JPH10230297A - Treatment of bottom sludge and device therefor - Google Patents

Treatment of bottom sludge and device therefor

Info

Publication number
JPH10230297A
JPH10230297A JP9032430A JP3243097A JPH10230297A JP H10230297 A JPH10230297 A JP H10230297A JP 9032430 A JP9032430 A JP 9032430A JP 3243097 A JP3243097 A JP 3243097A JP H10230297 A JPH10230297 A JP H10230297A
Authority
JP
Japan
Prior art keywords
ozone
bottom mud
sludge
tank
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9032430A
Other languages
Japanese (ja)
Inventor
Toshio Uenishi
敏夫 上西
Itaru Umeda
到 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP9032430A priority Critical patent/JPH10230297A/en
Publication of JPH10230297A publication Critical patent/JPH10230297A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To extract a nutrient material from a sludge to culture algae and to return a slurry to the sea bottom to recover natural purifying capacity by exposing a bottom sludge to ozone to reform before solid-liquid separating, introducing a separated liquid into other process and introducing the separated residue into the bottom of the water area. SOLUTION: The sludge deposited on the sea bottom is transported to an ozone mixing tank 3 by utilizing an ascending force of a gaseous mixture of ozone with air by a drawing up device 1 while being mixed and stirred in a sludge drawing pipe line 2. And a waste gas discharged from the upper part of the ozone mixing tank 3 is sucked by a blower 17, mixed and stirred in the ozone mixing tank 3 by the blower 17 to oxidize and stabilize a sulfide contained in the sludge and the nutrient material effective for the culture of an aquatic fodder is dissolved and extracted. After that, the sludge is solid-liquid separated for 30-120min in a primary sedimentation tank 4, the supernatant liquid flows out to a culture tank 7 and the sedimented slurry is scattered on the sea bottom through a slurry discharge control valve 5 and a slurry discharge pipe line 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、底泥ならびに底質
の改良に係る技術に関し、特に湖底や河口底、海底の水
産ヘドロの水産餌料への有効利用と漁場の改善に係る方
法とその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for improving sediment and sediment, and more particularly to a method and an apparatus for effectively utilizing fish sludge on lake bottoms, estuaries, and sea bottoms for fishery feed and improving fishing grounds. About.

【0002】[0002]

【従来の技術】近年、河川等からの栄養物質の流入や養
殖場における残餌、飼料の過剰給与により、海底には多
量の有機物を含むヘドロ化した底泥(以下、単にへドロ
または底泥ともいう)が堆積し、赤潮や青潮、貧酸素水
塊の発生原因となり、漁場に大きな被害を与えている。
この対策として、海底から汲み上げたヘドロを脱水処理
して埋立処分する浚渫工法や底ヘドロの上部に砂を散布
する覆砂工法などの土木的対策技術、貧酸素水域に空気
を吹き込むバッキ工法、底部の貧酸素水域に水流を発生
させて酸素を含んだ水を導入する機械的対策技術が実施
されているが、浚渫工法で発生する土砂の処分、覆砂工
法に使用する砂の確保と施工時の周辺環境への影響、機
械的対策でのエネルギーの消費量に対する効果の少なさ
など、問題点が多い。
2. Description of the Related Art In recent years, due to the influx of nutrients from rivers and the like and the overfeeding of remaining feed and feed in a cultivation farm, sludge sediment containing a large amount of organic matter (hereinafter referred to simply as sludge or sediment) is present on the seabed. ), Causing red tides, blue tides, and anoxic water masses, causing severe damage to fishing grounds.
As countermeasures against this, civil engineering techniques such as dredging method for dewatering sludge pumped from the sea floor and landfill disposal, sand covering method of spraying sand on the bottom sludge, backing method of blowing air into anoxic water area, bottom part Although mechanical measures have been implemented to generate water flow in the oxygen-deficient water area and introduce oxygen-containing water, the disposal of sediment generated by the dredging method, the securing of sand used for the sand covering method and the construction There are many problems, such as the impact on the surrounding environment and the small effect on energy consumption by mechanical measures.

【0003】最近では、ヘドロを固化して魚礁や藻場に
有効利用する試みもあるが、未だ研究段階の域を出ない
現状にあり、例えば、ヘドロと固化材とを袋体に充填し
た構築部材を用い干潟を造成することにより、強固な護
岸を造成(特公平7−65304号公報)したり、海中
構造物の構築(特公平7−4125号公報)を行ったり
しているが、光、栄養塩不足等の問題から構造物上への
アマモ等の増殖に時間を必要としている。
Recently, there have been attempts to solidify sludge and use it effectively for fish reefs and seaweed beds. However, at present, it is still in the research stage. By forming tidal flats using members, a strong seawall is created (Japanese Patent Publication No. 7-65304) or an underwater structure is constructed (Japanese Patent Publication No. 7-4125). Due to problems such as lack of nutrients, it takes time to grow eelgrass and the like on the structure.

【0004】[0004]

【発明が解決しようとする課題】本発明は、単に底泥の
改質のみではなく、有効な栄養塩類を分離し、水産餌料
の生産等に資する資源化プロセスも具備して水域の環境
保全、特に水産養殖を行なっている水域の環境保全と生
産性の向上を同時に達成する技術を提示するものであ
る。即ち、本発明は、ヘドロより水産餌料として有効な
栄養物資を抽出して貝類やエビ類の優良な餌料である藻
類を培養すると共に、嫌気を防止して改質したスラリを
海底に戻して自然の浄化能力を回復させるものである。
DISCLOSURE OF THE INVENTION The present invention provides not only the improvement of bottom mud, but also a resource recycling process that separates effective nutrients and contributes to the production of marine bait, etc. In particular, it proposes a technology that simultaneously achieves environmental protection and productivity improvement in the water area where aquaculture is carried out. That is, the present invention extracts nutrients that are effective as marine feeds from sludge, cultures algae, which are excellent feeds for shellfish and shrimps, and returns slurries that have been modified to prevent anaerobics to the seabed. The purpose is to restore the purification ability.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記底泥
の改質をはじめとして、これの資源化、水域の環境保全
等、一連の諸問題を解決するべく鋭意研究したところ、
オゾンの使用が効果的であることの知見を得、この知見
に基づいて上記課題は達成され、本発明に想到したもの
である。
Means for Solving the Problems The present inventors have conducted intensive studies to solve a series of problems, such as the above-mentioned sediment reforming, resource utilization, environmental conservation of water areas, and the like.
The inventors have found that the use of ozone is effective, and based on this finding, the above-mentioned object has been achieved, and the present invention has been made.

【0006】即ち、本発明は、以下の構成である。 (1)底泥にオゾンを曝露して改質した後、改質底泥を
固液分離し、分離液を他の工程へ導くと共に、分離残分
を水域の底質に導くことを特徴とする底泥の処理方法。 (2)底泥を水面上又は陸上に吸い上げてオゾン混合槽
でオゾンを曝露することを特徴とする前記(1)記載の
底泥の処理方法。 (3)分離液を藻類培養工程に導くことを特徴とする前
記(1)又は(2)記載の底泥の処理方法。なお生産さ
れた藻類は、水産生物の栽培センターまたは現水域等に
供給される。 (4)藻類培養工程で増殖した藻類の少なくとも一部を
水産生物餌料として現水域に供給することを特徴とする
前記(3)記載の底泥の処理方法。 (5)底泥を水面上又は陸上に導く管路中にオゾンを注
入し、オゾン吸収を効率よくすることを特徴とする前記
(2)記載の底泥の処理方法。
That is, the present invention has the following configuration. (1) After the bottom mud is exposed to ozone and reformed, the reformed bottom mud is separated into solid and liquid, and the separated liquid is led to another step, and the separation residue is led to the sediment of the water area. Bottom mud treatment method. (2) The method for treating bottom mud according to (1), wherein the bottom mud is sucked up on the water surface or land and exposed to ozone in an ozone mixing tank. (3) The method for treating bottom mud according to the above (1) or (2), wherein the separated liquid is led to an algal culture step. The produced algae is supplied to a cultivation center for aquatic products or an existing water area. (4) The method for treating bottom mud according to (3), wherein at least a part of the algae grown in the algae culturing step is supplied to an existing water area as a food product. (5) The method for treating bottom mud as described in (2) above, wherein ozone is injected into a pipeline for guiding the bottom mud to the surface of the water or land, so that ozone is absorbed efficiently.

【0007】(6)底泥を収容しオゾンを曝露させるオ
ゾン混合槽と該オゾンの発生装置、該オゾン混合槽より
導出される改質底泥を固液分離する固液分離槽と、該固
液分離槽より導出される分離液を他の工程へ導く分離液
導出管路と、前記固液分離槽より導出される分離残分を
水域の底質に導く改質スラリ導出管路を備えたことを特
徴とする底泥の処理装置。 (7)分離液導出管を藻類培養槽へ連通させたことを特
徴とする前記(6)記載の底泥の処理装置。
(6) An ozone mixing tank containing the bottom mud and exposing it to ozone, an ozone generator, a solid-liquid separation tank for solid-liquid separation of the modified bottom sediment derived from the ozone mixing tank, A separation liquid lead-out line for guiding the separated liquid led out from the liquid separation tank to another step, and a reforming slurry lead-out line for leading the separation residue led out from the solid-liquid separation tank to the sediment of the water area. An apparatus for treating sediment, characterized in that: (7) The apparatus for treating bottom sediment according to the above (6), wherein the separation liquid outlet pipe is communicated with the algae culture tank.

【0008】(8)分離液導出管路を濾過機を介して藻
類培養槽へ連通させたことを特徴とする前記(6)又は
(7)記載の底泥の処理装置。 (9)オゾン混合槽を水上または陸上に設置すると共に
底泥を該オゾン混合槽に導入する底泥供給ポンプ及び底
泥供給管路を配備したことを特徴とする前記(6)記載
の底泥の処理装置。 (10)底泥供給管中にオゾンを供給するオゾン供給ポ
ンプ及びオゾン供給管を配備したことを特徴とする前記
(9)記載の底泥の処理装置。
(8) The apparatus for treating bottom mud according to the above (6) or (7), wherein the separated liquid outlet pipe is connected to the algal culture tank via a filter. (9) The bottom mud according to (6), wherein the ozone mixing tank is installed on water or on land, and a bottom mud supply pump and a bottom mud supply pipe for introducing bottom mud into the ozone mixing tank are provided. Processing equipment. (10) The apparatus for treating bottom mud according to (9), further comprising an ozone supply pump and an ozone supply pipe for supplying ozone into the bottom mud supply pipe.

【0009】[0009]

【発明の実施の形態】本発明の実施の態様の一例を図面
を参照して説明する。図1は、ヘドロのオゾン処理、処
理された改質ヘドロの固液分離および固液分離された泥
区分と上澄水区分の再利用の一態様を示し、海底に堆積
するヘドロを汲上装置1によりオゾンと空気の混合ガス
の上昇力を利用して、ヘドロ汲上管路2の中で混合撹拌
させながらオゾン混合槽3に移送する。オゾン混合槽3
は水中に設置することもできるが、本例のように、水上
(即ち、船上や構築物上)又は陸上に配置することが好
ましく、移送水深は、0から30乃至50m程度迄が適
当である。なお、本例ではエアリフトによる供給手段を
示しているが、容積型ポンプにより移送しても良い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows one embodiment of ozone treatment of sludge, solid-liquid separation of the treated modified sludge, and reuse of the solid-liquid separated mud section and supernatant water section. Using the rising power of the mixed gas of ozone and air, the mixture is transferred to the ozone mixing tank 3 while mixing and stirring in the sludge pumping line 2. Ozone mixing tank 3
Can be installed underwater, but as in this example, it is preferably installed on water (that is, on a ship or a structure) or on land, and the transfer water depth is suitably from 0 to about 30 to 50 m. In this example, the supply means is shown by an air lift, but it may be transferred by a positive displacement pump.

【0010】海底水産ヘドロにオゾンと空気の混合ガス
を一段目として、ヘドロ汲上装置1の吐出口に一次オゾ
ン供給管路19より注入し、ヘドロ汲上管路2の中でヘ
ドロに含まれる多量の砂やシルトの沈降力と混合ガスの
上昇力を利用し、効率よく混合することが好ましい。更
に二段目として、海上または陸上に設置したオゾン混合
槽3では底部にオゾンと空気の混合ガスを噴射するディ
フューザ21を設置し、ヘドロと混合ガスを接触させ
る。また、槽の上部より排出する排ガスには残留オゾン
が含まれることから、この排ガスをNo.2ブロワー1
7で吸引して混合ガスの空気に代替えして使用する。こ
のように、オゾンガスを二段注入することによりヘドロ
の改質をより効果的にしながら、排ガスを再利用するの
で注入に要する混合ガスの絶対量を軽減できることを特
徴とするシステムである。
First, a mixed gas of ozone and air is injected into the seabed marine sludge from the primary ozone supply pipe 19 into the discharge port of the sludge pumping apparatus 1, and a large amount of sludge contained in the sludge is drawn in the sludge pumping pipe 2. It is preferable to mix efficiently by utilizing the settling force of sand or silt and the rising force of the mixed gas. Further, as a second stage, in the ozone mixing tank 3 installed on the sea or land, a diffuser 21 for injecting a mixed gas of ozone and air is installed at the bottom, and the sludge and the mixed gas are brought into contact. Further, since the exhaust gas discharged from the upper part of the tank contains residual ozone, this exhaust gas is no. 2 blowers 1
It sucks in 7 and uses it instead of air of the mixed gas. As described above, the system is characterized in that the reforming of sludge is made more effective by injecting ozone gas in two stages, and the exhaust gas is reused, so that the absolute amount of the mixed gas required for injection can be reduced.

【0011】オゾン混合槽3では、更に海上または陸上
に設置したNo.2ブロワー17で10〜30分間混合
撹拌して、ヘドロに含まれる硫化物の酸化安定化を行う
と共に、水産餌料の培養に有効な栄養物質を溶かして抽
出する。また同時に、ヘドロ中の有害微生物やウイルス
による被害の抑制が期待される。その後、30〜120
分間一次沈降分離槽4で固液分離させ、上澄水を培養槽
7に流出させ、沈降したスラリーをスラリー排出コント
ロールバルブ5とスラリー排出管路6を通して海底に散
布する。
[0011] In the ozone mixing tank 3, the No. 3 is further installed on the sea or land. The mixture is mixed and stirred for 10 to 30 minutes with the 2 blower 17 to stabilize the sulfide contained in the sludge by oxidation and to dissolve and extract a nutrient substance effective for cultivation of the marine feed. At the same time, it is expected that damage caused by harmful microorganisms and viruses in sludge will be suppressed. Then 30-120
The liquid is separated into solid and liquid in the primary sedimentation separation tank 4 for one minute, the supernatant water flows out to the culture tank 7, and the sedimented slurry is sprayed to the seabed through the slurry discharge control valve 5 and the slurry discharge line 6.

【0012】なお、オゾン混合槽3において、混合ガス
と十分に混合処理されたヘドロの固液分離に適合する分
離装置としては、膜を利用する装置、遠心力を利用する
装置等、公知の手段を利用する装置が適用できるが、ヘ
ドロの特性からして、上記沈降分離槽が好ましい。更
に、固液分離に際し、凝集剤を添加すること、また、一
次沈降分離槽4内に沈降板や沈降管を付設すること等の
改良も随意である。従って、分離時間もこれらの状況に
より変る。更に、沈降分離手法としてはシステムの規模
に応じて、流入と排出を連続的に行なう連続式と、断続
的に行なう間欠式を選択的に採用することができる。
In the ozone mixing tank 3, as a separation device suitable for solid-liquid separation of sludge sufficiently mixed with the mixed gas, known devices such as a device using a membrane and a device using centrifugal force are used. Although the apparatus using the above method can be applied, the sedimentation tank is preferable in view of sludge characteristics. Further, at the time of solid-liquid separation, improvements such as adding a flocculant, and providing a settling plate or a settling tube in the primary settling / separation tank 4 are optional. Therefore, the separation time also varies depending on these situations. Further, as a sedimentation separation method, a continuous type in which inflow and discharge are continuously performed and an intermittent type in which intermittent flow is performed intermittently can be selectively adopted according to the scale of the system.

【0013】改質されたスラリーは有機物が減少し、微
生物が殺菌されているので、海底のヘドロ上に散布する
ことによって、覆砂を行なった状態に近くなる。また一
次沈降分離槽では改質スラリーの粒度分布によっては、
細かな砂や固化剤の添加(注入)もできる構造とするこ
ともできる。底泥、特に水底ヘドロの性状は養殖魚介類
の種類、周辺環境および地形・地質等によって大きな差
が出ている。予め調査した性状と海底から汲み上げるヘ
ドロの汲み上げ量、過剰なオゾンの注入による二次障害
を防止するための残留オキシダントの自動計測を組み込
んだオゾン注入コントローラ等を使用するとよい。
[0013] Since the modified slurry has reduced organic matter and sterilized microorganisms, it is close to a state of sand covering by spraying on sludge on the seabed. In the primary settling tank, depending on the particle size distribution of the reformed slurry,
It is also possible to adopt a structure in which fine sand or a solidifying agent can be added (injected). The properties of bottom mud, especially underwater sludge, vary greatly depending on the type of cultured fish and shellfish, the surrounding environment, topography and geology. It is advisable to use an ozone injection controller or the like that incorporates the previously investigated properties, the amount of sludge pumped from the sea floor, and the automatic measurement of residual oxidant to prevent secondary damage due to excessive ozone injection.

【0014】培養槽7において、魚介類の餌料として優
良な微細藻類を効率よく培養するため、不純物や生存し
ていた藻類をできる限り除外するための、粒径が微細な
濾材を充填した濾過機を一次沈降分離槽4の後段に設置
し、濾液に優良な微細藻類の種を添加して培養すること
を特徴とする。濾過機としては、より微細なSSを効率
的に除去できかつ洗浄排水量の少ない浮上濾過式濾過機
が好ましい。また浮上濾過式濾過機は適当な濾材を選択
することにより、分離水の水質に適合した処理が可能な
ものを選定する。また、ヘドロ中にはいろいろな藻類が
棲息しているが、オゾンの注入によりその種類は減少
し、目的の藻類の培養が行ない易い条件になるが、反面
オゾンに対して抵抗力のある水産餌料として適さない藻
類や、培養しようとしている優良な藻類の栽培に被害を
与えることから、脱オゾンの必要があり、その上、不純
物や有害藻類をできる限り除外することが好ましく、上
記浮上濾過式濾過機はその構造上、脱オゾン装置として
も有効である。
In the culture tank 7, a filter filled with a filter material having a fine particle diameter is used for efficiently cultivating excellent microalgae as a feed for fish and shellfish and for eliminating impurities and living algae as much as possible. Is installed at the subsequent stage of the primary sedimentation separation tank 4, and a culture is performed by adding excellent microalgae seeds to the filtrate. As a filter, a floating filtration type filter capable of efficiently removing finer SS and having a small amount of washing wastewater is preferable. In addition, as for the flotation filtration type, a filter that can be treated in accordance with the quality of the separated water is selected by selecting an appropriate filter medium. In addition, although various types of algae inhabit the sludge, the types of the algae decrease due to the injection of ozone, which makes it easier to culture the target algae. As unsuitable algae and damage to the cultivation of good algae to be cultured, it is necessary to remove ozone, and it is preferable to remove impurities and harmful algae as much as possible. The machine is also effective as a deozonizer due to its structure.

【0015】培養槽7では、現地プランクトンヘドロ
に、オゾンと空気を混合して、無機質を沈降分離した海
水中には、ヘドロより溶出した水産餌料の培養に必要な
栄養物質が多く含まれていることから、オゾンによって
抽出された水産餌料の栄養物質を含む上澄水に、培養し
た珪藻類、ハプト藻類、プラシノ藻類やナンノクロロプ
シスやクロレラの培養液(当初は、別の施設より搬入す
る)を種返送ポンプ9で、種返送管路13を通して注入
し、5〜10日程度の期間、空気撹拌状態下で太陽光に
接触させて培養することを特徴とする。
In the cultivation tank 7, seawater obtained by mixing ozone and air with local plankton sludge and sedimenting and separating minerals contains a large amount of nutrients necessary for culturing marine feed eluted from the sludge. Therefore, the culture solution of diatoms, haptoalgae, prasinoalgae, nannochloropsis and chlorella (originally transported from another facility) is added to the supernatant water containing nutrients of the marine feed extracted by ozone. It is characterized by injecting the seeds through the seed return pipe 13 by the seed return pump 9 and contacting with sunlight under air stirring for about 5 to 10 days for culture.

【0016】培養槽7では、これらの栄養物質に水産餌
料として優良な藻類の種株を混合して培養する。培養槽
7の底部には空気を微細な気泡にして噴射させるディフ
ューザを設置し、上部は太陽光を取り入れられるように
開放にし、空気撹拌によって藻類を効率良く太陽光と接
触させる構造にする。また、培養槽7の後段には、培養
液中のスラリーを分離する二次沈降分離槽8と種返送ポ
ンプ9を設置して、濃縮した藻類を新しく流入した分離
水と接触させて藻類の培養を行なうことを特徴としてい
る。この装置では、規定の細胞濃度に達するまで循環量
を調整する。藻類培養槽としては、既知の光リアクター
がいずれも適用できる。また、本発明において、培養の
対象とするものは、藻類、即ち植物プランクトンである
が、海面の広い受光面積を有効に利用できるので、付着
性の藻類や海藻類、光合成細菌であってもよく、光を必
要とする微生物の培養に適している。
In the culture tank 7, these nutrients are mixed with an excellent algae seed strain as a marine feed and cultured. A diffuser is provided at the bottom of the culture tank 7 for spraying air into fine bubbles, and the top is opened so that sunlight can be taken in. The structure is such that algae are efficiently brought into contact with sunlight by air stirring. Further, a secondary sedimentation separation tank 8 for separating slurry in the culture solution and a seed return pump 9 are installed at the latter stage of the culture tank 7 so that the concentrated algae are brought into contact with newly-introduced separated water to culture the algae. It is characterized by performing. In this device, the circulating volume is adjusted until a specified cell concentration is reached. Any known photoreactor can be used as the algal culture tank. Further, in the present invention, the object to be cultured is algae, that is, phytoplankton, but since a large light-receiving area of the sea surface can be effectively used, adherent algae, seaweeds, and photosynthetic bacteria may be used. Suitable for culturing microorganisms that require light.

【0017】培養した上記藻類等は、二次沈降分離槽8
で固液分離し、上澄水を餌料移送ポンプ槽10に導き、
餌料移送ポンプ11で餌料移送管路12を通して干潟、
藻場や栽培センターなどの水産養殖設備に搬送する。な
お、勿論、前記に限らず現位置であっても良い。また、
固液分離した藻類は、動物プランクトンやその他餌料生
物の培養に供したり、食品や製剤としても良く、その用
途は公知のものが全て適用できる。
The cultured algae and the like are placed in a secondary sedimentation separation tank 8.
And the supernatant is led to the feed transfer pump tank 10,
A tidal flat through a feed transfer line 12 with a feed transfer pump 11,
Transport to aquaculture facilities such as seaweed beds and cultivation centers. Note that, of course, the present position is not limited to the above and may be the current position. Also,
The solid-liquid separated algae may be used for cultivation of zooplankton and other feed organisms, and may be used as foods and preparations, and all known uses can be applied.

【0018】[0018]

【実施例】以下、実施例により本発明を更に詳細に説明
するが、本発明はこの実施例により制限されるものでは
ない。 実施例1 貝類養殖場下に堆積したヘドロを用いて、ヘドロの改質
および栄養物質の溶出実験を行なった。実験に使用した
ヘドロは、海水を用いて3倍〜5倍に希釈した海水希釈
ヘドロで、これを直径5cm、長さ72cmのガラス製
カラムに0.5リットル充填した。希釈ヘドロを充填し
たカラムにオゾンガスを表1の条件で各々、1リットル
/分の流量で曝気した。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. Example 1 Using sludge deposited under a shellfish farm, sludge modification and elution experiments of nutrients were performed. The sludge used in the experiment was a seawater-diluted sludge that was diluted 3 to 5 times with seawater, and 0.5 l of the sludge was packed in a glass column having a diameter of 5 cm and a length of 72 cm. The column filled with the diluted sludge was aerated with ozone gas at a flow rate of 1 liter / min under the conditions shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】表1の条件で処理したヘドロを濾紙を用い
て固液分離し、分離した処理泥中の硫化物を測定するこ
とにより、これをヘドロの改質度合いの指標とした。表
2に処理泥中の硫化物量の結果を示した。
The sludge treated under the conditions shown in Table 1 was subjected to solid-liquid separation using filter paper, and the sulfide in the separated treated mud was measured, and this was used as an index of the degree of sludge modification. Table 2 shows the results of the amount of sulfide in the treated mud.

【0021】[0021]

【表2】 [Table 2]

【0022】硫化物量は無処理(オゾン濃度:0mg/
ミリリットル、処理時間:0分)の泥が0.2mg/g
であるのに対し、オゾン処理した泥中の硫化物量はすべ
て、0.1mg/g以下になった。また、表1の条件で
処理して分離した、処理水中の藻類培養にとっての栄養
物質であるTOC、全窒素および全リンの各々の濃度を
測定した。その結果を、それぞれ図2、図3および図4
に示す。何れの場合にも、処理時間が長くなると溶出濃
度が高くなり、さらに、オゾン処理濃度が高くなると溶
出量は増加することが確認された。
The amount of sulfide was untreated (ozone concentration: 0 mg /
(Ml, processing time: 0 minutes) 0.2 mg / g of mud
On the other hand, the amount of sulfide in the ozone-treated mud was all 0.1 mg / g or less. Further, the concentrations of TOC, total nitrogen and total phosphorus, which are nutrients for algae culture in the treated water, which were separated by treatment under the conditions shown in Table 1, were measured. The results are shown in FIGS. 2, 3 and 4, respectively.
Shown in In each case, it was confirmed that the elution concentration increased as the treatment time increased, and the elution amount increased as the ozone treatment concentration increased.

【0023】なお、無処理、空気処理およびオゾン処理
したヘドロの性状を顕微鏡にて観察した。無処理のもの
は、小形の砂礫や珪藻等の藻類の混在するヘドロ独特の
構造が確認された。空気を処理時間30分、流量1リッ
トル/分の条件で通気した場合のものも、無処理のヘド
ロの場合と殆ど変化していなかった。これに対し、オゾ
ン濃度30mg/リットル、処理時間30分、流量1リ
ットル/分の条件で通気した場合のものは、ヘドロの粒
子が細かく変化していることが確認された。
The properties of the untreated, air-treated and ozone-treated sludge were observed under a microscope. The untreated one was confirmed to have a unique sludge structure in which algae such as small gravel and diatoms were mixed. In the case where air was ventilated under the conditions of a processing time of 30 minutes and a flow rate of 1 liter / min, there was almost no change from the case of untreated sludge. On the other hand, it was confirmed that the sludge particles were finely changed in the case where aeration was performed under the conditions of an ozone concentration of 30 mg / liter, a processing time of 30 minutes, and a flow rate of 1 liter / minute.

【0024】実施例2 実施例1で処理した分離海水を用い、二枚貝やウニ等の
高級無脊椎動物の餌料として使用されているパブロバ・
ルテリ(Pavlova lutheri)の培養実験を行なった。パブ
ロバは、EPAやDHA等の高級不飽和脂肪酸を多量に
含有すること等から、餌料価値が高く評価されている種
ではあるが、屋外での大量培養が困難で、通常は、恒温
室内で、ビタミン類や微量金属を調整したGuillardのF
培地(1963)や濃度がその1/2となるf/2Provasoli
の改良培地(1957)等が使用されている。図5〜7には、
オゾン処理時間を変えたときの処理水によるパブロバの
増殖の経時変化を細胞密度で示した。培養方法は、20
0ミリリットルの三角フラスコに処理水を100ミリリ
ットル分注し、パブロバを植藻後、約30μEm2・s-1
の光条件下で震盪培養した。
Example 2 The separated seawater treated in Example 1 was used as a feed for high-grade invertebrates such as bivalves and sea urchins.
A cultivation experiment of Ruteri (Pavlova lutheri) was performed. Pavlova is a species that is highly valued as a feed because it contains a large amount of higher unsaturated fatty acids such as EPA and DHA, but it is difficult to cultivate it outdoors in large quantities. Guillard's F with adjusted vitamins and trace metals
Medium (1963) and f / 2 Provasoli whose concentration is 1/2
Improved medium (1957) and the like are used. In FIGS.
The time-dependent change of the growth of Pavlova by the treated water when the ozone treatment time was changed was shown by the cell density. The culture method is 20
100 ml of the treated water was dispensed into a 0 ml Erlenmeyer flask, and after planting Pavlova, about 30 μEm 2 · s −1
Under light conditions.

【0025】図5は、オゾン処理濃度が10mg/リッ
トル、図6はオゾン処理濃度が20mg/リットル、そ
して図7はオゾン処理濃度が30mg/リットルの場合
をそれぞれ示す。また、図5〜7において、○はオゾン
無処理の分離水を示した。20日間の培養を行なった
が、培養開始10日の時点でオゾン無処理の分離水と比
較して各々1.6〜2.3倍の細胞密度を得ることがで
きた。表3にf/2培地の組成と培地1m3 調製に必要
な経費を示した。
FIG. 5 shows the case where the ozone treatment concentration is 10 mg / l, FIG. 6 shows the case where the ozone treatment concentration is 20 mg / l, and FIG. 7 shows the case where the ozone treatment concentration is 30 mg / l. In FIGS. 5 to 7, ○ indicates separated water without ozone treatment. After culturing for 20 days, the cell density was 1.6 to 2.3 times higher than that of the ozone-untreated separated water at 10 days from the start of the culture. Showed expenses required for f / 2 medium composition and culture 1 m 3 prepared in Table 3.

【0026】[0026]

【表3】 [Table 3]

【0027】f/2培地の調製には、各種薬品(材料)
を添加することから、1m3 の調製に404円の費用を
要することに対し、ヘドロのオゾン処理分離水を使用す
る場合には、必要な材料費は0円であり、その上、上記
の結果から、培養が困難とされているパブロバを十分に
培養することができたことから、ヘドロの有効利用が実
現し得た。
Various chemicals (materials) are used for preparing the f / 2 medium.
, The cost of 404 yen is required to prepare 1 m 3 , while the use of sludge ozone-treated separated water requires 0 yen, and the above results As a result, pavlova, which is considered difficult to culture, could be sufficiently cultured, so that sludge could be effectively used.

【0028】[0028]

【発明の効果】本発明によれば、従来有効な処分手段も
なく、処理が困難であった海底や湖底あるいは河口底に
堆積する水産底泥をオゾンで処理するので、底泥を構成
する泥分と水分が夫々改質され、従来のように単に埋立
等の処分をすることなく、スラリー状となる改質泥分は
汚染指標である硫化物含量が0.1mg/g以下にな
り、有機物含量も10〜30%減少するので、これを前
記海底等に覆砂剤として返戻することにより、微生物の
殺菌等を含めて自然の浄化能力の回復をもたらし、ま
た、分離水は水産餌料として優良な藻類の培養に必要な
窒素、リンを含有するので、これら藻類の培養液として
の再利用をもたらす。かような再利用を含めた底泥の処
理法は、処理困難な底泥の処理の改善に大きく貢献する
ことができる。
According to the present invention, marine sediment deposited on the seabed, lake bottom or estuary bottom, which has been difficult to treat without any effective disposal means in the past, is treated with ozone. The content and sulfide content, which is a pollution index, is reduced to 0.1 mg / g or less, and the sulphide content is reduced to 0.1 mg / g. Since the content is also reduced by 10 to 30%, by returning this to the seabed or the like as a sand covering agent, restoration of the natural purification ability including sterilization of microorganisms is brought about, and the separated water is excellent as a marine feed. Since it contains nitrogen and phosphorus necessary for cultivation of various algae, it is possible to reuse these algae as a culture solution. The method for treating bottom mud including such reuse can greatly contribute to improving the treatment of difficult-to-treat bottom mud.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施態様の一例を示す。FIG. 1 shows an example of an embodiment of the present invention.

【図2】オゾン処理時間と処理水中のTOCの関係をを
示す。
FIG. 2 shows the relationship between ozone treatment time and TOC in treated water.

【図3】オゾン処理時間と処理水中の全窒素量の関係を
を示す。
FIG. 3 shows the relationship between ozone treatment time and total nitrogen content in treated water.

【図4】オゾン処理時間と処理水中の全リン量の関係を
を示す。
FIG. 4 shows the relationship between ozone treatment time and total phosphorus content in treated water.

【図5】オゾン濃度10mg/lで暴気した処理水を用
いたP.lutheri の増殖の経時変化を示す。
FIG. 5 shows the change over time in the growth of P. lutheri using treated water that had been agitated at an ozone concentration of 10 mg / l.

【図6】オゾン濃度20mg/リットルで暴気した処理
水を用いたP.lutheri の増殖の経時変化を示す。
FIG. 6 shows the change over time of the growth of P. lutheri using treated water that had been agitated at an ozone concentration of 20 mg / liter.

【図7】オゾン濃度30mg/リットルで暴気した処理
水を用いたP.lutheri の増殖の経時変化を示す。
FIG. 7 shows the time course of the growth of P. lutheri using treated water which was aerobically conditioned at an ozone concentration of 30 mg / liter.

【符号の説明】[Explanation of symbols]

1 ヘドロ汲上装置 2 ヘドロ汲上管路 3 オゾン混合槽 4 一次沈降分離槽 5 スラリー排出コントロールバルブ 6 スラリー排出管路 7 培養槽 8 二次沈降分離槽 9 種返送ポンプ 10 餌料移送ポンプ槽 11 餌料移送ポンプ 12 餌料移送管路 13 種返送管路 14 No.1オゾン注入機 15 No.2オゾン注入機 16 No.1ブロワー 17 No.2ブロワー 18 No.3ブロワー 19 一次オゾン供給管路 20 ニ次オゾン供給管路 21 ディフューザ 22 排ガス管路 23 光 30 ヘドロ層 40 砂層 DESCRIPTION OF SYMBOLS 1 Sludge pumping device 2 Sludge pumping line 3 Ozone mixing tank 4 Primary sedimentation separation tank 5 Slurry discharge control valve 6 Slurry discharge line 7 Culture tank 8 Secondary sedimentation separation tank 9 Seed return pump 10 Feed transfer pump tank 11 Feed transfer pump 12 Feed transfer line 13 Seed return line 14 No. 1 Ozone injector 15 No. 2 Ozone injection machine 16 No. 1 blower 17 No. 2 blower 18 No. 3 Blower 19 Primary ozone supply line 20 Secondary ozone supply line 21 Diffuser 22 Exhaust gas line 23 Light 30 Sludge layer 40 Sand layer

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 底泥にオゾンを曝露して改質した後、改
質底泥を固液分離し、分離液を他の工程へ導くと共に、
分離残分を水域の底質に導くことを特徴とする底泥の処
理方法。
1. After the bottom mud is exposed to ozone and reformed, the reformed bottom mud is separated into solid and liquid, and the separated liquid is led to another step.
A method for treating sediment, wherein the separation residue is led to the sediment of a water area.
【請求項2】 底泥を水面上又は陸上に吸い上げてオゾ
ンを曝露することを特徴とする請求項1記載の底泥の処
理方法。
2. The method for treating bottom mud according to claim 1, wherein the bottom mud is sucked up on the water surface or land and exposed to ozone.
【請求項3】 前記分離液を藻類培養工程に導くことを
特徴とする請求項1又は2記載の底泥の処理方法。
3. The method for treating bottom mud according to claim 1, wherein the separated liquid is led to an algal culture step.
【請求項4】 前記藻類培養工程で増殖した藻類の少な
くとも一部を水産生物餌料として現水域に供給すること
を特徴とする請求項3記載の底泥の処理方法。
4. The method for treating bottom mud according to claim 3, wherein at least a part of the algae grown in the algae culturing step is supplied to an existing water area as a food product.
【請求項5】 底泥を水面上又は陸上に導く管路中にオ
ゾンを注入することを特徴とする請求項2記載の底泥の
処理方法。
5. The method for treating bottom sediment according to claim 2, wherein ozone is injected into a conduit for guiding the bottom sediment on the water surface or on land.
【請求項6】 底泥を収容しオゾンを曝露させるオゾン
混合槽と該オゾンの発生装置、該オゾン混合槽より導出
される改質底泥を固液分離する固液分離槽と、該固液分
離槽より導出される分離液を他の工程へ導く分離液導出
管路と、前記固液分離槽より導出される分離残分を水域
の底質に導く改質スラリ導出管路を備えたことを特徴と
する底泥の処理装置。
6. An ozone mixing tank containing bottom sediment and exposing ozone thereto, an ozone generator, a solid-liquid separation tank for solid-liquid separation of modified bottom sediment derived from the ozone mixing tank, and the solid-liquid separation tank A separation liquid lead-out line for leading the separated liquid led out of the separation tank to another step, and a reforming slurry lead-out line for leading the separation residue led out of the solid-liquid separation tank to the sediment of the water area. A treatment apparatus for bottom mud, characterized by:
【請求項7】 前記分離液導出管路を藻類培養槽へ連通
させたことを特徴とする請求項6記載の底泥の処理装
置。
7. The apparatus for treating bottom mud according to claim 6, wherein the separation liquid outlet pipe is connected to an algal culture tank.
【請求項8】 前記分離液導出管路を濾過機を介して藻
類培養槽へ連通させたことを特徴とする請求項6又は7
記載の底泥の処理装置。
8. The algae culture tank according to claim 6, wherein the separation liquid outlet pipe is connected to an algal culture tank via a filter.
Bottom mud processing apparatus according to the above.
【請求項9】 前記オゾン混合槽を水上または陸上に設
置すると共に底泥を該オゾン混合槽に導入する底泥供給
ポンプ及び底泥供給管路を配備したことを特徴とする請
求項6記載の底泥の処理装置。
9. The system according to claim 6, wherein the ozone mixing tank is installed on water or on land, and a bottom mud supply pump and a bottom mud supply pipe for introducing bottom mud into the ozone mixing tank are provided. Sediment treatment equipment.
【請求項10】 前記底泥供給管路中にオゾンを供給す
るオゾン供給ポンプ及びオゾン供給管を配備したことを
特徴とする請求項9記載の底泥の処理装置。
10. An apparatus for treating bottom mud according to claim 9, further comprising an ozone supply pump and an ozone supply pipe for supplying ozone into said bottom mud supply pipe.
JP9032430A 1997-02-17 1997-02-17 Treatment of bottom sludge and device therefor Pending JPH10230297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9032430A JPH10230297A (en) 1997-02-17 1997-02-17 Treatment of bottom sludge and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9032430A JPH10230297A (en) 1997-02-17 1997-02-17 Treatment of bottom sludge and device therefor

Publications (1)

Publication Number Publication Date
JPH10230297A true JPH10230297A (en) 1998-09-02

Family

ID=12358749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9032430A Pending JPH10230297A (en) 1997-02-17 1997-02-17 Treatment of bottom sludge and device therefor

Country Status (1)

Country Link
JP (1) JPH10230297A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008132416A (en) * 2006-11-28 2008-06-12 Stem:Kk Method for inhibiting blue tide generation due to artificial water bottom depression
JP2011161405A (en) * 2010-02-12 2011-08-25 Nissan Rinkai Construction Co Ltd Method and system for treating muddy water
WO2018032827A1 (en) * 2016-08-16 2018-02-22 中电建水环境治理技术有限公司 Waste sorting double-layered grating equipment for treatment of polluted sediment in river, lake, or estuary
CN110423690A (en) * 2019-08-08 2019-11-08 上海青赛生物科技有限公司 A kind of cell factory pipe-line system
WO2024042741A1 (en) * 2022-08-25 2024-02-29 株式会社日立製作所 Water treatment system and water treatment method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008132416A (en) * 2006-11-28 2008-06-12 Stem:Kk Method for inhibiting blue tide generation due to artificial water bottom depression
JP2011161405A (en) * 2010-02-12 2011-08-25 Nissan Rinkai Construction Co Ltd Method and system for treating muddy water
WO2018032827A1 (en) * 2016-08-16 2018-02-22 中电建水环境治理技术有限公司 Waste sorting double-layered grating equipment for treatment of polluted sediment in river, lake, or estuary
CN110423690A (en) * 2019-08-08 2019-11-08 上海青赛生物科技有限公司 A kind of cell factory pipe-line system
CN110423690B (en) * 2019-08-08 2022-08-30 上海青赛生物科技有限公司 Cell factory pipeline system
WO2024042741A1 (en) * 2022-08-25 2024-02-29 株式会社日立製作所 Water treatment system and water treatment method

Similar Documents

Publication Publication Date Title
US3431200A (en) Flocculation of suspensions
US20100237009A1 (en) System and method for treating wastewater via phototactic heterotrophic microorganism growth
CN106477662B (en) A kind of method and its system using micro-nano air-flotation process water pollution in situ
CN108467161A (en) A kind of deep treatment method of landfill leachate tail water
CN106277669B (en) Ecological dredging recycling method
CN110255809A (en) A kind of cultivation of seawater circulation water and tail water handle integrated water processing system
US7014767B2 (en) Water ozonation and bioremediation system and associated methods
CN102765814A (en) Ecological water treatment method
CN110156263A (en) A kind of circulating water cultivation and tail water handle integrated water processing system
CN109851163A (en) A kind of unhurried current small watershed removes algae algae control method
CN117164176B (en) Method for treating mariculture tail water
CN106693878A (en) Filler particles for improving quality of aquaculture water and purifying tail water, preparation method of filler particles, and reactor comprising filler particles
CN206570094U (en) A kind of water ecology repair system
JPH10230297A (en) Treatment of bottom sludge and device therefor
CN110577315B (en) Whole-process treatment method for phytoplankton
KR100928087B1 (en) Apparatus for immobilizing photosynthetic microorganism and immobilization method using the same
JP3797296B2 (en) Purification method of bottom sludge
CN206828316U (en) A kind of cleaning system of marine alga processing sewage
CN108623087B (en) Process for treating bad water body and deep water culture
JP2005074420A (en) Treatment method of organic sludge, and treatment equipment of organic wastewater and organic sludge
CN103553185B (en) A kind of micro-electrolysis treatment method that water body is carried out in-situ treatment
CN113735276A (en) Method for purifying water quality of lake and marsh by using nano and micro bubbles
KR100292427B1 (en) A System For Removing Algae and Suspended Solid
CN112094138A (en) Process for deeply treating eutrophic algae such as blue algae and extracting organic carbon source
JP3797297B2 (en) Purification method of bottom sludge