Therefore, only this specification will be dealt with hereafter.

【0030】これに対し、透気量が増加した場合の相当
熱貫流率の変化を図9に示す。流出側では室内からの透
気に伴い壁体内に侵入した空気の熱が壁体内で回収さ
れ、結果的に壁体の室内側表面温度と室温との温度差を
小さくする。一方、流入側では屋外から侵入した冷たい
空気は壁体から熱を受取りながら室内へ流入するが、流
入透気量が多くなるにつれて壁体からの損失熱量の増加
よりも回収熱量の増加の割合が高いため、結果的に相当
熱貫流率は小さくなる。相当熱貫流率は透気の方向に関
わらずほぼ同程度の値を示し、透気量7m3 /hm2
(換気設計に用いた外部風3m/sに相当)のとき0.
21〜0.25w/m2 ℃となる。
On the other hand, FIG. 9 shows a change in the equivalent heat transmission coefficient when the air permeability increases. At the outflow side, the heat of the air that has entered the wall due to airflow from the room is recovered in the wall, and as a result, the temperature difference between the indoor surface temperature of the wall and room temperature is reduced. On the other hand, on the inflow side, cold air that has entered from the outside flows into the room while receiving heat from the wall, but as the amount of inflow air increases, the rate of increase in the amount of recovered heat is greater than the amount of heat loss from the wall. Due to the high heat transfer rate, the corresponding heat transfer coefficient becomes low. The equivalent heat transmission coefficient shows almost the same value irrespective of the direction of air permeability, and the air permeability is 7 m 3 / hm 2
0 in case of (corresponding to 3 m / s of external wind used for ventilation design)
21 to 0.25 w / m 2 ° C.

【0031】また、流入透気量と熱回収性能との関係に
ついて説明する。図10は流入方向の透気量とそのとき
の流入温度、及び壁体内の透気による熱回収量を示した
ものである。図9では、透気量が多くなるほど相当熱貫
流率は小さくなったが、これは熱回収量が多くなるため
であることが分かる。一方、透気量の増加は、流入空気
温度の低下も招くが、壁体への流入換気量の最大値22
3 /hm2 (外部風10m/sに相当)のときでも流
入温度は12℃にも達する。だだし、流入温度のコール
ドドラフトについては、別に検討が必要である。
The relationship between the inflow air permeability and the heat recovery performance will be described. FIG. 10 shows the amount of air permeation in the inflow direction, the inflow temperature at that time, and the amount of heat recovered by air permeation in the wall. In FIG. 9, the equivalent heat transmission rate decreases as the air permeability increases, but it can be seen that this is because the amount of heat recovery increases. On the other hand, an increase in the amount of air permeation also causes a decrease in the inflow air temperature, but the maximum value of the inflow ventilation amount to the wall 22.
Even at m 3 / hm 2 (corresponding to an external wind of 10 m / s), the inflow temperature reaches as high as 12 ° C. However, the cold draft of the inflow temperature needs to be considered separately.

【0032】次に、流出透気量と内部結露発生の関係に
ついて説明する。内部結露しないためには、冬季に水蒸
気圧の高い室内側表面で防湿を図り、屋外側は放湿しや
すい壁体構造とするのがよい。そこで、通気性壁体で
は、先ず、多孔シートの室内側から1枚目の透湿係数だ
けを小さくし、2〜11枚目を大きくする方針とした。
図11は、室内側から1枚目のアルミ箔の仕様(孔径
0.1mm,孔間隔1.3mm)と2〜11枚目の開口
率(5.0%)を変えずに、2〜11枚目の透湿係数を
変化させ、それぞれについて透気量と結露発生との関係
を示したものである。はじめ2〜11枚目のアルミ箔の
透湿係数を1枚目と同じにした場合に対し、それよりも
透湿係数を大きくするにつれて結露しにくくなるが、
2.4〜2.8g/m2 hmmHgで頭打ちとなり、そ
の後は逆に結露しやすくなる傾向を示す。
Next, the relationship between the outflow air permeability and the occurrence of internal condensation will be described. In order to prevent internal dew condensation, it is preferable to provide a moisture-proof structure on the indoor surface having a high water vapor pressure in winter and a wall structure that facilitates moisture release on the outdoor side. Therefore, in the breathable wall, first, only the first sheet from the indoor side of the porous sheet is reduced in moisture permeability coefficient, and the second to eleventh sheets are increased.
FIG. 11 shows that the specification of the first aluminum foil (hole diameter 0.1 mm, hole interval 1.3 mm) and the opening ratio (5.0%) of the second to eleventh sheets from the indoor side are unchanged. The relationship between the amount of air permeation and the occurrence of dew is shown for each sheet by changing the moisture permeability coefficient. At first, the moisture permeability of the 2nd to 11th aluminum foils is the same as that of the first aluminum foil.
It reaches a plateau at 2.4 to 2.8 g / m 2 hmmHg and thereafter tends to be easily dewed.

【0033】次に、2〜11枚目のアルミ箔の仕様(孔
径0.25mm,孔間隔1.0mm,透湿係数3.0g
/m2 hmmHg)と1 枚目の単位面積当たりの相当開
口面積(10cm2 /m2 )を変えずに、1 枚目の透湿
係数を変化させた結果を図12に示す。2〜11枚目の
透湿係数を大きくした場合と比較して、1枚目の透湿係
数を小さくすることによる結露防止への効果は顕著であ
り、0.05g/m2hmmHg(孔径1.0mm,孔
間隔22.8mm)以下とすれば透気量が7m3 /hm
2 (外部風速約3m/sに相当)となっても結露は発生
しない。
Next, the specifications of the second to eleventh aluminum foils (hole diameter 0.25 mm, hole interval 1.0 mm, moisture permeability coefficient 3.0 g)
/ M 2 hmmHg) and the equivalent opening area per unit area of the first sheet (10 cm 2 / m 2 ), and the result of changing the moisture permeability coefficient of the first sheet is shown in FIG. As compared with the case where the moisture permeability coefficient of the second to eleventh sheets is increased, the effect on the prevention of dew condensation by reducing the moisture permeability coefficient of the first sheet is remarkable, and 0.05 g / m 2 hmmHg (pore diameter 1). 2.0 mm, hole interval 22.8 mm) or less, the air permeability is 7 m 3 / hm.
2 (corresponding to an external wind speed of about 3 m / s), no condensation occurs.

【0034】以上のように、実施例2では、透気による
壁体の熱的特性と内部結露の可能性について検討を行な
い、通気性壁体の詳細な設計値を得た。その結果は、壁
体厚さ6cm、アルミ箔枚数11枚、室内側から1枚目
のアルミ箔の孔径1.0mm,孔間隔23.0mm,2
〜11枚目のアルミ箔の孔径0.25mm,孔間隔1.
0mmであった。
As described above, in Example 2, the thermal characteristics of the wall due to air permeability and the possibility of internal dew condensation were examined, and detailed design values of the permeable wall were obtained. As a result, the wall thickness was 6 cm, the number of aluminum foils was 11, the hole diameter of the first aluminum foil from the indoor side was 1.0 mm, the hole interval was 23.0 mm,
The hole diameter of the eleventh aluminum foil is 0.25 mm, and the hole interval is 1.
It was 0 mm.

【0035】[実施例3]この実施例は、通気性壁体の
試験体を製作し、環境制御実験室内での実験において外
部風速を模擬的に与えることにより、その変化と自然換
気量、透気による熱回収性能、内部結露の発生の関係を
求めた。この実施例に係る装置は、図13に示すよう
に、環境制御実験室の中に、5寸勾配の屋根を持つ実物
台実験家屋を設置した。環境制御実験室の床中央部にあ
る4950mm×1650mmの温度可変パネルを実験
家屋の床とし、室温調節に用いた。実験家屋の壁体は室
内側表面でポリエチレン合板により気密,断湿とし、断
熱には発泡ポリスチレン(JIS A9511,B種2
類)200mmを用いた。
[Embodiment 3] In this embodiment, a specimen having a permeable wall is manufactured, and an external wind speed is imitated in an experiment in an environment control laboratory to simulate the change, natural ventilation, and permeability. The relationship between heat recovery performance due to air and the occurrence of internal condensation was determined. In the apparatus according to this example, as shown in FIG. 13, a real-table experimental house having a five-dimensional sloped roof was installed in an environmental control laboratory. A 4950 mm x 1650 mm variable temperature panel at the center of the floor of the environmental control laboratory was used as the floor of the experimental house and used for room temperature control. The walls of the experimental house were made airtight and dehumidified by polyethylene plywood on the indoor side surface, and foamed polystyrene (JIS A9511, Class B 2) was used for insulation.
Class) 200 mm was used.

【0036】通気性壁体としては、外寸1840mm×
453mm×120mmの仕様のものを用いた。厚さ1
5μmの孔あき多孔シート11枚の間に5mmの空気層
を形成するコア材は、5mmの角材による格子間隔15
0mmの木格子で、吸放湿しないよう防水塗装した。コ
ア材と多孔シートは密着し、空気、湿気が透過方向にの
み移動するようにした。この多層空気層の室内側および
屋外側に30mmの空気層を設け、最も外側は厚さ3m
mの孔あき合板(孔径12mm、孔間隔50mm、開口
率4.5%)とした。
The air-permeable wall has an outer dimension of 1840 mm ×
453 mm x 120 mm specifications were used. Thickness 1
A core material forming a 5 mm air layer between 11 5 μm perforated porous sheets is made of a 5 mm square material having a lattice spacing of 15 mm.
Waterproof coating was performed with a 0 mm wooden lattice to prevent moisture absorption and desorption. The core material and the porous sheet were in close contact with each other, and air and moisture were moved only in the transmission direction. An air layer of 30 mm is provided on the indoor side and the outdoor side of the multilayer air layer, and the outermost layer has a thickness of 3 m.
m (hole diameter: 12 mm, hole interval: 50 mm, aperture ratio: 4.5%).

【0037】この装置において、実験によれば、内外温
度差の影響により勾配屋根の棟部分と軒部分で透気の方
向が逆であるとき、温度および水蒸気圧分布は棟部分と
軒部分で最も大きな差を示し、それらの間の部分では単
調変化する傾向が見られた。そこで周辺の面方向への伝
熱の影響にも配慮して、測定位置は試験体の端部からコ
ア材の2番目の格子内(端部から200〜250mmの
位置)とした。すなわち図13中に数宇で示した測定点
1および2である。各測定位置におけるセンサー設置状
況を図14に示す。測定項目は(1)壁体内温度、
(2)壁体内相対湿度分布である。この実験の設定条件
として、外気は東京の冬季の夜間を想定して、5℃、6
0%、室内は、25℃、60%と設定した。風速条件は
0m/sから、東京の超過危険率がほぼ0%となる10
m/sまでを想定する。風圧係数は風上側0.2、風下
側−0.5と設定し、対応する風圧0〜±23Paを与
えるものとする。これは、実験家屋の壁面に開けた孔
(φ68mm)から空気を吸引または吹き出すことによ
り調節する。
In this apparatus, according to experiments, when the direction of air permeability is opposite between the ridge portion and the eave portion of the sloped roof due to the effect of the temperature difference between the inside and outside, the temperature and water vapor pressure distributions are the most in the ridge portion and the eave portion. There was a large difference, and the part between them tended to be monotonic. Therefore, in consideration of the influence of heat transfer in the peripheral surface direction, the measurement position was set in the second lattice of the core material from the end of the test specimen (position of 200 to 250 mm from the end). That is, measurement points 1 and 2 indicated by numerals in FIG. FIG. 14 shows the sensor installation status at each measurement position. The measurement items were (1) wall temperature,
(2) Relative humidity distribution in the wall. As the setting conditions for this experiment, the outside air was assumed to be 5 ° C, 6
The room temperature was set at 25 ° C. and 60%. The wind speed condition is 0 m / s, and the excess risk factor in Tokyo is almost 0% 10
up to m / s. The wind pressure coefficient is set to 0.2 on the windward side and −0.5 on the leeward side, and a corresponding wind pressure of 0 ± 23 Pa is given. This is adjusted by sucking or blowing air through a hole (φ68 mm) formed in the wall of the experimental house.

【0038】そして、この装置の自然換気性能におい
て、先ず、壁体の透気量の測定を行なった。室内、屋外
温度ともに20℃として、壁体差圧を−23〜23Pa
の範囲で風速1m/sに対応する圧力ごとに、段階的に
変化させた(図15)。設計に用いた風速3m/sのと
きの単位面積当たりの相当開口面積は6cm2 /m2
10m/sのときは7.53cm2 /m2 であった。次
に、勾配屋根面の差圧、透気量分布を測定した。無風お
よび、風速3m/sにおける屋根面傾斜方向の透気量分
布を図16に示す。無風のときは内外温度差が換気駆動
力となるので、屋根面の軒部分では外気の流入、棟部分
では室内空気の流出が生じている。風速3m/sのと
き、軒および棟部分で透気量の差はほとんど見られず、
3.9m3 /hm2 であった。これが実際の建物ヘ用い
られた場合を想定すると、透気量は換気回数0.26回
/hに相当する102m3 /hであるが、試験体の単位
面積当たりの相当開口面積が設計値よりもやや小さかっ
たことを考慮すると、システムとしては必要な換気量を
供給する能力を持つといえる。
In the natural ventilation performance of this device, first, the air permeability of the wall was measured. Both indoor and outdoor temperatures are set to 20 ° C., and the wall pressure difference is -23 to 23 Pa.
The pressure was changed stepwise at pressures corresponding to the wind speed of 1 m / s in the range (FIG. 15). The equivalent opening area per unit area at the wind speed of 3 m / s used for the design is 6 cm 2 / m 2 ,
At 10 m / s, it was 7.53 cm 2 / m 2 . Next, the differential pressure and air permeability distribution on the sloped roof surface were measured. FIG. 16 shows the distribution of air permeability in the direction of roof surface inclination at no wind and at a wind speed of 3 m / s. When there is no wind, the difference in temperature between inside and outside is the driving force for ventilation. Therefore, outside air flows into the eaves on the roof surface and indoor air flows out from the ridge. When the wind speed is 3 m / s, there is almost no difference in air permeability between the eaves and the ridge part.
It was 3.9 m 3 / hm 2 . Assuming that this is used in an actual building, the air permeability is 102 m 3 / h, which corresponds to a ventilation rate of 0.26 times / h, but the equivalent opening area per unit area of the test specimen is smaller than the design value. Considering that it was a little small, the system has the capacity to supply the required ventilation.

【0039】また、外部風圧による外気流入時における
熱回収性能についても試験を行なった。壁体内温度分布
は、図17(b)に示すようになった。屋外が無風のと
きには、透気方向の影響により棟部分の温度が最も高
く、次に中央部分、そして軒部分が最も低い温度分布と
なる。よって、流入空気温度については軒部分について
評価すればよいことが分かる。一方、風速3m/s以上
となるときには、図17(a),(c)に示すように、
屋根面全体がほぼ一様分布をしている。更に、透気量と
熱回収の関係は、図18に示すようになった。図18
は、流入透気量と空気の熱回収により上昇した温度変化
量の関係を示す。実験結果によれば、透気量が19.1
3 /hm2 (風速10m/sに相当)のときでも1
1.2℃もの温度上昇であった。熱回収量としても77
w/m2 が得られた。
A test was also conducted on the heat recovery performance when external air flows in due to external wind pressure. The temperature distribution in the wall was as shown in FIG. When there is no wind outside, the temperature of the ridge is the highest due to the influence of the airflow direction, and then the center and the eaves have the lowest temperature distribution. Therefore, it is understood that the inflow air temperature should be evaluated for the eaves portion. On the other hand, when the wind speed is 3 m / s or more, as shown in FIGS.
The entire roof surface is almost uniformly distributed. Further, the relationship between the air permeability and the heat recovery is as shown in FIG. FIG.
Shows the relationship between the inflow air permeability and the temperature change that has increased due to the heat recovery of the air. According to the experimental results, the air permeability was 19.1.
m 3 / hm 2 (corresponding to wind speed of 10 m / s)
The temperature rose by as much as 1.2 ° C. 77 heat recovery
w / m 2 was obtained.

【0040】また、外部風圧による室内空気流出時にお
ける内部結露発生の有無については、図19に示すよう
になった。図19は流出方向の外部風圧がある場合の壁
体内温度分布と露点温度分布の関係を示したものであ
る。設計条件である透気量7m3 /hm2 以上の外部風
速10m/sの条件でも結露しないことが確認された。
これらの結果、実施例においては、必要な換気量を確保
する能力を持つこと、透気における熱回収により充分な
温度上昇が得られること、そして外部風速10m/sで
も内部結露が発生しないことが確認された。
FIG. 19 shows the presence or absence of internal dew formation when the indoor air flows out due to the external wind pressure. FIG. 19 shows the relationship between the wall temperature distribution and the dew point temperature distribution when there is an external wind pressure in the outflow direction. It was confirmed that no dew was formed even under the condition of an external wind velocity of 10 m / s with an air permeability of 7 m 3 / hm 2 or more, which is a design condition.
As a result, in the examples, it is necessary to have the ability to secure the necessary ventilation volume, to obtain a sufficient temperature rise by heat recovery in the ventilation, and to prevent internal dew condensation even at an external wind speed of 10 m / s. confirmed.

【0041】尚、上記実施の形態及び実施例において
は、多孔シートをアルミ箔で形成したが、必ずしもこれ
に限定されるものではなく、他の金属シートや樹脂シー
ト等を用いても良く適宜変更して差支えない。また、上
記実施の形態及び実施例においては、通気性壁体の室内
側の1枚の多孔シートのみの透湿抵抗を、他よりも大き
く設定しているが、必ずしもこれに限定されるものでは
なく、透湿抵抗を大きくする多孔シートを複数にし、あ
るいは、室外側にいくに従って段階的に透湿抵抗を小さ
くしていく等、適宜変更して差支えない。尚また、上記
実施の形態及び実施例においては、本発明を屋根壁に適
用したが、これに限定されるものではなく、側壁に適用
しても良く、適宜変更して差支えない。また、上記各部
の寸法については上述したものに限定されるものではな
く、条件を満たすようどのように設定しても良い。ま
た、建物の壁構造の全体の形状も上記に限定されないこ
とは勿論である。
In the above embodiments and examples, the porous sheet is formed of aluminum foil. However, the present invention is not limited to this, and other metal sheets or resin sheets may be used. You can do it. Further, in the above-described embodiments and examples, the moisture-permeation resistance of only one porous sheet on the indoor side of the air-permeable wall is set larger than the others, but is not necessarily limited to this. Instead, the number of perforated sheets for increasing the moisture permeation resistance may be changed, or the moisture permeation resistance may be gradually reduced toward the outside of the room. In addition, in the above-described embodiment and examples, the present invention is applied to the roof wall. However, the present invention is not limited to this, and may be applied to the side wall, and may be appropriately changed. Further, the dimensions of the respective parts are not limited to those described above, and may be set in any manner so as to satisfy the conditions. Further, it goes without saying that the overall shape of the wall structure of the building is not limited to the above.

【0042】[0042]

【発明の効果】以上説明したように、本発明の建物の壁
構造によれば、外壁と内壁との間に空気通路を設け、内
壁を多孔シートを複数積層して空気層を多層に形成した
通気性壁体を用いて構成したので、内外温度差や外部風
圧による差圧によって、室内の空気の換気を行なうこと
ができ、しかも、通気性壁体は多孔シートによる多層空
気層を有していることから、充分な断熱性能を持ちつ
つ、壁面全体での換気や透湿を行なうことができ、不決
感を感じさせない室内気温分布を提供することができ
る。
As described above, according to the building wall structure of the present invention, an air passage is provided between an outer wall and an inner wall, and a plurality of porous sheets are laminated on the inner wall to form a multi-layer air layer. Because it is configured using a permeable wall, the indoor air can be ventilated by the internal and external temperature difference and the differential pressure due to the external wind pressure, and the permeable wall has a multilayer air layer made of a porous sheet. Therefore, it is possible to provide ventilation and moisture permeability over the entire wall surface while having sufficient heat insulation performance, and to provide an indoor temperature distribution that does not give a sense of independence.

【0043】また、壁の下方側に空気通路に空気を導入
する空気導入口部を設け、壁の上方側に空気通路から空
気を排出する空気排出口部を設けた場合には、空気通路
において、空気導入口部から新鮮空気を導入して空気排
出口部から排気できるので、常時換気を行なうことがで
き、空気通路を流れる空気に熱を伝達させて逃がすこと
ができることから、室内の温度の上昇を抑制し、快適空
間を提供することができる。更に、通気性壁体の外側に
多孔シートに間隔を隔てて対面して通気性壁体を保護す
るとともに、多数の通孔が設けられた保護ボードを備え
た場合には、通気を確保しつつ通気性壁体を保護するこ
とができるという効果がある。
When an air inlet for introducing air into the air passage is provided below the wall and an air outlet for discharging air from the air passage above the wall is provided, Since fresh air can be introduced from the air inlet and exhausted from the air outlet, air can be constantly ventilated, and heat can be transmitted to the air flowing through the air passage and released, thereby reducing the indoor temperature. It is possible to suppress a rise and provide a comfortable space. Furthermore, while protecting the gas permeable wall by facing the porous sheet at an interval outside the gas permeable wall, and having a protective board provided with a large number of through holes, it is possible to secure ventilation while maintaining There is an effect that the breathable wall can be protected.

【0044】更にまた、通気性壁体の室内側の多孔シー
トの透湿抵抗を、室外側の多孔シートの透湿抵抗よりも
大きく設定した場合には、冬季等に水蒸気圧の高い室内
側表面で防湿を図り、屋外側で放湿を容易にすることが
できるので、結露の発生を防止することができるという
効果がある。
Further, when the moisture permeability of the porous sheet on the indoor side of the permeable wall is set to be larger than the moisture permeability resistance of the porous sheet on the outdoor side, the indoor surface having a high water vapor pressure in winter or the like. Therefore, moisture can be easily released on the outdoor side, so that the effect of preventing the occurrence of dew condensation can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る建物の壁構造を示す
断面図である。
FIG. 1 is a sectional view showing a wall structure of a building according to an embodiment of the present invention.

【図2】本発明の実施の形態に係る建物の壁構造の通気
性壁体を示す分解斜視図である。
FIG. 2 is an exploded perspective view showing a permeable wall of a building wall structure according to the embodiment of the present invention.

【図3】本発明の実施例1に係る建物を示す斜視図であ
る。
FIG. 3 is a perspective view showing a building according to the first embodiment of the present invention.

【図4】本発明の実施例1に係る試験結果を示し、孔径
の流量係数への影響を示すグラフ図である。
FIG. 4 is a graph showing a test result according to Example 1 of the present invention and showing an influence of a pore diameter on a flow coefficient.

【図5】本発明の実施例1に係る試験結果を示し、孔径
の透気量への影響を示すグラフ図である。
FIG. 5 is a graph showing a test result according to Example 1 of the present invention and showing an influence of a pore diameter on an air permeability.

【図6】本発明の実施例1に係る試験結果を示し、必要
換気量が得られる多孔シートの孔径が透気量の変化に与
える影響を示すグラフ図である。
FIG. 6 is a graph showing a test result according to Example 1 of the present invention and showing an influence of a pore diameter of a porous sheet providing a required ventilation rate on a change in air permeability.

【図7】本発明の実施例2に係る通気性壁体の1次元質
点系モデルを示す図である。
FIG. 7 is a diagram showing a one-dimensional mass point system model of a breathable wall according to a second embodiment of the present invention.

【図8】本発明の実施例2に係る試験結果を示し、部材
厚さ・アルミ箔枚数と相当熱貫流率の関係を示すグラフ
図である。
FIG. 8 is a graph showing the test results according to Example 2 of the present invention and showing the relationship between the member thickness / the number of aluminum foils and the equivalent heat transmission coefficient.

【図9】本発明の実施例2に係る試験結果を示し、透気
量の相当熱貫流率への影響を示すグラフ図である。
FIG. 9 is a graph showing the test results according to Example 2 of the present invention and showing the effect of the air permeability on the equivalent heat transfer coefficient.

【図10】本発明の実施例2に係る試験結果を示し、透
気量による流入空気温度と熱回収量の変化を示すグラフ
図である。
FIG. 10 is a graph showing test results according to Example 2 of the present invention and showing changes in the inflow air temperature and the heat recovery amount depending on the air permeability.

【図11】本発明の実施例2に係る試験結果を示し、2
〜11枚目のアルミ箔の透湿係数と結露発生との関係を
示すグラフ図である。
FIG. 11 shows test results according to Example 2 of the present invention.
It is a graph which shows the relationship between the moisture permeability coefficient of the 11th aluminum foil, and dew condensation.

【図12】本発明の実施例2に係る試験結果を示し、1
枚目のアルミ箔の透湿係数と結露発生との関係を示すグ
ラフ図である。
FIG. 12 shows test results according to Example 2 of the present invention,
It is a graph which shows the relationship between the moisture permeability coefficient of the 2nd aluminum foil, and dew condensation.

【図13】本発明の実施例3に係る実験室を示す断面図
である。
FIG. 13 is a sectional view showing a laboratory according to Example 3 of the present invention.

【図14】本発明の実施例3に係る測定項目及び測定位
置を示す図である。
FIG. 14 is a diagram illustrating measurement items and measurement positions according to a third embodiment of the present invention.

【図15】本発明の実施例3に係る試験結果を示し、差
圧変化と透気量の関係を示すグラフ図である。
FIG. 15 is a graph showing a test result according to Example 3 of the present invention and showing a relationship between a change in differential pressure and an air permeability.

【図16】本発明の実施例3に係る試験結果を示し、外
部風による壁体の透気量を示すグラフ図である。
FIG. 16 is a graph showing the test results according to Example 3 of the present invention and showing the amount of air permeation of the wall by the external wind.

【図17】本発明の実施例3に係る試験結果を示し、壁
体の内部温度分布を示すグラフ図である。
FIG. 17 is a graph showing a test result according to Example 3 of the present invention and showing an internal temperature distribution of a wall body.

【図18】本発明の実施例3に係る試験結果を示し、熱
回収による温度変化量を示すグラフ図である。
FIG. 18 is a graph showing a test result according to Example 3 of the present invention and showing a temperature change amount due to heat recovery.

【図19】本発明の実施例3に係る試験結果を示し、外
部風による内部結露発生の有無を示すグラフ図である。
FIG. 19 is a graph showing test results according to Example 3 of the present invention and showing whether or not internal dew has occurred due to external wind.

【符号の説明】[Explanation of symbols]

1 側壁 2 屋根壁 3 室 4 外壁 5 内壁 6 空気通路 7 空気導入口部 8 空気排出口部 9 越屋根 10 換気口 11 弁板 H 通気性壁体 12 小孔 13 多孔シート 14 コア材 15 空気層 16 通孔 17 保護ボード DESCRIPTION OF SYMBOLS 1 Side wall 2 Roof wall 3 Room 4 Outer wall 5 Inner wall 6 Air passage 7 Air introduction port 8 Air exhaust port 9 Over roof 10 Ventilation port 11 Valve plate H Breathable wall 12 Small hole 13 Perforated sheet 14 Core material 15 Air layer 16 through hole 17 protection board

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 稲子 東京都町田市南つくし野1−15−5 ハイ ツつくし野201 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Inako Tanaka 1-15-5 Minami Tsukushino, Machida-shi, Tokyo 201 Tsutsukino 201

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 側壁,該側壁の上部に設けられる屋根壁
等の壁によって内部に室を形成する建物の当該壁の構造
において、 上記壁を、外壁と内壁とを備えて構成し、該外壁と内壁
との間に空気が流通する空気通路を設け、上記内壁を、
貫通した小孔を多数有した多孔シートをコア材を介して
複数積層し該多孔シート間に空気層を形成した通気性壁
体を用いて構成したことを特徴とする建物の壁構造。
1. A structure of a wall of a building in which a room is formed by a wall such as a side wall and a roof wall provided on an upper part of the side wall, wherein the wall comprises an outer wall and an inner wall, And an air passage through which air flows between the inner wall and the inner wall,
A wall structure for a building, comprising a plurality of porous sheets having a large number of small holes penetrating through a core material, and using an air-permeable wall in which an air layer is formed between the porous sheets.
【請求項2】 上記壁の下方側に上記空気通路に空気を
導入する空気導入口部を設け、上記壁の上方側に上記空
気通路から空気を排出する空気排出口部を設けたことを
特徴とする請求項1記載の建物の壁構造。
2. An air inlet for introducing air into the air passage below the wall, and an air outlet for discharging air from the air passage above the wall. The wall structure of a building according to claim 1, wherein
【請求項3】 上記通気性壁体の外側に多孔シートに間
隔を隔てて対面して該通気性壁体を保護するとともに、
多数の通孔が設けられた保護ボードを備えたことを特徴
とする請求項1または2記載の建物の壁構造。
3. The air-permeable wall faces the porous sheet at an interval outside the air-permeable wall to protect the air-permeable wall, and
The building wall structure according to claim 1, further comprising a protection board provided with a plurality of through holes.
【請求項4】 上記通気性壁体の室内側の多孔シートの
透湿抵抗を大きくし、室外側の多孔シートの透湿抵抗を
小さく設定したことを特徴とする請求項1,2または3
記載の建物の壁構造。
4. The air permeability of the porous sheet on the indoor side of the air permeable wall is increased, and the moisture permeability of the porous sheet on the outdoor side is reduced.
The described wall structure of the building.
【請求項5】 上記通気性壁体の最も室内側に位置する
多孔シートの透湿抵抗のみを、他の多孔シートの透湿抵
抗よりも大きく設定したことを特徴とする請求項4記載
の建物の壁構造。
5. The building according to claim 4, wherein only the moisture permeation resistance of the perforated sheet located closest to the indoor side of the air-permeable wall is set to be larger than the moisture permeation resistance of the other perforated sheets. Wall structure.
【請求項6】 上記通気性壁体の多孔シートをアルミ箔
で形成したことを特徴とする請求項1,2,3,4また
は5記載の建物の壁構造。
6. The wall structure of a building according to claim 1, wherein the porous sheet of the permeable wall is made of aluminum foil.
JP04275397A 1997-02-26 1997-02-26 Building wall structure Expired - Fee Related JP3389442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04275397A JP3389442B2 (en) 1997-02-26 1997-02-26 Building wall structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04275397A JP3389442B2 (en) 1997-02-26 1997-02-26 Building wall structure

Publications (2)

Publication Number Publication Date
JPH10237972A true JPH10237972A (en) 1998-09-08
JP3389442B2 JP3389442B2 (en) 2003-03-24

Family

ID=12644771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04275397A Expired - Fee Related JP3389442B2 (en) 1997-02-26 1997-02-26 Building wall structure

Country Status (1)

Country Link
JP (1) JP3389442B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111472585A (en) * 2020-04-11 2020-07-31 浙江大地钢结构有限公司 Environment-friendly energy-saving assembly type steel structure factory building structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111472585A (en) * 2020-04-11 2020-07-31 浙江大地钢结构有限公司 Environment-friendly energy-saving assembly type steel structure factory building structure
CN111472585B (en) * 2020-04-11 2020-11-13 浙江大地钢结构有限公司 Environment-friendly energy-saving assembly type steel structure factory building structure

Also Published As

Publication number Publication date
JP3389442B2 (en) 2003-03-24

Similar Documents

Publication Publication Date Title
US6178966B1 (en) Heat and moisture exchange apparatus for architectural applications
EP0806615B1 (en) Aeration structure in buildings
US9347675B2 (en) Architectural heat and moisture exchange
US20160131373A1 (en) Architectural heat and moisture exchange
US20120012290A1 (en) Architectural heat and moisture exchange
Down Heating and Cooling Load Calculations: International Series of Monographs In: Heating, Ventilation and Refrigeration
JP3389442B2 (en) Building wall structure
JPS62194346A (en) Building structure having double ventilation layer
TenWolde Venting Of Attics Cathedral Ceilings
JP6875671B1 (en) Housing
US20130326974A1 (en) Window assembly and construction module assembly using thermobimetals
JP2009270397A (en) Building construction with venting structure
Lstiburek Venting vapor
US20140041830A1 (en) Heat and moisture transfer apparatus integrated into an exterior partition
Burch et al. Mathematical analysis of practices to control moisture in the roof cavities of manufactured houses
JPH04176937A (en) Ventilating device for housing
JP3030247B2 (en) Ventilation structure of concrete house
Kindangen et al. The Role of Attic Ventilation to Reduce Indoor Air Temperature in Zinc-Roofed Buildings in a Humid Tropical Climate
Baer COOLINC WITH NICHT AIR
Blomsterberg et al. Use of multi-zone air flow simulations to evaluate a hybrid ventilation system
JPS62172138A (en) Ventilation structure of building
Takkanon Design guidelines for thermal comfort in row houses in Bangkok
JP3066527B2 (en) Houses using building materials with heat insulation, air permeability and moisture permeability
Wang First-Year Operation Monitoring of a Six-Story Building in Vancouver Built for High Energy Performance
Rupp et al. Ventilation dries attic space

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140117

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees