JPH10229090A - Grain arranging method - Google Patents

Grain arranging method

Info

Publication number
JPH10229090A
JPH10229090A JP6753697A JP6753697A JPH10229090A JP H10229090 A JPH10229090 A JP H10229090A JP 6753697 A JP6753697 A JP 6753697A JP 6753697 A JP6753697 A JP 6753697A JP H10229090 A JPH10229090 A JP H10229090A
Authority
JP
Japan
Prior art keywords
electrodes
substrate
electric field
particles
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6753697A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yoshida
芳博 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP6753697A priority Critical patent/JPH10229090A/en
Publication of JPH10229090A publication Critical patent/JPH10229090A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/11001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/11003Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for holding or transferring the bump preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/11001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/11005Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for aligning the bump connector, e.g. marks, spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/11334Manufacturing methods by local deposition of the material of the bump connector in solid form using preformed bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L2224/742Apparatus for manufacturing bump connectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3478Applying solder preforms; Transferring prefabricated solder patterns

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow a force for holding grains at predetermined positions and force for separating/removing unwanted grains to be applied simultaneously once and arrange only required grains in predetermined holes. SOLUTION: One substrate 10 has grain filling and arranging holes 11, another substrate 20 has parallel electrodes 21 for generating a moving electric field for moving the grains and the electrodes have an insulation layer to avoid direct contact. The grains between the substrates 10, 20 move by the moving electric field generated by voltages applied one by one to the electrodes 21 to pass over holes 11 and enter the holes 11 by the assist of the gravitation, negative voltage, electrostatic force or magnetic force to fill and arrange them therein.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粒子配列装置、よ
り詳細には、例えば、半導体素子の隣接パットに半田ボ
ールを接合する場合等において、パットと同配列に半田
ボールが入る穴があいている治具に、半田ボールを供
給、配列する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particle arranging apparatus, more particularly, for example, in a case where a solder ball is joined to a pad adjacent to a semiconductor element, has a hole in which the solder ball enters in the same arrangement as the pad. The present invention relates to a device for supplying and arranging solder balls to a jig.

【0002】[0002]

【従来の技術】粒体の搬送、配列方法には、圧縮空気や
流体を用いた方法、磁界を用いた方法、振動を用いた方
法、静電界を用いた方法等があるが、なかでも、静電界
による方法は、他の方法に比較して、可搬送の粒体の範
囲が広く、エネルギー消費が少ない等の優れた特徴をも
っている。
2. Description of the Related Art Methods for transporting and arranging particles include a method using compressed air or fluid, a method using a magnetic field, a method using vibration, a method using an electrostatic field, and the like. The method using an electrostatic field has excellent features such as a wider range of transportable particles and lower energy consumption than other methods.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の粒体搬
送装置は、いずれも、粒子凝集や付着により必要な所に
配置されなかったり、余分な粒子が配置される場合があ
る。また、金属メッキ樹脂粒子等の比重の小さい粒子や
微小粒子は飛散することがある等の問題があった。
However, all of the conventional particle conveying apparatuses may not be arranged at a required place due to particle aggregation or adhesion, or extra particles may be arranged. Further, there is a problem that particles having a small specific gravity or minute particles such as metal plating resin particles may be scattered.

【0004】本発明は、上述のごとき実情に鑑みてなさ
れたもので、粒子を所定の位置に保存する力と不要な粒
子を分離、排除する力を同時に加えることができ、必要
な粒子だけが所定の穴を通過するようにした粒子配列装
置を提供することを目的としてなされたものである。
The present invention has been made in view of the above-mentioned circumstances, and a force for preserving particles in a predetermined position and a force for separating and eliminating unnecessary particles can be simultaneously applied. The purpose of the present invention is to provide a particle arrangement device that passes through a predetermined hole.

【0005】[0005]

【課題を解決するための手段】請求項1の発明は、平行
に形成された電極の各々に所定の順序で電圧を印加する
ことにより移動電界を形成し、該移動電界の力により微
小粒子を移動し、移動中に所定の位置に形成された開孔
に粒子を落とし込むことにより所定の位置に粒子を配列
することを特徴とし、もって、電界による粒子移動と開
孔への粒子充填により、位置精度の正確な粒子配列を高
速に実現できるようにしたものである。
According to the first aspect of the present invention, a moving electric field is formed by applying a voltage to each of the electrodes formed in parallel in a predetermined order, and fine particles are formed by the force of the moving electric field. Moving, dropping the particles into the opening formed at the predetermined position during the movement, thereby arranging the particles at the predetermined position. It is intended to realize an accurate particle arrangement at high speed.

【0006】請求項2の発明は、所定の位置に微小粒子
を配列するために所定の位置に開孔が形成され、裏面よ
り前記微少粒子吸引している第1の基板と、該第1の基
板に所定の間隙を有して対向(平行)配置され、裏面に
電界発生のための複数本の電極が配置されている絶縁性
の第2の基板からなり、前記電極に順次電圧を印加する
ことにより発生する移動電界により前記微小粒子を両基
板の間隙を移動させ、その際に第1の基板の開孔部に働
く吸引力により粒子を該開孔内に保持することを特徴と
し、もって、平行電極により移動電界を発生させるよう
にし、機械部分が少なく、装置を小型化出来るようにし
たものである。
According to a second aspect of the present invention, an opening is formed at a predetermined position for arranging the fine particles at a predetermined position, and the first substrate sucking the fine particles from a back surface; An insulating second substrate is disposed opposite (parallel) with a predetermined gap on the substrate, and a plurality of electrodes for generating an electric field are disposed on the back surface, and a voltage is sequentially applied to the electrodes. Moving the microparticles in the gap between the two substrates by a moving electric field generated thereby, and holding the particles in the apertures by a suction force acting on the apertures of the first substrate. In addition, a moving electric field is generated by the parallel electrodes, the number of mechanical parts is small, and the apparatus can be miniaturized.

【0007】請求項3の発明は、平行に形成された電極
上の所定の位置に該電極を貫通するように設けられた孔
を有する基板上に搭載された微小粒子を前記電極の各々
に所定の順序で電圧を印加することにより移動電界を形
成し、その移動電界の力により微小粒子を移動し、移動
中に所定の位置に形成された開孔に粒子を落とし込むこ
とにより所定の位置に粒子を配列することを特徴とし、
もって、電極上に粒子配列孔を設けることにより、構造
を簡単にしたものである。
According to a third aspect of the present invention, fine particles mounted on a substrate having holes provided at predetermined positions on the electrodes formed in parallel so as to penetrate the electrodes are applied to each of the electrodes. A moving electric field is formed by applying a voltage in the order described above, the fine particles are moved by the force of the moving electric field, and the particles are dropped into the openings formed at the predetermined positions during the movement, so that the particles are at the predetermined position. Are arranged,
Thus, the structure is simplified by providing the particle arrangement holes on the electrodes.

【0008】請求項4の発明は、請求項3の発明におい
て、前記孔を有する基板に対向して平行電極が形成され
た対向基板を設けたことを特徴とし、もって、対向基板
上にも平行電極を設けることにより粒子挙動のより詳細
な制御を可能としたものである。
According to a fourth aspect of the present invention, in the third aspect of the present invention, a counter substrate having a parallel electrode formed thereon is provided so as to face the substrate having the holes. By providing electrodes, more detailed control of the particle behavior is made possible.

【0009】請求項5の発明は、請求項4の発明におい
て、対向基板上の平行電極が、前記貫通孔を有する基板
の平行電極に対して直行する方向に形成されていること
を特徴とし、もって、電極をマトリックス状に形成し、
2次元での粒子移動制御を可能にし、飛散防止や充填率
向上を図ったものである。
According to a fifth aspect of the present invention, in the fourth aspect of the invention, the parallel electrodes on the counter substrate are formed in a direction perpendicular to the parallel electrodes of the substrate having the through holes. Thus, the electrodes are formed in a matrix,
This enables two-dimensional particle movement control to prevent scattering and improve the packing ratio.

【0010】請求項6の発明は、請求項4の発明におい
て、対向する基板上の平行電極が、前記貫通孔を有する
基板の平行電極に対して同一方向に形成され、かつ、同
一ピッチで重なり合う位置で相対していることを特徴と
し、もって、上下電極が同時に同一電位になるように
し、片側だけの場合に比べて確実に粒子の移動ができる
ようにし、更には、上下動を加わえ、粒子の凝集防止を
図ったものである。
According to a sixth aspect of the present invention, in the fourth aspect of the present invention, the parallel electrodes on the opposing substrate are formed in the same direction as the parallel electrodes of the substrate having the through holes, and overlap at the same pitch. It is characterized by being opposed by position, so that the upper and lower electrodes are at the same potential at the same time, so that the particles can be moved more reliably than in the case of only one side, furthermore, adding vertical movement, This is to prevent aggregation of particles.

【0011】請求項7の発明は、請求項4の発明におい
て、相対向する基板上の平行電極のピッチが、前記貫通
孔を有する基板の平行電極のピッチと同一で、かつ、1
/2ピッチずれて取り付けられていることを特徴とし、
もって、電極配置を千鳥構造とし、移動方向に対する電
極ピッチが小さく、滑らかな粒子移動ができるようにし
たものである。
According to a seventh aspect of the present invention, in the fourth aspect, the pitch of the parallel electrodes on the substrate facing each other is the same as the pitch of the parallel electrodes of the substrate having the through hole, and
/ 2 pitch shifted,
Accordingly, the electrodes are arranged in a staggered structure, the electrode pitch in the moving direction is small, and smooth particle movement is possible.

【0012】請求項8の発明は、請求項5の発明におい
て、粒子の移動配列時に移動用電界とは別に対向基板上
の平行電極の外側(両端)から中央に向かって順次電圧
を印加することで両端から中央部に移動する電界を形成
することを特徴とし、もって、粒子を中央部に集める静
電力が働くようにし、粒子の飛散防止を図ったものであ
る。
According to an eighth aspect of the present invention, in the fifth aspect of the present invention, a voltage is sequentially applied from the outside (both ends) to the center of the parallel electrode on the counter substrate separately from the moving electric field during the movement arrangement of the particles. Thus, an electric field that moves from both ends to the center is formed, so that electrostatic force for collecting the particles at the center is activated, thereby preventing the particles from scattering.

【0013】請求項9の発明は、請求項6の発明におい
て、電圧の印加順序が両基板の電極が交互に電圧印加さ
れることにより粒子が移動配列されることを特徴とし、
もって、粒子を1/2ピッチずつ上下動をしながら移動
するように静電力を働かせ、粒子を滑らかに移動させる
と共に、上下動により粒子の凝集を防止し充填率の向上
を図ったものである。
According to a ninth aspect of the present invention, in the sixth aspect of the present invention, the voltage is applied in such a manner that particles are moved and arranged by alternately applying voltages to the electrodes of both substrates.
Thus, the electrostatic force is applied so that the particles move while moving up and down by ピ ッ チ pitch at a time, so that the particles are moved smoothly, and the agglomeration of the particles is prevented by the up and down movement to improve the packing ratio. .

【0014】請求項10の発明は、請求項6の発明にお
いて、相対向する電極を一対とし、対電極間で印加電圧
の極性を反転させることにより交番電界を形成し、その
状態を隣接電極対に順次移動させることにより粒子を移
動配列することを特徴とし、もって、交番電力により粒
子を振動させ、粒子の凝集を防止し、充填率の向上を図
ったものである。
According to a tenth aspect of the present invention, in the sixth aspect of the present invention, the opposing electrodes are paired, and an alternating electric field is formed by inverting the polarity of the applied voltage between the paired electrodes. In this method, the particles are moved and arranged by sequentially moving the particles, whereby the particles are vibrated by the alternating power to prevent the particles from aggregating and to improve the packing ratio.

【0015】[0015]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

〔請求項1の発明〕図1は、本発明による粒子配列装置
の基本的な構成を示す概略構成図で、図中、10は微小
粒子が配列される貫通孔11を有する粒子配列基板、2
0は該粒子配列基板10に対向配置された基板、30は
多孔板で、図示のように、2枚の基板10,20の一方
の基板10には粒子充填配列用の孔11が形成され、他
方の基板20には粒子を移動させるための移動電界発生
用の平行電極21が形成され、電極21は粒子と直接接
触しないように絶縁層を有している。
[Invention of Claim 1] FIG. 1 is a schematic configuration diagram showing a basic configuration of a particle arrangement device according to the present invention. In the drawing, reference numeral 10 denotes a particle arrangement substrate having through holes 11 in which fine particles are arranged.
Reference numeral 0 denotes a substrate arranged opposite to the particle array substrate 10, and 30 denotes a perforated plate. As shown in the drawing, one of the two substrates 10, 20 has a hole 11 for particle filling array, On the other substrate 20, a parallel electrode 21 for generating a moving electric field for moving particles is formed, and the electrode 21 has an insulating layer so as not to come into direct contact with the particles.

【0016】図2は、図1に示した基板20上の平行電
極21によって移動磁界を発生させる方法を説明するた
めの概念図で、図示のように、平行に形成された電極2
1は端部で何本かの共通電極に(図2では3本の共通電
極,,)に接続されており、図示例の場合、,
,の順で電圧を印加(1本に印加中は他の電極はオ
フ)することで矢印方向に連続的に移動する電界が形成
される。この電界の移動により、基板10と20の間に
供給された粒子が移動する。移動中に開孔11部を通過
し、重力、負圧、静電力、磁力等のアシストにより粒子
が開孔11内に入り充填配列される。
FIG. 2 is a conceptual diagram for explaining a method of generating a moving magnetic field by the parallel electrodes 21 on the substrate 20 shown in FIG. 1. As shown in FIG.
1 is connected to some common electrodes (three common electrodes, in FIG. 2) at an end portion.
By applying a voltage in this order (the other electrodes are turned off while one voltage is being applied), an electric field that moves continuously in the direction of the arrow is formed. The movement of the electric field causes the particles supplied between the substrates 10 and 20 to move. The particles pass through the opening 11 during the movement, and the particles enter the opening 11 and are arranged by filling with the aid of gravity, negative pressure, electrostatic force, magnetic force and the like.

【0017】〔請求項2の発明〕図3は、請求項2の発
明の実施例を説明するための要部構成図で、図示のよう
に、ポリイミド基板20上に100μmピッチで平行電
極21を形成し、前述のように、3グループに分け、端
部を共通電極に接続する。50μm以上の間隔を置い
て、所定の位置に直径50μmの貫通孔11を設けたメ
タルマスク10(ニッケル、厚さ50μm)を配置す
る。メタルマスク10の裏面に多孔板30を接触させ吸
引を行う(図3(A))。メタルマスク10と基板20
の間に直径40μmの粒子40(ミクロパール:積水フ
ァインケミカル社)を配置し、共通電極に500vの電
圧を100msずつ順次印加する。これにより粒子40
は矢印方向に移動し、貫通孔11内に粒子40が充填配
列される。図3(B)は、多孔板30の代わりに絶縁板
31と電極32からなる基板を用い、粒子40を静電吸
引するようにした例を示す。図3(C)は、シリコンゴ
ム機材33を介して電磁石34を配設し、電磁石による
磁力を利用して吸引するようにしたものである。なお、
図3(B),図3(C)の例の場合は、電圧を印加する
電極を切り替える際に50msのインターバルを設け、
この間だけ静電力や磁力を働かせる。
FIG. 3 is a schematic diagram showing a main part of a second embodiment of the present invention. As shown in FIG. 3, parallel electrodes 21 are formed on a polyimide substrate 20 at a pitch of 100 μm. It is formed and divided into three groups as described above, and the ends are connected to the common electrode. A metal mask 10 (nickel, 50 μm thick) provided with a through hole 11 having a diameter of 50 μm at a predetermined position is arranged at intervals of 50 μm or more. The suction is performed by bringing the perforated plate 30 into contact with the back surface of the metal mask 10 (FIG. 3A). Metal mask 10 and substrate 20
Particles 40 (micropearl: Sekisui Fine Chemical Co., Ltd.) having a diameter of 40 μm are arranged between the electrodes, and a voltage of 500 V is sequentially applied to the common electrode for 100 ms. Thereby, the particles 40
Moves in the direction of the arrow, and the particles 40 are filled and arranged in the through holes 11. FIG. 3B shows an example in which a substrate including an insulating plate 31 and an electrode 32 is used instead of the perforated plate 30, and the particles 40 are electrostatically attracted. FIG. 3 (C) shows an arrangement in which an electromagnet 34 is provided via a silicon rubber device 33, and the electromagnet is attracted using the magnetic force of the electromagnet. In addition,
In the case of the example of FIGS. 3B and 3C, an interval of 50 ms is provided when switching the electrode to which the voltage is applied,
During this time, the electrostatic force and the magnetic force work.

【0018】〔請求項3の発明〕図4は、請求項3の発
明の実施例を説明するための要部構成図で、図4(A)
に示すように、ポリイミド基板50上に200μmピッ
チで平行電極51を形成する、この時の導体線幅は10
0μmとし、電極51上に100μmピッチで直径50
μmの貫通孔52が例えば15個形成されている。図4
(B)は、充填配列方法を説明するための図で、移動電
界発生用の平行電極51が貫通孔52の下部に位置する
ため、その静電吸着力が粒子40を貫通孔52へ落とし
込む力として利用できる(電磁石や多孔板を使用するこ
とでさらに効果は増す)。
FIG. 4 is a block diagram of a principal part for explaining an embodiment of the third aspect of the present invention.
As shown in FIG. 5, parallel electrodes 51 are formed on a polyimide substrate 50 at a pitch of 200 μm, and the conductor line width at this time is 10 μm.
0 μm and a diameter of 50 μm on the electrode 51 at a pitch of 100 μm.
For example, 15 μm through holes 52 are formed. FIG.
(B) is a diagram for explaining the filling arrangement method. Since the parallel electrodes 51 for generating the moving electric field are located below the through holes 52, the electrostatic attraction force of the parallel electrodes 51 drops the particles 40 into the through holes 52. (Effectiveness is further increased by using an electromagnet or a perforated plate).

【0019】図4(C)は、対向板60上に電極61を
設け、電圧を印加する電極を切り替える際に50msの
インターバルを設け、この間だけ電圧を印加することに
より、粒子を上方に引き上げ、粒子を撹拌することによ
り粒子の凝集を防止する効果を持たせたものである。
FIG. 4C shows an arrangement in which an electrode 61 is provided on the opposing plate 60, an interval of 50 ms is provided when switching the electrode to which a voltage is applied, and a voltage is applied only during this time, thereby pulling the particles upward. The effect of preventing the aggregation of the particles by stirring the particles is provided.

【0020】〔請求項4の発明〕図5は、請求項4の発
明の実施例を説明するための要部構成図で、ポリイミド
基板50上に200μmピッチで平行電極51を形成す
る。この時の導体線幅は100μmとし、電極51上に
100μmピッチで直径50μmの貫通孔52が15個
形成されている。一方、対向基板60は、ガラス上にア
ルミ薄膜により平行電極62が形成されている(図5
(A),(B))。ただし、平行電極62のパターンは
直線に限定されるものではない。
[Embodiment 4] FIG. 5 is a view showing the construction of a main part of an embodiment of the invention 4, wherein parallel electrodes 51 are formed on a polyimide substrate 50 at a pitch of 200 μm. At this time, the conductor line width is 100 μm, and fifteen through holes 52 having a diameter of 50 μm are formed on the electrode 51 at a pitch of 100 μm. On the other hand, the counter substrate 60 has a parallel electrode 62 formed of an aluminum thin film on glass.
(A), (B)). However, the pattern of the parallel electrodes 62 is not limited to a straight line.

【0021】〔請求項5の発明〕図5(B)の実施例で
説明すると、貫通孔52を有する基板50の構成は、ポ
リイミド上に200μmピッチで平行電極51を形成
し、この時の導体線幅は100μmとし、電極上に10
0μmピッチで直径50μmの貫通孔52が15個形成
されている。また、各電極51を3グループに分け、端
部を共通電極に接続する。対向基板60はガラス上にア
ルミ薄膜により100μmピッチで貫通孔基板50上の
平行電極51に対して垂直(直角)方向に平行電極62
が形成されている。各電極を3グループに分け、端部を
共通電極に接続する。貫通孔基板側は共通電極に500
vの電圧を100msずつ順次印加する。これにより粒
子は矢印A方向に移動し、貫通孔内に粒子が充填配列さ
れる。対向基板60にも同様にして電圧を印加し移動電
界を発生させることで粒子の2次元方向の制御を可能に
すると共に、粒子の上下動による拡散により粒子の凝集
が防止され充填率が向上する。
The invention of claim 5 will be described with reference to the embodiment of FIG. 5 (B). The structure of the substrate 50 having the through holes 52 is such that parallel electrodes 51 are formed on a polyimide at a pitch of 200 μm. The line width is 100 μm, and 10
Fifteen through holes 52 having a diameter of 50 μm are formed at a pitch of 0 μm. In addition, each electrode 51 is divided into three groups, and the ends are connected to the common electrode. The opposing substrate 60 is made of an aluminum thin film on glass at a pitch of 100 μm.
Are formed. Each electrode is divided into three groups, and the ends are connected to a common electrode. 500 for common electrode on through-hole substrate side
The voltage of v is sequentially applied for 100 ms. As a result, the particles move in the direction of arrow A, and the particles are filled and arranged in the through holes. Similarly, by applying a voltage to the opposing substrate 60 to generate a moving electric field, the particles can be controlled in the two-dimensional direction, and the particles are prevented from agglomerating due to the diffusion due to the vertical movement of the particles, thereby improving the filling rate. .

【0022】〔請求項6の発明〕図6は、請求項6の発
明の実施例を説明するための要部構成図で、図6(A)
は、本実施例の構成を示す斜視図で、本実施例では、図
6(B)に示すような平行電極71の片側に所定の貫通
孔72を形成した基板70を、図6(A)に示すように
折り曲げた構造になっている(200μmピッチで平行
電極71を形成し、この時の導体線幅は100μmと
し、電極上に100μmピッチで直径50μmの貫通孔
72が15個形成されている。また、各電極71を3グ
ループに分け端部を共通電極に接続する)。
FIG. 6 is a block diagram of a main part for explaining an embodiment of the invention according to claim 6. FIG.
FIG. 6A is a perspective view showing the configuration of the present embodiment. In this embodiment, a substrate 70 having a predetermined through hole 72 formed on one side of a parallel electrode 71 as shown in FIG. (Parallel electrodes 71 are formed at a pitch of 200 μm, the conductor line width at this time is 100 μm, and 15 through-holes 72 having a pitch of 100 μm and a diameter of 50 μm are formed on the electrodes. Each electrode 71 is divided into three groups, and the ends are connected to a common electrode).

【0023】図6(C)は充填配列の概念図、図6
(D)は断面構成図で、本構造は金属粒子等比重の大き
い粒子に適用され、例えば、直径40μmの半田粒子に
適用される。共通電極に500vの電圧を100msず
つ順次印加すると、粒子40は矢印方向に移動し、貫通
孔72内に粒子40が充填配列される。本発明の応用と
してパイプ構造も当然考えられる。
FIG. 6C is a conceptual diagram of the filling arrangement, and FIG.
(D) is a cross-sectional configuration diagram. This structure is applied to particles having a large specific gravity such as metal particles, for example, to solder particles having a diameter of 40 μm. When a voltage of 500 V is sequentially applied to the common electrode for 100 ms, the particles 40 move in the direction of the arrow, and the particles 40 are filled and arranged in the through holes 72. As an application of the present invention, a pipe structure is naturally conceivable.

【0024】〔請求項7の発明〕図7は、請求項7の発
明の実施例を説明するための要部構成図で、図示のよう
に、貫通孔82を有する基板80の構成は、ポリイミド
基板80上に200μmピッチで平行電極81を形成す
る。この時の導体線幅は100μmとし、電極81上に
100μmピッチで直径50μmの貫通孔82が15個
形成されている。対向基板90はガラス上にアルミ薄膜
により200μmピッチで貫通孔基板80と同一方向に
平行電極91が形成され、両基板80,90上に、電極
81,91の位置が1/2ピッチずれて配置されてい
る。各電極81,91は4グループに分けられ端部が共
通電極に接続されている。
[Embodiment 7] FIG. 7 is a view showing the construction of a main part of an embodiment of the invention according to the embodiment 7. As shown in FIG. The parallel electrodes 81 are formed on the substrate 80 at a pitch of 200 μm. At this time, the conductor line width is 100 μm, and fifteen through holes 82 having a diameter of 50 μm are formed on the electrode 81 at a pitch of 100 μm. On the opposite substrate 90, parallel electrodes 91 are formed on the glass in the same direction as the through-hole substrate 80 at a pitch of 200 μm by an aluminum thin film. Have been. Each of the electrodes 81 and 91 is divided into four groups, and the ends are connected to a common electrode.

【0025】〔請求項8の発明〕請求項8の発明は、請
求項5の粒子配列装置における電圧の印加方法に関する
もので、図5(B)に示した実施例で説明すると、貫通
孔基板50に対向する基板(ガラス)60には貫通孔基
板50の平行電極51に対して垂直な方向に平行電極
(アルミ)62が形成されている。この平行電極62を
中央部で2ブロックに分け、それぞれのブロックは端か
ら中央に向かって電界が移動するように電圧が印加され
る。すなわち、各ブロックに対して、前述のように、3
グループに分け順次電圧を印加する。これにより貫通孔
基板上に粒子が散らばるのを防止することができる。
[Invention of Claim 8] The invention of claim 8 relates to a method of applying a voltage in the particle array device of claim 5, and will be described with reference to the embodiment shown in FIG. A parallel electrode (aluminum) 62 is formed on a substrate (glass) 60 facing the substrate 50 in a direction perpendicular to the parallel electrode 51 of the through-hole substrate 50. The parallel electrode 62 is divided into two blocks at the center, and a voltage is applied to each block so that the electric field moves from the end toward the center. That is, for each block, as described above, 3
The voltage is applied sequentially in groups. Thereby, it is possible to prevent the particles from being scattered on the through-hole substrate.

【0026】〔請求項9の発明〕請求項9の発明は、請
求項7の粒子配列装置における電圧印加方法に関するも
ので、図8の実施例で説明すると、電極81,91をそ
れぞれ4グループに分け、それぞれ共通電極に接続す
る。この場合、電極(,)(,)(,)
(,)が同一グループに成る(実際の電極数は50
0程度になっている)。共通電極に100ms間隔で順
次電圧を印加することで→→→,→→→
の順で繰り返し電圧が印加される。これにより上下動
を含んだ滑らかな粒子移動が実現できる。
[Invention of claim 9] The invention of claim 9 relates to a voltage application method in the particle arrangement device of claim 7, and when described in the embodiment of FIG. 8, the electrodes 81 and 91 are each divided into four groups. And connected to a common electrode. In this case, the electrodes (,) (,) (,)
(,) Belong to the same group (the actual number of electrodes is 50
About 0). By sequentially applying a voltage to the common electrode at intervals of 100 ms, →→→, →→→
Are repeatedly applied in the order of. As a result, smooth particle movement including vertical movement can be realized.

【0027】〔請求項10の発明〕請求項10の発明
は、請求項6の粒子配列装置における電圧印加方法に関
するもので、図9の実施例で説明すると、貫通孔82を
有する基板80の構成は、ポリイミド基板80上に20
0μmピッチで平行電極81を形成し、この時の導体線
幅は100μmとし、電極上に100μmピッチで直径
50μmの貫通孔82が15個形成されている。対向基
板90はガラス上にアルミ薄膜により200μmピッチ
で貫通孔基板80上の平行電極81と同一方向に平行電
極91が形成され、両基板上の電極位置が重なるように
配置されている。上下1対の電極に対して500vの交
流電圧を順次印加する(3グループに分けている)と、
粒子40は、交番電界によって振動しながら移動し、粒
子の凝集を防止することができる。
[Invention of claim 10] The invention of claim 10 relates to a method of applying a voltage in the particle arrangement device of claim 6, and will be described with reference to the embodiment of FIG. Is 20 on the polyimide substrate 80.
The parallel electrodes 81 are formed at a pitch of 0 μm, the conductor line width at this time is 100 μm, and fifteen through holes 82 having a pitch of 100 μm and a diameter of 50 μm are formed on the electrodes. The opposing substrate 90 is formed by forming parallel electrodes 91 on the glass in the same direction as the parallel electrodes 81 on the through-hole substrate 80 at a pitch of 200 μm by an aluminum thin film, and is arranged so that the electrode positions on both substrates overlap. When an AC voltage of 500 V is sequentially applied to a pair of upper and lower electrodes (divided into three groups),
The particles 40 move while vibrating due to the alternating electric field, and can prevent aggregation of the particles.

【0028】[0028]

【発明の効果】請求項1の発明は、平行に形成された電
極の各々に所定の順序で電圧を印加することにより、移
動する電界を形成し、その電界の力により微小粒子を移
動し、移動中に所定の位置に形成された開孔に粒子を落
とし込むことにより所定の位置に粒子を配列するように
したので、電界による粒子移動と開孔への粒子充填によ
り正確な(位置精度)粒子配列が高速に実現できる。
According to the first aspect of the present invention, a moving electric field is formed by applying a voltage to each of the electrodes formed in parallel in a predetermined order, and the fine particles are moved by the force of the electric field. The particles are arranged in the predetermined position by dropping the particles into the opening formed in the predetermined position during the movement, so that accurate (positional accuracy) particles can be obtained by the movement of the particle by the electric field and the filling of the particle into the opening. Arrays can be realized at high speed.

【0029】請求項2の発明は、所定の位置に微小粒子
を配列するために所定の位置に開孔が形成され、裏面よ
り吸引されている第1の基板と該第1の基板に所定の間
隙を有して対向(平行)配置され、裏面に電界発生のた
めの複数本の電極が配置された絶縁性の第2の基板から
なり、電極に順次電圧を印加することにより発生する電
界により粒子を両基板の間隙を移動させ、その際に、第
1の基板の開孔部に働く吸引力により粒子を開孔内に保
持するようにしたので、平行電極により移動電界を発生
させることにより、メカ部分が少なく装置が小型化出来
る。
According to a second aspect of the present invention, an opening is formed at a predetermined position for arranging fine particles at a predetermined position, and a first substrate sucked from a back surface and a predetermined substrate are formed on the first substrate. It consists of an insulating second substrate in which a plurality of electrodes for generating an electric field are arranged on the back surface in opposition (parallel) with a gap, and an electric field generated by sequentially applying a voltage to the electrodes. The particles are moved in the gap between the two substrates, and at that time, the particles are held in the opening by the suction force acting on the opening of the first substrate, so that the moving electric field is generated by the parallel electrodes. Since the number of mechanical parts is small, the size of the apparatus can be reduced.

【0030】請求項3の発明は、平行に形成された電極
上の所定の位置に電極を貫通するように設けられた孔を
有する基板上に搭載された微小粒子を、電極の各々に所
定の順序で電極を印加することにより、移動電界を形成
し、その電界の力により微小粒子を移動し、移動中に所
定の位置に形成された開孔に粒子を落とし込むことによ
り所定の位置に粒子を配列するようにしたので、電極上
に粒子配列孔を設けることにより、構造が簡単になる。
According to a third aspect of the present invention, microparticles mounted on a substrate having holes provided so as to penetrate the electrodes at predetermined positions on the electrodes formed in parallel are provided on each of the electrodes with a predetermined size. By applying the electrodes in order, a moving electric field is formed, the microparticles are moved by the force of the electric field, and the particles are dropped at the predetermined position by dropping the particles into the openings formed at the predetermined position during the movement. Since the particles are arranged, the structure is simplified by providing the particle arrangement holes on the electrodes.

【0031】請求項4の発明は、請求項3の発明におい
て、平行電極の形成された対向基板を設けたので、対向
基板上にも平行電極を設けることにより粒子挙動のより
詳細な制御が可能になる。
According to a fourth aspect of the present invention, in the third aspect of the present invention, the opposing substrate on which the parallel electrodes are formed is provided, so that the particle behavior can be controlled in more detail by providing the parallel electrodes on the opposing substrate. become.

【0032】請求項5の発明は、請求項4の発明におい
て、対向する基板上の電極が貫通孔を有する基板の電極
に対して直行する方向に形成されているので、電極がマ
トリックス状に形成され、2次元での粒子移動制御が可
能になり粒子の飛散防止や充填率の向上につながる。
According to a fifth aspect of the present invention, in the fourth aspect of the present invention, the electrodes on the opposing substrate are formed in a direction perpendicular to the electrodes of the substrate having the through holes, so that the electrodes are formed in a matrix. In addition, two-dimensional particle movement control becomes possible, which leads to prevention of scattering of particles and improvement of the packing ratio.

【0033】請求項6の発明は、請求項4の発明におい
て、対向する基板上の電極が貫通孔を有する基板の電極
に対して同一方向に形成され、かつ、同一ピッチで重な
り合う位置で相対しているので、上下電極が同時に同一
電位になるため、片側だけの場合に比べ確実に粒子の移
動ができる。また、上下動が加わるため粒子の凝集防止
になる。実施例の場合、ポリイミドフィルム1枚で実現
できるため非常に簡単な構造になる。
According to a sixth aspect of the present invention, in the fourth aspect of the present invention, the electrodes on the opposing substrate are formed in the same direction with respect to the electrodes on the substrate having the through-hole, and are opposed to each other at the same pitch. Therefore, since the upper and lower electrodes have the same potential at the same time, the particles can be moved more reliably than in the case of only one side. In addition, since the particles are moved up and down, the particles are prevented from aggregating. In the case of the embodiment, since it can be realized by one polyimide film, the structure becomes very simple.

【0034】請求項7の発明は、請求項4の発明におい
て、相対向する基板上の平行電極のピッチが同一で、か
つ、1/2ピッチずれて取り付けられているので、電極
の配置が千鳥構造のため、粒子の移動方向に対する電極
ピッチが小さく滑らかな粒子移動が実現できる。
According to a seventh aspect of the present invention, in the invention of the fourth aspect, the pitches of the parallel electrodes on the opposing substrates are the same and are shifted by ピ ッ チ pitch, so that the arrangement of the electrodes is staggered. Due to the structure, the electrode pitch in the particle moving direction is small, and smooth particle movement can be realized.

【0035】請求項8の発明は、請求項5の発明におい
て、粒子の移動配列時に移動用電界とは別に対向基板上
の平行電極の外側(両端)から中央に向かって順次電圧
を印加することで両端から中央部に移動する電界を形成
するようにしたので、粒子を中央部に集める静電力が働
き、粒子の飛散を防止できる。
According to an eighth aspect of the present invention, in the fifth aspect of the invention, a voltage is sequentially applied from the outside (both ends) to the center of the parallel electrode on the opposing substrate separately from the moving electric field when the particles are moved and arranged. Thus, an electric field that moves from both ends to the center is formed, so that an electrostatic force that collects the particles at the center works to prevent scattering of the particles.

【0036】請求項9の発明は、請求項6の発明におい
て、電圧の印加順序が両基板の電極が交互に電圧印加さ
れることにより粒子が移動配列されるので、粒子を1/
2ピッチずつ上下動をしながら移動するように静電力が
働き、粒子が滑らかに移動すると共に上下動により粒子
の凝集が防止され、充填率が向上する。
According to a ninth aspect of the present invention, in the sixth aspect of the present invention, the particles are moved and arranged by applying a voltage alternately to the electrodes of both substrates.
The electrostatic force acts so as to move while moving up and down by two pitches, so that the particles move smoothly, and at the same time, aggregation of the particles is prevented by the up and down movement, and the filling rate is improved.

【0037】請求項10の発明は、請求項6の発明にお
いて、相対向する電極を一対とし、対電極間で印加電圧
の極性を反転させることにより交番電界を形成し、その
状態を隣接電極対に順次移動させることにより粒子を移
動配列するようにしたので、交番電力により粒子が振動
しているため、粒子の凝集が防止され、充填率が向上す
る。
According to a tenth aspect of the present invention, in the sixth aspect of the present invention, a pair of electrodes facing each other is formed, and an alternating electric field is formed by inverting the polarity of an applied voltage between the counter electrodes, and the state is changed to a pair of adjacent electrodes. The particles are oscillated by the alternating power because the particles are moved and arranged by moving the particles sequentially. Therefore, the aggregation of the particles is prevented and the filling rate is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 粒子配列装置の基本的な構成を示す概略構成
図である。
FIG. 1 is a schematic configuration diagram showing a basic configuration of a particle arrangement device.

【図2】 図1に示した基板上の電極によって移動磁界
を発生させる方法を説明するための概念図である。
FIG. 2 is a conceptual diagram for describing a method of generating a moving magnetic field by an electrode on a substrate shown in FIG.

【図3】 請求項2の発明の実施例を説明するための要
部構成図である。
FIG. 3 is a main part configuration diagram for explaining an embodiment of the invention of claim 2;

【図4】 請求項3の発明の実施例を説明するための要
部構成図である。
FIG. 4 is a main part configuration diagram for explaining an embodiment of the invention of claim 3;

【図5】 請求項4の発明の実施例を説明するための要
部構成図である。
FIG. 5 is a main part configuration diagram for explaining an embodiment of the invention of claim 4;

【図6】 請求項6の発明の実施例を説明するための要
部構成図である。
FIG. 6 is a main part configuration diagram for explaining an embodiment of the invention of claim 6;

【図7】 請求項7の発明の実施例を説明するための要
部構成図である。
FIG. 7 is a main part configuration diagram for explaining an embodiment of the invention of claim 7;

【図8】 請求項9の発明の実施例を説明するための要
部構成図である。
FIG. 8 is a main part configuration diagram for explaining an embodiment of the invention of claim 9;

【図9】 請求項9の発明の実施例を説明するための要
部構成図である。
FIG. 9 is a main part configuration diagram for explaining an embodiment of the invention of claim 9;

【符号の説明】[Explanation of symbols]

10…粒子配列基板、11…開孔、20…絶縁基板、2
1…電極、30…多孔板、40…粒子、50…基板、5
1…電極、52…開口、60…対向基板、61…電極、
62…平行電極、80…基板、81…電極、82…開
口、90…対向基板、91…電極。
10: particle array substrate, 11: aperture, 20: insulating substrate, 2
DESCRIPTION OF SYMBOLS 1 ... Electrode, 30 ... Perforated plate, 40 ... Particles, 50 ... Substrate, 5
DESCRIPTION OF SYMBOLS 1 ... Electrode, 52 ... Opening, 60 ... Counter substrate, 61 ... Electrode,
62: parallel electrode, 80: substrate, 81: electrode, 82: opening, 90: counter substrate, 91: electrode.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 平行に形成された電極の各々に所定の順
序で電圧を印加することにより移動電界を形成し、該移
動電界の力により微小粒子を移動し、移動中に所定の位
置に形成された開孔に前記微小粒子を落とし込むことに
より該微小粒子を所定の位置に配列することを特徴とす
る粒子配列装置。
1. A moving electric field is formed by applying a voltage to each of the electrodes formed in parallel in a predetermined order, and the fine particles are moved by the force of the moving electric field and formed at a predetermined position during the movement. A particle arrangement device for arranging the fine particles at a predetermined position by dropping the fine particles into the opened hole.
【請求項2】 所定の位置に微小粒子を配列するために
所定の位置に開孔が形成され、裏面より前記微小粒子と
吸引している第1の基板と、該第1の基板に所定の間隙
を有して対向配置され、裏面に電界発生のための複数本
の電極が配置されている絶縁性の第2の基板からなり、
前記電極に順次電圧を印加することにより発生する移動
電界により前記微小粒子を両基板の間隙を移動させ、前
記第1の基板に働く吸引力により前記微小粒子を前記開
孔内に保持することを特徴とする粒子配列装置。
2. An opening is formed at a predetermined position for arranging the microparticles at a predetermined position, and a first substrate sucking the microparticles from a back surface, and a predetermined substrate formed on the first substrate. It consists of an insulating second substrate in which a plurality of electrodes for generating an electric field are arranged on the back surface facing each other with a gap therebetween,
Moving the microparticles in the gap between the two substrates by a moving electric field generated by sequentially applying a voltage to the electrodes, and holding the microparticles in the openings by a suction force acting on the first substrate. Characteristic particle arrangement device.
【請求項3】 平行に形成された電極上の所定の位置に
該電極を貫通するように設けられた孔を有する基板上に
搭載された微小粒子を前記電極の各々に所定の順序で電
圧を印加することにより移動電界を形成し、該移動電界
の力により前記微小粒子を移動し、移動中に所定の位置
に形成された前記開孔に前記微小粒子を落とし込むこと
により該微小粒子を所定の位置に配列することを特徴と
する粒子配列装置。
3. A microparticle mounted on a substrate having a hole provided at a predetermined position on an electrode formed in parallel so as to penetrate the electrode, applying a voltage to each of the electrodes in a predetermined order. A moving electric field is formed by applying the electric field, the fine particles are moved by the force of the moving electric field, and the fine particles are dropped into the opening formed at a predetermined position during the movement to move the fine particles into a predetermined position. A particle arrangement device characterized by being arranged at a position.
【請求項4】 請求項3において、前記孔を有する基板
に対向して、平行電極が形成された対向基板を有するこ
とを特徴とする粒子配列装置。
4. The particle array device according to claim 3, further comprising a counter substrate having a parallel electrode formed opposite to the substrate having the holes.
【請求項5】 請求項4において、前記対向基板上の平
行電極が前記孔を有する基板の平行電極に対して直行す
る方向に形成されていることを特徴とする粒子配列装
置。
5. The particle array device according to claim 4, wherein the parallel electrodes on the counter substrate are formed in a direction perpendicular to the parallel electrodes of the substrate having the holes.
【請求項6】 請求項4において、前記対向基板上の平
行電極が前記孔を有する基板の平行電極に対して同一方
向に形成され、かつ、同一ピッチで重なり合う位置で相
対していることを特徴とする粒子配列装置。
6. The parallel electrode according to claim 4, wherein the parallel electrodes on the counter substrate are formed in the same direction with respect to the parallel electrodes of the substrate having the holes, and are opposed to each other at the same pitch. Particle arrangement device.
【請求項7】 請求項4において、前記対向基板上の平
行電極のピッチが前記孔を有する基板の平行電極のピッ
チと同一で、かつ、1/2ピッチずれて取り付けられて
いることを特徴とする粒子配列装置。
7. The device according to claim 4, wherein the pitch of the parallel electrodes on the counter substrate is the same as the pitch of the parallel electrodes of the substrate having the holes, and the pitch is shifted by 2 pitch. Particle array device.
【請求項8】 請求項5において、前記微小粒子の移動
配列時に前記移動電界とは別に、前記対向基板上の平行
電極の両外端から中央に向かって順次電圧を印加するこ
とで両外端から中央部に移動する電界を形成することを
特徴とする粒子配列装置。
8. The method according to claim 5, wherein a voltage is sequentially applied from both outer ends of the parallel electrodes on the counter substrate to the center separately from the moving electric field when the fine particles are moved and arranged. An electric field that moves from the center to the central part.
【請求項9】 請求項6において、電圧の印加順序が、
両基板の電極に交互に電圧印加されることを特徴とする
粒子配列装置。
9. The method according to claim 6, wherein the order of applying the voltage is:
A particle arrangement apparatus characterized in that a voltage is alternately applied to electrodes of both substrates.
【請求項10】 請求項6において、相対向する電極を
一対とし、該対電極間で印加電圧の極性を反転させるこ
とにより交番電界を形成し、該交番電界状態を隣接電極
対に順次移動させることにより粒子を移動配列すること
を特徴とする粒子配列装置。
10. An alternating electric field according to claim 6, wherein a pair of electrodes facing each other is formed, an alternating electric field is formed by inverting the polarity of an applied voltage between said pair of electrodes, and said alternating electric field state is sequentially moved to an adjacent electrode pair. A particle arrangement device for moving and arranging particles.
JP6753697A 1997-02-14 1997-02-14 Grain arranging method Pending JPH10229090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6753697A JPH10229090A (en) 1997-02-14 1997-02-14 Grain arranging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6753697A JPH10229090A (en) 1997-02-14 1997-02-14 Grain arranging method

Publications (1)

Publication Number Publication Date
JPH10229090A true JPH10229090A (en) 1998-08-25

Family

ID=13347809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6753697A Pending JPH10229090A (en) 1997-02-14 1997-02-14 Grain arranging method

Country Status (1)

Country Link
JP (1) JPH10229090A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002001930A3 (en) * 2000-06-22 2002-05-23 Univ California Electrostatic methods and apparatus for mounting and demounting particles from a surface having an array of tacky and non-tacky areas
JP2002231746A (en) * 2001-02-02 2002-08-16 Tamura Seisakusho Co Ltd Method and system for mounting granular material
JP2005353624A (en) * 2004-06-08 2005-12-22 Hitachi Metals Ltd Conductive ball loading method and loading apparatus
JP2008008931A (en) * 2006-06-27 2008-01-17 Hokkaido Univ Manufacturing method of 3-dimensional photonic crystal
US7651021B2 (en) * 2007-12-28 2010-01-26 Intel Corporation Microball attachment using self-assembly for substrate bumping
JP2011109107A (en) * 1999-03-17 2011-06-02 Novatec Sa Filling device and method for filling ball in aperture in ball-receiving element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109107A (en) * 1999-03-17 2011-06-02 Novatec Sa Filling device and method for filling ball in aperture in ball-receiving element
WO2002001930A3 (en) * 2000-06-22 2002-05-23 Univ California Electrostatic methods and apparatus for mounting and demounting particles from a surface having an array of tacky and non-tacky areas
JP2002231746A (en) * 2001-02-02 2002-08-16 Tamura Seisakusho Co Ltd Method and system for mounting granular material
JP2005353624A (en) * 2004-06-08 2005-12-22 Hitachi Metals Ltd Conductive ball loading method and loading apparatus
JP4517343B2 (en) * 2004-06-08 2010-08-04 日立金属株式会社 Method and apparatus for mounting conductive ball
JP2008008931A (en) * 2006-06-27 2008-01-17 Hokkaido Univ Manufacturing method of 3-dimensional photonic crystal
US7651021B2 (en) * 2007-12-28 2010-01-26 Intel Corporation Microball attachment using self-assembly for substrate bumping

Similar Documents

Publication Publication Date Title
US7332361B2 (en) Xerographic micro-assembler
US5355577A (en) Method and apparatus for the assembly of microfabricated devices
JP4393538B2 (en) Magnetic solder ball arrangement apparatus and arrangement method
TW200900246A (en) Screen printing device and bump forming method
JPH118272A (en) Method for arraying micrometallic ball
JPH10229090A (en) Grain arranging method
WO2004082346A1 (en) Method and device for mounting conductive ball
US7160425B2 (en) Cell transporter for a biodevice
JP3107972B2 (en) Particle dispersion device
JP5932941B2 (en) Charged powder feeder
JPH06344132A (en) Method and device for positioning minute soldering ball
JP3681670B2 (en) Semiconductor integrated circuit manufacturing apparatus and manufacturing method
US11935669B2 (en) Method for dispersing conductive particles, and electrostatic adsorption device
JP2005101502A (en) Mounting method and apparatus of conductive ball
KR0149264B1 (en) Process for separating fine granules by an vibration fluidized bed and electrostatic induction device
JP3684033B2 (en) Fine ball arrangement head and fine ball arrangement method using the same
JP4244196B2 (en) Conductive ball mounting device
JP2003045907A (en) Method and apparatus for manufacturing electronic component
JP2005044978A (en) Apparatus for mounting conductive ball
JP4517343B2 (en) Method and apparatus for mounting conductive ball
JP2002118133A (en) Method and device of suction arrangement of conductive balls
JPH02134250A (en) Ink mist printer
JP2002068477A (en) Very little grain carrying device
JPH05139525A (en) Separator for electronic parts
JPH04278366A (en) Image forming device