JPH10233385A - Method for etching nitride semiconductor - Google Patents
Method for etching nitride semiconductorInfo
- Publication number
- JPH10233385A JPH10233385A JP3592097A JP3592097A JPH10233385A JP H10233385 A JPH10233385 A JP H10233385A JP 3592097 A JP3592097 A JP 3592097A JP 3592097 A JP3592097 A JP 3592097A JP H10233385 A JPH10233385 A JP H10233385A
- Authority
- JP
- Japan
- Prior art keywords
- nitride semiconductor
- film
- etching
- crystal
- etched
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Led Devices (AREA)
- Weting (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は窒化物半導体のエッ
チング方法に関する。[0001] The present invention relates to a method for etching a nitride semiconductor.
【0002】[0002]
【従来の技術】窒化物半導体は2eV以上の広いバンド
ギャップを有し、橙色から紫外領域まで幅の広い短波長
発光素子材料として用いられていると共に、100℃を
超える高温で安定した動作を行う高温動作用の半導体と
して着目されている。窒化物半導体は単膜では使用する
ことは稀で、例えばレーザなどを作製する場合、種類の
異なる窒化物半導体膜を複数枚積層して成長し、エッチ
ングや電極を形成するという処理を施す必要がある。エ
ッチングを行う方法としては、紫外線を照射しながら、
水酸化カリウム水溶液でエッチングする方法(例えば、
第56回応用物理学術講演会予稿集27p−ZE−16
等)や、反応性ガスを使用してエッチングする方法(例
えば、応用物理学会結晶工学分科会第103回研究会テ
キストp9〜14等)等が一般的な方法として行われて
きた。このうち、反応性ガスを使用する方法は、微妙な
条件の差によりエッチングした端面が崩れたり、垂直に
エッチングされないという現象が生じるものの、再現性
良くエッチングが可能なため、端面の形状に影響されな
いようなデバイス(たとえば、発光ダイオード等)には
使用されている。2. Description of the Related Art A nitride semiconductor has a wide band gap of 2 eV or more, is used as a material for a short-wavelength light-emitting device having a wide range from orange to ultraviolet, and performs a stable operation at a high temperature exceeding 100 ° C. Attention has been paid to semiconductors for high-temperature operation. Nitride semiconductors are rarely used as a single film.For example, in the case of manufacturing a laser or the like, it is necessary to grow and stack a plurality of different types of nitride semiconductor films, and to perform a process of etching and forming electrodes. is there. As a method of performing etching, while irradiating ultraviolet rays,
Etching with potassium hydroxide solution (for example,
Proceedings of the 56th Lecture Meeting on Applied Physics 27p-ZE-16
And the like, and a method of etching using a reactive gas (for example, textbooks pp. 9-14 of the 103rd meeting of the Society of Applied Physics, Crystal Engineering Subcommittee, etc.) have been used as general methods. Among them, the method using a reactive gas is not affected by the shape of the end face because the etched end face collapses due to a delicate condition difference or a phenomenon that it is not etched vertically occurs, but etching can be performed with good reproducibility. Such a device (for example, a light emitting diode) is used.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、端面の
形状や垂直性が十分制御でき、かつ再現性の良いエッチ
ング方法は確立していなかった。水溶液中でエッチング
を行った場合、窒化物半導体の状態でエッチング速度が
変わったり、時には全くエッチングされなかったりとい
う現象が生じる。さらに、同じ成分の窒化物半導体にお
いても、エッチング後の表面の形状が大きく異なる場合
があることが知られている。以上の様に、再現性良くか
つ制御性良く窒化物半導体をエッチングすることは困難
なことであった。本発明は上記のような問題点を解決す
るためになされたもので、再現性良くかつ制御性の良い
水溶液中のエッチングの方法を提供することを目的とす
る。However, an etching method that can control the shape and perpendicularity of the end face sufficiently and has good reproducibility has not been established. When etching is performed in an aqueous solution, a phenomenon occurs in which the etching rate changes in the state of the nitride semiconductor, and sometimes etching is not performed at all. Further, it is known that the surface shape after etching may be significantly different even between nitride semiconductors having the same component. As described above, it has been difficult to etch a nitride semiconductor with good reproducibility and controllability. The present invention has been made to solve the above problems, and has as its object to provide a method of etching in an aqueous solution with good reproducibility and controllability.
【0004】[0004]
【課題を解決するために手段】上述したように、水溶液
中でエッチングを行った場合に生じるエッチングの不確
定さの原因を探索していった結果、ウエットエッチング
の速度やエッチング後の表面の状態は、結晶内の欠陥密
度に大きく依存していることがわかってきた。As described above, as a result of searching for the cause of the uncertainty of etching that occurs when etching is performed in an aqueous solution, the speed of wet etching and the state of the surface after etching are determined. Has been found to greatly depend on the defect density in the crystal.
【0005】また、特に、窒化物半導体のC軸に平行な
線欠陥以外の欠陥密度に大きく依存していることがわか
った。すなわち、窒化物半導体のエピタキシャル成長膜
は、基板との界面を除いて、C軸に平行な線欠陥密度
は、1.0×1010cm-2程度と大変多いことが知られ
ており、人為的に欠陥密度を制御することは困難であ
る。しかしながら、それ以外の欠陥密度は我々の調査で
は極めて少なく(1×104cm-3以下)、十分に人為
的に制御できる範囲であることがわかった。従って、C
軸に平行な線欠陥以外の欠陥をエピタキシャル成長膜中
に人為的に発生させ、エッチング液を用いて、ウエット
エッチングを行うことにより、所定のエッチングが可能
となる。In addition, it has been found that, in particular, it largely depends on the defect density other than the line defect parallel to the C axis of the nitride semiconductor. That is, it is known that the density of line defects parallel to the C-axis of an epitaxially grown film of a nitride semiconductor, except for the interface with the substrate, is as high as about 1.0 × 10 10 cm −2. It is difficult to control the defect density. However, other defect densities were extremely low in our investigation (1 × 10 4 cm −3 or less), and were found to be within a range that can be controlled sufficiently artificially. Therefore, C
Defects other than line defects parallel to the axis are artificially generated in the epitaxially grown film, and wet etching is performed using an etchant, thereby enabling predetermined etching.
【0006】本発明に係る窒化物半導体のエッチング方
法は、人為的に窒化物半導体に結晶欠陥を増加させる工
程と、ウエットエッチングによりエッチングを行う工程
と、を含むことを特徴としている。そのことにより、上
記の目的が達成される。A method for etching a nitride semiconductor according to the present invention is characterized by including a step of artificially increasing crystal defects in the nitride semiconductor and a step of performing etching by wet etching. Thereby, the above object is achieved.
【0007】また、本発明では、人為的に結晶欠陥を増
加させる手段として、エッチングを行う窒化物半導体成
長前の、基板あるいは下層の窒化物半導体の、全体ある
いはその一部分に、その上に成長した窒化物半導体の結
晶欠陥が増加するような処理を施すことを特徴としてい
る。具体的には、基板あるいは下層の窒化物半導体上
に、異種の物質を蒸着させる方法や、異種の物質を塗布
する方法、あるいは表面を荒らす方法など、が挙げられ
る。そのことにより、上記の目的が達成される。According to the present invention, as a means for artificially increasing crystal defects, a substrate or a lower layer nitride semiconductor is grown on the whole or a part thereof before the nitride semiconductor to be etched is grown. It is characterized in that a treatment for increasing crystal defects of the nitride semiconductor is performed. Specifically, a method of depositing a different kind of substance on a substrate or a lower nitride semiconductor, a method of applying a different kind of substance, or a method of roughening the surface are exemplified. Thereby, the above object is achieved.
【0008】また、本発明では、人為的に結晶欠陥を増
加させる手段として、成長を行った窒化物半導体の、全
体あるいはその一部分に、直接結晶欠陥が増加するよう
な処理を施すことを特徴としている。具体的にはイオン
注入法等が挙げられる。そのことにより、上記の目的が
達成される。Further, the present invention is characterized in that, as means for artificially increasing the crystal defects, a treatment is performed such that the crystal defects are directly increased on the whole or a part of the grown nitride semiconductor. I have. Specific examples include an ion implantation method. Thereby, the above object is achieved.
【0009】以下本発明の作用について説明する。The operation of the present invention will be described below.
【0010】窒化物半導体のエピタキシャル成長膜に、
C軸に平行な線欠陥以外の欠陥密度を、人為的に増加さ
せることにより、欠陥の増加させた部分だけが、再現性
良くウエットエッチングができる効果を利用するもので
ある。In the epitaxial growth film of the nitride semiconductor,
By artificially increasing the density of defects other than the line defects parallel to the C-axis, the effect of performing wet etching with good reproducibility only on the portion where the defects are increased is used.
【0011】[0011]
【発明の実施の形態】本発明は窒化物半導体のエピタキ
シャル成長膜に、人為的に結晶欠陥を発生させることに
より、ウエットエッチングが行える特性を利用したもの
である。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention utilizes the characteristic that wet etching can be performed by artificially generating crystal defects in an epitaxially grown nitride semiconductor film.
【0012】(実施例1)有機金属気相成長法(MOC
VD法)により成長した、窒化物半導体膜であるGaN
膜をエッチングした例を図面第1を参照しながら、以下
に示す。(Example 1) Metal organic chemical vapor deposition (MOC)
GaN which is a nitride semiconductor film grown by the VD method)
An example of etching the film will be described below with reference to FIG.
【0013】GaN膜は、常圧(760Torr)のM
OCVD法により作製した。GaN膜の成長温度は10
00℃、原料としては、トリメチルガリウム(TM
G)、アンモニア(NH3)を用い、NH3:TMG=5
000:1の条件で1時間成長を行った。基板としてサ
ファイアC面基板(11)を用いた。成長に使用するサ
ファイア基板には、あらかじめストライプ状で厚さが1
00オングストローム程度のAl2O3膜(12)を電子
ビーム蒸着及びリフトオフにより形成しておいた。サフ
ァイア上に蒸着したAl2O3膜は基板のサファイア(A
l2O3)に比べ結晶の品質が劣るために、蒸着膜上に成
長したGaN膜(13)はC軸に平行な((00・1)
方向)線欠陥(14)以外の線欠陥や面欠陥が発生する
(15の領域)。本条件でのGaNの成長速度は、2μ
m/hであった。サファイア基板上に直接成長した部分
のGaN膜にはC軸方向に延びた線欠陥のみが存在し、
その密度は約5.0×109cm-2であった。また、A
l2O3蒸着膜上のGaN膜はC軸方向の欠陥に加えて、
(10・0)方向や(11・0)方向に延びた線欠陥や
面欠陥が多数見受けられた。本成長膜を80℃、10m
ol/LのKOH水溶液で約3時間エッチングを行った
結果、サファイア基板上に直接成長した部分は、全くエ
ッチングされなかったが、Al2O3蒸着膜上に成長した
部分はそのほとんどがエッチングされた。本実施例では
サファイア基板にAl2O3を蒸着した例を示したが、蒸
着する膜は特にAl2O3膜に限る必要はない。しかし、
Al2O3膜の場合、基板であるサファイアとは同じ成分
であるため、成長膜への不純物拡散の影響は考慮する必
要がないという利点がある。他の物質として、AlN、
SiO2等を使用してみたが、同様の傾向を示した。The GaN film is made of M at normal pressure (760 Torr).
It was produced by the OCVD method. The growth temperature of the GaN film is 10
00 ° C, the raw material is trimethylgallium (TM
G) using ammonia (NH 3 ), NH 3 : TMG = 5
Growth was performed for 1 hour under the condition of 000: 1. A sapphire C-plane substrate (11) was used as the substrate. The sapphire substrate used for growth has a stripe shape and a thickness of 1 in advance.
An Al 2 O 3 film (12) of about 00 Å was formed by electron beam evaporation and lift-off. The Al 2 O 3 film deposited on sapphire is sapphire (A
Since the quality of the crystal is inferior to l 2 O 3 ), the GaN film (13) grown on the deposited film is parallel to the C axis ((00 · 1)).
Direction) Line defects and surface defects other than the line defect (14) occur (region 15). The growth rate of GaN under these conditions is 2μ
m / h. Only the line defect extending in the C-axis direction exists in the portion of the GaN film directly grown on the sapphire substrate,
Its density was about 5.0 × 10 9 cm −2 . Also, A
The GaN film on the l 2 O 3 deposited film has a defect in the C-axis direction,
Many line defects and surface defects extending in the (10.0) or (11.0) direction were observed. Main growth film at 80 ° C, 10m
As a result of etching for about 3 hours with an ol / L KOH aqueous solution, the portion directly grown on the sapphire substrate was not etched at all, but the portion grown on the Al 2 O 3 deposited film was almost completely etched. Was. In this embodiment, an example is shown in which Al 2 O 3 is deposited on a sapphire substrate, but the deposited film is not necessarily limited to the Al 2 O 3 film. But,
In the case of the Al 2 O 3 film, since the sapphire as the substrate has the same component, there is an advantage that it is not necessary to consider the influence of impurity diffusion on the grown film. Other substances include AlN,
The use of SiO 2 or the like showed the same tendency.
【0014】(実施例2)サファイア基板上にエピタキ
シャル成長したGaN膜にイオン注入法でGaイオンを
注入して、その後ウエットエッチングを行った例を第2
図を参照しながら以下に示す。実施例1と同様の方法で
サファイア基板(21)上に直接成長したGaN膜(2
2)に、幅50μm、厚み1μmのストライプ状のSi
O2膜のマスク(23)を電子ビーム蒸着法及び、リフ
トオフ法により形成し、その後、イオン注入法でGaイ
オンの注入を行った(25の領域)。イオン注入条件は
加速電圧100kV、注入量が1×1015個cm-2であ
った。本試料のSiO2膜のマスクを除去した後、80
℃、10mol/LのKOH水溶液で約3時間エッチン
グを行った結果、マスクの無かった部分は、約300n
mの深さまでエッチングされたが(27の領域)、マス
クのついている部分は全くエッチングされなかった。G
aイオンが打ち込まれた部分のGaN膜は、黄色く変色
しており、これはGaイオンの打ち込みによる欠陥(2
6)の増加に起因していることがわかった。注入するイ
オンはGaに限る必要はなく、N、Al、In、Mg、
Be、Ca等、窒化物半導体に直接悪影響を及ぼすイオ
ン以外は何でもよい。Embodiment 2 A second example is shown in which Ga ions are implanted into a GaN film epitaxially grown on a sapphire substrate by an ion implantation method and then wet etching is performed.
This is shown below with reference to the drawings. A GaN film (2) directly grown on a sapphire substrate (21) in the same manner as in Example 1
2) A 50 μm wide, 1 μm thick striped Si
An O 2 film mask (23) was formed by an electron beam evaporation method and a lift-off method, and thereafter, Ga ions were implanted by an ion implantation method (region 25). The ion implantation conditions were an acceleration voltage of 100 kV and an implantation amount of 1 × 10 15 cm −2 . After removing the mask of the SiO 2 film of this sample, 80
As a result of performing etching for about 3 hours with a 10 mol / L KOH aqueous solution at a temperature of about 300 n
It was etched to a depth of m (region 27), but the masked portion was not etched at all. G
The portion of the GaN film into which the a ion has been implanted is discolored to yellow, which indicates a defect (2
6). The ions to be implanted need not be limited to Ga, but N, Al, In, Mg,
Any material other than ions that directly adversely affect the nitride semiconductor, such as Be and Ca, may be used.
【0015】(実施例3)再成長を行ったGaN膜をエ
ッチングした例を以下に示す。Embodiment 3 An example of etching a regrown GaN film is shown below.
【0016】実施例1と同様の条件でサファイア基板
(31)上にGaN膜(32)を成長し、実施例2と同
様の条件でイオン注入を行った(36の領域)GaN膜
において、SiO2マスク(33)を除去した後、弱
酸、あるいは有機溶剤で十分洗浄を行った後、再度、本
GaN膜上に実施例1と同様の条件でGaN膜を1時間
再成長を行った(37)。再成長を行ったGaN膜を、
80℃、10mol/LのKOH水溶液で約3時間エッ
チングを行った結果、SiO2のマスクのあった部分の
再成長膜はエッチングされなかったが、SiO2マスク
の無かった部分の再成長したGaN膜はエッチングされ
た(38の領域)。これは、イオン注入を行ったことに
より生じたGaN膜中の欠陥(36)が、再成長した膜
の中に貫通してくるために、エッチングが容易となった
効果によるものである。A GaN film (32) was grown on a sapphire substrate (31) under the same conditions as in Example 1, and ions were implanted under the same conditions as in Example 2 (region 36). ( 2 ) After removing the mask (33), the substrate was sufficiently washed with a weak acid or an organic solvent, and then a GaN film was regrown on the present GaN film under the same conditions as in Example 1 for 1 hour (37). ). Regrown GaN film
80 ° C., 10 mol / L result of about 3 hours etched with aqueous solution of KOH, GaN regrowth layer of a portion of SiO 2 mask was not etched, the regrown never been part of the SiO 2 mask The film was etched (38 areas). This is because the defect (36) in the GaN film caused by the ion implantation penetrates into the regrown film, thereby facilitating the etching.
【0017】(実施例4)InGaN、AlGaNにつ
いての効果を調べるための実験を行った結果について第
4及び第5図を参照しながら以下に示す。InGaN膜
は、基板としてはC面のサファイア基板を使用し、その
上にTMG、及びアンモニアを用いて約2μmのGaN
膜を成長した後、その上にInGaN膜の成長を行っ
た。原料として、トリメチルインジウム(TMI)、ト
リメチルガリウム(TMG)、アンモニアを使用して、
750℃で成長した。InGaNの成長速度は約0.5
μm/hで、成長時間は1時間である。Inの組成比は
TMIの投入量を変化させて、制御を行った。また、A
lGaN膜は、基板としてはC面のサファイア基板を使
用し、その上にTMG、及びアンモニアを用いて約2μ
mのGaN膜を成長した後、その上にAlGaN膜の成
長を行った。原料として、トリメチルガリウム(TM
G)、トリメチルアルミニウム(TMA)、アンモニア
を使用して、1000℃で成長した。InGaNの成長
速度は約2μm/hで、成長時間は30分である。Al
の組成比はTMAの投入量を変化させて、制御を行っ
た。人為的に結晶欠陥を増加させる方法としては、In
GaNまたは、AlGaNを成長するGaN成長膜(4
3)に、実施例1と同様の方法で、サファイア基板(4
1、51)にストライプ状Al2O3膜(42)を形成し
て、GaN膜に欠陥を発生させ、上層のInGaN膜ま
たはAlGaN膜(44)に欠陥(45)を貫通させる
方法や、実施例2同様に、イオン注入法により、InG
aN膜または、AlGaN膜(53)に直接欠陥を発生
させる方法(57)、あるいは実施例3同様に、InG
aN膜または、AlGaN膜にイオン注入を行って、欠
陥を発生させた後、更にその上にInGaNまたは、A
lGaNを再成長させる方法で試料を作製し、ウエット
エッチングを施行したが、いずれも欠陥を発生させた部
分(46、57の領域)のみエッチングされたが(4
7、58)、他の部分は全くエッチングされなかった。Example 4 The results of an experiment for investigating the effects of InGaN and AlGaN are shown below with reference to FIGS. 4 and 5. For the InGaN film, a C-plane sapphire substrate is used as a substrate, and about 2 μm of GaN is formed thereon using TMG and ammonia.
After growing the film, an InGaN film was grown thereon. Using trimethylindium (TMI), trimethylgallium (TMG) and ammonia as raw materials,
It grew at 750 ° C. The growth rate of InGaN is about 0.5
At μm / h, the growth time is one hour. The composition ratio of In was controlled by changing the input amount of TMI. Also, A
For the lGaN film, a C-plane sapphire substrate is used as a substrate, and about 2 μm
After growing the GaN film of m, an AlGaN film was grown thereon. As a raw material, trimethylgallium (TM
G), trimethylaluminum (TMA), and ammonia were used to grow at 1000 ° C. The growth rate of InGaN is about 2 μm / h, and the growth time is 30 minutes. Al
Was controlled by changing the input amount of TMA. As a method of artificially increasing crystal defects, In
A GaN growth film (4) for growing GaN or AlGaN
In 3), a sapphire substrate (4
1, 51) forming a stripe-shaped Al 2 O 3 film (42) to generate a defect in the GaN film and causing the defect (45) to penetrate the upper InGaN film or AlGaN film (44), As in Example 2, InG was
The method (57) for directly generating defects in the aN film or the AlGaN film (53), or InG as in the third embodiment.
After defects are generated by performing ion implantation on the aN film or the AlGaN film, InGaN or AGaN is further formed thereon.
A sample was prepared by a method of regrowth of lGaN, and wet etching was performed. In each case, only the portions where defects were generated (regions 46 and 57) were etched.
7, 58), the other parts were not etched at all.
【0018】(実施例5)エッチング液としては、KO
H水溶液以外に、NaOH、などのアルカリ水溶液等を
エッチング液としてとして使用した場合に於ても、エッ
チングの速度は違うものの、人為的に欠陥を発生させた
部分はエッチングされる。しかしながら、欠陥の有無に
対して最も顕著に反応するのは、KOHを使用した場合
であり、C軸に平行な線欠陥以外の転移密度が、1×1
04cm-2程度の欠陥密度で容易にエッチングの制御が
可能であった。また、エッチング液に浸すだけでも十分
な効果を示したが、紫外線の照射により、エッチング速
度を上げることができた。また、水溶液の温度にも敏感
で、温度を高くするとエッチング速度が上がる傾向にあ
った。(Example 5) KO was used as an etching solution.
When an aqueous alkaline solution such as NaOH or the like is used as an etchant in addition to the aqueous H solution, the portions where defects are artificially generated are etched, although the etching speed is different. However, the most remarkable reaction to the presence or absence of a defect is when KOH is used, and the dislocation density other than the line defect parallel to the C axis is 1 × 1
0 easily was possible to control the etching in 4 cm -2 order of the defect density. In addition, although immersion in the etchant was sufficient, the etching rate could be increased by irradiating ultraviolet rays. In addition, the temperature is also sensitive to the temperature of the aqueous solution, and increasing the temperature tends to increase the etching rate.
【0019】[0019]
【発明の効果】本発明に係る窒化物半導体のエッチング
方法は、人為的に窒化物半導体に結晶欠陥を発生させ、
その後、ウエットエッチング法によりエッチングを行う
ことにより、人為的に結晶欠陥を発生させた部分でのみ
エッチングが可能となるという効果がある。According to the method for etching a nitride semiconductor according to the present invention, crystal defects are artificially generated in the nitride semiconductor.
Thereafter, by performing the etching by the wet etching method, there is an effect that the etching can be performed only in the portion where the crystal defect is artificially generated.
【図1】本発明の実施形態1によるエッチングの手法を
示す図であり、人為的に欠陥を生じさせながら成長し、
その後エッチングを行う一例を示した図である。FIG. 1 is a diagram showing an etching method according to a first embodiment of the present invention.
FIG. 5 is a diagram showing an example in which etching is performed thereafter.
【図2】本発明の実施形態2によるエッチングの手法を
示す図であり、成長膜中にイオン注入法により、欠陥を
生じさせてからエッチングを行う一例を示した図であ
る。FIG. 2 is a diagram illustrating an etching method according to a second embodiment of the present invention, and illustrates an example in which etching is performed after a defect is generated in a grown film by an ion implantation method.
【図3】本発明の実施形態3によるエッチング手法を示
す図であり、再成長膜のエッチングを行った一例を示し
た図である。FIG. 3 is a diagram illustrating an etching method according to a third embodiment of the present invention, and is a diagram illustrating an example in which a regrown film is etched.
【図4】本発明の実施形態4によるエッチング手法を示
す図であり、人為的に欠陥を生じさせながら成長したI
nGaN膜及びAlGaNのエッチングを行った一例を
示した図である。FIG. 4 is a view showing an etching method according to a fourth embodiment of the present invention, wherein I is grown while artificially generating defects;
FIG. 4 is a diagram showing an example in which an nGaN film and AlGaN are etched.
【図5】本発明の実施形態4によるエッチング手法を示
す図であり、イオン注入法によりInGaN膜及びAl
GaN膜のエッチングを行った一例を示した図である。FIG. 5 is a diagram showing an etching method according to a fourth embodiment of the present invention, wherein an InGaN film and an Al film are formed by an ion implantation method.
FIG. 3 is a diagram illustrating an example in which a GaN film is etched.
11 基板 12 Al2O3膜 13 GaN成長膜 14 C軸方向に延びた結晶欠陥 15 Al2O3膜の影響で欠陥の多く発生した部分 16 ウエットエッチングにより除去された部分11 substrate 12 Al 2 O 3 film 13 partially removed by a number generator portion 16 wet etching defects the influence of crystal defects 15 Al 2 O 3 film extending in GaN growth layer 14 C axis
Claims (5)
せ、その後、エッチング液を用いて該窒化物半導体結晶
をエッチングすることを特徴とする窒化物半導体のエッ
チング方法。1. A method for etching a nitride semiconductor, comprising generating a crystal defect in a nitride semiconductor crystal, and thereafter etching the nitride semiconductor crystal using an etchant.
体あるいはその一部に、その上に結晶成長を行うことで
成長膜の結晶欠陥密度が増加するような材料を付着さ
せ、結晶成長を行った後、エッチング液を用いて前記成
長膜をエッチングすることを特徴とする請求項1に記載
の窒化物半導体のエッチング方法。2. A material which increases the crystal defect density of a grown film by performing crystal growth on the whole or a part of the substrate on which the crystal growth of the nitride semiconductor is to be performed. The method according to claim 1, wherein, after performing the etching, the growth film is etched using an etchant.
の部分に、イオン注入を行うことにより、窒化物半導体
結晶の所定の部分の結晶欠陥密度を増加させ、その後、
エッチング液を用いて前記窒化物半導体結晶をエッチン
グすることを特徴とする請求項1に記載の窒化物半導体
のエッチング方法。3. Implanting ions into part or all of the surface of the nitride semiconductor to increase the crystal defect density of a predetermined part of the nitride semiconductor crystal,
The method for etching a nitride semiconductor according to claim 1, wherein the nitride semiconductor crystal is etched using an etchant.
に、イオン注入を行うことにより、窒化物半導体結晶の
所定の部分の結晶欠陥密度を増加させ、その後、前記窒
化物半導体結晶上に新たに窒化物半導体を再成長し、エ
ッチング液を用いて前記窒化物半導体結晶をエッチング
することを特徴とする請求項1乃至3のいずれかに記載
の窒化物半導体のエッチング方法。4. An ion implantation is performed on a part or all of the surface of the nitride semiconductor to increase the crystal defect density of a predetermined portion of the nitride semiconductor crystal, and thereafter, a new portion is formed on the nitride semiconductor crystal. 4. The method for etching a nitride semiconductor according to claim 1, wherein the nitride semiconductor is re-grown, and the nitride semiconductor crystal is etched using an etchant.
ム水溶液(KOH)を使用することを特徴とする請求項
1乃至4のいずれかに記載の窒化物半導体のエッチング
方法。5. The method for etching a nitride semiconductor according to claim 1, wherein an aqueous solution of potassium hydroxide (KOH) is used as the etching solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3592097A JP3764792B2 (en) | 1997-02-20 | 1997-02-20 | Nitride semiconductor etching method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3592097A JP3764792B2 (en) | 1997-02-20 | 1997-02-20 | Nitride semiconductor etching method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10233385A true JPH10233385A (en) | 1998-09-02 |
JP3764792B2 JP3764792B2 (en) | 2006-04-12 |
Family
ID=12455479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3592097A Expired - Fee Related JP3764792B2 (en) | 1997-02-20 | 1997-02-20 | Nitride semiconductor etching method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3764792B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000164987A (en) * | 1998-11-26 | 2000-06-16 | Sony Corp | Semiconductor light emitting element and manufacture thereof |
JP2004297070A (en) * | 2003-03-26 | 2004-10-21 | Lucent Technol Inc | Group iii-nitride layers with patterned surfaces |
US6982435B2 (en) * | 1999-03-31 | 2006-01-03 | Toyoda Gosei Co., Ltd. | Group III nitride compound semiconductor device and method for producing the same |
US7148149B2 (en) | 2003-12-24 | 2006-12-12 | Matsushita Electric Industrial Co., Ltd. | Method for fabricating nitride-based compound semiconductor element |
JP2007519230A (en) * | 2003-12-05 | 2007-07-12 | インターナショナル・レクティファイヤ・コーポレーション | Structure and method for isolation of group III nitride devices |
JP2008118134A (en) * | 2006-11-03 | 2008-05-22 | Samsung Electro Mech Co Ltd | Nitride-semiconductor light emitting element, and its manufacturing method |
JP2011082587A (en) * | 2011-01-26 | 2011-04-21 | Regents Of The Univ Of California | High-efficiency gallium nitride based light-emitting diode provided by surface roughening |
US7952109B2 (en) | 2006-07-10 | 2011-05-31 | Alcatel-Lucent Usa Inc. | Light-emitting crystal structures |
JP2011171640A (en) * | 2010-02-22 | 2011-09-01 | Sanken Electric Co Ltd | Nitride semiconductor device and method of manufacturing the same |
JP2012522388A (en) * | 2009-03-31 | 2012-09-20 | 西安▲電▼子科技大学 | Ultraviolet light emitting diode device and manufacturing method thereof |
JP2013004770A (en) * | 2011-06-17 | 2013-01-07 | Mitsubishi Electric Corp | Method for etching nitride semiconductor layer and method for manufacturing nitride semiconductor device |
US8766296B2 (en) | 2003-12-09 | 2014-07-01 | The Regents Of The University Of California | Highly efficient gallium nitride based light emitting diodes via surface roughening |
CN113574215A (en) * | 2019-03-28 | 2021-10-29 | 日本碍子株式会社 | Base substrate and method for manufacturing the same |
-
1997
- 1997-02-20 JP JP3592097A patent/JP3764792B2/en not_active Expired - Fee Related
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000164987A (en) * | 1998-11-26 | 2000-06-16 | Sony Corp | Semiconductor light emitting element and manufacture thereof |
US6982435B2 (en) * | 1999-03-31 | 2006-01-03 | Toyoda Gosei Co., Ltd. | Group III nitride compound semiconductor device and method for producing the same |
KR101050676B1 (en) | 2003-03-26 | 2011-07-21 | 알카텔-루센트 유에스에이 인코포레이티드 | III-nitride layers with patterned surfaces |
JP2004297070A (en) * | 2003-03-26 | 2004-10-21 | Lucent Technol Inc | Group iii-nitride layers with patterned surfaces |
USRE47767E1 (en) | 2003-03-26 | 2019-12-17 | Nokia Of America Corporation | Group III-nitride layers with patterned surfaces |
US8070966B2 (en) | 2003-03-26 | 2011-12-06 | Alcatel Lucent | Group III-nitride layers with patterned surfaces |
JP2011233531A (en) * | 2003-03-26 | 2011-11-17 | Alcatel-Lucent Usa Inc | Device with group iii-nitride and method for fabricating the same |
JP2007519230A (en) * | 2003-12-05 | 2007-07-12 | インターナショナル・レクティファイヤ・コーポレーション | Structure and method for isolation of group III nitride devices |
US8766296B2 (en) | 2003-12-09 | 2014-07-01 | The Regents Of The University Of California | Highly efficient gallium nitride based light emitting diodes via surface roughening |
US10446714B2 (en) | 2003-12-09 | 2019-10-15 | The Regents Of The University Of California | Highly efficient gallium nitride based light emitting diodes via surface roughening |
US10985293B2 (en) | 2003-12-09 | 2021-04-20 | The Regents Of The University Of California | Highly efficient gallium nitride based light emitting diodes via surface roughening |
US11677044B2 (en) | 2003-12-09 | 2023-06-13 | The Regents Of The University Of California | Highly efficient gallium nitride based light emitting diodes via surface roughening |
US7148149B2 (en) | 2003-12-24 | 2006-12-12 | Matsushita Electric Industrial Co., Ltd. | Method for fabricating nitride-based compound semiconductor element |
US7952109B2 (en) | 2006-07-10 | 2011-05-31 | Alcatel-Lucent Usa Inc. | Light-emitting crystal structures |
US8124997B2 (en) | 2006-11-03 | 2012-02-28 | Samsung Led Co., Ltd. | Nitride semiconductor light emitting device and method of manufacturing the same |
JP2008118134A (en) * | 2006-11-03 | 2008-05-22 | Samsung Electro Mech Co Ltd | Nitride-semiconductor light emitting element, and its manufacturing method |
JP2012522388A (en) * | 2009-03-31 | 2012-09-20 | 西安▲電▼子科技大学 | Ultraviolet light emitting diode device and manufacturing method thereof |
JP2011171640A (en) * | 2010-02-22 | 2011-09-01 | Sanken Electric Co Ltd | Nitride semiconductor device and method of manufacturing the same |
JP2011082587A (en) * | 2011-01-26 | 2011-04-21 | Regents Of The Univ Of California | High-efficiency gallium nitride based light-emitting diode provided by surface roughening |
JP2013004770A (en) * | 2011-06-17 | 2013-01-07 | Mitsubishi Electric Corp | Method for etching nitride semiconductor layer and method for manufacturing nitride semiconductor device |
CN113574215A (en) * | 2019-03-28 | 2021-10-29 | 日本碍子株式会社 | Base substrate and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP3764792B2 (en) | 2006-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5866440A (en) | Method of making compound semiconductor light emitting device having evaporation preventing layer Alx Ga.sub.(1-x) N | |
CN101635255B (en) | A method of forming a semiconductor structure | |
JP4743214B2 (en) | Semiconductor device and manufacturing method thereof | |
US6586819B2 (en) | Sapphire substrate, semiconductor device, electronic component, and crystal growing method | |
JP3470623B2 (en) | Method for growing nitride III-V compound semiconductor, method for manufacturing semiconductor device, and semiconductor device | |
JPH11145516A (en) | Manufacture of gallium nitride compound semiconductor | |
JP3764792B2 (en) | Nitride semiconductor etching method | |
KR100878512B1 (en) | Method of manufacturing semiconductor substrate having GaN layer | |
JP2009147305A (en) | Method of growing semi-polar nitride single crystal thin film, and method of manufacturing nitride semiconductor light emitting element using the same | |
US10892159B2 (en) | Semipolar or nonpolar group III-nitride substrates | |
KR100569796B1 (en) | Recovery of surface-ready silicon carbide substrates | |
JP2010074133A (en) | Method of forming nitride semiconductor through ion implantation and electronic device using the same | |
JP4356208B2 (en) | Vapor phase growth method of nitride semiconductor | |
JP2000223417A (en) | Growing method of semiconductor, manufacture of semiconductor substrate, and manufacture of semiconductor device | |
KR100593936B1 (en) | Method of growing non-polar a-plane gallium nitride | |
US6881601B2 (en) | Nitride compound semiconductor, nitride compound semiconductor light emitting device and method of manufacturing the same | |
JP3670927B2 (en) | Nitride semiconductor light emitting device | |
JPH09283861A (en) | Manufacture of group iii nitride semiconductor laser diode | |
US4766092A (en) | Method of growing heteroepitaxial InP on Si using Sn substrate implantation | |
US5262348A (en) | Method for the growing of heteroepitaxial layers within a confinement space | |
JP2000164512A (en) | Growing method of nitride iii-v compound semiconductor layer, manufacture of semiconductor device and semiconductor light emitting device | |
KR19990083174A (en) | Method for growing nitride compound semiconductor | |
JP2000077336A (en) | Substrate for semiconductor growth, manufacture thereof, and semiconductor device | |
US12106959B2 (en) | Nonpolar or semipolar group III-nitride substrates | |
JP2002367909A (en) | Nitride semiconductor film and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040217 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040217 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20040217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050510 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050708 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050823 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050921 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20050928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060117 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060123 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100127 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110127 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120127 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130127 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130127 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |