JPH10230343A - Baggy core - Google Patents

Baggy core

Info

Publication number
JPH10230343A
JPH10230343A JP7882597A JP7882597A JPH10230343A JP H10230343 A JPH10230343 A JP H10230343A JP 7882597 A JP7882597 A JP 7882597A JP 7882597 A JP7882597 A JP 7882597A JP H10230343 A JPH10230343 A JP H10230343A
Authority
JP
Japan
Prior art keywords
bag
core
casting
resin
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7882597A
Other languages
Japanese (ja)
Inventor
Yuji Sengoku
裕司 仙石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7882597A priority Critical patent/JPH10230343A/en
Publication of JPH10230343A publication Critical patent/JPH10230343A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To simplify the take-out of a bag after completing casting, to restrain melting and gasifying caused by contact of the bag with molten aluminum alloy and to obtain good effect to casting quality, cost, workability, etc., by using to the outer surface side of a core and forming a double layer structure filing block and granular material therein. SOLUTION: The bag 1 is used to the outer surface side of the core and the block and granular materials 2 are filled therein. After completing the casting, the bag 1 part is broken and then, since the granular materials 2 have no bonding power, these materials can be trickled out. Since the remained bag 1 is formed as skin-state, this bag can simply be pulled out. In the case of using a resin to the bag 1, the generating quantity of gas can be restrained by adding heat resistant fiber and powder in the bag. The temp. raising of the bag can be restrained with the absorption of the heat at the aluminum alloy side by including the block and granular material having higher thermal conductivity than the resin. Since the core used to the bag including the block and granular material having the high thermal conductivity and set at the time of casting, is used at the room temp., this core can sufficiently absorb the heat of molten metal. The cooling capacity at the core side is sufficient by this heat absorption, and the shrinkage hole caused by the shrinkage at the time of solidifying the molten aluminum alloy, is not developed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム合金・鋳
鉄・銅合金の鋳造に於いて、アンダーカットや中空の自
由で複雑な内部形状や寸法精度の高い鋳造品を製造する
ときに用いる中子に関する物である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a core used in the production of aluminum alloys, cast irons and copper alloys, which is used to produce undercuts, hollow internal parts having a complicated internal shape and high dimensional accuracy. It is about.

【0002】[0002]

【従来の技術】従来、下記のように一体成型した中子を
そのままか、又は必要に応じて一体成型した中子にコー
ティングを施して使用していた。 金型鋳造・低圧鋳造・砂型鋳造では、砂を耐熱性樹
脂で固めたシェル中子を用いている。砂を固めるために
用いる耐熱性樹脂は、フェノール樹脂・フラン樹脂・尿
素フラン樹脂などが用いられていた。現在でも主流の中
子として生産に供されている。 ダイカストでは、高い圧力が加わるために上記のシ
ェル中子の表面にコーティングをして、中子に供してい
る。その表面コーティングは雲母粉や黒鉛等の骨材を有
機材料のエポキシ樹脂・フェノール樹脂を粘結剤として
施工して用いた事例がある。 ダイカストでは、の表面コーティングに雲母粉や
黒鉛等の骨材を無機材料の珪酸ソーダ・燐酸の金属塩を
粘結剤として施工して用いていた。 ダイカストでは、樹脂で一体成型をした物を中子
(特開平6−91345,特開平6−99247,特開
平8−33968)として用いる方法が有る。 低融点金属で成型した中子を用いた事例もある。一
体成型の中子は製法で簡単になる特徴が有るが、鋳造品
では中子から燃焼によるガスやヤニが品質を低下させ、
溶融や鋳造圧力による変形で寸法精度が悪く、中子を取
り出す時の崩壊性が悪いまま鋳造に供していた。
2. Description of the Related Art Heretofore, a core integrally molded as described below has been used as it is, or as required, by coating a core integrally molded. In die casting, low pressure casting, and sand casting, a shell core made of hardened sand with heat-resistant resin is used. A phenol resin, a furan resin, a urea furan resin, or the like has been used as a heat-resistant resin used to solidify sand. It is still used as a mainstream core for production. In die casting, the surface of the shell core is coated and applied to the core in order to apply a high pressure. In some cases, the surface coating is performed by using an aggregate such as mica powder or graphite by applying an organic epoxy resin or phenol resin as a binder. In die-casting, an aggregate such as mica powder or graphite was used as a binder for the surface coating of a metal salt of an inorganic material such as sodium silicate and phosphoric acid. In die casting, there is a method in which a product integrally molded with a resin is used as a core (JP-A-6-91345, JP-A-6-99247, and JP-A-8-33968). There are also cases where a core molded from a low melting point metal is used. Integrally molded cores have the feature of being easy to manufacture, but in the case of cast products, gas and tar from combustion from the core reduce the quality,
The dimensional accuracy was poor due to deformation due to melting and casting pressure, and the casting was performed with poor disintegration when removing the core.

【0003】[0003]

【解決すべき問題点】 金型鋳造・低圧鋳造・砂型鋳造では、金属溶湯がシ
ェル中子と接触した時に、砂を固める耐熱性樹脂が熱分
解を起こしてガス化をし、そのガスが充填途中で溶湯に
混入をして鋳造品内部に巣穴を作る。又、ガス化をした
成分が金型の低温部に接触すると凝縮をして、ヤニがた
まり湯回りが悪くなる。鋳造完了後に中子を取り出す時
に、樹脂が焦げ切っていない部分は十分強度が有り、そ
れを崩壊させるために大きな音がする機械的振動や、中
子を崩壊させる目的だけで、熱処理をして焦げ切らして
取り出していた。 ダイカスト:シェル中子+樹脂粘結剤による表面コ
ーティング と同じ問題が起きていた。ダイカストでは金型側に比
べて凝固速度が遅すぎるので、中子と接触をする側にア
ルミ合金の収縮による引けが発生していた。鋳造時に加
圧されると中子が破壊する事が有った。繰り返し生産を
すると金型にヤニが溜まったり、金型温度の高温部では
樹脂が金型に粘着をするので、定期的に金型を清掃する
作業を必要としていた。高圧が加わり中子自体の強度が
高くしてあるので、鋳造完了後に取り出すことが難しく
適切な崩壊性を得られずに、多大な工数を掛けていた。 ダイカスト:シェル中子+無機粘結剤による表面コ
ーティング 程度は低くなるがと同じ現象が起きている。表面コー
トが金型温度が高温部では、アルミ合金に一層くっつい
て取れなくなる部分が有る。上記のと同じ現象が起き
ていた。 ダイカスト:一体成型した樹脂中子 金型温度か高くなると軟化して変形をし、製品寸法が出
なくなる。凝固が遅い部分では樹脂の熱膨張により、鋳
造品が割れる。金属溶湯と接触すると熱分解でガスとな
り、鋳造品に混入したりその表面に付着して焦げ茶色を
呈する。金型高温部では樹脂中子が金型に粘着し取れな
くなり急速に堆積をしてくる。樹脂中子側の凝固速度が
遅く、その接触面や内部に収縮による引けが発生する。
鋳造完了後に樹脂中子を取り出す時に、常温になると取
り出しが全く不可能になるので、温度を掛けて軟化した
状態で取り出す。成型した樹脂は軟化すると伸びるの
で、中空の中の方までは取り出すことが出来ない。残っ
た樹脂中子部分は、樹脂が溶ける溶剤で2〜3日掛けて
溶かしだしている。
[Problems to be solved] In mold casting, low pressure casting, and sand casting, when the molten metal comes into contact with the shell core, the heat-resistant resin that solidifies the sand undergoes thermal decomposition and gasifies, and the gas is filled. A burrow is made inside the casting by mixing in the molten metal on the way. Further, when the gasified component comes into contact with the low temperature part of the mold, it condenses, and the dust accumulates and the hot water flow deteriorates. When the core is taken out after the casting is completed, the part where the resin is not burnt has sufficient strength, and mechanical heat that makes a loud noise to collapse it and heat treatment only for the purpose of collapsing the core I was scorched and took it out. Die casting: Same problem as surface coating with shell core + resin binder. In the die casting, the solidification rate was too slow as compared to the mold side, so that shrinkage of the aluminum alloy occurred on the side in contact with the core due to shrinkage of the aluminum alloy. When pressurized during casting, the core could break. If the production is repeated, the mold accumulates on the mold, and the resin sticks to the mold in the high temperature part of the mold, so that the work of cleaning the mold periodically is required. Since the strength of the core itself is increased by the application of high pressure, it is difficult to remove the core after the completion of casting, so that it is not possible to obtain appropriate disintegration properties, and a large number of man-hours are required. Die casting: Surface coating with shell core + inorganic binder The same phenomenon has occurred, though to a lesser extent. If the surface temperature of the mold is high, the surface coat may adhere to the aluminum alloy and become unremovable. The same phenomenon as above was occurring. Die casting: Molded resin core Softens and deforms when the mold temperature rises, resulting in no product dimensions. In the portion where the solidification is slow, the cast product is cracked due to the thermal expansion of the resin. When it comes into contact with the molten metal, it becomes a gas by thermal decomposition, mixes into the cast product, or adheres to its surface to give a dark brown color. In the high temperature part of the mold, the resin core does not stick to the mold and deposits rapidly. The solidification speed on the resin core side is slow, and shrinkage occurs on the contact surface and inside due to shrinkage.
When the resin core is taken out after the casting is completed, the resin core cannot be taken out at normal temperature. Therefore, the resin core is taken out in a softened state by applying a temperature. Since the molded resin softens and expands, it cannot be taken out to the inside of the hollow. The remaining resin core is dissolved in a solvent that can dissolve the resin over a period of two to three days.

【0004】上記の問題点を整理をすると、下記のA〜
Cに集約ができる。 A] 鋳造完了後の崩壊性が悪く中子の取り出しが困難
である。 B] 樹脂材料を用いると高温の金属溶湯との接触によ
り、熱分解を起こしてガス化をする。又、金型の高温部
では樹脂材料が溶けて粘着を起こす。 C] 樹脂材料は熱伝導率が低いので、凝固速度が遅く
なり金属溶湯の収縮による引けが発生する。 これらの問題は、一体成型をした中子と樹脂を用いるこ
とで起きていて、解決が不可能な関係が存在している。
一番問題となっているA]は、ダイカストで掛かる圧力
に耐えるために剛性を必要とし、高い強度の中子を必要
としているが中子の強度が高いほど崩壊性が低下する関
係になる。従って、鋳造をした製品から中子を取り出す
工程に多くの時間を掛ける結果となっていた。B]は樹
脂材料が溶融したアルミニウム合金と、接触をする限り
発生をして鋳造品質を低下させるものである。又、金型
高温部に粘着をする樹脂が堆積して連続鋳造が不可能で
ある。C]は樹脂し材料の低い熱伝導率による物性に依
存しているので、解決が出来にくい問題となって残って
いる。実際の場面ではこれらの問題を抱えながら、鋳造
品の生産や鋳造試験をしているのが実状である。
[0004] The above problems can be summarized as follows:
C can be consolidated. A] The disintegration after the completion of casting is poor and it is difficult to take out the core. B] When a resin material is used, it is thermally decomposed and gasified by contact with a high-temperature molten metal. In the high temperature part of the mold, the resin material melts and sticks. C] Since the resin material has a low thermal conductivity, the solidification speed becomes slow, and shrinkage occurs due to shrinkage of the molten metal. These problems are caused by using a core and resin that are integrally molded, and there is a relationship that cannot be solved.
A], which is the most problematic, requires rigidity to withstand the pressure applied by die casting and requires a high strength core, but the higher the core strength, the lower the disintegration. Therefore, it takes a lot of time to take out the core from the cast product. B] is generated as long as the resin material is in contact with the molten aluminum alloy to lower the casting quality. Further, sticking resin is deposited on the high temperature part of the mold, so that continuous casting is impossible. C] is a problem that cannot be solved because it depends on the physical properties of the resin material due to the low thermal conductivity of the material. In the actual situation, it is a fact that they are engaged in production of castings and casting tests while having these problems.

【0005】[0005]

【問題点を解決する手段】一体成型で解決が出来ていな
い問題を、2層構造にして解決をする手段を見いだした
ものである。中子を(図1)のように、外面側に(1)
袋をもちい、その中に(2)塊や粒子を詰める2層構造
にして、問題点を解決しようとするものである。 A] 鋳造完了後に(1)袋部分を破れば中の粒子は結
合力が無いので、サラサラと流しだすことが出来る。残
った袋は皮状なので簡単に引っ張り出す事ができる。 B] (1)袋に樹脂をもちいた場合、当然金属溶湯温
度が高く耐熱性が不足していて、必ず熱分解によるガス
化を起こすことは避けられない。 B−1]鋳造条件:樹脂材料によってガス化する時間が
変化する事に着目をして、ガス化するより短い時間で強
引に金属溶湯を充填してみたら、鋳造品の内部のガスに
よる巣穴は無くなった。その結果を(実施例1)に示
す。即ち、鋳造条件との関係で樹脂材料が熱分解を起こ
すより、早くアルミ合金の溶湯を充填すればガスの影響
を受けないで済む事が解った。 B−2]樹脂の耐熱性:耐熱性が高い樹脂・不燃化・フ
ィラーを添加した樹脂ほど熱分解を起こす時間が伸び
る。その結果を(実施例2)に示す。(1)袋に樹脂を
使用した場合、その中に耐熱性の繊維や粉末を添加する
ことでガスの発生量を押さえる事が出来る。 B−3](2)塊や粒子:樹脂より熱伝導率の高い
(2)塊や粒子により、アルミ合金側の熱吸収で(1)
袋の温度上昇を押さえることが出来る。 C] (2)塊や粒子の熱伝導率が高く、鋳造するとき
にセットする中子は、常温なのでより高度の熱吸収がで
きる。この熱吸収により中子側の冷却性が上がり、アル
ミ合金の収縮による引けがなくなる。その結果を(実施
例3)に示す。ことに金属粒子の場合は引けが全く出な
くなった。 袋中子の製法 大量の生産では樹脂成形機でペットボトルや樹脂製瓶の
様に袋部分を成型して、その中空部分に(2)塊や粒子
を詰めて作る事ができる。少量の場合は予熱をした樹脂
板を、木型にセットして真空吸引をして作る事もでき
る。実施例では、(図2)のように予熱をした1mmの
樹脂板を(3)木型の凹凸に挟んで加圧して成型し、そ
の(4)半袋同志を(図3)の様に(5)接着剤のエポ
キシ樹脂で接着をして形成した(1)袋に、(2)塊や
粒子を詰め込んで作った。 鋳造圧力 ダイカストのように高力・高速の鋳造条件では、(図
4)のように袋中子の中身(2)塊や粒子の形状に合わ
せて(1)袋が変形をする。これは(2)塊や粒子が細
かくなるに従って(1)袋の変形が認められなり、最大
500μm以下になれば殆どフラットな面となった。
又、(2)袋の厚さを2mm以上にしても効果があっ
た。 充填時間が比較的長い金型鋳造・砂型鋳造・低圧鋳造 (1)袋に水酸化アルミニウム・水酸化マグネシウム・
アルミニウム、銅、鉄亜鉛の金属粉末を添加し、(2)
塊や粒子に金属粒子を詰める事で使用が出来るものであ
る。袋中子の熱吸収力を向上させるに従いガス量も引け
欠陥も低下する。その結果を(実施例4)に示す。従来
のシェル中子のガス・引けの鋳造欠陥もなくなり、崩壊
性では1/5〜1/8位の取りだし時間で済む。 リサイクル 耐熱性樹脂の中で熱可塑性樹脂を用いると、その可逆性
によってリサイクルも出来る。その結果を(実施例5)
に示す。 ガス量の測定方法 実施例中のガス量は、鋳造品を700℃に溶融して真空
吸引をして発生したガス量を測定し、アルミ合金重量1
00g当たりに換算をして出した物である。
[Means for Solving the Problems] The present inventors have found a means for solving a problem that cannot be solved by integral molding by using a two-layer structure. Put the core on the outer surface side as shown in Fig. 1 (1)
It is intended to solve the problem by using a bag and (2) forming a two-layer structure in which lumps and particles are packed. A] (1) If the bag portion is broken after the casting is completed, the particles in the bag portion have no binding force, and can be flushed out. The remaining bag is skin-like and can be easily pulled out. B] (1) When a resin is used for the bag, the temperature of the molten metal is high and the heat resistance is insufficient, so that gasification due to thermal decomposition is inevitable. B-1] Casting conditions: Paying attention to the fact that the gasification time varies depending on the resin material, if the molten metal is forcibly filled in a shorter time than the gasification, the cavity due to the gas inside the casting is obtained. The hole is gone. The results are shown in (Example 1). That is, it was found that the influence of the gas was not required if the molten aluminum alloy was filled earlier than when the resin material was thermally decomposed due to the casting conditions. B-2] Heat resistance of resin: A resin having high heat resistance, a non-combustible resin, and a resin added with a filler have a longer time to cause thermal decomposition. The results are shown in (Example 2). (1) When resin is used for the bag, the amount of gas generated can be suppressed by adding heat-resistant fiber or powder into the resin. B-3] (2) Lumps and particles: (2) Lumps and particles having higher thermal conductivity than resin, due to heat absorption on the aluminum alloy side (1)
The temperature rise of the bag can be suppressed. C] (2) The heat conductivity of the lumps and particles is high, and the core set when casting is at room temperature, so that higher heat absorption can be achieved. Due to this heat absorption, the cooling performance on the core side is increased, and the shrinkage due to shrinkage of the aluminum alloy is eliminated. The results are shown in (Example 3). In particular, in the case of metal particles, no shrinkage occurred. Manufacturing method of the bag core In mass production, it is possible to mold the bag portion like a plastic bottle or a resin bottle with a resin molding machine, and to fill the hollow portion with (2) lumps or particles. In the case of a small amount, a preheated resin plate can be set in a wooden mold and vacuum-suctioned. In the embodiment, a 1 mm resin plate preheated as shown in FIG. 2 is molded by pressing it between (3) wooden irregularities, and (4) half bags are joined together as shown in (FIG. 3). (5) A bag (1) formed by bonding with an epoxy resin as an adhesive was packed with (2) lumps and particles. Casting pressure Under high-strength, high-speed casting conditions such as die casting, (1) the bag deforms according to the contents of the bag core (2) and the shape of the lumps and particles as shown in FIG. 4. This is because (2) deformation of the bag was recognized as the mass and particles became finer, and the surface became almost flat when the maximum size was 500 μm or less.
(2) There was an effect even when the thickness of the bag was 2 mm or more. Mold casting, sand casting, low pressure casting with relatively long filling time (1) Aluminum hydroxide, magnesium hydroxide,
Add metal powder of aluminum, copper and iron zinc, (2)
It can be used by packing metal particles in lumps or particles. As the heat absorbing power of the bag core is improved, the amount of gas and the number of defects are reduced. The results are shown in (Example 4). The conventional shell core has no gas and shrinkage casting defects, and the disintegration requires only about 1/5 to 1/8 removal time. Recycling When a thermoplastic resin is used among heat-resistant resins, it can be recycled due to its reversibility. The result (Example 5)
Shown in Method of measuring gas amount The gas amount in the examples was determined by melting a cast product at 700 ° C., evacuating it to a vacuum, measuring the amount of gas generated, and calculating the aluminum alloy weight 1
It is converted and output per 00g.

【0006】[0006]

【作用】(図4)(8)袋中子を鋳造品と接触する部分
以外に(6)幅木と称する凸形状部分を作り、金型には
その凹形状を彫り込む。鋳造時には金型の凹形状部分に
(8)袋中子の(6)幅木部分を嵌め込んで金型を閉め
て、その空洞部分に(7)アルミ合金を充填して用いる
ものである。(図4)は鋳造後の型開き状態を示す。金
型を開いて取り出した鋳造品には袋中子がついている。
これを取り出すには(6)幅木部分に疵をつけると中の
(2)塊や粒子は接着強度がないので、サラサラと流れ
出る。ついで、(1)袋は厚めのポリ袋のように簡単に
引っ張りだせて鋳造品素材とすることができる。
(FIG. 4) (8) In addition to the portion where the bag core comes into contact with the cast product, (6) a convex portion called a baseboard is made, and the concave shape is engraved in the mold. At the time of casting, the mold is closed by fitting the (6) baseboard portion of the (8) bag core into the concave portion of the mold, and the cavity is filled with (7) an aluminum alloy for use. (FIG. 4) shows the mold open state after casting. The cast product that has been opened and removed has a bag core.
To remove it, (6) if the skirting board is scratched, the (2) lumps and particles inside will have no adhesive strength, and will flow out smoothly. Then, (1) the bag can be easily pulled out like a thick plastic bag and made into a cast material.

【0007】[0007]

【実施例】以下、本発明の袋中子の実施例について説明
をする。特別に記入した以外は下記の条件による実施例
である。 中子製法 :本分中子製法の説明どうり 板厚 1mm 鋳造製品 :アウトレット・ウォーター (実施例1) 鋳造方法 :ダイカスト 320ton 袋中子 :(1)袋材料・ポリアセタール ガス発生や耐熱性の不足で鋳造には用いられない材料である。 :(2)粒子 ・5号珪砂 鋳造条件 :金型温度260℃に平衡させたのち、射出速度を変えながら連続 して鋳造をしたものを、充填時間に換算をした。 鋳造品の結果:(図5)に示す。 比較のために中子を用いず、通常の量産金型で引き抜く耐熱鋼製 中子でのガス量が、量産実績で平均11.2cc/100Alと 高くなるのは、中子部分に吹き付ける離型剤から発生するガスに よると考えられる。 袋中子の状態:(2)粒子の5号珪砂は、熱で破れた部分からサラサラと流れで た。(1)袋材料は常温に冷却後、皮状で簡単に剥離できた。 結果の判断 :この製品では、12cc/100gAl以下なら良品レベルとさ れているので、最大3.5秒以下で充填すればガスの影響は受け ない。 (実施例2) 鋳造方法 :ダイカスト 320ton 袋中子 :(1)袋材料:下記のガス量と併記。 :(2)粒子・5号珪砂 鋳造条件 :金型温度・260℃に平衡 :充填時間・量産と同じ0.046秒 袋中子の状態:試料数N=5の内ポリエチレンとアクリル樹脂では、鋳造後の型 開きの時にN=2ずつ中の砂が流れ出たが、中子の寸法形状は問 題がなかった。他は(実施例1)と同じであった。 結果の判断 :ポリアセタールより耐熱性が高い樹脂なので、発生するガス量も 減少している。8cc/100gAlのレベルは量産品でも5% 位しか生産できない良好な物となった。 (実施例3) 鋳造方法 :ダイカスト 320ton 引け欠陥位置:薄肉のパイプ部分とフランジのつなぎ部分の内径側。 袋中子 :(1)袋材料 ポリカーボネート+10%水酸化アルミ入り (2)塊や粒子材料 金属アルミの球状1.8mm 鋳造条件 :金型温度 260℃ 充填時間 量産と同じ 0.046秒 袋中子の状態:(1)袋中子0.5mmは薄すぎて鋳造圧力により、少し表面凹 凸と堰前が変形をした。他は異常がなく良好な状態であった。 結果の判断 :(1)袋中子の膜厚が1mm以上有れば鋳造圧力にもたえ得る。 冷却性を加味した袋中子の2層構造は、金型本体と同等の冷却製 が得られる。 (実施例4) 鋳造方法 :金型(重力)鋳造 金型鋳造用の金型を別に準備をして試験をした。 袋中子 :結果に表示 PPはポリプロピレンの略語である。 鋳造条件 :金型温度・380℃ :充填時間・平均8.3秒 袋中子の状態:PP,PP+10%Gでは袋中子が溶けて形状が崩れたり、堰前 で部分的に溶けたりした。その他はアルミ合金と袋中子の接触を する部分では以上が認められなかった。 結果の判断 :(1)袋側に耐熱製の繊維や粉末を添加し、(2)塊や粒子にセ ラミックや金属粒子をいれると、シェル中子を用いた現状の量産 品より良いものになる。 (実施例5) 鋳造方法 :ダイカスト 320ton 袋中子 :(1)袋材料 PE(ポリエチレン)+10%水酸化マグネ入り (2)塊や粒子 アルミナ球状1.8mm リサイクル方法:皮状に取り出した(1)袋80重量%に、新しい材料を20重 量%を加えて成形をし、この操作を繰り返し行った。 袋中子の状態:繰り返しによる材料の劣化は、色が少し茶色から焦げ茶色に変化 をしたが、3回と4回では目視で差は認められ無かった。 結果の判断 :長期間の繰り返しは解らないが、繰り返しの始めにほんの少しガ ス量や不良率が増大する。しかし、すぐにいっていに落ち着きリ サイクルによる鋳造品質の低下はごく少なくて済む。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a bag core according to the present invention will be described below. Except where otherwise noted, the examples are based on the following conditions. Core manufacturing method: Description of the core manufacturing method Board thickness 1 mm Casting product: Outlet water (Example 1) Casting method: Die-cast 320 ton Bag core: (1) Bag material and polyacetal Insufficient gas generation and heat resistance It is a material not used for casting. : No. 5 particles-No. 5 silica sand Casting conditions: After equilibrating to a mold temperature of 260 ° C, continuous casting was performed while changing the injection speed, and converted to the filling time. Cast product results: shown in FIG. For comparison, the amount of gas in the heat-resistant steel core that is pulled out with a normal mass-production mold without using a core is 11.2 cc / 100Al on average in mass production. It is thought to be due to the gas generated from the agent. Fukurocore condition: (2) Particle No. 5 silica sand flowed from the part that was broken by heat. (1) After the bag material was cooled to room temperature, it was easily peeled in a skin shape. Judgment of the result: This product is considered to be a non-defective product if it is 12 cc / 100 g Al or less, so if it is filled in 3.5 seconds or less at the maximum, there is no influence of gas. (Example 2) Casting method: Die-cast 320 ton Bag core: (1) Bag material: Also described with the following gas amount. : (2) Particle No.5 silica sand Casting condition: Equilibrium at mold temperature and 260 ° C: Filling time and 0.046 seconds same as mass production Bag core state: Of the sample number N = 5, with polyethylene and acrylic resin, the inner sand flowed out by N = 2 each time the mold opened after casting, but there was no problem with the dimensions and shape of the core. Others were the same as (Example 1). Judgment of the result: Since the resin has higher heat resistance than polyacetal, the amount of generated gas is also reduced. The level of 8 cc / 100 g Al was a good product that could produce only about 5% even in mass-produced products. (Example 3) Casting method: Die-casting 320 ton Closing defect position: Inside diameter side of the joint between the thin pipe portion and the flange. Bag core: (1) Bag material Polycarbonate + 10% aluminum hydroxide containing (2) Lump and particle material Metal aluminum sphere 1.8mm Casting condition: Mold temperature 260 ° C Filling time Same as mass production 0.046 seconds State of the bag core: (1) The bag core 0.5 mm was too thin, and the surface was slightly deformed and the weir was deformed by the casting pressure. Others were in good condition without any abnormalities. Judgment of results: (1) If the thickness of the bag core is 1 mm or more, it can withstand the casting pressure. With the two-layer structure of the bag core taking into account the cooling performance, the same cooling product as that of the mold body can be obtained. (Example 4) Casting method: Mold (gravity) casting A mold for mold casting was separately prepared and tested. Fukuronaka: Shown in the results PP is an abbreviation for polypropylene. Casting conditions: mold temperature, 380 ° C: filling time, average 8.3 seconds State of bag core: In PP and PP + 10% G, the bag core melted and the shape collapsed, or it melted partially before the weir. Others were not found in the area where the aluminum alloy contacts the bag core. Judgment of the results: (1) heat-resistant fiber or powder is added to the bag side, and (2) ceramic or metal particles are added to the lumps and particles to make it better than the current mass-produced products using shell cores. Become. (Example 5) Casting method: Die-cast 320 ton Bag core: (1) Bag material PE (polyethylene) + 10% hydroxide hydroxide containing (2) Lumps and particles Alumina spherical 1.8 mm Recycling method: Take out in leather (1) ) 20% by weight of a new material was added to 80% by weight of a bag and molded, and this operation was repeated. State of the bag core: The deterioration of the material due to repetition caused the color to change slightly from brown to dark brown, but there was no visual difference between 3 and 4 times. Judgment of the result: Although long-term repetition is unknown, the amount of gas and the reject rate increase slightly at the beginning of the repetition. However, the deterioration in casting quality due to calm and recycling can be minimized.

【0008】[0008]

【発明の効果】鋳造完了後の中子の取りだしも非常に簡
単になった。(1)袋とアルミ合金の接触による溶融・
ガス化も押さえる事ができ、しかも現状のダイカストの
離型剤からのガスの影響よりも低く押さえられた。
(1)袋と(2)塊や粒子の冷却性を加味した組み合わ
せにより、金型本体と同等の冷却性が得られ引け不良の
対策が可能となった。(1)袋に熱可塑性樹脂を用いる
ことでリサイクルもできて、産業廃棄物がなくなる。こ
れらにより、鋳造品質・コスト・作業性・環境等に良い
結果をもたらす物である。
According to the present invention, the removal of the core after the completion of the casting is very easy. (1) Melting due to contact between bag and aluminum alloy
Gasification was also suppressed, and the effect of gas from the current release agent of die casting was suppressed.
By combining (1) the bag and (2) the cooling property of lumps and particles, the same cooling property as that of the mold body was obtained, and measures against shrinkage failure became possible. (1) By using a thermoplastic resin for the bag, recycling is possible and industrial waste is eliminated. By these, it is a thing which brings good results to casting quality, cost, workability, environment and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 袋中子の断面図FIG. 1 is a sectional view of a bag core.

【図2】 型と半袋の断面図FIG. 2 is a sectional view of a mold and a half bag.

【図3】 袋中子の接合断面図FIG. 3 is a sectional view of the joining of the bag core.

【図4】 鋳造後の型開き断面図FIG. 4 is a sectional view of the mold after casting.

【図5】 ガス量と時間の関係図FIG. 5 is a graph showing the relationship between gas amount and time.

【符号の説明】[Explanation of symbols]

(1) 袋 (2) 塊や粒子 (3) 型 (4) 半袋 (5) 接着剤 (6) 幅木 (7) アルミ合金 (8) 袋中子 (9) 金型分割面 (1) Bag (2) Lump or particle (3) Mold (4) Half bag (5) Adhesive (6) Skirting board (7) Aluminum alloy (8) Bag core (9) Mold split surface

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 外側を(1)袋にし、その中に(2)塊
や粒子を詰めた2層構造を特徴とする中子。
1. A core having a two-layer structure in which (1) a bag is provided on the outside and (2) lumps and particles are packed therein.
【請求項2】 (1)袋の材料に耐熱性樹脂を用いる事
を特徴とする(請求項1)の中子
(2) The core according to (1), wherein a heat-resistant resin is used as a material of the bag.
【請求項3】 (1)袋にフィラーとして、炭素繊維・
ガラスウール・無機繊維・・セラミック・金属粉・砂・
耐火物の粒子や粉末、難燃剤・不燃剤を添加した事を特
徴とする(請求項1)の中子。
(1) As a filler in a bag, carbon fiber
Glass wool, inorganic fiber, ceramic, metal powder, sand,
The core according to claim 1, wherein refractory particles and powder, a flame retardant and a flame retardant are added.
【請求項4】 内側の(2)粒子にセラミック・金属・
砂・耐火物の塊や粒子を詰める事を特徴とする(請求項
1)の中子。
4. The method according to claim 1, wherein the inner (2) particles are ceramic, metal,
The core according to claim 1, wherein a lump or particles of sand / refractory is packed.
JP7882597A 1997-02-20 1997-02-20 Baggy core Pending JPH10230343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7882597A JPH10230343A (en) 1997-02-20 1997-02-20 Baggy core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7882597A JPH10230343A (en) 1997-02-20 1997-02-20 Baggy core

Publications (1)

Publication Number Publication Date
JPH10230343A true JPH10230343A (en) 1998-09-02

Family

ID=13672618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7882597A Pending JPH10230343A (en) 1997-02-20 1997-02-20 Baggy core

Country Status (1)

Country Link
JP (1) JPH10230343A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139113A1 (en) * 2008-05-15 2009-11-19 本田技研工業株式会社 Sand core for casting and process for producing the same
JP2011240379A (en) * 2010-05-19 2011-12-01 Honda Motor Co Ltd Method of manufacturing core of light alloy high pressure casting and light alloy high pressure casting method using the core
EP2627463A4 (en) * 2010-10-12 2017-12-20 Nopatech Inc. Method and apparatus for machining molding elements for foundry casting operations

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139113A1 (en) * 2008-05-15 2009-11-19 本田技研工業株式会社 Sand core for casting and process for producing the same
JP2009274103A (en) * 2008-05-15 2009-11-26 Honda Motor Co Ltd Sand core for casting and its method for manufacturing
US20110094697A1 (en) * 2008-05-15 2011-04-28 Honda Motor Co., Ltd. Sand core for casting and process for producing the same
JP4728367B2 (en) * 2008-05-15 2011-07-20 本田技研工業株式会社 Cast sand core and manufacturing method thereof
US8297338B2 (en) 2008-05-15 2012-10-30 Honda Motor Co., Ltd. Sand core for casting and process for producing the same
JP2011240379A (en) * 2010-05-19 2011-12-01 Honda Motor Co Ltd Method of manufacturing core of light alloy high pressure casting and light alloy high pressure casting method using the core
EP2627463A4 (en) * 2010-10-12 2017-12-20 Nopatech Inc. Method and apparatus for machining molding elements for foundry casting operations

Similar Documents

Publication Publication Date Title
US5803151A (en) Soluble core method of manufacturing metal cast products
CN101693282B (en) Method for producing voltage-bearing aluminum alloy tank body of ultra-high voltage switch by V-process
PT1534451E (en) Casting process
CN102151788A (en) Resin sand and foam plastic pattern casting method
WO2022048343A1 (en) Railcar coupler body casting process
JPH01299752A (en) Die casting method
CN101269411B (en) Method for manufacturing porous ceramic/steel group composite material
CN108057840A (en) A kind of formula of the water base lost foam paint of low-temperature high-strength magnesium iron
CN103008547A (en) Resin sand shell mold casting method of automotive turbocharger shell
CN202934102U (en) Counter-gravity casting lift tube
JPH10230343A (en) Baggy core
CN1034874A (en) By plastic foam material, the mistake mould of the real mechanograph made of expanded polystyrene (EPS) particularly
CN114472797A (en) Composition, core and mold for casting and forming processes
US2635294A (en) Manufacture of wax models for precision casting
CN111889628A (en) Sequential solidification process for hydraulic cylinder casting
JP4309712B2 (en) Full mold casting method
Piwonka A comparison of lost pattern casting processes
US2736077A (en) Method of making shell mold
JPH02133161A (en) Production of stainless steel-lined special shaped cast iron pipe
CN107282888A (en) The sand mould casting method of high-precision rod failure ball valve core
CN103360095B (en) Produce the vacuum full mold technique of fused and cast refractory products
JP6826751B2 (en) A presser foot forming body and a method for manufacturing a casting using the presser foot forming body.
KR100400132B1 (en) A method for manufacturing a dissolution type core for a casting, a core and a method for extracting the core
JPH0424133B2 (en)
AU1170099A (en) Method of using lost metal patterns to form ceramic molds