JPH10236861A - Hydraulic hardened body and hydraulic composition - Google Patents

Hydraulic hardened body and hydraulic composition

Info

Publication number
JPH10236861A
JPH10236861A JP4315397A JP4315397A JPH10236861A JP H10236861 A JPH10236861 A JP H10236861A JP 4315397 A JP4315397 A JP 4315397A JP 4315397 A JP4315397 A JP 4315397A JP H10236861 A JPH10236861 A JP H10236861A
Authority
JP
Japan
Prior art keywords
fiber
hydraulic
bending stress
cracks
hardened body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4315397A
Other languages
Japanese (ja)
Inventor
Tadashi Saito
忠 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP4315397A priority Critical patent/JPH10236861A/en
Publication of JPH10236861A publication Critical patent/JPH10236861A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00129Extrudable mixtures

Abstract

PROBLEM TO BE SOLVED: To obtain a hydraulic hardened body which not only hardly produces first cracks but shows high stress even when first racks are produced by using a fiber having proper adhesion property to the matrix and having high tensile strength thereby reinforcing a hydraulic hardened body. SOLUTION: This hydraulic hardened body is reinforced by a fiber and has such properties that when the body shows Amm deflection under Bkgf bending stress in the production of first cracks, the body shows 5×Amm deflection under >=0.8×Bkgf bending stress. In order to suppress production of cracks and to obtain a high bridging effect after production of cracks, a fiber having proper adhesion property to the matrix and tensile strength is preferably used. Considering these, a polyvinyl alcohol fiber having 5 to 500 denier is preferably used. It is preferable that the fiber has about 3 to 10mm length and about 50 to 300 aspect ratio, and that the fiber is compounded by 0.2 to 10wt.% in the hydraulic hardened body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、繊維により補強さ
れた水硬性硬化体及び水硬性組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic cured product and a hydraulic composition reinforced by fibers.

【0002】[0002]

【従来の技術】セメント等の水硬性物質は、土木建築関
連分野でセメントペ−スト、セメント、モルタル、セメ
ントコンクリ−ト等として広く使用され、重要な建築資
材として位置付けられている。これらは、圧縮強度は高
いものの引張強力が低く脆弱性である。一般には、この
脆弱性をカバ−し、引張強度を補強するため鉄筋、鉄骨
や、特殊な場合には石綿を混入することが知られてお
り、近年では有機繊維等の繊維状物を補強材とすること
も検討されている。
2. Description of the Related Art Hydraulic materials such as cement are widely used as cement paste, cement, mortar, cement concrete and the like in the field of civil engineering and construction, and are regarded as important building materials. These have high compressive strength but low tensile strength and are brittle. In general, it is known that reinforcing agents, steel frames, and in special cases, asbestos are mixed in to cover the brittleness and reinforce the tensile strength. In recent years, fibrous materials such as organic fibers are used as reinforcing materials. It is also being considered.

【0003】水硬性物質を繊維状物で補強する場合、マ
トリックスと繊維状物双方の体積分率とそれらのモジュ
ラスの積の和でその硬化物の強度が予測される(複合
則)。かかる複合則は、補強材とマトリックスの界面結
合力が十分に存在することが前提となっている。以上の
ことから、これまで補強繊維の強度を高め、かつ水硬性
物質との接着性を向上させることが検討されている。
When a hydraulic material is reinforced with a fibrous material, the strength of the cured product is predicted by the sum of the product of the volume fraction of both the matrix and the fibrous material and their modulus (composite rule). Such a composite rule is based on the premise that a sufficient interfacial bonding force between the reinforcing material and the matrix exists. From the above, it has been studied to increase the strength of the reinforcing fiber and to improve the adhesiveness with a hydraulic substance.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、補強材
とマトリックスとの接着力が高すぎると、外部応力を受
けて硬化物にクラック等が生じた場合、補強材がマトリ
ックスにかたく固定されているため、クラック部分に存
在してブリッジングしている単繊維(ブリッジングファ
イバ−)の局所のみに応力が集中し、繊維内部において
応力の分散ができないため、ブリッジングしていない他
の繊維への応力分散がなされる前にブリッジングファイ
バ−が切断してしまうこととなる。その結果、クラック
の発生と単繊維の各個破断が連鎖反応的に生じ、ただ1
カ所クラックが発生することによってカタストロフィッ
クな破断が生じることがモデル上予想される。
However, if the adhesive strength between the reinforcing material and the matrix is too high, the reinforcing material is firmly fixed to the matrix when a crack or the like occurs in the cured product due to external stress. The stress is concentrated only at the local portion of the bridging single fiber (bridging fiber) existing in the crack portion, and the stress cannot be dispersed inside the fiber. The bridging fiber will break before dispersion takes place. As a result, cracks and individual fiber breaks occur in a chain reaction, and only one
It is expected from the model that catastrophic breakage is caused by the occurrence of cracks at several places.

【0005】このような状況下では、高モジュラスで接
着性の高い補強繊維はクラックの発生に対する抑止力と
はなるものの、クラック発生後の補強効果は不十分とな
ると思われる。本発明は以上の問題に鑑み、これまで補
強繊維の強度及びマトリックスとの接着性を高めてクラ
ックの発生を抑制する(第1クラックが発生する応力を
高める)ことのみが検討されていたが、優れた水硬性硬
化体を得るためには第1クラックが発生しにくいのみで
なく、第1クラック発生後においても高い応力を奏する
ことが必要であることを見いだしたものである。
[0005] Under such circumstances, although the reinforcing fibers having high modulus and high adhesiveness have a deterrent effect on the occurrence of cracks, the reinforcing effect after the occurrence of cracks is considered to be insufficient. In view of the above problems, the present invention has been studied only to increase the strength of the reinforcing fiber and the adhesion to the matrix to suppress the generation of cracks (to increase the stress at which the first cracks are generated). It has been found that not only the first crack is hardly generated but also a high stress is required after the first crack is generated in order to obtain an excellent hydraulically cured product.

【0006】[0006]

【問題を解決するための手段】本発明は、繊維により補
強された水硬性硬化体であって、第1クラック発生時の
たわみをAmm、このときの曲げ応力をBkgfとする
とき、5×Ammのたわみを呈するときの曲げ応力が
0.8×Bkgf以上である水硬性硬化体および、繊維
を含有する水硬性組成物であって、該水硬性組成物を用
いて供試用水硬性硬化体を製造し、該供試体の第1クラ
ック発生時のたわみをAmm、このときの曲げ応力をB
kgfとするとき、5×Ammのたわみを呈するときの
曲げ応力が0.8×Bkgf以上である水硬性組成物に
関する。
SUMMARY OF THE INVENTION The present invention relates to a hydraulically hardened material reinforced with fibers, wherein the deflection when the first crack occurs is Amm, and the bending stress at this time is Bkgf, 5 × Amm A hydraulically cured product having a bending stress of 0.8 × Bkgf or more when exhibiting flexure, and a hydraulic composition containing fibers. The specimen was manufactured to have a deflection of Amm when the first crack occurred, and a bending stress at this time of B.
The present invention relates to a hydraulic composition having a bending stress of 0.8 × Bkgf or more when exhibiting a deflection of 5 × Amm when the weight is set to kgf.

【0007】[0007]

【発明の実施の形態】第1クラック発生時のたわみをA
mm、このときの曲げ応力をBkgfとするとき、5×
Ammのたわみを呈するときの曲げ応力が0.8×Bk
gf以上必要であり、好ましくは1.0×Bkgf以
上、より好ましくは1.3×Bkgf以上である。かか
る硬化体は最初にクラックが発生した後も十分なブリッ
ジング効果が得られているため、急激に曲げ荷重が小さ
くならず、高いタフネスを呈している。5×Ammのた
わみを呈するときの曲げ応力が小さい場合には、繊維と
マトリックスの接着力が高すぎて繊維の自由度が小さい
ため、連鎖的に繊維が破断して十分な補強効果が得られ
ない。また逆に繊維とマトリックスの接着性が小さすぎ
ても第1クラック発生後に十分なブリッジング効果が得
られず「素抜け」が生じて曲げ応力が小さくなる。
BEST MODE FOR CARRYING OUT THE INVENTION The deflection at the time of the first crack occurrence is represented by A
mm, when the bending stress at this time is Bkgf, 5 ×
Bending stress when exhibiting Amm deflection is 0.8 × Bk
gf or more is required, preferably 1.0 × Bkgf or more, more preferably 1.3 × Bkgf or more. Since such a cured body has a sufficient bridging effect even after the first crack is generated, the bending load is not rapidly reduced, and the cured body exhibits high toughness. If the bending stress when exhibiting 5 × Amm deflection is small, the adhesion between the fiber and the matrix is too high and the degree of freedom of the fiber is small, so that the fiber breaks in a chain and a sufficient reinforcing effect is obtained. Absent. Conversely, if the adhesiveness between the fiber and the matrix is too small, a sufficient bridging effect cannot be obtained after the first crack occurs, resulting in "absence" and reduced bending stress.

【0008】具体的な曲げ応力の値は硬化体の形態、大
きさ、組成等により変化するが、硬化体と同様の水硬性
組成物を用いる以外は実施例と同様の方法で供与体を製
造した場合、第1クラック発生時の応力が10kgf以
上、特に15kgf以上であるものが好ましく、5×A
mmのたわみを呈するときの曲げ応力が10kgf以
上、特に20kgf以上であるものが好ましい。なお本
発明でいう第1クラック発生時とは、たわみ−応力曲線
を作成したとき、たわみと応力が実質的に比例関係を有
し、かつ最大のたわみを示すときをいう。硬化体のたわ
み−曲げ応力曲線を作成できない場合等には、硬化体と
同様の水硬性組成物を用いる以外は実施例と同様に供与
体を作成し、かかる供与体について測定すればよい。
The specific value of the bending stress varies depending on the form, size, composition, etc. of the cured product, but the donor is produced in the same manner as in the example except that the same hydraulic composition as the cured product is used. In this case, the stress at the time of occurrence of the first crack is preferably 10 kgf or more, particularly preferably 15 kgf or more, and 5 × A
A bending stress of 10 mmf or more, especially 20 kgf or more when exhibiting a deflection of mm is preferable. Note that, when the first crack occurs in the present invention, when a deflection-stress curve is created, the deflection and the stress have a substantially proportional relationship and show the maximum deflection. In the case where a flexure-bending stress curve of the cured product cannot be prepared, a donor is prepared in the same manner as in the example except that the same hydraulic composition as that of the cured product is used, and the donor may be measured.

【0009】また、タフネス指数I20は15以上、特に
20以上であるのが好ましい。本発明にいうタフネス指
数とは、まず硬化体のたわみ−曲げ応力曲線を作成し、
第1クラック発生時のたわみをAとするとき、たわみ0
から10.5×Aに相当するたわみまでのたわみ−曲げ
応力曲線の下部の面積(=タフネス)を、たわみ0から
たわみA間のたわみ−曲げ応力曲線の下部の面積(=タ
フネス)で除した値である。タフネス指数が大きければ
それだけ外部の応力に対して強く、第1クラック発生以
降も高い応力を有しているといえる。硬化体のタフネス
指数が測定できない場合には、硬化体と同様の硬化組成
物を用いる以外は実施例と同様の供試体を製造して測定
すればよい。
Further, the toughness index I 20 is preferably 15 or more, particularly preferably 20 or more. The toughness index referred to in the present invention is to first create a flexure-bending stress curve of the cured body,
When the deflection at the time of the first crack occurrence is A, the deflection is 0.
The area under the flexure-bending stress curve (= toughness) corresponding to 10.5 × A from (1) is divided by the area under the flexure-bending stress curve between flexure 0 and flexure A (= toughness). Value. It can be said that the larger the toughness index, the stronger the external stress, and the higher the stress after the first crack. When the toughness index of the cured product cannot be measured, a specimen similar to the example may be manufactured and measured except that the same cured composition as the cured product is used.

【0010】繊維状物を補強材とする場合、先に説明し
た複合則にあるように、繊維状物のモジュラスが高いほ
ど優れた補強効果が得られるが、かかる複合則が適用さ
れるのは、マトリックスが曲げ応力によって極めて小さ
い歪みを形成する領域(比例限界強度LOP:Limit of
Proportionality)までである。従って、高モジュラス
の繊維を用いることによってLOPを高める(クラック
を発生しにくくする)ことは期待できるものの、マトリ
ックスと繊維の接着力が高過ぎるとマトリックスの歪み
が大きくなってクラックが生じた後の強度向上及び強度
維持(タフネス向上)の点では十分な効果が得られな
い。
When a fibrous material is used as a reinforcing material, the higher the modulus of the fibrous material, the better the reinforcing effect can be obtained, as described in the composite rule described above. However, such a composite rule is applied. A region where the matrix forms an extremely small strain due to bending stress (proportional limit strength LOP: Limit of
Proportionality). Therefore, although it is expected that the LOP is increased (the crack is hardly generated) by using the fiber having a high modulus, if the adhesive force between the matrix and the fiber is too high, the strain of the matrix is increased and the crack after the crack is generated. Sufficient effects cannot be obtained in terms of improving strength and maintaining strength (improving toughness).

【0011】クラックの発生を抑制し、かつクラック発
生後において高いブリッジング効果を得るためには、繊
維とマトリックスが適度の接着性を有しているのみでな
く、高い引張強度を有してるのが好ましい。具体的に
は、4g/d以上、さらに5g/d以上が好ましい。
In order to suppress the occurrence of cracks and to obtain a high bridging effect after the occurrence of cracks, the fibers and the matrix must have not only an appropriate adhesive property but also a high tensile strength. Is preferred. Specifically, it is preferably at least 4 g / d, more preferably at least 5 g / d.

【0012】本発明の効果を得るためには、クラック発
生後にブリッジングファイバ−が繊維内部及び他の多く
の繊維に応力分散されるように補強材が適度の自由度を
有し、かつ十分なブリッジング効果を発揮するためにマ
トリックスに対して適度の結合力を有する必要がある。
適度の接着力を有する繊維は特に限定されないが、たと
えばPVA系繊維のように水硬性物質との接着性の高い
繊維と用いる場合、細繊度の繊維を用いると接着力が大
きくなるため比較的太径の繊維を使用するのが好まし
く、たとえば3d以上10000d以下、特に4d以上
500d以下、さらに5d以上200d以下のものが好
適に使用できる。繊維長は3〜10mm程度のものが好
ましく、アスペクト比は50〜300程度が好ましい。
なおアスペクト比は、繊維長を繊維横断面の面積と同面
積を有する円の直径で除したものである。
In order to obtain the effect of the present invention, the reinforcing material has an appropriate degree of freedom and a sufficient degree of freedom so that the bridging fiber is stress-dispersed inside the fiber and many other fibers after the occurrence of a crack. In order to exhibit a bridging effect, it is necessary to have an appropriate bonding force to the matrix.
The fiber having an appropriate adhesive strength is not particularly limited. For example, when a fiber having a high adhesiveness to a hydraulic substance such as a PVA-based fiber is used, if a fiber having a fineness is used, the adhesive strength is increased, so that a relatively thick fiber is used. It is preferable to use fibers having a diameter of, for example, 3d or more and 10000d or less, particularly 4d or more and 500d or less, and more preferably 5d or more and 200d or less. The fiber length is preferably about 3 to 10 mm, and the aspect ratio is preferably about 50 to 300.
The aspect ratio is obtained by dividing the fiber length by the diameter of a circle having the same area as the area of the fiber cross section.

【0013】またエポキシ系樹脂、ポリオレフィン系樹
脂、弗素化合物等の疎水性物質を付与またはコ−テイン
グしてマトリックスに対する親和性をコントロ−ルして
もよい。逆に、ポリエチレン繊維、ポリプロピレン繊維
等のように水硬性硬化物との親和性が低い繊維を用いる
場合には、細繊度でアスペクト比の高いものを使用した
り、低温プラズマ処理により繊維表面の活性化や、エッ
チングなどでマトリックスへの親和性を高めたり、イン
デント加工(押し付け加工)やフック状に折り曲げる、
ウエ−ブを付ける等の加工を行う方法が挙げられる。
A hydrophobic substance such as an epoxy resin, a polyolefin resin or a fluorine compound may be provided or coated to control the affinity for the matrix. Conversely, when using a fiber having a low affinity with the hydraulically hardened material such as polyethylene fiber or polypropylene fiber, use a fiber having a fineness and a high aspect ratio, or activate the fiber surface by low-temperature plasma treatment. To increase the affinity to the matrix by forming, etching, etc., indenting (pressing) or bending into a hook shape,
There is a method of performing processing such as attaching a web.

【0014】使用する繊維状物の種類は特に限定されな
いが、鋼繊維等の金属繊維は、発錆性を有するとともに
比重が7〜8と大きく軽量化の点で問題があることか
ら、不錆性で比重が0.9〜1.5と小さい有機繊維を
補強材とすることが好ましい。たとえば、高重合度ポリ
エチレン繊維、アラミド繊維、炭素繊維、ポリアリレ−
ト繊維等の高強力高弾性率繊維が挙げられるが、これら
は水への親和性が乏しくマトリックスとの適度な接着性
を付与することが困難であるため、水への親和性が高く
強力及び耐候性、耐アルカリ性が高く、コスト的にも有
利なポリビニルアルコ−ル系繊維やアクリル繊維、特に
ポリビニルアルコ−ル系繊維を用いるのが好ましい。本
発明の特徴は、これまで高いほど好ましいとしたマトリ
ックスとの「接着性」を高めすぎないことにあり、PV
A系繊維を用いた場合に本発明の特徴が一層発揮され
る。
The type of fibrous material to be used is not particularly limited. However, metal fibers such as steel fibers have rust-generating properties and have a specific gravity of 7 to 8 which is problematic in terms of weight reduction. It is preferable to use an organic fiber having a specific gravity as low as 0.9 to 1.5 as a reinforcing material. For example, high polymerization degree polyethylene fiber, aramid fiber, carbon fiber, polyarylene
High-strength and high-modulus fibers such as fiber, but these have low affinity for water and are difficult to impart appropriate adhesion to the matrix, and therefore have high affinity for water and high strength. It is preferable to use a polyvinyl alcohol-based fiber or an acrylic fiber, which has high weather resistance and alkali resistance and is advantageous in terms of cost, particularly a polyvinyl alcohol-based fiber. A feature of the present invention is that the "adhesion" with the matrix, which has been set to be higher as high as before, is not excessively enhanced,
The characteristics of the present invention are further exhibited when the A-based fiber is used.

【0015】本発明で使用される水硬性物質は特に限定
されないが、セメントが好ましく、ポルトランドセメン
トがその代表的なものであるが、高炉セメント、フライ
アッシュセメント、アルミナセメント等も用いることが
できるし、これらを混合して用いてもよい。さらにこれ
らのセメントと砂や砂利を混合したモルタルやコンクリ
−トとして用いることができる。その他の水硬性物質と
しては、セッコウ、セッコウスラグ、マグネシア等が挙
げられる。また、マイカ、セピオライト、アタパルジャ
イト、パルプ等の助剤を用いることができる。水硬性成
形物の製法も特に限定されず、たとえば薄板の場合には
長網式抄造法やハチェック法が採用できる。モルタルや
コンクリ−ト等の場合、現場成形法として、打設、吹付
成形、注入成形法等を採用してもよく、工場成形法とし
て、振動成形、遠心力成形、押出成形法等が挙げられ
る。水硬性硬化物における繊維状物の配合率は0.2〜
10重量%、特に1〜5重量%とするのが好ましい。
The hydraulic material used in the present invention is not particularly limited, but cement is preferred. Portland cement is a typical example. Blast furnace cement, fly ash cement, alumina cement and the like can be used. May be used in combination. Further, it can be used as a mortar or concrete in which these cements are mixed with sand or gravel. Other hydraulic materials include gypsum, gypsum slag, magnesia and the like. In addition, auxiliary agents such as mica, sepiolite, attapulgite, and pulp can be used. The method for producing the hydraulic molded product is also not particularly limited. For example, in the case of a thin plate, a long-mesh papermaking method or a Hatschek method can be employed. In the case of mortar, concrete, or the like, casting, spray molding, injection molding, or the like may be employed as the on-site molding method, and vibration molding, centrifugal force molding, extrusion molding, or the like may be used as the factory molding method. . The compounding ratio of the fibrous material in the hydraulic cured product is 0.2 to
It is preferably 10% by weight, particularly preferably 1 to 5% by weight.

【0016】曲げ試験後のクラックの発生状況は、引張
側になる面に多くのクラック(マルチクラック)が発生
するものが好ましい。ブリッジングファイバ−の局所に
応力が集中して補強材が破断したり、また繊維強度や摩
擦抵抗が低すぎてブリッジング効果が不十分であるとモ
ノクラックしか発生しない。従って、モノクラックしか
発生しないものは、硬化物のタフネスが不十分であるこ
とになる。すなわち、硬化物に曲げ応力が加わった場
合、クラックが発生してもブリッジングしている繊維内
に応力が分散し、ブリッジングファイバ−に切断が生じ
る前にクラック巾が広がって、他の多くの繊維もブリッ
ジング効果を発揮して応力が分散されることとなり、か
つ補強材の強度及び摩擦抵抗が高いためクラック発生後
も優れた補強効果が得られる。1本の繊維強力には限界
があるが、変形歪量に分布をもった多数の積分的強力の
向上で、第1クラックの進展が妨げられ、マトリックス
の他の部分にクラックが発生してマルチクラックが生じ
ることとなる。このような破壊経過をたどるものは、硬
化物のタフネスが優れたものとなる。
The state of occurrence of cracks after the bending test is preferably such that many cracks (multi-cracks) occur on the surface on the tensile side. When the stress concentrates locally on the bridging fiber and the reinforcing material breaks, or when the bridging effect is insufficient because the fiber strength or frictional resistance is too low, only a monocrack occurs. Therefore, if only a monocrack is generated, the cured product has insufficient toughness. That is, when a bending stress is applied to the cured product, even if a crack occurs, the stress is dispersed in the bridging fiber, and the crack width is widened before the bridging fiber is cut. The fibers also exhibit a bridging effect to disperse the stress, and the reinforcing material has high strength and frictional resistance, so that an excellent reinforcing effect can be obtained even after cracks occur. Although there is a limit to the strength of a single fiber, the improvement of a large number of integral strengths having a distribution of deformation strain hinders the progress of the first crack, and cracks are generated in other parts of the matrix. Cracks will occur. Those that follow such a destruction process have excellent toughness of the cured product.

【0017】本発明の水硬性硬化物は、スレ−ト板、パ
イプ類、壁パネル、床パネル、屋根板、間仕切り、道路
舗装、トンネルライニング、法面保護、コンクリ−ト向
上製品等のすべてのセメント、コンクリ−ト成形物や2
次製品に用いることができる。
The hydraulically cured product of the present invention can be used for all products such as slates, pipes, wall panels, floor panels, shingles, partitions, road pavements, tunnel linings, slope protection, and concrete improvement products. Cement, concrete moldings and 2
It can be used for the following products.

【0018】[0018]

【実施例】以下に実施例により本発明を説明するが、本
実施例により何等限定されるものではない。 [見掛け繊度 Dr]得られた繊維状物の一定試長の重
量を測定して見掛け繊度をn=5以上で測定し、平均値
を求めた。なお、一定糸長の重量測定により繊度が測定
できないもの(細デニ−ル繊維)はバイブロスコ−プに
より測定した。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. [Apparent fineness Dr] The obtained fibrous material was measured for a certain test length, and the apparent fineness was measured at n = 5 or more, and the average value was obtained. In addition, the fineness could not be measured by measuring the weight of a certain yarn length (fine denier fiber) was measured by a vibroscope.

【0019】[繊維強度g/d]温度20℃、相対湿度
65%の雰囲気下で、試長20cm(バイブロスコ−プ
により繊度を測定したものは試長2cm)、引張速度1
0cm/分でインストロン試験機により測定、モジュラ
スはその伸張/荷重曲線により求めた。なおサンプルの
繊維長が短かいものは、試長を把持長として測定するこ
ととする。
[Fiber strength g / d] In an atmosphere of a temperature of 20 ° C. and a relative humidity of 65%, a test length of 20 cm (a fineness measured by a vibroscope is 2 cm), and a tensile speed of 1
The modulus was measured by an Instron tester at 0 cm / min, and the modulus was determined from its extension / load curve. When the fiber length of the sample is short, the sample length is measured as the grip length.

【0020】[ひずみ−曲げ応力曲線]試験に使用した
硬化物の配合は以下の通りである。なお、具体的には普
通ポルトランドセメント(秩父小野田製 普通ポルトラ
ンドセメント)、シリカ(啓和濾材製シリカ#400
0:比表面積4274cm2 /g)、増粘剤(信越シリ
コン製 ハイメトロ−ズ90SH30000)、高性能
減水剤(花王製 マイテイ150)を使用した。 セメント 100 重量部 シリカ 100 重量部 増粘剤 1.5重量部 PVA繊維 6.4重量部 水 40 重量部 高性能減水剤 2 重量部
[Strain-Bending Stress Curve] The composition of the cured product used in the test is as follows. Specifically, ordinary Portland cement (Normal Portland cement manufactured by Chichibu Onoda) and silica (Silica # 400 manufactured by Keiwa Filter Materials)
0: specific surface area 4274 cm 2 / g), a thickener (Shin-Etsu Silicon High Metroz 90SH30000), and a high-performance water reducing agent (Kao Mighty 150). Cement 100 parts by weight Silica 100 parts by weight Thickener 1.5 parts by weight PVA fiber 6.4 parts by weight Water 40 parts by weight High performance water reducing agent 2 parts by weight

【0021】これらを、ミキサ−(DALTON製方能
混合撹拌機)を用いて混合、混練し、これを押出機(本
田鉄工製真空押出機HDE−3)を用いて成形して複合
体を得た。乾燥防止用シ−トを貼って室温で24時間置
いた後に28日間の水中養生を行った。幅25mm,厚
さ5mmの供与体を作成し、島津製オ−トグラフを用い
てスパン長50mmの3点曲げ試験を行い、たわみ−曲
げ応力曲線を作成した。たわみと曲げ応力が実質的に比
例関係にあって、最大のたわみを有する点を第1クラッ
ク発生時としてこのときのたわみAと応力Bを曲線から
読み取り、また5×Aのたわみを呈するときの応力も同
様に読み取った。
These are mixed and kneaded by using a mixer (DALTON's functional mixing stirrer), and the mixture is molded by using an extruder (Honda Iron Co., Ltd. vacuum extruder HDE-3) to obtain a composite. Was. After a sheet for preventing drying was stuck and left at room temperature for 24 hours, curing was carried out in water for 28 days. A donor having a width of 25 mm and a thickness of 5 mm was prepared and subjected to a three-point bending test with a span length of 50 mm using an autograph manufactured by Shimadzu to produce a bending-bending stress curve. When the deflection and the bending stress are substantially proportional to each other and the point having the maximum deflection is defined as the first crack occurrence, the deflection A and the stress B at this time are read from the curve, and when the deflection of 5 × A is exhibited. The stress was read as well.

【0022】[タフネス指数I20]まず硬化体のたわみ
−曲げ応力曲線を作成し、第1クラック発生時のたわみ
をAとするとき、たわみ0から10.5×Aに相当する
たわみまでのたわみ−曲げ応力曲線の下部の面積(=タ
フネス)を、たわみ0からたわみA間のたわみ−曲げ応
力曲線の下部の面積(=タフネス)で除して求めた。 [クラック状態]曲げ試験におけるマトリックス破壊
時、引張側になる面のクラック発生状況を観察し、モノ
クラック(モノ)かマルチクラック(マルチ)かを肉眼
判定した。
[Toughness index I 20 ] First, a flexure-bending stress curve of the cured body is created, and when the flexure at the time of the first crack occurrence is A, the flexure is a flexure corresponding to a flexure from 0 to 10.5 × A. -The area under the bending stress curve (= toughness) was determined by dividing the area between the deflection 0 and the deflection A-the area under the bending stress curve (= toughness). [Crack state] At the time of matrix breakage in the bending test, the state of occurrence of cracks on the surface on the tensile side was observed, and it was visually judged whether it was a monocrack (mono) or a multicrack (multi).

【0023】[実施例1〜4,比較例1〜3]様々なP
VA系繊維(株式会社クラレ製)を用いて硬化体を製造
した。結果を表1に示す。また、各実施例および比較例
により得られた水硬性硬化体のたわみ−曲げ応力曲線を
図1〜7に示す。
Examples 1-4, Comparative Examples 1-3 Various P
A cured product was produced using a VA-based fiber (manufactured by Kuraray Co., Ltd.). Table 1 shows the results. In addition, FIGS. 1 to 7 show flexure-bending stress curves of the hydraulic hardened bodies obtained in the respective Examples and Comparative Examples.

【0024】[0024]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1により得られる水硬性硬化体のたわ
み−曲げ応力曲線を示した図。
FIG. 1 is a diagram showing a flexure-bending stress curve of a hydraulic cured product obtained in Example 1.

【図2】 実施例2により得られる水硬性硬化体のたわ
み−曲げ応力曲線を示した図。
FIG. 2 is a view showing a flexure-bending stress curve of a hydraulic cured product obtained in Example 2.

【図3】 実施例3により得られる水硬性硬化体のたわ
み−曲げ応力曲線を示した図。
FIG. 3 is a view showing a flexure-bending stress curve of a hydraulic cured product obtained in Example 3.

【図4】 実施例4により得られる水硬性硬化体のたわ
み−曲げ応力曲線を示した図。
FIG. 4 is a view showing a flexure-bending stress curve of a hydraulic cured product obtained in Example 4.

【図5】 比較例1により得られる水硬性硬化体のたわ
み−曲げ応力曲線を示した図。
FIG. 5 is a diagram showing a flexure-bending stress curve of a hydraulic cured product obtained in Comparative Example 1.

【図6】 比較例2により得られる水硬性硬化体のたわ
み−曲げ応力曲線を示した図。
FIG. 6 is a diagram showing a flexure-bending stress curve of a hydraulic cured product obtained in Comparative Example 2.

【図7】 比較例3により得られる水硬性硬化体のたわ
み−曲げ応力曲線を示した図。
FIG. 7 is a view showing a flexure-bending stress curve of a hydraulic cured product obtained in Comparative Example 3.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 繊維により補強された水硬性硬化体であ
って、第1クラック発生時のたわみをAmm、このとき
の曲げ応力をBkgfとするとき、5×Ammのたわみ
を呈するときの曲げ応力が0.8×Bkgf以上である
水硬性硬化体。
1. A hydraulically hardened body reinforced by fibers, wherein a bending when a first crack occurs is Amm, and a bending stress at this time is Bkgf, and a bending stress when exhibiting a bending of 5 × Amm. Is 0.8 × Bkgf or more.
【請求項2】 繊維を含有する水硬性組成物であって、
該水硬性組成物を用いて供試用水硬性硬化体を製造し、
該供試体の第1クラック発生時のたわみをAmm、この
ときの曲げ応力をBkgfとするとき、5×Ammのた
わみを呈するときの曲げ応力が0.8×Bkgf以上で
ある水硬性組成物。
2. A hydraulic composition containing fibers, comprising:
Using the hydraulic composition to produce a test hydraulic cured product,
Hydraulic composition wherein the bending stress at the time of the first crack generation of the specimen is Amm and the bending stress at this time is Bkgf, and the bending stress at the time of exhibiting 5 × Amm bending is 0.8 × Bkgf or more.
【請求項3】 5〜500dのポリビニルアルコ−ル系
繊維により補強された水硬性硬化体であって、第1クラ
ック発生時のたわみをAmm、このときの曲げ応力をB
kgfとするとき、5×Ammのたわみを呈するときの
曲げ応力が0.8×Bkgf以上である水硬性硬化体。
3. A hydraulically hardened body reinforced with 5 to 500 d of polyvinyl alcohol-based fiber, wherein the deflection when the first crack occurs is A mm, and the bending stress at this time is B.
A hydraulically hardened body having a bending stress of 0.8 × Bkgf or more when exhibiting a deflection of 5 × Amm, where kgf.
JP4315397A 1997-02-27 1997-02-27 Hydraulic hardened body and hydraulic composition Pending JPH10236861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4315397A JPH10236861A (en) 1997-02-27 1997-02-27 Hydraulic hardened body and hydraulic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4315397A JPH10236861A (en) 1997-02-27 1997-02-27 Hydraulic hardened body and hydraulic composition

Publications (1)

Publication Number Publication Date
JPH10236861A true JPH10236861A (en) 1998-09-08

Family

ID=12655914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4315397A Pending JPH10236861A (en) 1997-02-27 1997-02-27 Hydraulic hardened body and hydraulic composition

Country Status (1)

Country Link
JP (1) JPH10236861A (en)

Similar Documents

Publication Publication Date Title
Klyuev et al. To the question of fiber reinforcement of concrete
CN107285700A (en) A kind of superhigh tenacity concrete and preparation method thereof
CN103964795A (en) Reinforced cement based composite material with fiber woven mesh and preparation method of reinforced cement based composite material
EP0271825A2 (en) Hydraulic cementitious compositions reinforced with fibers containing polymerized polyacrylonitrile
EP2440504B1 (en) Cementitious mortar and method for improved reinforcement of building structures
KR101304548B1 (en) High-ductile fiber cementless alkali-activated mortar composites and mortar product fabricated thereby
JPH02267146A (en) Concrete composition reinforced with high-strength fiber, product using the composition and production of the product
Tichá et al. Fiber reinforced concrete: Residual flexure strength enhancement using surface modified fibers
JPH10236861A (en) Hydraulic hardened body and hydraulic composition
JP2002167250A (en) Partially fused reinforcing fiber for concrete, method of producing the same and fiber-reinforced concrete product
JP2003128452A (en) Short-fiber reinforced extrusive cement
Latifi et al. Mechanical and Durability Performance of Macro Polypropylene Fibrous Concrete
JP2001316157A (en) Hydraulic composition and fiber-reinforced cured body using it
JP2004315251A (en) High strength/high toughness cement compound material and method of manufacturing the same
JP3720471B2 (en) Reinforcing material for hydraulic substance and hydraulic cured product
JPS60151263A (en) Reinforced polymer cementitious material
JP2660143B2 (en) Carbon fiber and cement composite for cement reinforcement
JPH08325050A (en) Carbon fiber reinforced cement molded body, its production and formed body reinforced with the same
JPH10249844A (en) Fiber-reinforced polymer cement composition and its forming method
Mindess Fibrous concrete reinforcement
JP2003327462A (en) Hydraulic kneaded molding
JPS62226850A (en) Not yet solidified composition
JP2002020152A (en) Production process of fiber-reinforced concrete material
JP3902097B2 (en) Joining member for formwork
ITRM940273A1 (en) COMPOSITIONS FOR REPAIRS

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041220

A131 Notification of reasons for refusal

Effective date: 20050201

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050628