JPH10232720A - Power supply circuit - Google Patents

Power supply circuit

Info

Publication number
JPH10232720A
JPH10232720A JP9035785A JP3578597A JPH10232720A JP H10232720 A JPH10232720 A JP H10232720A JP 9035785 A JP9035785 A JP 9035785A JP 3578597 A JP3578597 A JP 3578597A JP H10232720 A JPH10232720 A JP H10232720A
Authority
JP
Japan
Prior art keywords
voltage
load
deviation
power supply
load current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9035785A
Other languages
Japanese (ja)
Other versions
JP3137021B2 (en
Inventor
Kazuomi Watanabe
和臣 渡辺
Yoshihiko Ushiwatari
慶彦 牛渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Telecom Networks Ltd
Original Assignee
Fujitsu Telecom Networks Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Telecom Networks Ltd filed Critical Fujitsu Telecom Networks Ltd
Priority to JP09035785A priority Critical patent/JP3137021B2/en
Publication of JPH10232720A publication Critical patent/JPH10232720A/en
Application granted granted Critical
Publication of JP3137021B2 publication Critical patent/JP3137021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Dc-Dc Converters (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform charging with high efficiency without considerably changing basic configuration concerning a power supply circuit which generates DC power by performing voltage transformation and has a drooping function. SOLUTION: Concerning the power supply circuit provided with a voltage transforming means 12 for generating the DC power of desired voltage by performing the processing of voltage transformation to input power supplied from the outside and for supplying that DC power to a load 11 and a voltage characteristic setting means 13 for monitoring a load current, providing the deviation of load current corresponding to a predetermined maximum load current and setting the voltage characteristic of voltage transforming means 12 to drooping characteristics to decrease a load voltage corresponding to that deviation when the deviation is positive, a voltage characteristic changing means 14 is provided for monitoring the load voltage and subtracting a value, which is applied by a decrease function for the deviation of load voltage corresponding to a desired voltage, from the deviation provided by the voltage characteristic setting means 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電圧変換を行って
直流電力を生成し、かつ垂下機能を有する電源回路に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply circuit that generates DC power by performing voltage conversion and has a drooping function.

【0002】[0002]

【従来の技術】蓄電池に対して効率よく充電を行うため
には、充電の開始時にその蓄電池に蓄積されているエネ
ルギーを示す残量に比例した大きな電力が必要とされる
が、一般に、蓄電池の残量の予測は困難である。また、
電源回路の容量を蓄電池が持ちうる最大の容量に耐える
程度に大きくすることは、不経済である。
2. Description of the Related Art In order to charge a storage battery efficiently, a large amount of electric power is required at the start of charging, which is proportional to the remaining amount indicating the energy stored in the storage battery. It is difficult to predict the remaining amount. Also,
It is uneconomical to make the capacity of the power supply circuit large enough to withstand the maximum capacity that the storage battery can have.

【0003】したがって、電源回路では、定電圧充電を
行い、出力電流がその電源回路の容量に適応した値より
大きな値をとると出力電圧の値を急激に抑制する垂下機
能が備えられる。図4は、従来の電源回路の構成例を示
す図である。図において、電圧変換回路41の入力に
は、電力源であるバッテリ42の端子が接続される。電
圧変換回路41の出力(以下では、簡単のため、「不平
衡出力」であるとする。)は、負荷43とその負荷43
に直列に接続された抵抗器44とに接続される。抵抗器
44の端子のうち電圧変換回路41に直結された一方の
端子は、抵抗器45を介して差動増幅器46の反転入力
に接続され、その抵抗器44の他方の端子は抵抗器47
を介して差動増幅器46の非反転入力に接続される。差
動増幅器46の出力は差動増幅器48の非反転入力に接
続され、その差動増幅器48の出力は電圧変換回路41
の制御入力に接続される。また、差動増幅器48の反転
入力は基準電圧源49の陽極に接続され、その基準電圧
源49の陰極は接地される。
Therefore, the power supply circuit is provided with a drooping function for performing constant voltage charging and rapidly suppressing the output voltage value when the output current takes a value larger than a value adapted to the capacity of the power supply circuit. FIG. 4 is a diagram illustrating a configuration example of a conventional power supply circuit. In the figure, an input of a voltage conversion circuit 41 is connected to a terminal of a battery 42 as a power source. The output of the voltage conversion circuit 41 (hereinafter referred to as “unbalanced output” for simplicity) is a load 43 and the load 43
And a resistor 44 connected in series. One of the terminals of the resistor 44, which is directly connected to the voltage conversion circuit 41, is connected to the inverting input of the differential amplifier 46 via the resistor 45, and the other terminal of the resistor 44 is connected to the resistor 47.
To the non-inverting input of the differential amplifier 46. The output of the differential amplifier 46 is connected to the non-inverting input of the differential amplifier 48, and the output of the differential amplifier 48 is
Is connected to the control input. The inverting input of the differential amplifier 48 is connected to the anode of a reference voltage source 49, and the cathode of the reference voltage source 49 is grounded.

【0004】なお、電圧変換回路41の構成は公知であ
るので、詳しい説明は省略する。このような構成の従来
例では、電圧変換回路41は、制御端子に印加される電
圧値に応じてPWM制御を行い、バッテリ42によって
与えられる直流電力を負荷43に適応した電圧の直流電
力に変換する。一方、抵抗器44、45、47および差
動増幅器46は、負荷43に流れる負荷電流Iの値を電
圧に変換する。差動増幅器48は、その電圧と基準電圧
源49から与えられる基準電圧VREF1との差分を求め
る。
[0004] Since the configuration of the voltage conversion circuit 41 is known, a detailed description thereof will be omitted. In the conventional example having such a configuration, the voltage conversion circuit 41 performs the PWM control according to the voltage value applied to the control terminal, and converts the DC power provided by the battery 42 into a DC power of a voltage adapted to the load 43. I do. On the other hand, the resistors 44, 45, 47 and the differential amplifier 46 convert the value of the load current I flowing through the load 43 into a voltage. The differential amplifier 48 obtains a difference between the voltage and a reference voltage VREF1 provided from a reference voltage source 49.

【0005】電圧変換回路41は、このようにして求め
られた差分が負の数であるときには、負荷43に供給す
る直流電力をその差分の値に比例した値に設定すること
により負荷電圧Vの安定化を行い(以下、電圧変換回路
41がこのような動作をする状態を「定電圧モード」と
いう。)、かつその差分が正の数であるときには、電圧
変換回路41は、負荷電圧Vをその差分の値に対して単
調に減少する値に設定する(以下、電圧変換回路41が
このような動作をする状態を「定電流モード」とい
う。)ことにより垂下機能を実現する。
When the difference obtained in this way is a negative number, the voltage conversion circuit 41 sets the DC power supplied to the load 43 to a value proportional to the value of the difference, thereby setting the load voltage V When the stabilization is performed (hereinafter, the state in which the voltage conversion circuit 41 performs such an operation is referred to as “constant voltage mode”) and the difference is a positive number, the voltage conversion circuit 41 The drooping function is realized by setting the value of the difference to a value that monotonously decreases (hereinafter, the state in which the voltage conversion circuit 41 performs such an operation is referred to as “constant current mode”).

【0006】すなわち、負荷43が軽く、負荷電流Iが
上述した基準電圧VREF1として設定される値Imを下回
る期間(図5(1))には、電圧変換回路41が定電圧
モードとなるので負荷電圧Vは一定の値Vmに保たれる
(以下、このような電圧特性(図5(a))を「定電圧
状態」という。)。また、負荷電流Iがその値Imを上
回る程度に負荷43が重い期間(図5(2))には、電
圧変換回路41が定電流モードに移行するので、負荷電
流Iの増加に応じて負荷電圧Vが急峻に減少する(以
下、このような特性(図5(b))を「定電流状態」と
いう。)。
That is, during a period when the load 43 is light and the load current I is lower than the value Im set as the reference voltage VREF1 (FIG. 5 (1)), the voltage conversion circuit 41 is in the constant voltage mode. The voltage V is maintained at a constant value Vm (hereinafter, such a voltage characteristic (FIG. 5A) is referred to as a "constant voltage state"). In addition, during a period when the load 43 is heavy such that the load current I exceeds the value Im (FIG. 5B), the voltage conversion circuit 41 shifts to the constant current mode. The voltage V sharply decreases (hereinafter, such a characteristic (FIG. 5B) is referred to as “constant current state”).

【0007】なお、以下では、図5において負荷電圧お
よび負荷電流がそれぞれVm、Imとなる点(図5
(c))を「移行点」という。一般に、これらの値の積
(Vm*Im)は電圧変換回路41の容量に許容される
最大の電力に設定される。
In the following, the points where the load voltage and the load current are Vm and Im in FIG.
(C)) is called a "transition point". Generally, the product of these values (Vm * Im) is set to the maximum power allowed for the capacity of the voltage conversion circuit 41.

【0008】[0008]

【発明が解決しようとする課題】このような従来例で
は、電圧変換回路41は、負荷43として蓄電池が接続
されると、図5に示される電圧特性に基づいてその蓄電
池の充電を行う。一般に、このような充電が行われる期
間には蓄電池の容量(負荷43の抵抗値)と共に負荷電
流Iが変化するので、移行点(図5(c))に相当する
状態が実現される期間は短い。すなわち、電圧変換回路
41が出力しうる最大の電力が有効に利用されず、充電
の効率は低い。
In such a conventional example, when a storage battery is connected as the load 43, the voltage conversion circuit 41 charges the storage battery based on the voltage characteristics shown in FIG. Generally, during such a charging period, the load current I changes together with the capacity of the storage battery (the resistance value of the load 43). Therefore, the period corresponding to the transition point (FIG. 5C) is realized. short. That is, the maximum power that the voltage conversion circuit 41 can output is not effectively used, and the charging efficiency is low.

【0009】なお、負荷43に供給される電力(V*
I)を電圧変換回路41に帰還することによって出力さ
れる電力を大きな値に保つ方法は、技術的には可能であ
るが、その電力を示す電気信号の生成に乗算器を要する
ので、コストが高くなり現実的ではない。本発明は、上
述した垂下特性を有する電源回路の構成に大幅な変更を
きたすことなく、高い効率で充電を行う電源回路を提供
することを目的とする。
The power (V *) supplied to the load 43
It is technically possible to keep the output power at a large value by feeding back I) to the voltage conversion circuit 41. However, since a multiplier is required to generate an electric signal indicating the power, the cost is reduced. It is expensive and unrealistic. An object of the present invention is to provide a power supply circuit that performs high-efficiency charging without significantly changing the configuration of the power supply circuit having the above-described drooping characteristics.

【0010】[0010]

【課題を解決するための手段】図1は、請求項1に記載
の発明の原理ブロック図である。請求項1に記載の発明
は、外部から供給される入力電力に電圧変換の処理を施
すことによって所望の電圧の直流電力を生成し、その直
流電力を負荷11に供給する電圧変換手段12と、負荷
電流を監視し、予め決められた最大負荷電流に対する負
荷電流の偏差を得て、その偏差が正であるときには、電
圧変換手段12の電圧特性を、その偏差に応じて負荷電
圧が減少する垂下特性に設定する電圧特性設定手段13
とを備えた電源回路において、負荷電圧を監視し、電圧
特性設定手段13によって得られる偏差から、所望の電
圧に対する負荷電圧の偏差の減少関数で与えられる値を
減じる電圧特性変更手段14を備えたことを特徴とす
る。
FIG. 1 is a block diagram showing the principle of the first aspect of the present invention. According to the first aspect of the present invention, a voltage conversion unit 12 generates a DC power of a desired voltage by performing a voltage conversion process on input power supplied from the outside, and supplies the DC power to a load 11. The load current is monitored, and a deviation of the load current from a predetermined maximum load current is obtained. When the deviation is positive, the voltage characteristic of the voltage conversion means 12 is changed according to the deviation. Voltage characteristic setting means 13 for setting characteristics
And a voltage characteristic changing means for monitoring a load voltage and subtracting a value given by a decreasing function of a deviation of the load voltage from a desired voltage from a deviation obtained by the voltage characteristic setting means. It is characterized by the following.

【0011】請求項2に記載の発明は、請求項1に記載
の電源回路において、電圧特性変更手段14は、負荷電
流と、最大負荷電流より大きく設定された臨界電流とを
比較し、前者が後者より大きいときに、減じる演算を停
止する手段を含むことを特徴とする。請求項3に記載の
発明は、請求項1または請求項2に記載の電源回路にお
いて、電圧特性変更手段14に適用される減少関数の変
化率は、電圧変換手段12の単体が垂下特性の下で示す
負荷電圧の変化率μに対してG=−(μ+1)/μの式
で与えられる値Gであることを特徴とする。
According to a second aspect of the present invention, in the power supply circuit according to the first aspect, the voltage characteristic changing means compares the load current with a critical current set to be larger than the maximum load current. The method is characterized in that it includes means for stopping the subtraction operation when it is larger than the latter. According to a third aspect of the present invention, in the power supply circuit according to the first or second aspect, the rate of change of the decreasing function applied to the voltage characteristic changing means is such that the voltage conversion means alone has a drooping characteristic. Is a value G given by the equation of G = − (μ + 1) / μ with respect to the change rate μ of the load voltage indicated by.

【0012】(作用)請求項1に記載の発明にかかわる
電源回路では、電圧変換手段12は、電圧変換を行うこ
とによって所望の電圧の直流電力を生成する。また、電
圧特性設定手段13は、最大負荷電流に対する負荷電流
の偏差を得て、その偏差が正であるときには、電圧変換
手段12の電圧特性を、その偏差に応じて負荷電圧が減
少する垂下特性に設定する。すなわち、負荷電圧につい
ては、負荷電流が最大負荷電流より小さいときには所望
の値に保持され、かつ負荷電流が最大負荷電流より大き
いときにはその負荷電流に応じて急峻に減少する。
(Operation) In the power supply circuit according to the first aspect of the present invention, the voltage conversion means 12 generates DC power of a desired voltage by performing voltage conversion. The voltage characteristic setting means 13 obtains a deviation of the load current from the maximum load current, and when the deviation is positive, sets the voltage characteristic of the voltage conversion means 12 to a droop characteristic in which the load voltage decreases in accordance with the deviation. Set to. That is, the load voltage is maintained at a desired value when the load current is smaller than the maximum load current, and sharply decreases according to the load current when the load current is larger than the maximum load current.

【0013】しかし、電圧特性変更手段14は、電圧特
性設定手段13が得る偏差から、所望の電圧に対する負
荷電圧の偏差の減少関数で与えられる値を減じるので、
過負荷の状態では、電圧特性設定手段13によって得ら
れた負荷電流の偏差の量は小さく更新される。すなわ
ち、電圧変換手段12が上述した垂下形態の下で示す負
荷電圧の減少の程度は、緩和される。さらに、電圧特性
変更手段14は線形な入出力特性を有する簡単な構成の
回路で実現されるので、上述した減少関数を適宜設定す
ることによって、安価にかつ確実に負荷電圧の変化率の
大きさを所望の小さな値に変更することができる。
However, the voltage characteristic changing means 14 subtracts the value given by the decreasing function of the deviation of the load voltage from the desired voltage from the deviation obtained by the voltage characteristic setting means 13,
In the overload state, the amount of load current deviation obtained by the voltage characteristic setting means 13 is updated to be small. That is, the degree of the decrease in the load voltage that the voltage conversion unit 12 exhibits under the above-described drooping mode is reduced. Further, since the voltage characteristic changing means 14 is realized by a circuit having a simple configuration having a linear input / output characteristic, by appropriately setting the above-described decreasing function, the magnitude of the rate of change of the load voltage can be reduced at a low cost and reliably. Can be changed to a desired small value.

【0014】請求項2に記載の発明にかかわる電源回路
では、請求項1に記載の電源回路において、電圧特性変
更手段14は負荷電流と最大負荷電流より大きく設定さ
れた臨界電流とを比較し、前者が後者より大きいときに
は、偏差から値を減じる演算を停止する。すなわち、負
荷電流の値が臨界電流を超える場合には、電圧変換手段
12は、電圧特性変更手段14によって何ら妨げられる
ことなく電圧特性設定手段13の配下で作動するので、
従来例と同様にして垂下特性が得られる。
In the power supply circuit according to the second aspect of the present invention, in the power supply circuit according to the first aspect, the voltage characteristic changing means compares the load current with a critical current set to be larger than the maximum load current. When the former is larger than the latter, the operation of subtracting the value from the deviation is stopped. That is, when the value of the load current exceeds the critical current, the voltage converting means 12 operates under the voltage characteristic setting means 13 without any hindrance by the voltage characteristic changing means 14,
A drooping characteristic can be obtained in the same manner as in the conventional example.

【0015】さらに、上述した臨界電流の値を最大負荷
電流より大きい値に適宜設定することによって、負荷1
1の重さにかかわらず負荷11に流れる負荷電流に上限
値を設けることができる。請求項3に記載の発明にかか
わる電源回路では、請求項1または請求項2に記載の電
源回路において、電圧特性変更手段14に適用される減
少関数の変化率は、電圧変換手段12の単体が垂下特性
の下で示す負荷電圧の変化率μに対してG=−(μ+
1)/μの式で与えられる値Gである。この式による
と、電圧特性設定手段13と電圧特性変更手段14との
双方の動作の下で電圧変換回路12が示す負荷電圧に対
する負荷電流の変化率1/k(1/k=1/μ+G)に
対して1/k=−1が与えられる。したがって、負荷電
流の値が最大負荷電流以上であって臨界電流未満である
ときには、負荷11に供給される電力は一定に保たれ
る。
Further, by appropriately setting the value of the critical current to a value larger than the maximum load current, the load 1
An upper limit can be set for the load current flowing through the load 11 regardless of the weight of the load. In the power supply circuit according to the third aspect of the present invention, in the power supply circuit according to the first or second aspect, the rate of change of the decreasing function applied to the voltage characteristic changing means 14 is such that the voltage conversion means 12 alone has With respect to the change rate μ of the load voltage shown under the drooping characteristic, G = − (μ +
1) A value G given by the formula of / μ. According to this equation, the rate of change of the load current with respect to the load voltage indicated by the voltage conversion circuit 12 is 1 / k (1 / k = 1 / μ + G) under the operation of both the voltage characteristic setting means 13 and the voltage characteristic changing means 14. Is given by 1 / k = -1. Therefore, when the value of the load current is equal to or more than the maximum load current and less than the critical current, the power supplied to the load 11 is kept constant.

【0016】[0016]

【発明の実施の形態】以下、図面に基づいて本発明の実
施形態について詳細に説明する。図2は、請求項1〜3
に記載の発明に対応した実施形態の構成を示す図であ
る。図において、図4に示す従来例と機能および構成が
同じものについては、同じ符号を付して示し、ここでは
その説明を省略する。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG.
FIG. 3 is a diagram showing a configuration of an embodiment corresponding to the invention described in FIG. In the figure, components having the same functions and configurations as those of the conventional example shown in FIG. 4 are denoted by the same reference numerals, and description thereof is omitted here.

【0017】以下、本実施形態と図4に示す従来例との
構成の相違点は、差動増幅器48と基準電圧源49との
間に抵抗器21が付加され、その抵抗器21と差分増幅
器48との接続点と、負荷43と電圧変換回路41との
接続点との間に、分圧回路22、反転増幅回路23およ
び逆方向接続されたダイオード24が直列に接続された
点にある。
The difference between the present embodiment and the conventional example shown in FIG. 4 is that a resistor 21 is added between a differential amplifier 48 and a reference voltage source 49, and the resistor 21 and the differential amplifier The point is that the voltage dividing circuit 22, the inverting amplifier circuit 23, and the diode 24 connected in the reverse direction are connected in series between the connection point of the load 48 and the connection point of the load 43 and the voltage conversion circuit 41.

【0018】分圧回路22は、直列に接続された抵抗器
22a、22bにより構成される。反転増幅回路23で
は、分圧回路22の出力が抵抗器23aを介して演算増
幅器23bの反転入力と抵抗器23cの一方の端子に接
続され、その演算増幅器23bの出力は、抵抗器23c
の他方の端子とダイオード24のアノードとに接続され
る。演算増幅器23bの非反転入力は、基準電圧源23
dを介して接地される。
The voltage dividing circuit 22 includes resistors 22a and 22b connected in series. In the inverting amplifier circuit 23, the output of the voltage dividing circuit 22 is connected to the inverting input of the operational amplifier 23b and one terminal of the resistor 23c via the resistor 23a, and the output of the operational amplifier 23b is connected to the resistor 23c.
And the anode of the diode 24. The non-inverting input of the operational amplifier 23b is connected to the reference voltage source 23
Grounded via d.

【0019】なお、本実施形態と図1に示すブロック図
との対応関係については、負荷43は負荷11に対応
し、電圧変換回路41は電圧変換手段12に対応し、抵
抗器44、45、47と差動増幅器46、48と基準電
圧源49とは電圧特性設定手段13に対応し、分圧回路
22と反転増幅回路23とダイオード24と抵抗器21
とは電圧特性変更手段14に対応する。
The correspondence between the present embodiment and the block diagram shown in FIG. 1 is as follows. The load 43 corresponds to the load 11, the voltage conversion circuit 41 corresponds to the voltage conversion means 12, and the resistors 44, 45,. 47, the differential amplifiers 46 and 48, and the reference voltage source 49 correspond to the voltage characteristic setting means 13, and include a voltage dividing circuit 22, an inverting amplifier circuit 23, a diode 24, and a resistor 21.
Corresponds to the voltage characteristic changing means 14.

【0020】また、以下では、抵抗器22a、22b、
23a、23cの抵抗値については、対応する符号を文
字「R」に付して表す。図3は、本実施形態の動作を示
す図である。以下、図2および図3を参照して本実施形
態の動作を説明する。負荷43が軽い状態では、従来例
と同様にしてその電圧変換回路41の内部で行われる電
圧の安定化の下で、定電圧状態(図3(a))が確保さ
れる。このように、電圧変換回路41が定電圧モードで
あるとき(図3(1))に、分圧回路22と反転増幅回
路23との相互的な利得G(=−R22b/(R22b
+R22a)*R23c/R23a)と、基準電圧源4
9、23dが与える基準電圧VREF1、VREF2との間に
は、ダイオード24が順方向にバイアスされるために、 VREF1>G*Vm+VREF2 ・・・(1) の不等式が成立する。
In the following, the resistors 22a, 22b,
Regarding the resistance values of 23a and 23c, the corresponding reference numerals are attached to the letter “R”. FIG. 3 is a diagram illustrating the operation of the present embodiment. Hereinafter, the operation of the present embodiment will be described with reference to FIGS. When the load 43 is light, the constant voltage state (FIG. 3A) is secured under the stabilization of the voltage performed inside the voltage conversion circuit 41 as in the conventional example. Thus, when the voltage conversion circuit 41 is in the constant voltage mode (FIG. 3A), the mutual gain G (= −R22b / (R22b) between the voltage dividing circuit 22 and the inverting amplifier circuit 23 is obtained.
+ R22a) * R23c / R23a) and reference voltage source 4
Since the diode 24 is biased in the forward direction between the reference voltages VREF1 and VREF2 given by 9 and 23d, the inequality VREF1> G * Vm + VREF2 (1) holds.

【0021】また、差動増幅器48の反転入力には、 Vd=VREF1+G*Vm+VREF2 ・・・(2) の式で示される直流電圧Vdが印加される。なお、以下
では、簡単のため、電圧変換回路41が定電圧モードで
あるときには、差動増幅器48の反転入力に印加される
電圧Vdが従来例と同様の基準電圧VREF1となる(すな
わち、電圧変換回路41は、従来例と同様の条件下で作
動する。)ために、 VREF2+G*Vm=0 ・・・(3) が成立すると仮定する。
A DC voltage Vd expressed by the following equation is applied to the inverting input of the differential amplifier 48: Vd = VREF1 + G * Vm + VREF2 (2) Hereinafter, for the sake of simplicity, when the voltage conversion circuit 41 is in the constant voltage mode, the voltage Vd applied to the inverting input of the differential amplifier 48 becomes the same reference voltage VREF1 as the conventional example (that is, the voltage conversion). The circuit 41 operates under the same conditions as in the conventional example.) Therefore, it is assumed that VREF2 + G * Vm = 0 (3) holds.

【0022】負荷43が重くなって電圧変換回路41が
定電流モードに移行したとき(図3(2))には、電圧
変換回路41の制御端子に印加される電圧Vinは、負荷
43の負荷電流I、差動増幅器46の利得g、負荷電圧
Vに対して、 Vin=(g*I−VREF1)−(G*V+VREF2) ・・・(4) の式で示される値となる。
When the load 43 becomes heavy and the voltage conversion circuit 41 shifts to the constant current mode (FIG. 3 (2)), the voltage Vin applied to the control terminal of the voltage conversion circuit 41 With respect to the current I, the gain g of the differential amplifier 46, and the load voltage V, the value is expressed by the following equation: Vin = (g * I−VREF1) − (G * V + VREF2) (4)

【0023】ここに、電圧変換回路41は、図5(b)
に示すように定電流モードであるときには線形とみなせ
る応答を行い、電圧Vinが増加するほど負荷電流Iが増
加したと認識して負荷電圧Vの値を小さく設定する。し
かし、この電圧Vinは、負荷電圧Vに応じて変化する。
すなわち、電圧変換回路41は、負荷電流Iが増加して
もその増加分を実際の値より小さいと認識するので、負
荷電圧Vの負荷電流Iに対する変化率は従来例より小さ
く設定される(図3(b))。
Here, the voltage conversion circuit 41 is arranged as shown in FIG.
As shown in (1), when the mode is the constant current mode, a response that can be regarded as linear is performed, and it is recognized that the load current I increases as the voltage Vin increases, and the value of the load voltage V is set to a small value. However, this voltage Vin changes according to the load voltage V.
That is, since the voltage conversion circuit 41 recognizes that even if the load current I increases, the increase is smaller than the actual value, the rate of change of the load voltage V with respect to the load current I is set smaller than in the conventional example (FIG. 3 (b)).

【0024】さらに負荷43が重くなって、反転増幅回
路23の出力の電位が基準電圧源49から与えられる基
準電圧REF1より高くなった場合には、ダイオード24が
遮断領域に移行して差動増幅器48の反転入力と反転増
幅回路23との間の接続が絶たれるので、従来例と同様
にして定電流状態が実現される(図3(c))。以下、
上述した定性的な動作に基づいて、所望の電圧特性を得
るためにそれぞれ設定されるべき利得G、基準電圧VRE
F1、VREF2について説明する。
Further, when the load 43 becomes heavy and the potential of the output of the inverting amplifier circuit 23 becomes higher than the reference voltage REF1 given from the reference voltage source 49, the diode 24 moves to the cutoff region and the differential amplifier Since the connection between the inverting input 48 and the inverting amplifier 23 is cut off, a constant current state is realized in the same manner as in the conventional example (FIG. 3 (c)). Less than,
Based on the qualitative operation described above, the gain G and the reference voltage VRE are set to obtain desired voltage characteristics.
F1 and VREF2 will be described.

【0025】電圧変換回路41が定電流モードであると
きに電圧Vinの応答として負荷43に供給される負荷電
流圧Vは、既知の係数μに対して、 V=μ*((gI−VREF1)−(G*V+VREF2)) ・・・(4) の式で近似的に与えられる。したがって、負荷電流Iの
負荷電圧Vに対する変化率kは、 k=(1+μG)/(μ*g) ・・・(5) の式で与えられるので、例えば、 (1+μG)/(μ*g)=−1 ・・・(6) とおくと、負荷43に供給される電力は負荷電流Iの如
何にかかわらず一定となる。
When the voltage conversion circuit 41 is in the constant current mode, the load current pressure V supplied to the load 43 in response to the voltage Vin is given by the following equation: V = μ * ((gI−VREF1) − (G * V + VREF2)) Approximately given by equation (4). Therefore, the rate of change k of the load current I with respect to the load voltage V is given by the following equation: k = (1 + μG) / (μ * g) (5), for example, (1 + μG) / (μ * g) = -1 (6) In this case, the power supplied to the load 43 is constant regardless of the load current I.

【0026】また、ダイオード24が逆バイアスされ始
める状態では、 VREF1=VREF2+G*V ・・・(7) の式が成立するので、垂下機能が実現される時点(図3
(d))において負荷電圧Vがとるべき値Voに対して
は、 VREF1=VREF2+G*Vo ・・・(8) の式が成立する。
When the diode 24 starts to be reverse-biased, the following equation is established: VREF1 = VREF2 + G * V (7), so that the time when the droop function is realized (FIG. 3)
With respect to the value Vo that the load voltage V should take in (d)), the following equation holds: VREF1 = VREF2 + G * Vo (8)

【0027】すなわち、利得G、基準電圧VREF1、VRE
F2は、上式(3)、(5)、(8)からなる連立方程式
の根として求められるので、従来例に分圧回路22、反
転増幅回路23、ダイオード24および抵抗器21が付
加されてなる簡単かつ安価な回路により、所望の電圧特
性が実現される。特に、上式(6)が成立する場合に
は、電圧変換回路41が負荷43に供給する電力が一定
かつ最大とされる状態は従来例(図5(c)に示す移行
点のみ)と比べて広く設定される。
That is, gain G, reference voltages VREF1, VRE
Since F2 is obtained as the root of the simultaneous equations consisting of the above equations (3), (5), and (8), a voltage dividing circuit 22, an inverting amplifier circuit 23, a diode 24, and a resistor 21 are added to the conventional example. A desired voltage characteristic is realized by a simple and inexpensive circuit. In particular, when the above equation (6) holds, the state in which the power supplied from the voltage conversion circuit 41 to the load 43 is constant and maximized is smaller than that of the conventional example (only the transition point shown in FIG. 5C). Is set widely.

【0028】さらに、負荷43が過放電された蓄電池で
ある場合には、その蓄電池に対する充電の初期において
供給される電力は、電圧変換回路41が定電圧モードに
移行する時点に至る長い期間に亘って最大の値となる。
すなわち、電圧変換回路41が負荷43に対して供給可
能な最大の電力が有効に利用されるので、充電の効率は
高められる。
Further, when the load 43 is an overdischarged storage battery, the electric power supplied to the storage battery in the initial stage of charging is long over a long period of time until the voltage conversion circuit 41 shifts to the constant voltage mode. Is the largest value.
That is, the maximum power that the voltage conversion circuit 41 can supply to the load 43 is effectively used, so that the charging efficiency is improved.

【0029】なお、上述した実施形態では、反転増幅回
路23の後段にダイオード24が配置されるが、垂下機
能が適用される程度に負荷43が重くなることがない場
合には、そのダイオード24は配置されなくてもよい。
また、上述した実施形態では、定電圧モードにある電圧
変換回路41によって負荷電圧の安定化が行われるが、
所望の精度で負荷43に負荷電圧Vが与えられるなら
ば、その安定化は行われなくてもよい。
In the above-described embodiment, the diode 24 is disposed downstream of the inverting amplifier circuit 23. However, if the load 43 does not become heavy enough to apply the droop function, the diode 24 is It does not need to be arranged.
In the above-described embodiment, the load voltage is stabilized by the voltage conversion circuit 41 in the constant voltage mode.
If the load voltage V is applied to the load 43 with desired accuracy, the stabilization may not be performed.

【0030】さらに、上述した実施形態では、反転増幅
回路23の前段に分圧回路22が配置されているが、反
転増幅回路23において負荷電圧Vが所望の増幅率で反
転増幅されるならばその分圧回路22は配置されなくて
もよい。また、上述した実施形態では、電圧変換回路4
1はPWM制御方式に基づいて電圧変換を行っている
が、所望の電圧特性が得られるならば如何なる方式で電
圧変換が行われてもよい。
Further, in the above-described embodiment, the voltage dividing circuit 22 is arranged at the preceding stage of the inverting amplifier circuit 23. However, if the load voltage V is inverted and amplified at a desired amplification factor in the inverting amplifier circuit 23, the voltage dividing circuit 22 is provided. The voltage dividing circuit 22 may not be provided. In the above-described embodiment, the voltage conversion circuit 4
1 performs voltage conversion based on the PWM control method, but any method may be used as long as desired voltage characteristics can be obtained.

【0031】さらに、上述した実施形態では、電力源と
してバッテリ42が適用されるが、電圧変換回路41の
動作に適応した電力が与えられるならば如何なる電力源
が適用されてもよい。また、上述した実施形態では、演
算増幅器23bが配置されるが、電圧変換回路の制御端
子に入力されるべき電圧が負荷電圧に比べて小さいとき
は、その演算増幅器23bに代えて、例えば減衰器や分
圧器のような受動素子からなる回路が配置されてもよ
い。
Further, in the above-described embodiment, the battery 42 is applied as a power source, but any power source may be applied as long as power suitable for the operation of the voltage conversion circuit 41 is provided. In the above-described embodiment, the operational amplifier 23b is provided. However, when the voltage to be input to the control terminal of the voltage conversion circuit is smaller than the load voltage, an attenuator is used instead of the operational amplifier 23b. A circuit composed of passive elements such as a voltage divider may be arranged.

【0032】さらに、上述した実施形態では、電圧変換
回路41の入出力特性には垂下特性が設定されるが、負
荷電流に対して負荷電圧が単調に減少する特性であるな
らば、如何なる特性が設定されてもよい。
Further, in the above-described embodiment, the drooping characteristic is set as the input / output characteristic of the voltage conversion circuit 41. However, if the load voltage monotonously decreases with respect to the load current, any characteristic is obtained. It may be set.

【0033】[0033]

【発明の効果】上述したように請求項1に記載の発明で
は、負荷電流に対する負荷電圧の変化率の大きさを、安
価にかつ確実に所望の小さな値に変更することができ
る。
As described above, according to the first aspect of the present invention, the magnitude of the rate of change of the load voltage with respect to the load current can be changed to a desired small value at low cost and reliably.

【0034】さらに、請求項2に記載の発明では、負荷
の重さにかかわらず負荷に流れる負荷電流に上限値を設
けることができる。請求項3に記載の発明では、負荷電
流の値が最大負荷電流以上であって臨界電流未満である
ときには、負荷に供給される電力は一定に保たれる。し
たがって、これらの発明が適用された電源系では、負荷
が変動する状態において電源回路の固有の最大有能電力
は有効に利用される。さらに、負荷電流の上限が給電路
の特性その他に適応した適正な値に設定されることによ
って、安全性が確保される。
Further, according to the second aspect of the present invention, an upper limit value can be set for the load current flowing through the load regardless of the weight of the load. According to the third aspect of the invention, when the value of the load current is equal to or larger than the maximum load current and smaller than the critical current, the power supplied to the load is kept constant. Therefore, in the power supply system to which these inventions are applied, the unique maximum available power of the power supply circuit is effectively used in a state where the load fluctuates. Furthermore, safety is ensured by setting the upper limit of the load current to an appropriate value adapted to the characteristics of the power supply path and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1に記載の発明の原理ブロック図であ
る。
FIG. 1 is a principle block diagram of the invention according to claim 1;

【図2】請求項1〜3に記載の発明に対応した実施形態
の構成を示す図である。
FIG. 2 is a diagram showing a configuration of an embodiment corresponding to the inventions of claims 1 to 3;

【図3】請求項1〜3に記載の発明に対応した実施形態
の動作を説明する図である。
FIG. 3 is a diagram for explaining the operation of the embodiment according to the first to third aspects of the present invention;

【図4】従来の電源回路の構成例を示す図である。FIG. 4 is a diagram illustrating a configuration example of a conventional power supply circuit.

【図5】従来の電源回路の動作を説明する図である。FIG. 5 is a diagram illustrating the operation of a conventional power supply circuit.

【符号の説明】[Explanation of symbols]

11 負荷 12 電圧変換手段 13 電圧特性設定手段 14 電圧特性変更手段 21,22a,22b,23a,23c,44,45,
47 抵抗器 23b 演算増幅器 23d,49 基準電圧源 24 ダイオード 41 電圧変換回路 42 バッテリ 43 負荷 46,48 差動増幅器
DESCRIPTION OF SYMBOLS 11 Load 12 Voltage conversion means 13 Voltage characteristic setting means 14 Voltage characteristic changing means 21,22a, 22b, 23a, 23c, 44,45,
47 resistor 23b operational amplifier 23d, 49 reference voltage source 24 diode 41 voltage conversion circuit 42 battery 43 load 46, 48 differential amplifier

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 外部から供給される入力電力に電圧変換
の処理を施すことによって所望の電圧の直流電力を生成
し、その直流電力を負荷に供給する電圧変換手段と、 負荷電流を監視し、予め決められた最大負荷電流に対す
る負荷電流の偏差を得て、その偏差が正であるときに
は、前記電圧変換手段の電圧特性を、その偏差に応じて
負荷電圧が減少する垂下特性に設定する電圧特性設定手
段とを備えた電源回路において、 負荷電圧を監視し、前記電圧特性設定手段によって得ら
れる偏差から、前記所望の電圧に対する負荷電圧の偏差
の減少関数で与えられる値を減じる電圧特性変更手段を
備えたことを特徴とする電源回路。
A voltage conversion means for generating a DC power of a desired voltage by applying a voltage conversion process to input power supplied from the outside, supplying the DC power to a load, and monitoring a load current; A deviation of the load current from the predetermined maximum load current is obtained, and when the deviation is positive, the voltage characteristic of the voltage conversion means is set to a drooping characteristic in which the load voltage decreases according to the deviation. A voltage characteristic changing means for monitoring a load voltage and subtracting a value given by a decreasing function of a deviation of the load voltage from the desired voltage from a deviation obtained by the voltage characteristic setting means. A power supply circuit comprising:
【請求項2】 請求項1に記載の電源回路において、 電圧特性変更手段は、 負荷電流と、最大負荷電流より大きく設定された臨界電
流とを比較し、前者が後者より大きいときに、減じる演
算を停止する手段を含むことを特徴とする電源回路。
2. The power supply circuit according to claim 1, wherein the voltage characteristic changing means compares the load current with a critical current set to be larger than the maximum load current, and decreases when the former is larger than the latter. A power supply circuit comprising means for stopping the power supply.
【請求項3】 請求項1または請求項2に記載の電源回
路において、 電圧特性変更手段に適用される減少関数の変化率は、 電圧変換手段の単体が垂下特性の下で示す負荷電圧の変
化率μに対してG=−(μ+1)/μの式で与えられる
値Gであることを特徴とする電源回路。
3. The power supply circuit according to claim 1, wherein the rate of change of the decreasing function applied to the voltage characteristic changing means is a change in the load voltage which the voltage converting means alone exhibits under the drooping characteristic. A power supply circuit, wherein a value G is given by an equation of G = − (μ + 1) / μ with respect to a rate μ.
JP09035785A 1997-02-20 1997-02-20 Power supply circuit Expired - Fee Related JP3137021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09035785A JP3137021B2 (en) 1997-02-20 1997-02-20 Power supply circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09035785A JP3137021B2 (en) 1997-02-20 1997-02-20 Power supply circuit

Publications (2)

Publication Number Publication Date
JPH10232720A true JPH10232720A (en) 1998-09-02
JP3137021B2 JP3137021B2 (en) 2001-02-19

Family

ID=12451570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09035785A Expired - Fee Related JP3137021B2 (en) 1997-02-20 1997-02-20 Power supply circuit

Country Status (1)

Country Link
JP (1) JP3137021B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006204091A (en) * 2005-01-18 2006-08-03 Power Integrations Inc Method and device for controlling output power delivered from switching power supply
WO2017033908A1 (en) * 2015-08-25 2017-03-02 国立大学法人 長崎大学 Power conversion circuit control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100580603C (en) * 2006-07-21 2010-01-13 晨星半导体股份有限公司 Power supply device and method for supplying voltage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006204091A (en) * 2005-01-18 2006-08-03 Power Integrations Inc Method and device for controlling output power delivered from switching power supply
WO2017033908A1 (en) * 2015-08-25 2017-03-02 国立大学法人 長崎大学 Power conversion circuit control device
JPWO2017033908A1 (en) * 2015-08-25 2018-06-07 国立大学法人 長崎大学 Control device for power conversion circuit

Also Published As

Publication number Publication date
JP3137021B2 (en) 2001-02-19

Similar Documents

Publication Publication Date Title
US7492130B2 (en) Power processing unit and related method for regulating a voltage despite voltage fluctuations across an energy storage device
US7521898B2 (en) Charger, DC/DC converter including that charger, and control circuit thereof
US7071667B2 (en) DC—DC converter
US5675233A (en) Charging voltage distribution apparatus for series batteries
US20060091864A1 (en) Vehicle power-generation control unit
JP3922649B1 (en) Charging device for capacitor storage power supply
JP2005086843A (en) Output control device of power supply source
KR100271094B1 (en) Charge contoller
JP4152413B2 (en) Charger and DC-DC converter provided with the charger
JP4049333B1 (en) Charge control device
WO1998008289A1 (en) Power limiting circuit for electric vehicle battery charger
CN116418231B (en) Boosting control method of power supply and audio device
EP1187303B1 (en) PWM Control circuit for DC-DC converter
US4091319A (en) Method and apparatus to recharge a battery aboard an electric vehicle
JP3137021B2 (en) Power supply circuit
JP2000152616A (en) Power supply device
JP4137175B2 (en) DC-DC converter
US11283359B2 (en) Synchronous rectification DC-DC converter and switching power supply device
JP4108313B2 (en) Solar cell power generation system
JP3703755B2 (en) Input power tracking converter
CN111488024B (en) Cleaning equipment and power adjusting method
JPH0993829A (en) Charger
JPH11327671A (en) Charging circuit for electronic equipment
WO2023047836A1 (en) Vehicle power supply device
JP2000139090A (en) Control circuit for revolutions of motor in radar antenna

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees