JPH10235671A - Polyolefin resin multi-layer foam and its production - Google Patents

Polyolefin resin multi-layer foam and its production

Info

Publication number
JPH10235671A
JPH10235671A JP9042161A JP4216197A JPH10235671A JP H10235671 A JPH10235671 A JP H10235671A JP 9042161 A JP9042161 A JP 9042161A JP 4216197 A JP4216197 A JP 4216197A JP H10235671 A JPH10235671 A JP H10235671A
Authority
JP
Japan
Prior art keywords
foam
layer
polyolefin resin
foamed
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9042161A
Other languages
Japanese (ja)
Inventor
Takeshi Harunari
武 春成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP9042161A priority Critical patent/JPH10235671A/en
Publication of JPH10235671A publication Critical patent/JPH10235671A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polyolefin resin multi-layer foam that has a wide cushioning width and which can be used for cushion materials, wrapping and packaging materials, cases, mats or the like, various types of covers and footgears. SOLUTION: This foam comprises a foam layer B in which a mean value P of the degree of orientation of a cell for individual cells ranges 2.5 to 4.5, the individual cells being expressed by a cell diameter in a direction normal relative to upper and lower surface of the foam that are parallel to each other/a cell diameter in a direction normal to a thickness direction of the foam, and a foam layer A having a mean degree of orientation of a cell Q which is smaller than P in a range of 0.5 to 3.5. In this case, the foam layer A is laminated on one or both sides of the foam layer B so as to be integral therewith with no interface interposed between the foam layers A and B.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、幅広い緩衝幅を有
し、緩衝材、包装梱包材、ケース、マット類、各種カバ
ー、履き物などに利用できるポリオレフィン樹脂多層発
泡体及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyolefin resin multilayer foam having a wide cushioning width and usable for cushioning materials, packaging materials, cases, mats, various covers, footwear and the like, and a method for producing the same. is there.

【0002】[0002]

【従来の技術】強度、緩衝性、断熱性、軽量性といった
発泡体の特徴は、通常発泡体の原料、比重、厚み、気泡
独立性などの因子により左右されることが知られ、これ
ら因子は発泡体の特徴が目的とする用途に見合ったもの
となるよう調整されることが一般的である。ところで、
このような発泡体の特徴を複合化し、用途幅を拡大させ
るために、異なった特徴を有する発泡体を積層一体化さ
せる手法が従来より一般に広く採用されている。上記多
層発泡体の特徴としては、いずれも各発泡層に含まれる
気泡形状が球状のものであり、またその積層方法として
は接着剤による張り合わせや加熱融着、あるいは特開平
6−344362号公報に見られるように予め基材の設
置された成形型内に発泡性原料を供給して発泡させる方
法などが知られる。また、同量の発泡剤が混入された種
類の発泡性材料を成形型内に重ねて設置した後、いずれ
の発泡材料をも同様の膨張率で発泡させて多層発泡成形
体を得る方法も従来より知られる。
2. Description of the Related Art It is known that characteristics of a foam such as strength, cushioning property, heat insulation and light weight are usually influenced by factors such as raw material, specific gravity, thickness and cell independence of the foam. It is common for the characteristics of the foam to be tailored to suit the intended use. by the way,
In order to combine the characteristics of such foams and expand the range of applications, a method of laminating and integrating foams having different characteristics has been generally and widely employed. As a feature of the above-mentioned multilayer foam, the bubble shape contained in each foamed layer is spherical, and the laminating method is as follows: lamination with an adhesive, heat fusion, or JP-A-6-344362. As can be seen, there is known a method in which a foamable raw material is supplied into a molding die in which a base material is previously set and foamed. Also, a method of obtaining a multi-layer foamed molded body by stacking foamable materials of the same type mixed with the same amount of a foaming agent in a mold, and then foaming any foamed material at a similar expansion coefficient, has been used. Better known.

【0003】[0003]

【発明が解決しようとする課題】前述するように従来の
多層発泡体はそれぞれの発泡層に含まれる気泡が球状の
ものであり、発泡体の特徴多様化には限界があった。ま
た、従来の積層方法では積層界面が存在することとな
り、界面結合強度が不十分であれば使用時に剥離してし
まうといった問題があるため、これら界面結合強度を考
慮して材料選定がなされなくてはならない。また、従来
の方法によれば積層工程が余分に必要となることから、
生産性低下、加工コストアップといった問題が生じる。
さらに、前記2種類の発泡性材料を同様の膨張率によっ
て発泡させる方法では、得られる発泡体の各々の発泡層
の間での特徴差に乏しく、場合によっては接合界面での
気泡荒れを生ずる結果ともなる。
As described above, in the conventional multilayer foam, the bubbles contained in each foam layer are spherical, and there has been a limit in diversifying the characteristics of the foam. In addition, in the conventional laminating method, there is a problem that a lamination interface exists, and if the interfacial bonding strength is insufficient, there is a problem that the laminating interface is peeled off at the time of use. Therefore, a material is not selected in consideration of the interfacial bonding strength. Not be. Also, according to the conventional method, an extra lamination step is required,
Problems such as reduced productivity and increased processing costs occur.
Further, in the method of foaming the two types of foamable materials at the same expansion rate, the characteristic difference between the foamed layers of the obtained foam is poor, and in some cases, the foam may be rough at the joint interface. Also.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記問題解
決のため鋭意検討した結果、特定の気泡配向度を有する
発泡層を組み合わせて積層一体化させることにより、衝
撃吸収範囲の幅広化、あるいは歪みの度合いによる圧縮
特性の変化といった発泡体の特徴多様化が実現できるこ
とを見い出し、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventor has found that by combining and laminating foam layers having a specific degree of cell orientation, the impact absorption range can be widened, Alternatively, the present inventors have found that diversification of foam characteristics such as a change in compression characteristics depending on the degree of distortion can be realized, and have completed the present invention.

【0005】すなわち、本発明は「互いに平行な発泡体
の上面及び下面に対して直交する方向(以下、発泡体の
厚み方向という)の気泡径/発泡体の厚み方向に直交す
る方向の気泡径」により表される個々の気泡の気泡配向
度の平均値(以下、平均気泡配向度という)Pが2.5
〜4.5の範囲にある発泡層(B)、及びPよりも0.
5〜3.5の範囲において小さい平均気泡配向度Qを有
する発泡層(A)からなるポリオレフィン樹脂多層発泡
体であるとともに、発泡層(A)が発泡層(B)の片
面、あるいは両面に積層一体化され、さらに発泡層
(A)と発泡層(B)との界面に接合面が無いことを特
徴とするポリオレフィン樹脂多層発泡体及びその製造方
法に関するものである。本発泡体を製造する方法として
は、対向する型開き可能な成形型内において加圧密封さ
れた状態にある発泡ガスを含むシート状ポリオレフィン
樹脂を成形型内の容積増加により減圧して発泡させつつ
厚み方向のみに膨張させる発泡体の製造方法において、
発泡層(A)が発泡層(B)の片面に積層一体化される
場合、シート片面の温度が別のシート片面の温度よりも
低い条件にて、また発泡層(A)が発泡層(B)の両面
に積層一体化される場合、シート表層温度がシート内層
温度よりも低い条件にて、上記発泡が開始されることを
特徴とする。
[0005] That is, the present invention relates to "cell diameter in a direction orthogonal to the upper surface and lower surface of a foam parallel to each other (hereinafter referred to as the thickness direction of the foam) / cell diameter in a direction orthogonal to the thickness direction of the foam." The average value (hereinafter referred to as the average bubble orientation degree) P of the individual bubble orientation degrees of the individual bubbles represented by
Foamed layer (B) in the range of ~ 4.5, and 0.
A polyolefin resin multilayer foam comprising a foamed layer (A) having a small average cell orientation degree Q in the range of 5 to 3.5, and the foamed layer (A) is laminated on one side or both sides of the foamed layer (B) The present invention relates to a polyolefin resin multilayer foam which is integrated and has no bonding surface at the interface between the foam layer (A) and the foam layer (B), and a method for producing the same. As a method for producing the present foam, a sheet-like polyolefin resin containing a foaming gas in a pressure-sealed state in an opposing mold openable mold is foamed under reduced pressure by increasing the volume in the mold. In the method for producing a foam expanded only in the thickness direction,
When the foamed layer (A) is laminated and integrated on one side of the foamed layer (B), under the condition that the temperature of one side of the sheet is lower than the temperature of another side of the sheet, the foamed layer (A) is In the case where the sheet is laminated and integrated on both sides, the above-mentioned foaming is started under the condition that the sheet surface layer temperature is lower than the sheet inner layer temperature.

【0006】[0006]

【発明の実施の形態】以下、本発明について詳述する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0007】本発明における発泡体は発泡層(A)、及
び発泡層(B)により構成されており、発泡層(A)に
含まれる気泡の配向度は発泡層(B)に比較して低いこ
とを特徴とする。発泡層(B)に含まれる平均気泡配向
度Pは2.5〜4.5の範囲にあり、2.5に満たない
場合は気泡配向による特徴発現効果に乏しくなるばかり
か、発泡層(A)との差別化が容易でなくなり、また
4.5を超える場合には気泡を隔てる気泡壁が極端に縦
長の不安定な構造となるため、発泡体の強度不足が生じ
るとともに、これら発泡層の回復性が著しく低下してし
まう。また、発泡層(A)の平均気泡配向度Qは発泡層
(B)の平均気泡配向度Pに対して0.5〜3.5の範
囲において小さく、(P−Q)<0.5の場合には、発
泡層(B)との差別化が容易でなくなり、多層化の意味
に乏しくなる。また、(P−Q)>3.5の場合にはQ
<1となることから、発泡層(A)の気泡は発泡体の厚
み方向に直交する方向に縦長の形状を示すこととなる
が、このような気泡は樹脂を厚み方向のみ発泡させる本
発明の製造方法によっては得られないのである。
The foam of the present invention comprises a foam layer (A) and a foam layer (B), and the degree of orientation of the bubbles contained in the foam layer (A) is lower than that of the foam layer (B). It is characterized by the following. The average cell orientation degree P contained in the foamed layer (B) is in the range of 2.5 to 4.5, and when it is less than 2.5, not only the effect of the cell orientation to exhibit characteristics is poor, but also the foamed layer (A) ) Is not easy, and if it exceeds 4.5, the cell wall separating the cells has an extremely elongated and unstable structure, so that the strength of the foam is insufficient and the foam layer has Recoverability is significantly reduced. Further, the average cell orientation degree Q of the foamed layer (A) is smaller than the average cell orientation degree P of the foamed layer (B) in the range of 0.5 to 3.5, and (P−Q) <0.5. In this case, differentiation from the foamed layer (B) is not easy, and the meaning of multilayering is poor. When (P−Q)> 3.5, Q
Since <1, the cells in the foamed layer (A) have a vertically elongated shape in a direction perpendicular to the thickness direction of the foam. However, such bubbles are used in the present invention to foam the resin only in the thickness direction. It cannot be obtained depending on the manufacturing method.

【0008】また、本発明における多層発泡体中に占め
る発泡層(A)、及び発泡層(B)の厚みは特に限定さ
れるものではないが、各々の発泡層の特徴を発泡体にバ
ランス良く反映させるため、発泡層(A)の厚みをX、
ポリオレフィン樹脂多層発泡体の厚みをZとした場合、
下式の関係が成り立つことが好ましい。
The thickness of the foamed layer (A) and the foamed layer (B) occupied in the multilayer foam in the present invention is not particularly limited, but the characteristics of each foamed layer are well balanced with the foam. In order to reflect, the thickness of the foamed layer (A) is X,
When the thickness of the polyolefin resin multilayer foam is Z,
It is preferable that the following relationship be satisfied.

【0009】X=R×Z (R:0.05〜0.4) 上式中Pが0.05に満たない場合は発泡層(A)の厚
みが乏しくなり、多層化による機能発現効果が得られ難
く、0.4を超える場合には発泡層(A)の特徴が発泡
体の機能を支配するようになる。
X = R × Z (R: 0.05-0.4) When P is less than 0.05 in the above formula, the thickness of the foamed layer (A) becomes poor, and the function manifesting effect by multi-layering becomes poor. When it is difficult to obtain and exceeds 0.4, the characteristics of the foamed layer (A) dominate the function of the foam.

【0010】また本発明において用いられるポリオレフ
ィン樹脂として、例えばプロピレン単独重合体、エチレ
ン−プロピレンランダム共重合体、エチレン−プロピレ
ンブロック共重合体、プロピレン−α−オレフィン共重
合体、低密度ポリエチレン、中・高密度ポリエチレン、
ポリブテン、エチレン−α−オレフィン共重合体、エチ
レン−酢酸ビニル共重合体、あるいはこれら重合体に混
合可能なゴム又は熱可塑性エラストマーを混入した混合
物を挙げることができる。上記α−オレフィンとして
は、1−ブテン、1−ペンテン、1−ヘキセン、4−メ
チル−1−ペンテン、1−オクテン等があり、また上記
混合可能なゴムとしては天然ゴム、ポリブタジエンゴ
ム、ポリイソプレンゴム、スチレン−ブタジエン共重合
体ゴム、ニトリルゴム、クロロプレンゴム、エチレン−
プロピレン共重合体ゴム等が挙げられ、さらに上記熱可
塑性エラストマーとしては一般に市販されるものが使用
でき、特にスチレン系熱可塑性エラストマー、ポリオレ
フィン系熱可塑性エラストマーが好ましく用いられる。
The polyolefin resin used in the present invention includes, for example, propylene homopolymer, ethylene-propylene random copolymer, ethylene-propylene block copolymer, propylene-α-olefin copolymer, low-density polyethylene, High density polyethylene,
Examples thereof include polybutene, ethylene-α-olefin copolymer, ethylene-vinyl acetate copolymer, and a mixture obtained by mixing a rubber or a thermoplastic elastomer which can be mixed with these polymers. Examples of the α-olefin include 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, and the like. Examples of the mixable rubber include natural rubber, polybutadiene rubber, and polyisoprene. Rubber, styrene-butadiene copolymer rubber, nitrile rubber, chloroprene rubber, ethylene-
Propylene copolymer rubber and the like can be mentioned, and as the above-mentioned thermoplastic elastomer, generally available ones can be used, and particularly, styrene-based thermoplastic elastomers and polyolefin-based thermoplastic elastomers are preferably used.

【0011】また、本発明の目的を損なわない範囲にお
いて、上記ポリオレフィン樹脂にはフィラーを混合させ
ることができ、そのフィラーとしては、タルク、シリ
カ、カーボンブラック、金属粉、ガラス繊維、カーボン
繊維、水酸化マグネシウム、三酸化アンチモン、ほう酸
亜鉛、臭素化合物、セラミック、ゼオライト等が使用で
きる。
A filler may be mixed with the polyolefin resin as long as the object of the present invention is not impaired. The filler may be talc, silica, carbon black, metal powder, glass fiber, carbon fiber, water, or the like. Magnesium oxide, antimony trioxide, zinc borate, bromine compounds, ceramics, zeolites and the like can be used.

【0012】本発明におけるポリオレフィン樹脂多層発
泡体の製造方法において、対向する型開き可能な成形型
としては、一対の凹凸形状金型、あるいは平板/凹形状
金型などが挙げられる。なお、これら成形型はその内側
面が樹脂膨張方向、即ち発泡体の厚みの増す方向に平行
なものであり、発泡ガスを含有する樹脂が上記成形型の
内側面に沿って厚み方向に膨張できるよう工夫されたも
のが好ましく用いられる。上記加圧密封及び減圧を行う
ための方法としては、接触面にシーリングパッキン等が
具備された一対の成形型を用い、該成形型を摺動させて
型締めを行うことにより加圧密封させ、また型開きを行
うことにより減圧させるような方法、または接触して密
閉された一対の成形型内にてピストンが摺動することに
より加圧密封及び減圧を行わせる方法、あるいは、あら
かじめ密閉された成形型内に発泡ガスを含む樹脂を例え
ば射出成形法のような方法により高圧で供給して樹脂を
加圧密封させ、型開きにより減圧させる方法、さらに
は、密閉されていない成形型内に発泡ガスを含む樹脂を
高圧で充填させた後にパッキンあるいはガス注入などを
用いて樹脂を密封させるような方法などを挙げることが
できる。
In the method for producing a polyolefin resin multilayer foam of the present invention, a pair of concave and convex molds, a flat / concave mold, and the like can be cited as the molds that can be opened facing each other. In these molding dies, the inner surface is parallel to the resin expansion direction, that is, the direction in which the thickness of the foam increases, and the resin containing the foaming gas can expand in the thickness direction along the inner surface of the molding die. A device devised as described above is preferably used. As a method for performing the pressure sealing and depressurization, using a pair of molds provided with a sealing packing or the like on the contact surface, the mold is slid to perform pressure sealing by performing mold clamping, Also, a method of reducing the pressure by opening the mold, a method of performing pressure sealing and decompression by sliding the piston in a pair of molding dies that are closed by contact, or a method of sealing in advance A method of supplying a resin containing a foaming gas into a molding die at a high pressure by a method such as an injection molding method to seal the resin under pressure, and reducing the pressure by opening the mold, and further, foaming in an unsealed molding die A method in which a resin containing gas is filled at a high pressure and the resin is sealed using packing or gas injection, or the like can be used.

【0013】本発明における発泡ガスとは、加熱によっ
て分解し得る公知の化学発泡剤、例えばアゾジカルボン
アミド、N,N’−ジニトロソペンタメチレンテトラミ
ン、4,4’−オキシスビス(ベンゼンスルホニルヒド
ラジド)、炭酸水素ナトリウムなどを加熱により分解さ
せることにより生じる二酸化炭素、チッソ、一酸化炭
素、アンモニア、水蒸気などのガスを挙げることができ
る。
The foaming gas in the present invention is a known chemical blowing agent which can be decomposed by heating, for example, azodicarbonamide, N, N'-dinitrosopentamethylenetetramine, 4,4'-oxysbis (benzenesulfonylhydrazide), Gases such as carbon dioxide, nitrogen, carbon monoxide, ammonia, and water vapor generated by decomposing sodium hydrogen carbonate and the like by heating can be given.

【0014】また、本発明におけるポリオレフィン樹脂
多層発泡体の製造方法においては、発泡時における樹脂
の粘弾性を気泡の配向に適したものとさせる必要があ
り、その目的から公知の化学架橋剤を用いて樹脂を架橋
させ、発泡時における気泡の良好な伸び、及び破泡を抑
制するに足る弾性を付与することが好ましい。このよう
な化学架橋剤として、例えばベンゾイルパーオキサイ
ド、2,5−ジメチル−2,5−ジ−t−ブチルパーオ
キシヘキサン、2,5−ジメチル−2,5−ジ−t−ブ
チルパーオキシヘキシン−3、ジクミルパーオキサイ
ド、t−ブチルヒドロキシパーオキサイドなどの有機過
酸化物、あるいは1,9−ノナンビススルフォンアザイ
ド等のアジド化合物、またはビニルトリエトキシシラン
等のシラン化合物等が利用できる。また、この場合、架
橋を促進させる架橋助剤として、例えばトリアリルシア
ヌレート、トリアリルイソシアヌレート、トリメチロー
ルプロパントリメタクリレート、1,2−ポリブタジエ
ン、ジビニルベンゼン等を併用することができる。ま
た、上記化学架橋剤を用いる方法以外に、α線、β線、
γ線、中性子線、電子線、X線等の電離性放射線をポリ
オレフィン樹脂に照射して架橋を行わせる方法も使用す
ることができ、この場合上記架橋を促進させる架橋助剤
を併用することが好ましい。
Further, in the method for producing a polyolefin resin multilayer foam according to the present invention, it is necessary to make the viscoelasticity of the resin at the time of foaming suitable for the orientation of bubbles, and for that purpose, a known chemical crosslinking agent is used. Preferably, the resin is cross-linked to impart good elongation of bubbles at the time of foaming and elasticity sufficient to suppress foam breakage. Examples of such a chemical crosslinking agent include benzoyl peroxide, 2,5-dimethyl-2,5-di-t-butylperoxyhexane, and 2,5-dimethyl-2,5-di-t-butylperoxyhexane. Organic peroxides such as toxin-3, dicumyl peroxide and t-butylhydroxy peroxide, azide compounds such as 1,9-nonanebissulfonazide, and silane compounds such as vinyltriethoxysilane can be used. . In this case, as a crosslinking aid for promoting crosslinking, for example, triallyl cyanurate, triallyl isocyanurate, trimethylolpropane trimethacrylate, 1,2-polybutadiene, divinylbenzene and the like can be used in combination. Further, in addition to the method using the chemical crosslinking agent, α ray, β ray,
γ-rays, neutron rays, electron beams, a method of irradiating a polyolefin resin with ionizing radiation such as X-rays to perform crosslinking can also be used, and in this case, a crosslinking aid that promotes the crosslinking may be used in combination. preferable.

【0015】本発明における製造方法では、前記加圧状
態にあり、発泡ガスを含んだシート状熱可塑性樹脂を成
形型内の容積増加により減圧して発泡させるわけである
が、この際シート表層温度がシート内層温度よりも低い
か、あるいはシート片面の温度が別のシート片面の温度
よりも低い条件下にて上記発泡が開始されることによ
り、気泡配向度の異なる発泡層が形成されるのである。
そして、本発明における多層発泡体は気泡配向度の小さ
い発泡層が気泡配向度の大きい発泡層の片面、あるいは
両面に積層一体化されているものであり、図1のような
発泡層1が発泡層2の片面に積層されている発泡体を得
るためにはシート片面の温度が別の片面の温度よりも低
い条件にて発泡が開始される方法が用いられ、図2に示
すような発泡層1が発泡層2の両面に積層されている発
泡体を得るためには、シート表層温度がシート内層温度
よりも低い条件にて発泡が開始される方法が用いられ
る。
In the manufacturing method according to the present invention, the sheet-like thermoplastic resin containing the foaming gas is foamed by reducing the pressure by increasing the volume in the mold. Is lower than the inner layer temperature of the sheet, or the above-mentioned foaming is started under the condition that the temperature of one side of the sheet is lower than the temperature of another side of the sheet, whereby a foamed layer having a different degree of cell orientation is formed. .
The multilayer foam according to the present invention has a foam layer having a low degree of cell orientation laminated and integrated on one or both sides of a foam layer having a high degree of cell orientation. In order to obtain a foam laminated on one side of the layer 2, a method is used in which foaming is started under the condition that the temperature of one side of the sheet is lower than the temperature of the other side, and a foamed layer as shown in FIG. In order to obtain a foam in which 1 is laminated on both sides of the foam layer 2, a method is used in which foaming is started under the condition that the sheet surface layer temperature is lower than the sheet inner layer temperature.

【0016】加圧密封状態にある発泡ガスを含むシート
状溶融樹脂は通常成形型、あるいはピストンなどと接触
しており、これら成形型、あるいはピストンにおける溶
融樹脂に接する両面の間に温度差を生じさせれば、発泡
直前のシート両面の間に温度差が発生するのである。そ
して、この温度差によりシート内にて粘度差が生じるこ
ととなる。ところで、気泡はその成長過程において樹脂
を押し広げながら膨張することが知られ、より粘度の高
い樹脂層においては粘度の低い樹脂層に比べ気泡の厚み
方向への成長が妨げられるのである。そして、粘度の高
い樹脂層の発泡した層は粘度の低い樹脂層の発泡した層
に比較して気泡の配向度が低く抑制され、その結果、図
1に示す発泡体が得られるのである。
A sheet-like molten resin containing a foaming gas in a pressure-sealed state is usually in contact with a molding die or a piston, and a temperature difference is generated between both surfaces of the molding die or the piston in contact with the molten resin. If so, a temperature difference occurs between the two surfaces of the sheet immediately before foaming. The temperature difference causes a viscosity difference in the sheet. By the way, it is known that bubbles expand while expanding the resin in the growth process, and the growth of the bubbles in the thickness direction of the resin layer having a higher viscosity is hindered as compared with the resin layer having a lower viscosity. The foamed layer of the high-viscosity resin layer suppresses the degree of orientation of the bubbles to be lower than that of the foamed layer of the low-viscosity resin layer. As a result, the foam shown in FIG. 1 is obtained.

【0017】一方、図2に示す発泡体を得るために、上
述するような発泡直前にシート内に温度差を生じさせる
方法としては、通常発泡温度よりも高い温度条件下にあ
る発泡ガスを含む溶融樹脂を、気泡が配向するのに適し
た発泡温度以下にまで急速に冷却する方法などが用いら
れる。成形型、あるいはピストンにおける溶融樹脂に接
する面いずれをも急速に冷却すれば、シート状溶融樹脂
の成形型あるいはピストンとの接触面付近は追随して冷
却されることになる。しかし、金属などに比べて熱伝導
率の低い樹脂は上記急速冷却により図3中冷却追随層
3、及び冷却不追随層4を生じることとなり、その結
果、より冷却された樹脂層3は樹脂層4に比べて粘度が
増大することとなる。
On the other hand, in order to obtain the foam shown in FIG. 2, as a method for generating a temperature difference in the sheet immediately before foaming as described above, a foaming gas which is usually under a temperature condition higher than the foaming temperature is used. A method in which the molten resin is rapidly cooled to a foaming temperature or lower suitable for orienting the bubbles is used. If both the surface of the molding die and the piston in contact with the molten resin are rapidly cooled, the vicinity of the surface of the sheet-shaped molten resin that comes into contact with the molding die or the piston is cooled accordingly. However, a resin having a lower thermal conductivity than a metal or the like results in the cooling following layer 3 and the cooling non-following layer 4 in FIG. 3 due to the rapid cooling, and as a result, the more cooled resin layer 3 becomes a resin layer. As compared with No. 4, the viscosity is increased.

【0018】そして、気泡が配向するに適した発泡温度
以下にまで冷却された樹脂層3では、気泡が充分に配向
して成長することができず、一方樹脂層4においては冷
却が不十分であることから、気泡が配向するに適した温
度条件下にて発泡を行うことができるのである。
In the resin layer 3 cooled to a temperature below the foaming temperature suitable for the orientation of the bubbles, the bubbles cannot be oriented and grown sufficiently, while the resin layer 4 is not sufficiently cooled. For this reason, foaming can be performed under a temperature condition suitable for orienting the bubbles.

【0019】上述する溶融樹脂に接触する成形型等の面
温度間での温度差は、前記成形型内にあるシート状ポリ
オレフィン樹脂の厚み、ポリオレフィン樹脂の種類、目
的とする発泡体の平均気泡配向度等により選択される
が、通常6〜15℃の範囲が好ましい。6℃に満たない
場合には発泡層間の平均気泡配向度差が小さく、多層化
の効果が充分に得られず、15℃を超えるような場合に
は低温側、高温側いずれかの成形面に接触する樹脂の粘
度が発泡に適する温度範囲を逸脱していまい発泡性に乏
しい発泡層が得られる結果となる。
The temperature difference between the surface temperatures of the mold and the like in contact with the molten resin depends on the thickness of the sheet-like polyolefin resin in the mold, the type of the polyolefin resin, and the average cell orientation of the intended foam. Although it is selected depending on the degree and the like, usually the range of 6 to 15 ° C. is preferable. When the temperature is less than 6 ° C, the average cell orientation difference between the foamed layers is small, and the effect of multilayering is not sufficiently obtained. The viscosity of the contacting resin may be out of the temperature range suitable for foaming, resulting in a foamed layer having poor foamability.

【0020】上述するような発泡直前に樹脂層間に存在
する温度差は厳密には測定し得ないが、恐らく5℃〜1
0℃程度の範囲にあると推察される。
Although the temperature difference existing between the resin layers immediately before foaming as described above cannot be measured exactly, it is probably 5 ° C. to 1 ° C.
It is assumed that the temperature is in the range of about 0 ° C.

【0021】(作用)本発明におけるポリオレフィン樹
脂多層発泡体を構成する発泡層に含まれる気泡構造はハ
ニカム構造に類似する構造を形成するものである。ハニ
カム構造体は特開平−68679号公報に記載されるよ
うにセルが厚み方向に縦長の構造をとるものであり、強
度、あるいは大きな衝撃の吸収などにおいて優れた特性
を示すことが知られている。一方球状、あるいは球状に
近いセルを有する構造体は柔軟性、回復性、あるいは小
さな衝撃の緩和等に優れた特性を示すことが知られる。
そして、本発明における多層発泡体はこれら2種類の構
造体を組み合わせて積層一体化させた発泡体に例えるこ
とができ、上記2種類の構造体の機能を合わせ持つこと
が可能である。
(Function) The cell structure contained in the foam layer constituting the polyolefin resin multilayer foam in the present invention forms a structure similar to a honeycomb structure. As described in JP-A-68679, a honeycomb structure has a structure in which cells have a vertically long structure in a thickness direction, and is known to exhibit excellent characteristics in strength, absorption of a large impact, and the like. . On the other hand, it is known that a structure having spherical or nearly spherical cells exhibits excellent properties such as flexibility, recoverability, and relaxation of small impact.
The multilayer foam in the present invention can be compared to a foam in which these two types of structures are combined and laminated and integrated, and can have the functions of the above two types of structures.

【0022】本発明における多層発泡体が有効に作用す
る具体的なケースとして、例えば気泡配向度の小さい発
泡層を表層、気泡の配向度の大きい発泡層を内層とした
緩衝材として活用することにより、幅広い衝撃に対応で
きるといったことが挙げられる。従来の球状気泡を含有
する軟質発泡体は比較的小さな衝撃を弾性的に変形して
吸収するが、大きな衝撃に対しては容易に変形限界を超
えてしまい、緩衝性能を示さなくなるといった問題があ
る。また、ハニカム構造体は大きな衝撃をその座屈後の
塑性的変形により効果的に吸収するが、小さな衝撃に対
しては緩衝性能を発揮しにくく、変形後の回復性にも乏
しいという問題がある。ところが本発明の発泡体を活用
した上記ケースの場合には、小さな衝撃を表層が有効に
緩衝し、表層の変形限界を超えるような大きな衝撃に対
して内層のハニカム発泡層が有効に吸収するのである。
また、表層は回復性に優れるため繰り返し使用でき、柔
軟であるため触感にも優れるといった効果が得られる。
さらに、内層にハニカム発泡層を用いることにより発泡
体の重量当たりの強度が向上し、発泡体の低比重化及び
厚み低減化が可能となるのである。
As a specific case where the multilayer foam of the present invention works effectively, for example, a foam layer having a small degree of cell orientation is used as a surface layer, and a foam layer having a large degree of cell orientation is used as a buffer material having an inner layer. And that it can respond to a wide range of impacts. The conventional soft foam containing spherical cells elastically deforms and absorbs relatively small impacts, but has a problem that it easily exceeds the deformation limit for large impacts and does not exhibit buffering performance. . In addition, the honeycomb structure effectively absorbs a large impact due to plastic deformation after buckling, but has a problem that it is difficult to exhibit a buffering performance against a small impact and has poor recovery after deformation. . However, in the case using the foam of the present invention, the surface layer effectively buffers small impact, and the inner honeycomb foam layer effectively absorbs a large impact exceeding the deformation limit of the surface layer. is there.
In addition, the surface layer is excellent in recoverability, so that it can be used repeatedly, and since it is flexible, the surface layer has an excellent touch feeling.
Further, by using the honeycomb foam layer as the inner layer, the strength per weight of the foam is improved, and the specific gravity and the thickness of the foam can be reduced.

【0023】また、本発明における多層発泡体の製造方
法によれば、多層化させるために異なった原料を用いる
必要もなく、また成形後の張り合わせ、あるいは加熱融
着といった工程が省略でき、さらには接着界面が存在し
ないことにより、界面の接着強度を考慮しなくてもよ
く、剥離の問題も解消されるのである。
Further, according to the method for producing a multilayer foam of the present invention, it is not necessary to use different raw materials for forming a multilayer, and it is possible to omit steps such as lamination after molding or heat fusion. The absence of an adhesive interface eliminates the need for consideration of the adhesive strength of the interface and eliminates the problem of peeling.

【0024】[0024]

【実施例】以下、実施例及び比較例によって本発明を更
に詳しく説明するが、本発明はこれら実施例に限定され
るものではない。
The present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0025】「厚み方向の気泡径/厚み方向に直交する
方向の気泡径」にて表される個々の気泡の気泡配向度の
平均値P及びQは以下に示す方法により求めた。
The average values P and Q of the degree of bubble orientation of each bubble, which is represented by “the bubble diameter in the thickness direction / the bubble diameter in the direction perpendicular to the thickness direction”, were determined by the following method.

【0026】発泡体を発泡体の厚み方向及び厚み方向に
直交する方向に切断した断面のうち任意の部分を光学顕
微鏡(ニコン株式会社製、製品名SMZ−2T)によっ
て10倍に拡大して光学顕微鏡に接続された写真撮影装
置によって写真撮影する。そして、本写真中に観察され
る全気泡について発泡体の厚み方向での気泡径と発泡体
の厚み方向に垂直な方向での気泡径を測定して得られた
数値から上記気泡配向度を算出し、これら気泡配向度を
平均化してP及びQを求めた。
Any part of the cross section of the foam cut in the thickness direction of the foam and a direction orthogonal to the thickness direction is magnified 10 times by an optical microscope (manufactured by Nikon Corporation, product name: SMZ-2T) to obtain an optical image. A photograph is taken by a photographing device connected to the microscope. Then, for all the cells observed in this photograph, the above cell orientation degree is calculated from the numerical values obtained by measuring the cell diameter in the thickness direction of the foam and the cell diameter in the direction perpendicular to the thickness direction of the foam for all the cells observed in this photograph. Then, P and Q were determined by averaging these bubble orientation degrees.

【0027】また表1中のRは発泡層(A)の厚みを発
泡体の厚みによって除すことにより求めた。
R in Table 1 was determined by dividing the thickness of the foamed layer (A) by the thickness of the foam.

【0028】実施例1 エチレン−酢酸ビニル共重合体(東ソー株式会社製、商
品名ウルトラセン540)100重量部に対して、発泡
剤としてアゾジカルボンアミド(永和化成工業株式会社
製、商品名ビニホールAC#1C)5重量部、架橋剤と
して2,5−ジメチル−2,5−ジ−t−ブチルパーオ
キシヘキシン−3(日本油脂株式会社製、商品名パーヘ
キシン25B−40)0.35重量部とからなる混合物
を調整した。該混合物を50mmφ押出機により溶融混
練するとともに、Tダイを通して未発泡シートとして押
し出した。
Example 1 Azodicarbonamide (manufactured by Eiwa Kasei Kogyo Co., Ltd., trade name: Vinylol AC) was used as a foaming agent with respect to 100 parts by weight of an ethylene-vinyl acetate copolymer (trade name: Ultracene 540, manufactured by Tosoh Corporation). # 1C) 5 parts by weight, 0.35 parts by weight of 2,5-dimethyl-2,5-di-t-butylperoxyhexine-3 (manufactured by NOF CORPORATION, trade name Perhexine 25B-40) as a crosslinking agent Was prepared. The mixture was melt-kneaded with a 50 mmφ extruder and extruded as an unfoamed sheet through a T-die.

【0029】次いで、該未発泡シートをシリコンゴムパ
ッキンにより接触部がシールできるよう工夫された対向
する型開き可能な成形型内に挿入して密封した。そし
て、成形型内にてピストンを摺動させ、上記未発泡シー
トを成形型とピストンとの間にて20kgf/cm2
圧力で加圧した。そして、該成形型及びピストンにおけ
る未発泡シートとの接触面を200℃に保持して発泡剤
を分解させ、溶融樹脂中にガスを発生させた。続いて溶
融樹脂に接する成形型面及びピストン面を冷却し、成形
型面が90℃、ピストン面が100℃となった時点で上
記ピストンを開放して厚み25mm、発泡倍率10倍、
接合界面の無い2種の発泡層を含む発泡体を得た。これ
ら発泡体において、成形型面に接していた側の発泡層の
気泡の配向度はピストン面に接していた気泡の配向度に
比較して小さいものであり、これら気泡の平均気泡配向
度を求めた結果について表1に示す。
Next, the unfoamed sheet was inserted into a mold capable of opening the opposing mold, which was designed so that the contact portion could be sealed with silicone rubber packing, and sealed. Then, the piston was slid in the molding die, and the unfoamed sheet was pressurized at a pressure of 20 kgf / cm 2 between the molding die and the piston. Then, the contact surfaces of the molding die and the piston with the unfoamed sheet were maintained at 200 ° C. to decompose the foaming agent and generate gas in the molten resin. Subsequently, the mold surface and the piston surface in contact with the molten resin were cooled, and when the mold surface reached 90 ° C. and the piston surface reached 100 ° C., the piston was opened and the thickness was 25 mm, the expansion ratio was 10 times,
A foam including two types of foam layers without a joint interface was obtained. In these foams, the degree of orientation of the bubbles in the foam layer on the side in contact with the mold surface was smaller than the degree of orientation of the bubbles in contact with the piston face, and the average degree of orientation of these bubbles was determined. The results are shown in Table 1.

【0030】上記のようにして得られた発泡体の緩衝効
果を知るため、図4に示すような計測手法を用いて衝撃
吸収特性を調べた。
In order to know the cushioning effect of the foam obtained as described above, the shock absorption characteristics were examined using a measuring method as shown in FIG.

【0031】図4にて、厚み50mmのスチール製板5
上に50×50×25mmの発泡試験片6を設置し、こ
の上から重さ480gの円柱体7を落下させ、衝突後の
スチール製板5の下面に生じる振動加速度をチャージア
ンプ8を介してFFT(Fast Fourier T
ransfor)アナライザ9により計測した。10は
スチール製板下面に備え付けられた振動ピックアップで
あり、円柱衝突時におけるスチール製板の振動を感知す
る役割を果たす。円柱体7を落下させる高さはスチール
製板上面より5〜70cmの高さとした。
In FIG. 4, a 50 mm thick steel plate 5
A 50 × 50 × 25 mm foamed test piece 6 is placed on the top, a 480 g cylindrical body 7 is dropped from above, and the vibration acceleration generated on the lower surface of the steel plate 5 after the collision is measured via the charge amplifier 8. FFT (Fast Fourier T
(transformer) analyzer 9. Reference numeral 10 denotes a vibration pickup provided on the lower surface of the steel plate, which plays a role in sensing vibration of the steel plate at the time of a collision with a cylinder. The height at which the columnar body 7 was dropped was 5 to 70 cm above the upper surface of the steel plate.

【0032】図5は落下させる円柱体の落下高さと振動
加速度の関係を示したものである。ここに示す振動加速
度とは円柱体衝突時より発生するスチール製板下面に発
生する振動の加速度を計測し、振動が終了するまでの最
大値をとったものであり、この値が小さい程、発泡板の
衝撃吸収効果は高いと判断できる。また、質量mの物体
が高さhにある場合、物体はmgh(gは重力加速度)
のエネルギーを持つと定義されることから、上記計測に
おける落下高さは衝撃エネルギーの大きさの指標と見な
すことができる。上記試験の結果、実施例1にて得られ
た発泡体の衝撃吸収性は低衝撃から高衝撃の範囲にて良
好なものであった。
FIG. 5 shows the relationship between the drop height of the column to be dropped and the vibration acceleration. The vibration acceleration shown here is a value obtained by measuring the acceleration of the vibration generated on the lower surface of the steel plate generated at the time of the collision with the cylinder and taking the maximum value until the vibration is completed. It can be determined that the impact absorbing effect of the plate is high. When an object having a mass m is at a height h, the object is mgh (g is gravitational acceleration).
Therefore, the drop height in the above measurement can be regarded as an index of the magnitude of the impact energy. As a result of the above test, the impact absorption of the foam obtained in Example 1 was good in the range of low impact to high impact.

【0033】また、発泡体の圧縮特性を調べるため、圧
縮試験をJIS K 6767(1976年)に準じて
下記の条件で行い、応力−歪み曲線を求めた。
In order to examine the compression characteristics of the foam, a compression test was performed under the following conditions in accordance with JIS K 6767 (1976), and a stress-strain curve was obtained.

【0034】 (試験条件) 試験片のサイズ :縦50mm、横50mm、厚さ25mm 圧縮速度 :10mm/分 上記試験の結果、実施例1にて得られた発泡体は歪みの
少ない領域では柔軟かつ弾性的に変形する傾向を示し、
歪みの増加により塑性的変形の傾向を示した。これら圧
縮試験の結果を図8に示す。
(Test Conditions) Specimen size: 50 mm in length, 50 mm in width, 25 mm in thickness Compression speed: 10 mm / min As a result of the above test, the foam obtained in Example 1 is flexible in an area with little distortion. Show a tendency to elastically deform,
The tendency of plastic deformation was shown by the increase of strain. FIG. 8 shows the results of these compression tests.

【0035】比較例1 実施例1において、樹脂に接する成形型面が97℃、ピ
ストン面が100℃となった時点でピストンを開放した
以外は実施例1と同様の方法にて成形を行い、厚み25
mm、発泡倍率10倍、接合界面の無い2種の発泡層を
含む発泡体を得た。これら発泡体において、成形型面に
接していた側の発泡層の気泡配向度はピストン面に接し
ていた発泡層の気泡配向度に比較して小さいものであっ
たが、実施例1にて得られた発泡体の成形型側発泡層の
気泡配向度に比較して大きいものであり、これら気泡の
平均配向度を求めた結果について表1に示す。
Comparative Example 1 In Example 1, molding was performed in the same manner as in Example 1 except that the piston was opened when the mold surface in contact with the resin reached 97 ° C. and the piston surface reached 100 ° C. Thickness 25
mm, a foaming ratio of 10 times, and a foam including two types of foamed layers having no joint interface were obtained. In these foams, the degree of cell orientation of the foam layer on the side in contact with the mold surface was smaller than the degree of cell orientation of the foam layer in contact with the piston face. It is larger than the degree of cell orientation of the foamed layer on the mold side of the obtained foam. Table 1 shows the results of determining the average degree of orientation of these cells.

【0036】実施例1と同様に衝撃吸収特性を調べた結
果、低衝撃領域での吸収性が不十分であった。その衝撃
吸収試験結果を図5に示す。
As a result of examining the impact absorption characteristics in the same manner as in Example 1, the absorption in the low impact region was insufficient. FIG. 5 shows the results of the shock absorption test.

【0037】また、得られた発泡体の圧縮特性について
実施例1と同様の測定手法により調べた結果、実施例1
により得られた発泡体が弾性的変形傾向を示した歪みの
少ない領域においても塑性的変形を示すものであった。
これら圧縮試験の結果を図8に示す。
Further, the compression characteristics of the obtained foam were examined by the same measuring method as in Example 1.
The foam obtained by the method showed plastic deformation even in a region with little distortion in which the foam showed elastic deformation tendency.
FIG. 8 shows the results of these compression tests.

【0038】比較例2 実施例1において発泡剤としてアゾジカルボンアミドを
7重量部加え、樹脂に接する成形型面が90℃、ピスト
ン面が105℃となった時点でピストンを開放した以外
は実施例1と同様の方法にて成形を行い、厚み25m
m、発泡倍率12倍、接合界面の無い2種の発泡層を含
む発泡体を得た。これら発泡体において、ピストン面に
接していた発泡層の気泡配向度は成形型側に接していた
発泡層の気泡配向度に比較して大きいものであったが、
実施例1にて得られた発泡体のピストン側発泡層の気泡
配向度に比較しても大きいものであり、これら気泡の平
均配向度を求めた結果について表1に示す。
Comparative Example 2 Example 7 was repeated except that 7 parts by weight of azodicarbonamide was added as a foaming agent and the piston was opened when the mold surface in contact with the resin reached 90 ° C. and the piston surface reached 105 ° C. Molding is performed in the same manner as in Example 1, and the thickness is 25 m
m, a foaming ratio of 12 times, and a foam containing two types of foamed layers having no joint interface were obtained. In these foams, the degree of cell orientation of the foam layer in contact with the piston face was larger than the degree of cell orientation of the foam layer in contact with the mold side,
Compared to the bubble orientation of the foam layer on the piston side of the foam obtained in Example 1, it is large, and the results of determining the average orientation of these bubbles are shown in Table 1.

【0039】実施例1と同様に衝撃吸収特性を調べた結
果、高衝撃領域での吸収性が不十分であった。その衝撃
吸収試験結果を図5に示す。
As a result of examining the impact absorption characteristics in the same manner as in Example 1, the absorption in the high impact region was insufficient. FIG. 5 shows the results of the shock absorption test.

【0040】また、得られた発泡体の圧縮特性について
実施例1と同様の測定手法により調べた結果、実施例1
により得られた発泡体が弾性的変形傾向を示した歪みの
少ない領域においても塑性的変形を示すものであった。
これら圧縮試験の結果を図8に示す。
The compression properties of the obtained foam were examined by the same measuring method as in Example 1.
The foam obtained by the method showed plastic deformation even in a region with little distortion in which the foam showed elastic deformation tendency.
FIG. 8 shows the results of these compression tests.

【0041】比較例3 実施例1において、樹脂に接する成形型面が100℃、
ピストン面が100℃となった時点でピストンを開放し
た以外は実施例1と同様にして成形を行い、厚み25m
m、発泡倍率10倍の単層発泡体を得た。得られた発泡
体の平均気泡配向度について表1に示す。
Comparative Example 3 In Example 1, the mold surface in contact with the resin was 100 ° C.
Molding was performed in the same manner as in Example 1 except that the piston was opened when the piston surface reached 100 ° C., and the thickness was 25 m.
m, a single-layer foam having an expansion ratio of 10 times was obtained. Table 1 shows the average cell orientation degree of the obtained foam.

【0042】実施例1と同様に衝撃吸収特性を調べた結
果、低衝撃領域での吸収性が不十分であった。その衝撃
吸収試験結果を図5に示す。
As a result of examining the impact absorption characteristics in the same manner as in Example 1, the absorption in the low impact region was insufficient. FIG. 5 shows the results of the shock absorption test.

【0043】また、得られた発泡体の圧縮特性について
実施例1と同様の測定手法により調べた結果、実施例1
により得られた発泡体が弾性的変形傾向を示した歪みの
少ない領域においても塑性的変形を示すものであった。
これら圧縮試験の結果を図8に示す。
The compression properties of the obtained foam were examined by the same measuring method as in Example 1.
The foam obtained by the method showed plastic deformation even in a region with little distortion in which the foam showed elastic deformation tendency.
FIG. 8 shows the results of these compression tests.

【0044】比較例4 実施例1において、樹脂に接する成形面が80℃、ピス
トン側が85℃となった時点でピストンを開放したこと
以外は実施例1と同様にして成形を行い、厚み25m
m、発泡倍率6倍、接合界面の無い2種の発泡層を含む
発泡体を得た。これら発泡体において、ピストン面に接
していた発泡層の気泡配向度は成形型側に接していた発
泡層の気泡配向度に比較して大きいものであったが、実
施例1にて得られた発泡体のピストン側発泡層の気泡配
向度に比較して小さいものであり、これら気泡の平均配
向度を求めた結果について表1に示す。
Comparative Example 4 A molding was performed in the same manner as in Example 1 except that the piston was opened when the molding surface in contact with the resin reached 80 ° C. and the piston side reached 85 ° C.
m, a foaming ratio of 6 times, and a foam including two types of foamed layers having no joint interface were obtained. In these foams, the degree of cell orientation of the foam layer in contact with the piston surface was larger than the degree of cell orientation of the foam layer in contact with the mold, but was obtained in Example 1. It is smaller than the degree of cell orientation of the foam layer on the piston side of the foam. Table 1 shows the results of determining the average degree of orientation of these cells.

【0045】実施例1と同様に衝撃吸収特性を調べた結
果、低〜高衝撃領域での吸収性が不十分であった。その
衝撃吸収試験結果を図5に示す。
As a result of examining the impact absorption characteristics in the same manner as in Example 1, the absorption in the low to high impact region was insufficient. FIG. 5 shows the results of the shock absorption test.

【0046】また、得られた発泡体の圧縮特性について
実施例1と同様の測定手法により調べた結果、柔軟性に
乏しいものであった。これら圧縮試験の結果を図8に示
す。 実施例2 高密度ポリエチレン(東ソー株式会社製、商品名ニポロ
ンハード4010)100重量部に対して、発泡剤とし
てアゾジカルボンアミド(永和化成工業株式会社製、商
品名ビニホールAC#1C)5重量部、架橋剤として
2,5−ジメチル−2,5−ジ−t−ブチルパーオキシ
ヘキシン−3(日本油脂株式会社製、商品名パーヘキシ
ン25B−40)0.4重量部とからなる混合物を調整
し、実施例1と同様にTダイを通して未発泡シートとし
て押し出した。
The compression property of the obtained foam was examined by the same measuring method as in Example 1, and as a result, the foam was poor in flexibility. FIG. 8 shows the results of these compression tests. Example 2 5 parts by weight of azodicarbonamide (manufactured by Eiwa Kasei Kogyo Co., Ltd., trade name: Vinylol AC # 1C) as a foaming agent, based on 100 parts by weight of high-density polyethylene (manufactured by Tosoh Corporation, trade name: Nipolon Hard 4010), crosslinked A mixture comprising 0.4 parts by weight of 2,5-dimethyl-2,5-di-t-butylperoxyhexine-3 (manufactured by NOF CORPORATION, trade name: Perhexine 25B-40) as an agent was prepared, It was extruded as an unfoamed sheet through a T-die as in Example 1.

【0047】次いで、該未発泡シートをシリコンゴムパ
ッキンにより接触部がシールできるよう工夫された対向
する型開き可能な成形型内に挿入して密封した。そし
て、成形型内にてピストンを摺動させ、上記未発泡シー
トを成形型とピストンとの間にて20kgf/cm2
圧力で加圧した後、該成形型及びピストンにおける未発
泡シートとの接触面を200℃に保持して発泡剤を分解
させ、溶融樹脂中にガスを発生させた。続いて溶融樹脂
に接する成形型面及びピストン面を30℃/分の速度で
冷却し、樹脂に接する成形型面及びピストン面が120
℃となった時点で上記ピストンを開放して厚み25m
m、発泡倍率10倍の発泡体を得た。得られた発泡体は
接合界面の無い2種の発泡層がサンドイッチ構造とな
り、成形型面及びピストン面に接していた表層側の発泡
層に含まれる気泡の配向度は内層に位置する発泡層に含
まれる気泡の配向度に比較して小さいものであり、これ
ら気泡の平均気泡配向度を求めた結果について表1に示
す。
Next, the unfoamed sheet was inserted into a mold capable of opening the opposing mold, which was designed so that the contact portion could be sealed with silicone rubber packing, and sealed. Then, the piston is slid in the mold, and the unfoamed sheet is pressurized at a pressure of 20 kgf / cm 2 between the mold and the piston. The contact surface was maintained at 200 ° C. to decompose the foaming agent and generate gas in the molten resin. Subsequently, the mold surface and the piston surface in contact with the molten resin are cooled at a rate of 30 ° C./min.
When the temperature reaches ℃, the piston is released and the thickness is 25m
m, a foam having an expansion ratio of 10 times was obtained. The obtained foam has a sandwich structure in which two types of foam layers having no bonding interface are formed, and the degree of orientation of the bubbles contained in the foam layer on the surface layer which was in contact with the mold surface and the piston surface is reduced to the foam layer located in the inner layer. It is smaller than the degree of orientation of the contained bubbles, and Table 1 shows the results of determining the average degree of orientation of these bubbles.

【0048】得られた発泡体の圧縮特性について実施例
1と同様の測定手法により調べた結果、歪みの少ない領
域では柔軟かつ弾性的に変形する傾向を示し、歪みの増
加により塑性的変形の傾向を示した。これら圧縮試験の
結果を図6に示す。
As a result of examining the compression characteristics of the obtained foam by the same measuring method as in Example 1, the foam showed a tendency to deform flexibly and elastically in a region with little distortion, and a tendency to plastically deform due to an increase in distortion. showed that. FIG. 6 shows the results of these compression tests.

【0049】また、実施例1と同様に衝撃吸収特性を調
べた結果、発泡体の衝撃吸収性は低衝撃から高衝撃の範
囲にて良好なものであった。その衝撃吸収試験結果を図
7に示す。
Further, as a result of examining the impact absorption characteristics in the same manner as in Example 1, the impact absorption of the foam was good in the range of low impact to high impact. FIG. 7 shows the results of the shock absorption test.

【0050】比較例5 実施例2において、溶融樹脂に接する成形型面及びピス
トン面を30℃/分の速度で冷却し、樹脂に接する成形
型面及びピストン面が120℃となった後、2分間温度
を保持したうえでピストンを開放した以外は実施例2と
同様の条件にて成形を行い、厚み25mm、発泡倍率1
0倍の発泡体を得た。得られた発泡体は単層の発泡体で
あり、その気泡の平均配向度を表2に示す。
Comparative Example 5 In Example 2, the mold surface and the piston surface in contact with the molten resin were cooled at a rate of 30 ° C./min, and after the mold surface and the piston surface in contact with the resin reached 120 ° C. Molding was carried out under the same conditions as in Example 2 except that the piston was opened after holding the temperature for one minute, and the thickness was 25 mm and the expansion ratio was 1
A 0-fold foam was obtained. The obtained foam was a single-layer foam, and the average degree of orientation of the cells is shown in Table 2.

【0051】得られた発泡体の圧縮特性について、実施
例1と同様の測定手法により調べた結果、実施例2によ
り得られた発泡体が弾性的変形傾向を示した歪みの少な
い領域においても塑性的変形を示すものであった。これ
ら圧縮試験の結果を図6に示す。
As a result of examining the compression characteristics of the obtained foam by the same measuring method as in Example 1, the foam obtained in Example 2 showed a plastic deformation even in a region where elastic deformation was observed and the strain was small. It showed a typical deformation. FIG. 6 shows the results of these compression tests.

【0052】また、実施例1と同様に衝撃吸収特性を調
べた結果、低衝撃領域での吸収性が不十分であった。そ
の衝撃吸収試験結果を図7に示す。
Further, as a result of examining the impact absorption characteristics in the same manner as in Example 1, the absorption in the low impact region was insufficient. FIG. 7 shows the results of the shock absorption test.

【0053】比較例6 実施例2において、溶融樹脂に接する成形型面及びピス
トン面を5℃/分の速度で冷却し、樹脂に接する成形型
面及びピストン面が130℃となったうえでピストンを
開放した以外は実施例2と同様の条件にて成形を行い、
厚み25mm、発泡倍率10倍の発泡体を得た。得られ
た発泡体は接合界面の無い2種の発泡層がサンドイッチ
構造となり、成形型面及びピストン面に接していた表層
側の発泡層に含まれる気泡の配向度は内層に位置するの
発泡層に含まれる気泡の配向度に比較して小さいもので
あったが、表層側の気泡の配向度は実施例2における表
層側の気泡配向度よりも大きいものであり、これら気泡
の平均配向度を求めた結果について表1に示す。
COMPARATIVE EXAMPLE 6 In Example 2, the mold surface and the piston surface in contact with the molten resin were cooled at a rate of 5 ° C./min. Molding was performed under the same conditions as in Example 2 except that
A foam having a thickness of 25 mm and an expansion ratio of 10 was obtained. The obtained foam has a sandwich structure in which two types of foam layers having no bonding interface have a sandwich structure, and the degree of orientation of bubbles contained in the foam layer on the surface layer which has been in contact with the mold surface and the piston surface is the foam layer located in the inner layer. Although it was smaller than the degree of orientation of the bubbles contained in, the degree of orientation of the bubbles on the surface layer is greater than the degree of orientation of the bubbles on the surface layer in Example 2, and the average degree of orientation of these bubbles was Table 1 shows the obtained results.

【0054】得られた発泡体の圧縮特性及び衝撃吸収特
性について実施例1と同様の測定手法により調べた結
果、比較例5により得られた単層発泡体と類似したもの
であった。圧縮試験の結果を図6、また、衝撃吸収試験
結果を図7に示す。
The compression properties and shock absorption properties of the obtained foam were examined by the same measuring method as in Example 1. As a result, the foam was similar to the single-layer foam obtained in Comparative Example 5. FIG. 6 shows the results of the compression test, and FIG. 7 shows the results of the shock absorption test.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【発明の効果】本発明におけるポリオレフィン樹脂多層
発泡体は、気泡の配向度が異なる2種類の発泡層により
構成されるものであって、その効果としては衝撃吸収範
囲の幅広化、及び圧縮強度の異なる発泡層の複合化とい
ったことが挙げられ、前述した緩衝材、包装梱包材、ケ
ース、マット類、各種カバー、履き物などに有用に活用
し得るものである。また、本発明における製造方法によ
れば、多層化を目的とした異種原料の調達、あるいは張
り合わせ、接着等に掛かる工程、特殊な多層用成形金型
の導入などによって発生する生産性及び生産コストの問
題が解消される。また、本発明における多層発泡体には
接合界面が存在しないことから、接合界面での気泡荒
れ、接合強度不足による剥離などによる製品不良が発生
しない。
The polyolefin resin multilayer foam of the present invention is constituted by two types of foam layers having different degrees of cell orientation. The effects thereof are to broaden the shock absorption range and to reduce the compressive strength. The compounding of different foamed layers can be mentioned, and it can be effectively used for the above-mentioned cushioning materials, packaging materials, cases, mats, various covers, footwear and the like. Further, according to the production method of the present invention, the procurement of different kinds of raw materials for the purpose of multi-layering, or the steps involved in laminating and bonding, and the productivity and production cost caused by the introduction of a special multi-layer molding die, etc. The problem is solved. Further, since the bonding interface does not exist in the multilayered foam of the present invention, there is no occurrence of a product defect due to roughening of bubbles at the bonding interface or peeling due to insufficient bonding strength.

【図面の簡単な説明】[Brief description of the drawings]

【図1】発発明における積層発泡体の概略図である。FIG. 1 is a schematic view of a laminated foam according to the invention.

【図2】本発明における積層発泡体の概略図である。FIG. 2 is a schematic view of a laminated foam according to the present invention.

【図3】本発明における積層発泡体の製造方法におい
て、発泡直前でのシート断面の説明図である。
FIG. 3 is an explanatory view of a cross section of a sheet immediately before foaming in the method for producing a laminated foam according to the present invention.

【図4】衝撃吸収特性測定装置の概略図である。FIG. 4 is a schematic diagram of a shock absorption characteristic measuring device.

【図5】円柱体の落下高さと振動加速度の関係を示す図
である。
FIG. 5 is a diagram illustrating a relationship between a falling height of a cylindrical body and a vibration acceleration.

【図6】圧縮応力と歪みの関係を示す図である。FIG. 6 is a diagram showing the relationship between compressive stress and strain.

【図7】円柱体の落下高さと振動加速度の関係を示す図
である。
FIG. 7 is a diagram showing a relationship between a falling height of a cylindrical body and a vibration acceleration.

【図8】圧縮応力と歪みの関係を示す図である。FIG. 8 is a diagram showing the relationship between compressive stress and strain.

【符号の説明】[Explanation of symbols]

1:気泡配向度の小さい発泡層 2:気泡配向度の大きい発泡層 3:冷却追随層 4:冷却不追随層 5:スチール製板 6:発泡試験片 7:円柱体 8:チャージアンプ 9:FFTアナライザ 10:振動ピックアップ 1: foam layer with a small degree of cell orientation 2: foam layer with a large degree of cell orientation 3: cooling-following layer 4: cooling-following layer 5: steel plate 6: foam test piece 7: cylindrical body 8: charge amplifier 9: FFT Analyzer 10: Vibration pickup

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B29K 105:04 B29L 9:00 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B29K 105: 04 B29L 9:00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】「互いに平行な発泡体の上面及び下面に対
して直交する方向(以下、発泡体の厚み方向という)の
気泡径/発泡体の厚み方向に直交する方向の気泡径」に
より表される個々の気泡の気泡配向度の平均値(以下、
平均気泡配向度という)Pが2.5〜4.5の範囲にあ
る発泡層(B)、及びPよりも0.5〜3.5の範囲に
おいて小さい平均気泡配向度Qを有する発泡層(A)か
らなるポリオレフィン樹脂多層発泡体であるとともに、
発泡層(A)が発泡層(B)の片面に積層一体化され、
さらに発泡層(A)と発泡層(B)との界面に接合面が
無いことを特徴とするポリオレフィン樹脂多層発泡体。
1. A cell diameter in a direction orthogonal to an upper surface and a lower surface of a foam parallel to each other (hereinafter referred to as a thickness direction of a foam) / a cell diameter in a direction orthogonal to a thickness direction of a foam. The average value of the degree of bubble orientation of each individual bubble (hereinafter, referred to as
A foamed layer (B) in which P has an average cell orientation of 2.5 to 4.5 and a foamed layer having an average cell orientation Q smaller than P in a range of 0.5 to 3.5 (P). A) a polyolefin resin multilayer foam comprising:
The foam layer (A) is laminated and integrated on one side of the foam layer (B),
Furthermore, a polyolefin resin multilayer foam characterized in that there is no bonding surface at the interface between the foam layer (A) and the foam layer (B).
【請求項2】平均気泡配向度Pが2.5〜4.5の範囲
にある発泡層(B)、及びPよりも0.5〜3.5の範
囲において小さい平均気泡配向度Qを有する発泡層
(A)からなるポリオレフィン樹脂多層発泡体であると
ともに、発泡層(A)が発泡層(B)の両面に積層一体
化され、さらに発泡層(A)と発泡層(B)との界面に
接合面が無いことを特徴とするポリオレフィン樹脂多層
発泡体。
2. A foamed layer (B) having an average cell orientation P in the range of 2.5 to 4.5, and a smaller average cell orientation Q in the range of 0.5 to 3.5 than P. A polyolefin resin multilayer foam comprising a foamed layer (A), the foamed layer (A) is laminated and integrated on both sides of the foamed layer (B), and an interface between the foamed layer (A) and the foamed layer (B) Polyolefin resin multilayer foam characterized by having no joint surface.
【請求項3】対向する型開き可能な成形型内において加
圧密封された状態にある発泡ガスを含むシート状ポリオ
レフィン樹脂を成形型内の容積増加により減圧して発泡
させつつ厚み方向のみに膨張させる発泡体の製造方法に
おいて、シート片面の温度が別のシート片面の温度より
も低い条件にて発泡が開始されることを特徴とする請求
項1に記載のポリオレフィン樹脂多層発泡体の製造方
法。
3. A sheet-like polyolefin resin containing a foaming gas in a pressure-sealed state in an opposing mold openable mold is expanded only in the thickness direction while foaming under reduced pressure by increasing the volume in the mold. The method for producing a polyolefin resin multilayer foam according to claim 1, wherein in the method for producing a foam to be foamed, foaming is started under the condition that the temperature of one surface of a sheet is lower than the temperature of another surface of another sheet.
【請求項4】対向する型開き可能な成形型内において加
圧密封された状態にある発泡ガスを含むシート状ポリオ
レフィン樹脂を成形型内の容積増加により減圧して発泡
させつつ厚み方向のみに膨張させる発泡体の製造方法に
おいて、シート表層温度がシート内層温度よりも低い条
件にて発泡が開始されることを特徴とする請求項2に記
載のポリオレフィン樹脂多層発泡体の製造方法。
4. A sheet-like polyolefin resin containing a foaming gas in a pressure-sealed state in an opposing mold openable mold is decompressed and foamed only in the thickness direction while expanding under reduced pressure by increasing the volume in the mold. The method for producing a polyolefin resin multilayer foam according to claim 2, wherein in the method for producing a foam to be foamed, foaming is started under conditions in which the sheet surface layer temperature is lower than the sheet inner layer temperature.
JP9042161A 1997-02-26 1997-02-26 Polyolefin resin multi-layer foam and its production Pending JPH10235671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9042161A JPH10235671A (en) 1997-02-26 1997-02-26 Polyolefin resin multi-layer foam and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9042161A JPH10235671A (en) 1997-02-26 1997-02-26 Polyolefin resin multi-layer foam and its production

Publications (1)

Publication Number Publication Date
JPH10235671A true JPH10235671A (en) 1998-09-08

Family

ID=12628243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9042161A Pending JPH10235671A (en) 1997-02-26 1997-02-26 Polyolefin resin multi-layer foam and its production

Country Status (1)

Country Link
JP (1) JPH10235671A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146075A (en) * 2000-09-04 2002-05-22 Tosoh Corp Polyolefin-based resin foam and polyolefin based resin composition
JP2005328297A (en) * 2004-05-13 2005-11-24 Sony Corp Diaphragm of speaker and method for manufacturing diaphragm of speaker
US7524556B2 (en) 2003-07-23 2009-04-28 Sumitomo Chemical Company, Limited Thermoplastic resin foamed article
JP2012502825A (en) * 2008-09-22 2012-02-02 ジョンソン コントロールズ テクノロジー カンパニー Post-curing of molded polyurethane foam products
WO2014155521A1 (en) * 2013-03-26 2014-10-02 古河電気工業株式会社 Polyolefin resin foam sheet, sound absorbing material, and automotive parts, and method for producing polyolefin resin foam sheet
JP2021004831A (en) * 2019-06-27 2021-01-14 日立造船株式会社 Buffer structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146075A (en) * 2000-09-04 2002-05-22 Tosoh Corp Polyolefin-based resin foam and polyolefin based resin composition
US7524556B2 (en) 2003-07-23 2009-04-28 Sumitomo Chemical Company, Limited Thermoplastic resin foamed article
DE102004035198B4 (en) * 2003-07-23 2014-02-20 Sumitomo Chemical Co. Ltd. Foamed article of thermoplastic resin and laminate containing the same
JP2005328297A (en) * 2004-05-13 2005-11-24 Sony Corp Diaphragm of speaker and method for manufacturing diaphragm of speaker
JP2012502825A (en) * 2008-09-22 2012-02-02 ジョンソン コントロールズ テクノロジー カンパニー Post-curing of molded polyurethane foam products
WO2014155521A1 (en) * 2013-03-26 2014-10-02 古河電気工業株式会社 Polyolefin resin foam sheet, sound absorbing material, and automotive parts, and method for producing polyolefin resin foam sheet
JP2021004831A (en) * 2019-06-27 2021-01-14 日立造船株式会社 Buffer structure

Similar Documents

Publication Publication Date Title
KR0169075B1 (en) Extruded propylene polymer resin foam
EP2799472A1 (en) Expanded polyolefin resin sheet, method for producing same, and use of same
TWI760425B (en) Foam and method for producing the same
JP6012566B2 (en) Polyolefin resin thin-layer foamed sheet, method for producing the same, and use thereof
JP6543955B2 (en) Laminated body using polyolefin resin foam and automobile interior material
WO2021106911A1 (en) Resin foaming body
JP6724509B2 (en) Permeable polyolefin resin foam
JP7000310B2 (en) Shock absorbing sheet
JPH10235671A (en) Polyolefin resin multi-layer foam and its production
JP3067548B2 (en) Polyolefin resin foam board and method for producing the same
JP2005059224A (en) Thermoplastic resin foamed molded product
JP3837814B2 (en) Fiber-reinforced polyolefin resin foam and method for producing the same
JP5227058B2 (en) Laminated foam sheet
CN114981347A (en) Polypropylene resin expanded particle molded body, polypropylene resin expanded particle, and method for producing same
JP7164660B2 (en) Core material
JPH10219017A (en) Foam of polyolefin resin
JP6087524B2 (en) Foam and foam manufacturing method
WO2022074899A1 (en) Resin foam
CN104774356B (en) Foam and method for producing foam
JP7288994B2 (en) resin foam
JP7425137B1 (en) Expanded particles and expanded particle molded bodies
JP7329639B1 (en) Expanded polypropylene resin particles, method for producing expanded polypropylene resin particles, and cushioning material for distribution
JP2001341248A (en) Polypropylene resin composite molding for automobile
JPH10217270A (en) Polyolefin resin foam
EP4342936A1 (en) Polypropylene resin foam particle molded body and method for producing same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109