JPH10237837A - Snow melting floor for platform - Google Patents

Snow melting floor for platform

Info

Publication number
JPH10237837A
JPH10237837A JP6200297A JP6200297A JPH10237837A JP H10237837 A JPH10237837 A JP H10237837A JP 6200297 A JP6200297 A JP 6200297A JP 6200297 A JP6200297 A JP 6200297A JP H10237837 A JPH10237837 A JP H10237837A
Authority
JP
Japan
Prior art keywords
floor
heat medium
heat
snow
platform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6200297A
Other languages
Japanese (ja)
Inventor
Hiroshi Shida
弘 志田
Kunitoshi Takagi
邦年 高木
Teruo Okano
照夫 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON BEROO KK
Sky Aluminium Co Ltd
Original Assignee
NIPPON BEROO KK
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON BEROO KK, Sky Aluminium Co Ltd filed Critical NIPPON BEROO KK
Priority to JP6200297A priority Critical patent/JPH10237837A/en
Publication of JPH10237837A publication Critical patent/JPH10237837A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the embedding density of heat mediums and save the energy by constituting a snow melting floor by a cement hardened body having a tubular or rope-like heat medium embedded therein, and laying a metallic mesh body extended laterally so as to enclose the heat medium. SOLUTION: This snow melting floor has a floor structure in which a metallic mesh body 3 is embedded in a cement hardened material, so that the heat flow from a heat medium 2 is laterally transmitted through the metallic mesh body 3 and primarily dispersed. Further, since secondary dispersion is caused in the cement hardened body to transfer the heat through two heat flow bulkheads, the heat flow is dispersed to a position distant from a heating source for heating, so that the heating floor area can be extended. As the metallic mesh body 3, an alloy containing 0.3-4.3wt.% of Mn, as occasion demands, 0.05-6.0wt.% of Mg, and the remainder of Al and impurities, and having a tissue in which Al-Mn intermetallic compound precipitate with a grain size of 0.01-0.3μm is dispersed is used, and an anodic oxide film is formed on the surface. Thus, the heating floor area can be extended, the heat medium 2 can be stably held with a lowered embedding density, and the foundation work can be simplified.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】本発明は、プラットホームの積
雪、凍結の防止のための融雪床に係わり、特に熱媒体か
らの熱分散性および耐磨耗性、耐衝撃性に優れたプラッ
トホームの融雪床に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a snow-melting floor for preventing snow and freezing of a platform, and more particularly to a snow-melting floor for a platform which is excellent in heat dispersibility from a heat medium, abrasion resistance and impact resistance. About.

【0002】[0002]

【従来技術】鉄道列車等の発着、乗降用プラットホーム
は、不特定多数の乗客が列車に乗降し、進入列車を待機
し、あるいは高速で通過する列車を回避しながら待機す
る場所である。しかも格別な防柵もなく開放された乗降
ステップ側は大きい落差をもって懸崖している構造であ
る。かかるプラットホームの構造は、本来的に乗客の安
全確保に大きい不安要素を内在しているものである。
2. Description of the Related Art Platforms for departure and arrival of trains and the like, and getting on and off, are places where an unspecified number of passengers get on and off trains and wait for incoming trains or avoid trains passing at high speed. In addition, the boarding / alighting step side, which is open without any special barriers, has a structure with a large head and a cliff. Such a platform structure inherently has a great anxiety factor in ensuring passenger safety.

【0003】特に降雪地あるいは寒冷地においては、プ
ラットホームへの積雪あるいはそれらの凍結は日常的に
起こり、乗客の安全環境を著しく損なう。そのためプラ
ットホーム床面の除雪、解氷は必須であるが、長大な区
域の風雪下での除雪は容易ではなく、また道路の融雪に
汎用されるような無機塩類溶液の散布、あるいは除雪車
等の導入もプラットホームの環境上不可能である。さら
に放水、撒水による融雪、解氷等も不均一になりやす
く、しかも多量の水を使用して床面に流水を維持する必
要から、乗客の履き物を濡らし、列車内床面を濡らして
滑り易くし、かつ車内清掃を困難にする等の問題があ
る。
[0003] Particularly in snowy or cold areas, snow accumulation on the platform or freezing thereof occurs on a daily basis and significantly impairs the safety environment for passengers. For this reason, snow removal and deicing of the platform floor are indispensable, but snow removal under the wind and snow in a long area is not easy, and spraying of inorganic salt solution commonly used for melting snow on roads or snow removal vehicles etc. Implementation is not possible due to the platform environment. In addition, snowmelt and ice melting due to water discharge and sprinkling are likely to be uneven, and since it is necessary to use a large amount of water to maintain running water on the floor, wetting passengers' footwear, wetting the floor inside the train and making it slippery And makes it difficult to clean the inside of the vehicle.

【0004】従来、かかる課題の解決のため、電熱また
は温水を熱源とするいわゆる加温床構造の提案がなされ
ている。すなわち、(1) 特開昭49-96025 号公報に記載
される発明は、電熱温水源からの温水パイプを定長、定
間隔として床面下に埋設配管したユニットを単独ないし
複数組み合わせて調整送湯するもので均一加熱、省電力
を図るとするもの。(2) 特開平06-101205 号公報に記載
される発明は、電熱線を収納保持した放熱パネルを埋
設、あるいはパネルに形成された収納部に着脱可能に電
熱線を収納した電熱プレートを乗降ステップ部に直接配
列すことにより速やかな融雪を図るとするもの。(3) 特
開平06-171501 号公報に記載される発明は、加熱パネル
を積雪面と反対側の開放面(例えばステップの裏面)に
設置することにより、熱源埋設方式における構造物の伝
熱効率の低下や、耐久性劣化の防止を図るとするもの等
である。
Conventionally, in order to solve such a problem, a so-called heated floor structure using electric heat or hot water as a heat source has been proposed. That is, (1) The invention described in Japanese Patent Application Laid-Open No. 49-96025 discloses a method in which a hot water pipe from an electrothermal hot water source has a fixed length and a fixed interval, and singly or in combination of a plurality of units buried under the floor and adjusted and sent. A hot water heater that achieves uniform heating and power saving. (2) The invention described in Japanese Patent Application Laid-Open No. 06-101205 discloses a step of embedment of a radiating panel storing and holding a heating wire or stepping on and off a heating plate storing a heating wire detachably in a storage portion formed in the panel. It is intended to quickly melt snow by arranging it directly in the part. (3) The invention described in Japanese Patent Application Laid-Open No. H06-171501 discloses a method of installing a heating panel on an open surface opposite to a snow-covered surface (for example, the back surface of a step) to reduce the heat transfer efficiency of a structure in a heat source buried system. It is intended to prevent the deterioration and deterioration of the durability.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の提案に
おいて、(1) および(2) は、熱媒体を床面下に埋設し、
あるいは電熱線を埋設または挿入したセメント系硬化体
放熱パネルを融雪床とする構成で、床面の昇温速度も速
やかであり、相応の効果はあるものの、床面の加熱の均
一性は不十分であり、これを改善するためには、単位面
積当たりの熱源の発散熱量の増加が必要となり、熱源近
傍のセメント系硬化体のオーバーヒートにより、その劣
化を招くこと、あるいは熱源の敷設密度を増加する必要
から設備費が嵩む等の問題がある。また上記(3) におい
ては、熱パネルを積雪面と反対側の開放面(例えばステ
ップの裏面)に外設するため、外気への熱放散が大きく
熱効率低下を招くのみならず床面の昇温速度が低下する
等の問題がある。
In the above-mentioned conventional proposals, (1) and (2) embed a heat medium below the floor,
Alternatively, a cement-based hardened body heat-dissipating panel with embedded or inserted heating wires is used as a snow-melting floor, and the rate of temperature rise on the floor is fast, and although there is a corresponding effect, the uniformity of heating of the floor is insufficient. In order to improve this, it is necessary to increase the amount of heat radiated from the heat source per unit area, and overheating of the cement-based hardened material near the heat source causes its deterioration or increases the laying density of the heat source. There is a problem that the equipment cost increases because of necessity. In (3) above, since the heat panel is installed outside the open surface opposite to the snow-covered surface (for example, the back of the step), heat is greatly dissipated to the outside air, which causes a decrease in thermal efficiency and also raises the temperature of the floor surface. There are problems such as a decrease in speed.

【0006】本発明は、上記の点に鑑み、プラットホー
ムの床面を放水、撒水等により濡らすことなく融雪、解
氷をおこなうこと、および人力作業を必要としないこと
を前提として、床面下に埋設した熱媒体から均一な熱伝
達を図り、これによって熱媒体の埋設密度を低下し、省
エネルギーを図ったプラットホームの融雪床の提供を目
的とする。
SUMMARY OF THE INVENTION In view of the above, the present invention is based on the premise that the floor of a platform is melted and melted without being wetted by spraying water or spraying water, and that no manual work is required. It is an object of the present invention to provide a snow melting floor of a platform that achieves uniform heat transfer from a buried heat medium, thereby reducing the burying density of the heat medium and saving energy.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の課題を
解決すべく種々検討した結果到達したもので、請求項1
に係わる発明は、管状または索状熱媒体を埋設したセメ
ント系硬化体からなるプラットホームの融雪床におい
て、前記管状または索状熱媒体を包被して横方向に広が
る金属製網体を張設したプラットホームの融雪床である
ことを特徴としている。
The present invention has been achieved as a result of various studies to solve the above-mentioned problems.
The invention according to the invention relates to a snow melting floor of a platform made of a cement-based hardened material in which a tubular or cord-shaped heat medium is embedded, and a metal mesh body that covers the tubular or cord-shaped heat medium and extends in the lateral direction is stretched. It is characterized by a snow melting floor on the platform.

【0008】請求項2に係わる発明は、請求項1記載の
セメント系硬化体が、パネル状であり、これを床面に配
列し、熱媒体端子を接続してなることを特徴としてい
る。
[0008] The invention according to claim 2 is characterized in that the cement-based cured product according to claim 1 is in the form of a panel, which is arranged on a floor surface and connected to a heat medium terminal.

【0009】請求項3に係わる発明は、請求項1ないし
請求項2記載のセメント系硬化体が、カチオン系クロロ
プレンゴムエマルジョンを混和したものからなることを
特徴としている。
The invention according to claim 3 is characterized in that the cement-based cured product according to claim 1 or 2 is obtained by mixing a cationic chloroprene rubber emulsion.

【0010】請求項4に係わる発明は、請求項1ないし
請求項2記載の管状または索状熱媒体がアルミニウム箔
面上に面一に蛇行配列され、該熱媒体上下の少なくとも
一方の面上に金属製網体を包被してなることを特徴とし
ている。
According to a fourth aspect of the present invention, the tubular or cord-shaped heat medium according to any one of the first to second aspects is arranged in a meandering manner on the aluminum foil surface, and is arranged on at least one of the upper and lower surfaces of the heat medium. It is characterized by being covered with a metal net.

【0011】請求項5に係わる発明は、上記金属製網体
が遠赤外線放射性表面を有するものからなることを特徴
とするものである。
The invention according to claim 5 is characterized in that the metal mesh has a far-infrared radiation surface.

【0012】請求項6に係わる発明は、上記金属製網体
がMn0.3〜4.3wt%、必要に応じてMg0.0
5〜6.0wt%を含有し、残部がAlと不可適的不純
物よりなり、かつ粒径0.01〜0.3μmのAl−M
n系金属間化合物析出物が分散してなる組織を有する合
金からなり、その表面に陽極酸化被膜を施してなること
を特徴とするものである。
According to a sixth aspect of the present invention, the metal net has a Mn of 0.3 to 4.3 wt%, and optionally a Mg
Al-M containing 5 to 6.0 wt%, the balance being Al and unsuitable impurities, and having a particle size of 0.01 to 0.3 μm.
An alloy having a structure in which n-type intermetallic compound precipitates are dispersed, and an anodic oxide film is formed on the surface thereof.

【0013】[0013]

【作用】請求項1記載の発明によれば、管状または索状
熱媒体を包被して横方向に広がる金属製網体が、セメン
ト系硬化材中に埋設されている床構造であるため、熱媒
体からの熱流は、熱伝導性に優れた金属製網体を介して
横方向に熱伝達されて1次分散化され、さらにセメント
系硬化体中において2次分散化が生じ、この二つの熱流
障壁を経て伝熱するため、熱流は熱媒体周辺に留まらず
加熱源から離れた位置にも分散伝熱され、加温床面積す
なわち融雪、融氷面積が拡大する。
According to the first aspect of the present invention, since the metal net which covers the tubular or cord-like heat medium and spreads in the lateral direction is a floor structure embedded in a cement-based hardening material, The heat flow from the heat medium is laterally transferred through a metal net having excellent thermal conductivity and is dispersed to a primary degree. Further, secondary dispersion occurs in the cement-based hardened material. Since heat is transferred through the heat flow barrier, the heat flow is dispersed and transferred not only around the heat medium but also at a position distant from the heating source, and the area of the heated floor, that is, the area of snow melting and ice melting is enlarged.

【0014】またプラットホーム構造体のセメント系硬
化体中に熱媒体を埋設して一体化してあるため、床面下
層中に埋設後において熱媒体がその埋設位置、レベルを
堅固に保持して安定し、熱媒体に変形応力が及び難いこ
と、従って加熱源の接続部も安定に保持され、脱落損傷
等が起こりにくいものとなる。
Further, since the heat medium is buried in the cement-based hardened body of the platform structure and integrated, after the heat medium is buried in the lower layer of the floor surface, the heat medium is firmly held at the buried position and level, and is stable. In addition, the deformation stress is not easily applied to the heat medium, and therefore, the connection portion of the heating source is also stably held, and the damage due to falling off or the like hardly occurs.

【0015】請求項2記載の発明によれば、予め成形硬
化したパネル状であり、内部に請求項1記載の熱媒体を
埋設した構造であるため、該パネルを床面に配列し、熱
媒体端子を接続すれば、現地工事がきわめて簡易化さ
れ、工事期間の短縮、仕上がり精度の向上等が得られ
る。また熱媒体と床面の接近により加熱速度を向上する
効果がある。
According to the second aspect of the present invention, since the heat medium of the first aspect has a panel shape formed and hardened in advance and the heat medium of the first aspect is embedded therein, the panels are arranged on the floor surface, Connecting the terminals greatly simplifies on-site construction, shortening the construction period and improving the finishing accuracy. In addition, there is an effect that the heating speed is improved by the approach of the heat medium and the floor surface.

【0016】請求項3記載の発明によれば、セメント系
硬化材としてカチオン系クロロプレンエマルジョンを混
和したものを使用するため、形成される床面は高強度、
耐衝撃性、耐摩耗性等が優れており、強固な床面が形成
され、特に乗降ステップ部あるいはその先端部等の構造
的安定性が向上し、剥離、裂壊等が起こりにくい強靭な
床面となる。乗降ステップ部に貼設される視覚障害者用
ガイドタイル等を強固に保持し、信頼性の高いステップ
部を得る。また、強固な床面が形成されるため、熱媒体
の埋設を浅い層に設定することができるため、床面の昇
温速度を高めるのに役立つ。
According to the third aspect of the present invention, since a cement-based hardening material mixed with a cationic chloroprene emulsion is used, the floor surface formed has high strength.
Excellent impact resistance, abrasion resistance, etc., a strong floor surface is formed, and the structural stability, especially at the entry / exit step or its tip, is improved. Surface. A step tile having high reliability is obtained by firmly holding a guide tile or the like for the visually impaired stuck on the stepping on / off step. Further, since a strong floor surface is formed, the burying of the heat medium can be set in a shallow layer, which is useful for increasing the temperature rising rate of the floor surface.

【0017】請求項4記載の発明によれば、管状または
索状熱媒体がアルミニウム箔面上に面一に配列されるこ
とにより、熱媒体の放散熱がアルミニウム箔面上で反射
するため、下方への熱分散を防ぎ、床面への熱作用が集
中し、加温効果が増す作用がある。また金属製網体は、
該熱媒体上下の少なくとも一方の面上に金属製網体を包
被することによって、充分効果を発揮する。
According to the fourth aspect of the present invention, since the tubular or cord-like heat medium is arranged flush with the aluminum foil surface, the heat dissipated by the heat medium is reflected on the aluminum foil surface. This prevents the heat from dispersing to the floor and concentrates the heat on the floor, increasing the heating effect. The metal net is
A sufficient effect is exhibited by enclosing the metal net on at least one of the upper and lower surfaces of the heat medium.

【0018】請求項5記載の発明によれば、熱媒体によ
り加熱された金属性網体の表面が遠赤外線放射性を有す
る場合、床面温度の均一化をさらに増進する現象が認め
られる。これは波長範囲約3〜1,000μmの電磁波
を放射し、空間を通過して被加熱物に吸収され、物質内
の熱運動が励起されて物質の温度を上昇する遠赤外線放
射の作用による。
According to the fifth aspect of the present invention, when the surface of the metal net heated by the heat medium has far-infrared radiation, a phenomenon that the uniformity of the floor surface temperature is further enhanced is recognized. This is due to the action of far-infrared radiation, which emits electromagnetic waves in the wavelength range of about 3 to 1,000 μm, passes through space, is absorbed by the object to be heated, and excites thermal motion in the substance to raise the temperature of the substance.

【0019】請求項6記載の発明によれば、金属製網体
として、特公平07-116639 号公報に記載されるような特
定のAl−Mn系合金材、すなわちMn0.3〜4.3
wt%、必要に応じてMg0.05〜6.0wt%を含
有し、残部がAlと不可適的不純物よりなり、かつ粒径
0.01〜0.3μmのAl−Mn系金属間化合物析出
物が分散してなる組織を有する合金を用い、その表面に
陽極酸化被膜を施してなるものである。このようなAl
−Mn系合金の陽極酸化膜の形成は、Mn−Al系金属
間化合物の析出部分を避けるようにして成長することか
ら、形成された陽極酸化膜は枝別れした複雑な多孔質構
造となっており、これがため遠赤外線放射条件下で熱歪
みに起因する応力の緩和作用が強く、高温からの急冷に
よってもクラックを生じがたく、500℃程度の高温に
耐える耐熱性を有する。
According to the sixth aspect of the present invention, as the metal net, a specific Al-Mn alloy material as described in JP-B-07-116639, that is, Mn 0.3 to 4.3.
Al-Mn intermetallic compound precipitate containing 0.05% to 6.0% by weight of Mg and, if necessary, 0.05 to 6.0% by weight of Mg, with the balance being Al and unsuitable impurities and having a particle size of 0.01 to 0.3 µm. An alloy having a structure in which is dispersed is used, and the surface thereof is coated with an anodic oxide film. Such Al
-Since the formation of the anodic oxide film of the Mn-based alloy grows so as to avoid the precipitation portion of the Mn-Al-based intermetallic compound, the formed anodic oxide film has a branched porous complex structure. Therefore, under the condition of radiating far-infrared rays, the effect of relaxing stress caused by thermal strain is strong, cracks are unlikely to occur even when quenched from a high temperature, and it has heat resistance to withstand a high temperature of about 500 ° C.

【0020】また、陽極酸化膜は黒色に近い色であるた
め、4〜8μmの短波長を含む広い波長域で赤外線放射
特性を低下しない。さらに重要な性質として、陽極酸化
膜形成後においても、特性を変化することなく成形加工
を施すことができることであり、陽極酸化処理した網状
体を管状または索状体熱媒体に包皮する変形を加えて
も、上記の遠赤外放射特性が損なわれない点で適応性に
富むものである。
Further, since the anodic oxide film has a color close to black, the infrared radiation characteristics do not deteriorate in a wide wavelength range including a short wavelength of 4 to 8 μm. An even more important property is that, even after the formation of the anodic oxide film, it can be formed without changing its characteristics, and it is necessary to add a deformation that encloses the anodized net in a tubular or cord-like heat medium. However, it is highly adaptable in that the far-infrared radiation characteristics described above are not impaired.

【0021】[0021]

【発明の実施の形態】以下本発明を、実施の形態に基づ
いて図1ないし図6を参照して説明する。図1は、本発
明の一実施例で床面下に金属製網体3を包被した熱媒体
1をプラットホームのコンクリート構造体中に埋設した
乗降ステップ部10の斜視図であり、部分的に埋設部を
露出して示してある。図2は、図1のA−A’矢視断面
図であり、図3は、図1のB−B’矢視断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on an embodiment with reference to FIGS. FIG. 1 is a perspective view of a boarding / alighting step unit 10 in which a heat medium 1 having a metal mesh body 3 wrapped under a floor is buried in a concrete structure of a platform in one embodiment of the present invention. The buried part is shown exposed. FIG. 2 is a sectional view taken along the line AA ′ of FIG. 1, and FIG. 3 is a sectional view taken along the line BB ′ of FIG.

【0022】熱媒体1は、電熱索条、熱流体(温水、水
蒸気、温風等)流通管のいずれであってもよく、また両
者の併用組み合わせも可能であり、地域の環境条件によ
り例えば温排水と電熱ケーブル等の組み合わせ等が適宜
行われる。深夜間電力利用の温水器、灯油焚温水ボイラ
ー給湯、廃熱回収温水、温泉湧水、等がすべて好対象と
なる。これらの熱媒体1の配置は種々のパターンが有り
得るが温水、温風配管の場合は、一定区間ごとに熱流本
管からの分岐管を図1に示すような蛇行配置に接続する
のが一般的であり、長大な区間をシリースで蛇行配管す
る方式は熱交換上好ましくない。また、電熱線の場合
は、分割したブロック毎にパラレル抵抗回路を形成し、
これをシリース回路に結合する等、回路抵抗を考慮して
配線される。
The heat medium 1 may be any of an electric heating wire and a flow pipe of a hot fluid (hot water, steam, hot air, etc.), and a combination of the two is also possible. Combination of drainage and an electric heating cable or the like is appropriately performed. Hot water heaters using late-night electricity, kerosene-fired hot water boilers, waste heat recovery hot water, hot spring springs, etc. are all good targets. The arrangement of the heat medium 1 can have various patterns, but in the case of hot water or hot air piping, it is general to connect the branch pipe from the heat flow main pipe in a meandering arrangement as shown in FIG. A system in which a long section is meandering with a series is not preferable in terms of heat exchange. In the case of a heating wire, a parallel resistance circuit is formed for each divided block,
Wiring is performed in consideration of circuit resistance, such as coupling this to a series circuit.

【0023】熱媒体1と金属製網体2との包被接続は種
々なる態様が可能である。溶接、圧接、押さえ具等の使
用によるのも良いが、図6(a)、(b)、(c)に例
示すように熱媒体1の外周面に金属製網体2を上方また
は下方から包被する方式、あるいは(c)に示すように
2層に重ねた網体の間に挟持して上下両方から熱媒体を
包被する方式も適している。さらに、図6(d)、
(e)に例示するようにフラットな網体3aの上面また
は下面に熱媒体2を当接し、U字状凹部網体3をもって
該熱媒体を包被する方式も良い。この場合U字状凹部網
体3は、熱媒体2を包被し、熱媒体2の列間では強いて
連続せず図6(d)、(e)のように間隔を有して配設
されても良い。またフラットな網体を敷設した熱媒体2
上に押圧して現場合わせにより包被し図6(a)の構造
とするのも良いが、金属製網体3には熱媒体2の配置相
応位置に熱媒体が嵌合する断面U字溝を予め形成してお
くことがより好ましい。この場合U字溝を熱媒体2より
幾分縮径して成形しておくことにより両者の嵌合には網
体の弾性付勢が働いて堅固に密着する。
The envelope connection between the heat medium 1 and the metal net 2 can be in various modes. 6A, 6B, and 6C, the metal net 2 is placed on the outer peripheral surface of the heat medium 1 from above or below, as shown in FIGS. 6A, 6B, and 6C. A method of enclosing or a method of encapsulating the heat medium from both upper and lower sides by sandwiching between two layers of nets as shown in (c) is also suitable. Further, FIG.
As illustrated in (e), a method in which the heating medium 2 is brought into contact with the upper or lower surface of the flat mesh body 3a and the heating medium is covered with the U-shaped concave mesh body 3 may be used. In this case, the U-shaped concave mesh body 3 encloses the heat medium 2 and is arranged at intervals as shown in FIGS. 6D and 6E without strong and continuous between the rows of the heat medium 2. May be. Heat medium 2 with a flat mesh
The structure shown in FIG. 6A may be formed by pressing up and wrapping up at the site, but the metal net 3 has a U-shaped cross section in which the heat medium is fitted at a position corresponding to the position of the heat medium 2. Is more preferably formed in advance. In this case, by forming the U-shaped groove with a diameter somewhat smaller than that of the heat medium 2, the elastic urging of the mesh body acts on the fitting of the two to firmly adhere.

【0024】金属製網体3は、金属線条を編組した網
体、あるいは金属板に千鳥状に貫通した短い切り込みを
定間隔に入れ、該切り込みと直交する方向に金属板を伸
張することにより形成される、いわゆるエキスパンショ
ンメタル又はエキスパンドネットとして公知の物が好ま
しく適用できる。この物は編組した網状体に比較して、
網を構成する各線条が連続一体化しており、熱伝導、熱
分散に甚だ効果的である。上記エキスパンションメタル
の原板の厚みは剛性、引っ張り強度、熱流密度等を考慮
して決められるが、アルミニウム系、あるいは鉄鋼系で
は0.3〜2.0mmの範囲である。
The metal mesh 3 is formed by braiding a metal wire or a metal plate or by inserting short cuts penetrating in a zigzag pattern into a metal plate at regular intervals and extending the metal plate in a direction perpendicular to the cuts. What is known as a so-called expansion metal or expanded net to be formed can be preferably applied. This object is compared to a braided net,
Each line forming the net is continuously integrated, which is extremely effective for heat conduction and heat dispersion. The thickness of the expansion metal base plate is determined in consideration of stiffness, tensile strength, heat flow density and the like, and is in the range of 0.3 to 2.0 mm for aluminum or steel.

【0025】金属製網体2の材質は、地中埋設状態にお
いて耐食性及び強度を保持するものであればよく、銅、
アルミニウム、鉄またはそれらの合金の一種が一般的に
使用される。鉄鋼では、一般構造用圧延鋼材(JIS
−SS41P等)、純アルミ(JIS−1100系)の
他Al−Zn−Mg系(JIS−7N01等)、Al−
Mg系(JIS−5083等)Al−Si−Mg系(J
IS−6063等)Al−Mn−Cu系(JIS−30
04)等の合金類から地中埋設環境、特に腐食環境を考
慮して選択される。塩類含有度の高い地下水浸透地盤で
は炭素鋼(JIS−SS50P等)あるいはアルミニウ
ム合金JIS−5083,3004等が適する。普通銅
(Cu99.5≦)あるいは珪素青銅(3%Si,1%
Sn含有)等が耐食性に優れ好ましい。
The material of the metal net 2 may be any material as long as it has corrosion resistance and strength when buried underground.
Aluminum, iron or one of their alloys is commonly used. In steel, rolled steel for general structures (JIS
-SS41P), pure aluminum (JIS-1100), Al-Zn-Mg (JIS-7N01, etc.), Al-
Mg-based (JIS-5083 etc.) Al-Si-Mg-based (J
IS-6063) Al-Mn-Cu (JIS-30)
04) and the like are selected in consideration of the underground environment, particularly the corrosive environment. Carbon steel (JIS-SS50P etc.) or aluminum alloy JIS-5083, 3004 etc. is suitable for groundwater infiltrated ground with high salt content. Normal copper (Cu 99.5 ≦) or silicon bronze (3% Si, 1%
Sn-containing) is preferable because of its excellent corrosion resistance.

【0026】また耐食性被覆処理を施した金属製網体も
適応性を増す。炭素鋼で黒皮酸化処理、アルミニウムで
陽極酸化処理、化学的表面処理を施したもの、あるいは
耐食性樹脂被覆等を施したものが好ましい。後者におい
て樹脂としてはエポキシ系、アクリル系、ウレタン系、
スチレン系、ビニール系等で、樹脂膜厚は10〜50μ
mの範囲が適当である。50μmを超える塗膜は、金属
表面の熱放散性を損なうので好ましくない。
Further, the metal mesh body subjected to the corrosion-resistant coating treatment increases the adaptability. It is preferable that carbon black is subjected to black scale oxidation treatment, aluminum is subjected to anodic oxidation treatment, chemical surface treatment, or is subjected to corrosion-resistant resin coating or the like. In the latter, resins such as epoxy, acrylic, urethane,
Styrene, vinyl, etc., resin film thickness is 10-50μ
The range of m is appropriate. Coatings having a thickness of more than 50 μm are not preferred because they impair the heat dissipation of the metal surface.

【0027】本発明において、遠赤外線放射性表面を有
する金属製網体は、アルミニウム、鉄、銅またはそれら
の基合金から選択された基体表面に公知の遠赤外放射材
を被覆したものが適宜採用される。例えば前記表面にア
ルミナ、グラファイト、ジルコニア等のセラミック材の
溶射、塗装、あるいは陽極酸化被膜を施した金属製網体
等がある。特に、前述のAl−Mn−(Mg)系合金の
陽極酸化材(特公平07-116639 号公報に記載される)
は、耐熱性、遠赤外放射特性が優れ本発明のごとき用途
に適応性が高い。
In the present invention, a metal mesh having a far-infrared radiating surface is suitably formed by coating a known far-infrared radiating material on a substrate surface selected from aluminum, iron, copper or a base alloy thereof. Is done. For example, there is a metal net or the like having the surface sprayed or coated with a ceramic material such as alumina, graphite, or zirconia, or provided with an anodized film. In particular, the anodized material of the above-described Al-Mn- (Mg) -based alloy (described in Japanese Patent Publication No. 07-116639)
Has excellent heat resistance and far-infrared radiation characteristics, and is highly adaptable to applications such as the present invention.

【0028】本発明において使用されるセメント系硬化
材は、ポルトランドセメントに骨材、必要に応じて種々
の混和用ポリマー(SBR系、アクリル系等)を混合し
た汎用モルタル、コンクリートが使用される。特に混和
剤として カチオン系クロロプレンゴムラテックスを基
剤とするもの(商品名:ネオメント102M、ポリマー
固形分45±1%、昭和電工・デユポン株式会社製品)
は、セメントモルタル、コンクリート硬化物の耐衝撃
性、耐摩耗性を大巾に改善するほか吸水率、透水量が小
さい特性を有し、しかも金属との接着性も良いため本発
明の硬化材として適しており、対セメント数%〜15%
程度の添加量でその効果を顕現する。
As the cement-based hardening material used in the present invention, general-purpose mortar or concrete obtained by mixing Portland cement with an aggregate and, if necessary, various admixture polymers (SBR, acrylic, etc.) is used. In particular, those based on cationic chloroprene rubber latex as an admixture (trade name: Neoment 102M, polymer solids 45 ± 1%, manufactured by Showa Denko Dupont Co., Ltd.)
As a hardening material of the present invention, cement mortar and concrete hardened material have the characteristics of significantly improving the impact resistance and abrasion resistance, as well as having low water absorption and low water permeability, and good adhesion to metal. Suitable for several% to 15% of cement
The effect is manifested with a small amount of addition.

【0029】[0029]

【実施例】以下さらに具体的実施例によって本発明を説
明する。 実施例1 図1に示すように、プラットホーム構造体Tの乗降ステ
ップの先端Sから1.5m巾の床面下に上記の熱媒体2
を配置したものである。この例では熱媒体2は、温湯通
水用の架橋ポリエチレン管(管外径17mm)であり、
芯間隔250mmに蛇行配管し、その上に金属製網体3
を図6−(a)に示すように上半部に包被し、間欠的に
両者を金属線条で結束固定(図示してない)した。金属
製網体3の包被区域は、熱媒体配管2の屈曲部以外の全
域(図1の交差線)とした。
The present invention will be described below with reference to more specific examples. Example 1 As shown in FIG. 1, the above-described heat medium 2 was placed under a floor 1.5 m wide from the tip S of the step of getting on and off the platform structure T.
Is arranged. In this example, the heat medium 2 is a cross-linked polyethylene pipe (tube outer diameter 17 mm) for passing hot and cold water,
A meandering pipe with a core spacing of 250 mm, and a metal net 3
Was covered in the upper half as shown in FIG. 6- (a), and both were bound and fixed intermittently with metal filaments (not shown). The covering area of the metal net 3 was the entire area (crossing line in FIG. 1) other than the bent part of the heat medium pipe 2.

【0030】金属製網体3は、前記したAl−Mn(M
g)系合金からなる原板厚さ0.5mmのエキスパンシ
ョンメタルの表面に厚さ20μmの陽極酸化被膜(黒
色)を施した遠赤外放射性に優れた網体(市販商品名
「スーパーレイ」、スカイアルミニウム(株)製)を使
用した。
The metal net 3 is made of Al-Mn (M
g) A net having excellent irradiance of far infrared radiation (commercial product name "Super Ray", Sky Aluminum Co., Ltd.) was used.

【0031】プラットホーム基礎コンクリート上にパー
ライトを混合した断熱層(厚さ5cm)4aを敷き、そ
の上に金属製網体3を包被した熱媒体2を敷設し、その
上にコンクリートモルタル4(普通ポルトランドセメン
ト40Kg、川砂、砂利5号120Kg、市水12K
g、消泡剤50g混合)を注入充填し、ほぼ平面になら
し硬化養生した。この硬化面5上に滑り止め付き床タイ
ル6および視覚障害者用ガイドタイル7を貼付してプラ
ットホーム融雪床1に仕上げた。図2は、図1のA−
A’矢視、図3は、図1のB−B’矢視による各断面を
示している。
A heat insulating layer (a thickness of 5 cm) 4a containing perlite is laid on the platform foundation concrete, a heating medium 2 wrapped with a metal net 3 is laid thereon, and a concrete mortar 4 (ordinary) is laid thereon. Portland cement 40kg, river sand, gravel No. 5 120kg, city water 12K
g, and 50 g of an antifoaming agent), and the mixture was filled into an almost flat surface and cured and cured. A non-slip floor tile 6 and a guide tile 7 for visually impaired persons were attached to the hardened surface 5 to complete the platform snow melting floor 1. FIG. 2 is a cross-sectional view of FIG.
FIG. 3 is a cross-sectional view taken along the line BB ′ of FIG. 1.

【0032】実施例2 金属製網体として炭素鋼針金を格子状にレギュラー抵抗
溶接した金網(線径1.4mm、目の開き4.76m
m)を熱媒体1の配置相応位置に熱媒体が嵌合する断面
U字溝を予め形成したものを使用したほかは実施例1と
同一である。
Example 2 A wire mesh (wire diameter: 1.4 mm, mesh size: 4.76 m) obtained by regular resistance welding of carbon steel wire in a grid as a metal mesh body.
m) is the same as that of the first embodiment except that a U-shaped cross section in which the heat medium is fitted is previously formed at a position corresponding to the arrangement of the heat medium 1.

【0033】実施例3 熱媒体1の下にアルミニウム箔(厚み0.08mm、合
金JIS−1100)を敷きつめたほかは、第1例と同
じである。
Example 3 The same as the first example except that an aluminum foil (0.08 mm thick, alloy JIS-1100) was laid under the heat medium 1.

【0034】実施例4 図4および図5に示すごとく熱媒体を埋設したプレキャ
ストコンクリートパネルの例で、発熱線2はA2(JI
S C 3651)を絶縁被覆したケーブルをパネル中
に蛇行配線し、各パネル毎の接続端子を連結して並列又
は直列の電気回路を形成した。パネルは、発熱線に金属
製網体(第1例と同じ)を包被して成形枠体内の適宜レ
ベルに面一に保持し、これにコンクリートモルタル(普
通ポルトランドセメント40Kg、川砂、砂利5号12
0Kg、市水12Kg、消泡剤50g混合)を注入し、
水平方向振動を与えて密実に充填し、常法により気中養
生21日間を経て離型し、板状硬化パネル8を得た。パ
ネル寸法は、平面1.00m×1.55m、厚さは50
mmであった。
Example 4 As shown in FIG. 4 and FIG. 5, an example of a precast concrete panel in which a heat medium is buried, wherein a heating wire 2 is A2 (JI
SC 3651) was insulated and wired in a panel, and connection terminals of each panel were connected to form a parallel or series electric circuit. As for the panel, a metal net (same as the first example) is wrapped around the heating wire and held at an appropriate level in the molding frame, and the concrete mortar (40 kg of ordinary Portland cement, river sand, gravel No. 5) 12
0 kg, city water 12 kg, defoamer 50 g)
The resin was filled tightly by applying vibration in the horizontal direction, and was released from the mold after air curing for 21 days by a conventional method to obtain a plate-shaped cured panel 8. The panel dimensions are 1.00m x 1.55m on a plane, and the thickness is 50
mm.

【0035】実施例5 コンクリートモルタルスラリーにクロロプレンゴムのカ
チオン系ラテックス混和剤(市販商品名「ネオメント1
02M」(昭和電工・デユポン(株)製)を9Kg混和
したほかは上記実施例4と同一である。実施例4と実施
例5によって製作したパネルの特性を調査した結果(括
弧内は実施例4のパネル)は、耐衝撃性指数(JIS−
A1421)は、13(4)、圧縮強度は、46.4
(31.2)N/mm2 、曲げ強度は、11.3(6.
4)N/mm2、吸水性は、5.0(7.5)%、であ
った。上記のように本発明のプラットホーム床面下層及
び床面パネルは、いずれも十分な強度を有し、堅固なも
のであるが、特にカチオン系クロロプレンエマルジョン
を混和したセメントモルタル、コンクリートからなるも
のは、強度、吸水性、耐衝撃性に優れていることが認め
られた。
EXAMPLE 5 A cationic latex admixture of chloroprene rubber was added to a concrete mortar slurry (trade name: Neoment 1
02M "(manufactured by Showa Denko / Dupont Co., Ltd.) in the same manner as in Example 4 except that 9 kg was mixed. The results of investigating the characteristics of the panels manufactured according to Example 4 and Example 5 (the figures in parentheses indicate the panel of Example 4) show the impact resistance index (JIS-JIS).
A1421) is 13 (4), and the compressive strength is 46.4.
(31.2) N / mm 2 , and the bending strength was 11.3 (6.
4) N / mm 2 , water absorption was 5.0 (7.5)%. As described above, the lower layer of the platform floor and the floor panel of the present invention each have sufficient strength and are solid, but in particular, cement mortar mixed with a cationic chloroprene emulsion, and those made of concrete, Excellent strength, water absorption and impact resistance were observed.

【0036】上記各例の床構造において、床パネル裏面
に熱電対を埋設して床温センサー(図示してない)を構
成し、さらに外気温を計測し、両計測値を併用して熱媒
体の入力制御を行った。床温度と外気温に限界値を設定
し、これを下回った時点で熱媒体の入電又は温水弁の開
放が作動し、他方、熱媒体の過熱は電源、温水弁の遮断
または入力低減で対処する制御方式を適用した。これに
よって、気象の変化、積雪、凍結等の緩急および程度に
応じた適切な床温度の制御が可能であった。
In the floor structure of each of the above examples, a thermocouple is buried on the back of the floor panel to form a floor temperature sensor (not shown), and the outside air temperature is measured. Input control. Limits are set for the floor temperature and the outside temperature, and when the temperature falls below the threshold, the input of the heat medium or the opening of the hot water valve is activated, while the overheating of the heat medium is dealt with by shutting off the power supply, hot water valve or reducing the input. The control method was applied. As a result, it was possible to appropriately control the floor temperature in accordance with the degree and degree of weather change, snow accumulation, freezing, and the like.

【0037】[0037]

【比較例】[Comparative example]

比較例1 上記実施例1において、熱媒体2に金属製網体を包被し
ないほかは同一条件で構成した床である。
Comparative Example 1 In Example 1, the floor was constructed under the same conditions except that the heat medium 2 was not covered with a metal mesh.

【0038】比較例2 上記実施例4において、熱媒体2に金属製網体を包被し
ないほかは同一条件で構成した床である。
Comparative Example 2 In Example 4, a floor was constructed under the same conditions except that the heat medium 2 was not covered with a metal mesh.

【0039】上記実施例および比較例による長さ2.0
m(巾1.5m)のプラットホーム融雪床を施工し、寒
冷期におけるプラットホーム床面の表面温度を測定し
た。測温位置は、プラットホーム先端面Sより0.75
mの熱媒体埋設直上位置(図3および図4のP)および
熱媒体埋設列の中間位置(図3および図4のQ)であ
り、熱媒体による加温開始後の経時変化は、表1に示す
通りであった。
Length 2.0 according to the above example and comparative example
m (1.5 m width) of a platform snowmelt floor was constructed, and the surface temperature of the platform floor surface in the cold season was measured. The temperature measurement position is 0.75 from the platform tip surface S.
m and P (m in FIG. 3 and FIG. 4) and the middle position (Q in FIG. 3 and FIG. 4) of the row of the buried heat medium. As shown in FIG.

【0040】[0040]

【表1】 [Table 1]

【0041】表1の数値から明らかなように、熱媒体に
金属製網体を包被した実施例においては、概ね2.0時
間後において最高温度(16℃)に達し、しかもP、Q
の温度差は殆ど無く、床面の温度分布は均一であるこ
と、遠赤外放射性表面を有する金属製網体を包被した熱
媒体の場合は昇温速度が大きいことが認められる。これ
に比して、熱媒体を単に埋設した比較例においては、昇
温速度が小さく、P,Q間の温度差は大きく3.0時間
後においても均一化の兆候はない。
As is clear from the numerical values in Table 1, in the embodiment in which the metal mesh is covered with the heat medium, the maximum temperature (16 ° C.) is reached after about 2.0 hours, and P, Q
It is recognized that there is almost no temperature difference, that the temperature distribution on the floor surface is uniform, and that in the case of a heat medium enclosing a metal net having a far-infrared radiating surface, the rate of temperature rise is large. In contrast, in the comparative example in which the heat medium was simply buried, the rate of temperature rise was small, the temperature difference between P and Q was large, and there was no sign of uniformity even after 3.0 hours.

【0042】上記実施例および比較例による長さ10m
のプラットホーム融雪床を施工して寒冷期における凍結
床面の解氷状況を調査した。外気温−6〜−2℃、床面
に水を張って凍結させ、氷厚0.7cmとした状態にお
いて床の加温を行った。約2.0時間経過後解氷が始ま
り3.0時間後にはすべて解氷した。ただし比較例の場
合は、熱媒体埋設位置の床に解氷が起こり、約2.0時
間経過後までこの状態であったが、実施例においてはい
ずれも埋設位置が見分けられない均等な解氷(ステップ
先端から1.5m巾の区域)が終始観察され、均一な熱
分散の効果が明らかに認められた。
10 m length according to the above embodiment and comparative example
The melting of the frozen floor surface during the cold season was investigated by constructing a snow melting floor on the platform. The floor was warmed at an outside temperature of -6 to -2 [deg.] C. and water was applied to the floor to freeze it, and the ice thickness was set to 0.7 cm. Thawing started about 2.0 hours later, and all ice was thawed 3.0 hours later. However, in the case of the comparative example, defrosting occurred on the floor at the position where the heat medium was buried, and this state was maintained until about 2.0 hours had elapsed. (1.5 m width from the step tip) was observed all the time, and the effect of uniform heat dispersion was clearly recognized.

【0042】上記のプラットホーム床面において降雪時
の積雪状況を調査した。降雪開始直後に熱媒体に温水送
通または入電して、床を加温し、積雪経過を観測した。
床加温開始1時間後に実施例の床においてはいずれも積
雪深さの減少、すなわち融雪が始まり、約1.5時間経
過後には融雪は加温床全区域一面に均一に進行した。約
3.0時間経過後において、非加温床区域は積雪深さ2
5cmに達したが、本発明の実施例施工区域には積雪は
認められず、床面を露出していた。これに対し比較例施
工区域には、熱媒体埋設位置間には深さ5cmの畝状積
雪が残り、融雪は不均一であった。約5時間経過後にお
いて非加温床区域は積雪深さ45cmに達していたが、
本発明の実施例施工区域は積雪は皆無であった。しかし
比較例施工区域は深さ約10cmの畝状積雪が依然とし
て残った。
The snow cover condition on the platform floor during snowfall was investigated. Immediately after the start of snowfall, hot water was sent to or received from the heat medium, the floor was heated, and the progress of snowfall was observed.
One hour after the start of the floor heating, the floors of the examples all had a reduced snow depth, that is, the melting of snow started, and after about 1.5 hours, the melting of the snow progressed uniformly over the entire area of the heated floor. After about 3.0 hours, the non-heated floor area has a snow depth of 2
Although it reached 5 cm, no snow was observed in the working area of the example of the present invention, and the floor surface was exposed. On the other hand, in the comparative example construction area, a ridge-shaped snow cover having a depth of 5 cm remained between the heat medium burying positions, and the snow melting was uneven. After about 5 hours, the unheated floor area had reached a snow depth of 45 cm,
There was no snow in the working area of the working example of the present invention. However, the ridge-shaped snow cover of about 10 cm in depth still remained in the comparative example construction area.

【0043】[0043]

【発明の効果】本発明に係わるプラットホーム融雪床
は、熱媒体を包被して横方向に広がる金属製網体がセメ
ント系硬化材中に埋設されているため、熱媒体からの熱
流は金属製網体とセメント系硬化体によって分散化し、
加温面積を広げるため埋設密度を低減できる効果があ
る。さらに強度の高いセメント系硬化体中に熱媒体を埋
設してあるため埋設後床面下層中における熱媒体の安定
保持、及び基盤工事を簡略化し、あるいは埋設層を浅く
出来る等施工期間の短縮、工事費を低減する効果があ
る。またプレキャスト加温パネルは、工事現地では、床
面予定レベル下に配列接続するのみで足りるため、現地
作業が単純簡易化し、施工ミス等が起こらず格別な技能
を要しない利点がある。
In the snow melting floor of the platform according to the present invention, since the metal net which covers the heat medium and spreads in the lateral direction is embedded in the cement hardening material, the heat flow from the heat medium is made of metal. Dispersed by mesh and cement-based hardened material,
There is an effect that the burying density can be reduced because the heating area is increased. In addition, since the heat medium is buried in a high-strength cement-based hardened body, the heat medium is stably maintained in the lower layer of the floor after embedding, and the foundation work is simplified, or the buried layer can be made shallower, shortening the construction period, This has the effect of reducing construction costs. In addition, at the construction site, the precast heating panels need only be arranged and connected below the planned floor surface level, so that there is an advantage that the on-site work is simplified and the construction error does not occur and no special skills are required.

【0044】本発明の実施は、上記の効果により積雪地
あるいは寒冷凍結地における鉄道等のプラットホームの
積雪予防、融雪あるいは凍結床面の解氷に有益であり、
実用上の利便は大きい。
The effect of the present invention is useful for preventing snow on platforms such as railways in snowy areas or cold and frozen areas, for melting snow or for melting ice on frozen floors, due to the effects described above.
Practical convenience is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1のプラットホームの床面下に金属製網
体2を包被した熱媒体を埋設した状態を一部露出して示
した斜視図である。
FIG. 1 is a perspective view showing a partially exposed state in which a heat medium enclosing a metal net 2 is buried under a floor of a platform according to a first embodiment.

【図2】図1のA−A’矢視方向縦断面図である。FIG. 2 is a longitudinal sectional view taken in the direction of arrows A-A 'in FIG.

【図3】図1のB−B’矢視方向縦断面図である。FIG. 3 is a vertical sectional view taken in the direction of arrows B-B 'in FIG.

【図4】実施例4および5のプレキャスト加温用パネル
の床面下埋設縦断面図(図5のD−D’矢視)である。
FIG. 4 is a vertical sectional view of a precast heating panel of Examples 4 and 5 buried under a floor surface (as viewed in the direction of arrows DD ′ in FIG. 5).

【図5】同上加温用パネルの床面下埋設縦断面図(図4
のC−C’矢視)である。
FIG. 5 is a longitudinal sectional view of the heating panel buried below the floor surface (FIG. 4).
C-C 'arrow).

【図6】熱媒体に金属製網体を包被する方式の説明図で
ある。
FIG. 6 is an explanatory diagram of a method of enclosing a metal net in a heat medium.

【符号の説明】[Explanation of symbols]

1・・・・・プラットホーム床 2・・・・・熱媒体 3・・・・・金属製網体 4・・・・・断熱層 5・・・・・硬化面 6・・・・・床タイル 7・・・・・ガイドタイル 8・・・・・プレキャストパネル T・・・・・プラットホーム構造体 S・・・・・プラットホーム先端面 P・・・・・測温位置(熱媒体埋設直上) Q・・・・・同 上 (熱媒体埋設列間) 1 ... Platform floor 2 ... Heat medium 3 ... Metal mesh 4 ... Heat insulation layer 5 ... Hardened surface 6 ... Floor tile 7: Guide tile 8: Precast panel T: Platform structure S: Platform tip surface P: Temperature measurement position (immediately above heat medium embedded) Q .... Same as above (between heat carrier buried rows)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 管状または索状の熱媒体を埋設したセメ
ント系硬化体からなるプラットホームの融雪床におい
て、前記管状または索状の熱媒体を包被して横方向に広
がる金属製網体を張設したことを特徴とするプラットホ
ームの融雪床。
1. On a snow melting floor of a platform made of a cement-based hardened material in which a tubular or cord-shaped heat medium is embedded, a metal net body that covers the tubular or cord-shaped heat medium and extends in the lateral direction is stretched. The snow melting floor of the platform, which has been set up.
【請求項2】 上記セメント系硬化体が、パネル状であ
り、これを床面または床面下に配列し、熱媒体端子を接
続し埋設してなることを特徴とする請求項1記載のプラ
ットホームの融雪床。
2. The platform according to claim 1, wherein the hardened cementitious body is in the form of a panel, which is arranged on a floor surface or below the floor surface, and connected and embedded with a heat medium terminal. Snow floor.
【請求項3】 上記セメント系硬化体が、カチオン系ク
ロロプレンゴムエマルジョンを混和したものからなるこ
とを特徴とする請求項1ないし請求項2記載のプラット
ホームの融雪床。
3. The snow melting floor of a platform according to claim 1, wherein the hardened cementitious body is made of a mixture of a cationic chloroprene rubber emulsion.
【請求項4】 上記管状または索状の熱媒体がアルミニ
ウム箔または板の面上に面一に蛇行配列され、該熱媒体
上下の少なくとも一方の面上に金属製網体を包被してな
ることを特徴とする請求項1ないし3記載のプラットホ
ームの融雪床。
4. The tubular or cord-like heat medium is arranged in a meandering manner on the surface of an aluminum foil or a plate, and at least one of the upper and lower surfaces of the heat medium is covered with a metal net. 4. The snow-melting floor of a platform according to claim 1, wherein:
【請求項5】 上記金属製網体が遠赤外線放射性表面を
有するものからなることを特徴とする請求項1ないし請
求項4記載のプラットホームの融雪床。
5. The snow melting floor of a platform according to claim 1, wherein said metal net has a far-infrared radiation surface.
【請求項6】 上記金属製網体がMn0.3〜4.3w
t%、必要に応じてMg0.05〜6.0wt%を含有
し、残部がAlと不純物よりなり、かつ粒径0.01〜
0.3μmのAl−Mn系金属間化合物の析出物が分散
してなる組織を有する合金からなり、その表面に陽極酸
化被膜を施してなることを特徴とする請求項5記載のプ
ラットホームの融雪床。 【0001】
6. The metal net has a Mn of 0.3 to 4.3 w.
t%, if necessary, 0.05 to 6.0 wt% of Mg, the balance being Al and impurities, and a particle size of 0.01 to
6. The snow-melting floor of a platform according to claim 5, comprising an alloy having a structure in which a precipitate of an Al-Mn-based intermetallic compound having a thickness of 0.3 [mu] m is dispersed, and having an anodic oxide film formed on a surface thereof. . [0001]
JP6200297A 1997-02-28 1997-02-28 Snow melting floor for platform Pending JPH10237837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6200297A JPH10237837A (en) 1997-02-28 1997-02-28 Snow melting floor for platform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6200297A JPH10237837A (en) 1997-02-28 1997-02-28 Snow melting floor for platform

Publications (1)

Publication Number Publication Date
JPH10237837A true JPH10237837A (en) 1998-09-08

Family

ID=13187524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6200297A Pending JPH10237837A (en) 1997-02-28 1997-02-28 Snow melting floor for platform

Country Status (1)

Country Link
JP (1) JPH10237837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990008355A1 (en) * 1989-01-17 1990-07-26 Fujitsu Limited Microprocessor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990008355A1 (en) * 1989-01-17 1990-07-26 Fujitsu Limited Microprocessor

Similar Documents

Publication Publication Date Title
US20180087782A1 (en) Heating panels and systems and methods of using same
US5593744A (en) Hollow reinforcing members and composites containing the same
KR101446736B1 (en) Heating cable and snow melting and heating system using this
CN106702850A (en) Anti-freezing road capable of preventing road surface from being frozen and construction method of anti-freezing road
JPH10237837A (en) Snow melting floor for platform
JPH09256314A (en) Ground surface layer warming panel, and structure for burying the panel underground
JP2903055B2 (en) Ground layer heating member and its underground buried structure
JP4111616B2 (en) Concrete slab
CN210712428U (en) Directional heat conduction bridge deck pavement structure
KR102356397B1 (en) Heating cable for snow-melting, snowmelting system using the same
JP2007239326A (en) Snow-melting material and its manufacturing method
JP3113843B2 (en) Road construction method with embedded heating element
JPS5938402A (en) Electric heating type civil enginearing heater structure
RU2473759C1 (en) Device for heating of roof elements
KR20110113793A (en) Snow melting apparatus on paved road and mehod for paving road
JP4052630B2 (en) Snow melting roof structure
JP4129438B2 (en) Buried heating element and asphalt pavement structure
CN208844389U (en) A kind of snow melt car lane
KR20090024037A (en) Heating equipment for freezing prevention
JP3692355B2 (en) Snow melting equipment
RU2806392C2 (en) Anti-icing device
JP2005042341A (en) Road heating block
CN107165045A (en) It is a kind of suitable for extremely frigid zones can automatic electric ice-melt bridge drain guard system
JPH093811A (en) Pavement structural body
JP3015132U (en) Road heating structure