JPH10226883A - Manufacture of phthalocyanine crystalline thin film - Google Patents

Manufacture of phthalocyanine crystalline thin film

Info

Publication number
JPH10226883A
JPH10226883A JP4989297A JP4989297A JPH10226883A JP H10226883 A JPH10226883 A JP H10226883A JP 4989297 A JP4989297 A JP 4989297A JP 4989297 A JP4989297 A JP 4989297A JP H10226883 A JPH10226883 A JP H10226883A
Authority
JP
Japan
Prior art keywords
phthalocyanine
thin film
heat treatment
crystalline
thin films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4989297A
Other languages
Japanese (ja)
Inventor
Atsuyuki Watada
篤行 和多田
Yoshihiko Iijima
喜彦 飯島
Yoshirou Futamura
恵朗 二村
Koji Ujiie
孝二 氏家
Yasuo Miyoshi
康雄 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP4989297A priority Critical patent/JPH10226883A/en
Publication of JPH10226883A publication Critical patent/JPH10226883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain crystalline oriented films which are uniformly crystalline, are stable and have optical anisotropy and magnetic anisotropy by depositing phthalocyanine molecules or particulates on a substrate consisting of glass, resins, etc., to form thin films, then subjecting the thin films to a heat treatment. SOLUTION: The examples of the phthalocyanine to be used include iron phthalocyanine or iron phthalocyanine, etc., contg. K or Na. The method for depositing the films may be executed by vacuum vapor deposition, etc. The heat treatment temp. of the thin films is specified to about 100 to 400 deg.C. The heat treatment time is preferably specified to >=1 hours. The pressure at the time of the heat treatment is preferably confined to about <=1/10atm. pressure in order to suppress the unnecessary chemical reaction. While the optical characteristics, magnetic characteristics, film quality, etc., of the thin films may be improved by such deposition treatment and heat treatment, the effect of the improvement may be more additionally enhanced by executing such treatments in a magnetic field.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フタロシアニン結
晶質薄膜および該薄膜の作製方法に関する。
The present invention relates to a phthalocyanine crystalline thin film and a method for producing the thin film.

【0002】[0002]

【従来技術】LB法によりフタロシアニンポリマ−配向
膜を作製すること(例えば特開昭63−44963、特
開昭63−457013)、フタロシアニナトシリコン
ジクロライドをアルカリ処理して得た中間生成物を蒸着
原料として、真空蒸着法で配向性のフタロシアニナトシ
リコンジクロライドポリマ−薄膜を得ること(特公平5
−64710)、基板上にフタロシアニナトシリコンジ
クロライドを真空蒸着した後、真空中で熱処理すること
により、配向性を有するシリコンフタロシアニンポリマ
−薄膜膜を得ること(特公平5−64711)、透明な
基板上に有機色素薄膜からなる記録層を設けた後、該記
録層を外部から150〜280℃の温度で加熱処理し、
記録、再生感度を向上させた光記録媒体を得ること(特
開平2−106390)等が知られている。しかしなが
ら、均質で安定なフタロシアニン結晶配向膜を作製する
方法は知られていなかった。
2. Description of the Related Art A phthalocyanine polymer alignment film is prepared by the LB method (for example, JP-A-63-44963 and JP-A-63-4570013), and an intermediate product obtained by alkali-treating phthalocyaninato silicon dichloride is deposited. Obtaining oriented phthalocyaninato silicon dichloride polymer thin film by vacuum evaporation method as raw material
-64710), a phthalocyaninato silicon dichloride is vacuum-deposited on a substrate, and then heat-treated in a vacuum to obtain a silicon phthalocyanine polymer thin film having orientation (Japanese Patent Publication No. 5-64711). After providing a recording layer composed of an organic dye thin film thereon, the recording layer is externally heat-treated at a temperature of 150 to 280 ° C.
It is known to obtain an optical recording medium with improved recording and reproduction sensitivity (Japanese Patent Laid-Open No. 2-106390). However, a method for producing a uniform and stable phthalocyanine crystal orientation film has not been known.

【0003】[0003]

【発明が解決しようとする課題】フタロシアニンは非常
に多くの結晶状態を持ち、均一の結晶質の膜を得ること
は困難である。また、不安定な結晶相も多く、経時変
化、熱による変化、機械的な外力による変化があり、特
に薄膜にした時に不安定なものが多い。種々のフタロシ
アニン薄膜の作製法は知られているが、均一の結晶質で
安定な薄膜を得るのは困難であった。これらはフタロシ
アニン薄膜を利用したデバイスを作製した時に、特性の
劣化、信頼性の低下の原因となる。本発明は、均一の結
晶質で安定、さらには光学異方性、磁気異方性を有する
結晶質配向膜を得ることを目的とする。
SUMMARY OF THE INVENTION Phthalocyanine has an extremely large number of crystalline states, and it is difficult to obtain a uniform crystalline film. In addition, there are many unstable crystal phases, which change over time, change due to heat, and change due to mechanical external force. Various methods for producing phthalocyanine thin films are known, but it has been difficult to obtain uniform crystalline and stable thin films. These cause deterioration of characteristics and reliability when a device using a phthalocyanine thin film is manufactured. SUMMARY OF THE INVENTION An object of the present invention is to obtain a crystalline alignment film that is uniform and stable and has optical anisotropy and magnetic anisotropy.

【0004】[0004]

【課題を解決するための手段】本発明は、ガラスあるい
はプラスチック等の基板上にフタロシアニン分子あるい
は微粒子を堆積して薄膜を形成した後、該薄膜を熱処理
することを特徴とするフタロシアニン結晶質薄膜の作製
方法を提供することにより、前記課題を解決することが
できた。
According to the present invention, there is provided a phthalocyanine crystalline thin film comprising the steps of: depositing phthalocyanine molecules or fine particles on a substrate such as glass or plastic to form a thin film; By providing a manufacturing method, the above problem could be solved.

【0005】本発明の特徴は、フタロシアニン分子ある
いは微粒子を堆積により形成した薄膜を加熱処理するこ
とにより、光学特性、磁気特性等の均質で、かつ経時変
化も起こし難い安定な結晶質(特に安定なβ型フタロシ
アニン)薄膜を容易に得ることにある。
A feature of the present invention is that a thin film formed by depositing phthalocyanine molecules or fine particles is subjected to a heat treatment to obtain a stable crystalline material (e.g., a stable crystalline material) having uniform optical characteristics, magnetic characteristics, and the like, which hardly change with time. β-phthalocyanine) is to easily obtain a thin film.

【0006】本発明で使用するフタロシアニンとして
は、鉄フタロシアニン、無金属フタロシアニン、銅フタ
ロシアニン、亜鉛フタロシアニン、鉛フタロシアニン、
シリコンフタロシアニン、ニッケルフタロシアニン、コ
バルトフタロシアニン、あるいはカリウムまたはナトリ
ウムを含む鉄フタロシアニンなどを挙げることができ
る。
The phthalocyanine used in the present invention includes iron phthalocyanine, metal-free phthalocyanine, copper phthalocyanine, zinc phthalocyanine, lead phthalocyanine,
Examples include silicon phthalocyanine, nickel phthalocyanine, cobalt phthalocyanine, and iron phthalocyanine containing potassium or sodium.

【0007】前記膜堆積を行う方法としては、真空蒸着
法、ミセル電解法等が挙げられる。真空蒸着法として
は、一般的な抵抗加熱方式、EB蒸着方式等で行える
が、抵抗加熱方式の方が安定な膜が形成できる傾向があ
る。また、ミセル電解法での微粒子は、α型、X型等の
結晶になっていることが多い。但し本発明で使用できる
フタロシアニン分子あるいは微粒子は、特定の結晶系の
ものに限られるものではない。また、堆積膜の膜厚とし
ては、薄膜の用途によって異なるが、通常0.1〜10
μm程度である。
As a method of depositing the film, there are a vacuum deposition method, a micellar electrolytic method and the like. The vacuum evaporation method can be performed by a general resistance heating method, an EB evaporation method, or the like, but the resistance heating method tends to form a more stable film. Further, the fine particles in the micellar electrolysis method are often in the form of α-type, X-type, or other crystals. However, the phthalocyanine molecules or fine particles that can be used in the present invention are not limited to those having a specific crystal system. Although the thickness of the deposited film varies depending on the use of the thin film, it is usually 0.1 to 10
It is about μm.

【0008】前記薄膜の加熱処理温度としては、100
〜400℃程度であり、一般に高温の方が処理時間が短
くても良いが、フタロシアニンの種類によっては不必要
な化学反応をし易いものも有るので、そのような場合に
は低温で処理を行う必要が有る。加熱処理時間は10分
〜10時間程度、好ましくは1時間以上である。また、
加熱処理時の圧力は、不必要な化学反応を抑えるために
1/10気圧以下程度が好ましく、さらに好ましくは1
/100気圧程度である。
The heat treatment temperature of the thin film is 100
In general, the treatment time may be shorter at higher temperatures, but some types of phthalocyanines are likely to cause unnecessary chemical reactions. In such a case, the treatment is performed at a lower temperature. There is a need. The heat treatment time is about 10 minutes to 10 hours, preferably 1 hour or more. Also,
The pressure at the time of the heat treatment is preferably about 1/10 atm or less, more preferably 1/10 atm, in order to suppress unnecessary chemical reaction.
/ 100 atm.

【0009】前記薄膜の加熱処理は、前述の通り、不必
要な化学反応を起こす危険が有り、これを抑えるために
は加熱処理時の圧力を下げることが効果的で有るが、加
熱処理時の圧力とフタロシアニンの蒸気圧の関係によっ
ては、堆積したフタロシアニンが蒸発してしまうことが
あるので特にその種類は限定されないが、不活性ガス
中、例えばHe、Arガス中で行うのが好ましい。加熱
処理手段としては、一般の電気炉で良いが、目的とする
薄膜に汚染が生じないように留意する必要がある。
As described above, there is a risk that unnecessary chemical reaction may occur in the heat treatment of the thin film. To suppress this, it is effective to lower the pressure during the heat treatment. Depending on the relationship between the pressure and the vapor pressure of the phthalocyanine, the deposited phthalocyanine may evaporate. The type of the phthalocyanine is not particularly limited. However, it is preferable to perform the reaction in an inert gas, for example, He or Ar gas. As the heat treatment means, a general electric furnace may be used, but care must be taken to prevent contamination of the target thin film.

【0010】前記堆積処理および/または加熱処理を磁
場中で行うことにより大部分のフタロシアニンについて
は反磁性異方性により、鉄フタロシアニン等については
常磁性異方性により、配向性膜とすることができる。こ
れにより、前記薄膜の光学特性、磁気特性、膜質等の改
善を行うことができる。前記堆積処理および加熱処理の
両処理を磁場中で行うことにより、前記改善の効果をよ
り一層高めることができる。なお、前記堆積を真空中で
行う時には、基板が磁場中に入るようにして行い、ま
た、ミセル電解法等で膜堆積を行う場合には、セルごと
磁場中に入れて行う。
By performing the deposition and / or heat treatment in a magnetic field, an oriented film can be formed by diamagnetic anisotropy for most phthalocyanines and paramagnetic anisotropy for iron phthalocyanines and the like. it can. Thereby, the optical characteristics, magnetic characteristics, film quality, and the like of the thin film can be improved. By performing both the deposition process and the heating process in a magnetic field, the effect of the improvement can be further enhanced. When the deposition is carried out in a vacuum, the substrate is placed in a magnetic field, and when the film is deposited by micelle electrolysis or the like, the whole cell is placed in a magnetic field.

【0011】磁場強度としては、少なくとも0.1T以
上が必要である。特にフタロシアニン分子の反磁性異方
性を利用して配向膜を得る場合には1T以上が必要であ
る。磁場発生装置としては、永久磁石を使用した磁気回
路、一般の電磁石、超伝導マグネット等がある。特に、
2T以上で処理を行う時には超伝導マグネットが必要と
なる。
The magnetic field intensity needs to be at least 0.1T or more. In particular, when an alignment film is obtained by utilizing the diamagnetic anisotropy of phthalocyanine molecules, 1 T or more is required. Examples of the magnetic field generator include a magnetic circuit using a permanent magnet, a general electromagnet, and a superconducting magnet. Especially,
When processing at 2T or more, a superconducting magnet is required.

【0012】本発明により得られる薄膜の好適なものと
して、強磁性のカリウムおよび/またはナトリウムを含
む鉄フタロシアニン薄膜が挙げられる。該強磁性のカリ
ウムを含む鉄フタロシアニン薄膜は(C3216Fe
8)・K、またナトリウムを含む鉄フタロシアニン薄
膜は(C3216FeN8)・Naで表されるもので、K
の比率は1:0.5〜8のものが好ましい。
A preferable thin film obtained by the present invention is an iron phthalocyanine thin film containing ferromagnetic potassium and / or sodium. The iron phthalocyanine thin film containing ferromagnetic potassium is (C 32 H 16 Fe
N 8 ) · K, and the iron phthalocyanine thin film containing sodium is represented by (C 32 H 16 FeN 8 ) · Na.
Is preferably 1: 0.5 to 8.

【0013】前記強磁性のカリウムまたはナトリウムを
含む鉄フタロシアニン薄膜は、鉄フタロシアニンとカリ
ウムまたはナトリウムを同時に蒸着しても得られるが、
この場合、薄膜の組成の制御が困難であるので、カリウ
ムまたはナトリウムと鉄フタロシアニンを周期的に蒸着
する方法で作製するのが好ましい。
The iron phthalocyanine thin film containing ferromagnetic potassium or sodium can be obtained by simultaneously depositing iron phthalocyanine and potassium or sodium.
In this case, since it is difficult to control the composition of the thin film, it is preferable to prepare the thin film by a method of periodically depositing potassium or sodium and iron phthalocyanine.

【0014】前記のようにして得られたカリウムおよび
/またはナトリウムを含む鉄フタロシアニン薄膜は、安
定かつ磁気特性の非常に優れたものであった。
The iron phthalocyanine thin film containing potassium and / or sodium obtained as described above was stable and extremely excellent in magnetic properties.

【0015】また、前記の積層の周期としては短い方
が、より短い時間の熱処理で均質な膜が得られやすいの
で好ましい。前記周期は10nm〜500nm程度が適
当である。但し、前記周期より厚くても長時間の熱処理
を行えば磁性薄膜は得られる。
A shorter lamination cycle is preferable because a uniform film can be easily obtained by heat treatment for a shorter time. The period is suitably about 10 nm to 500 nm. However, a magnetic thin film can be obtained by performing the heat treatment for a long time even if it is thicker than the above period.

【0016】[0016]

【実施例】以下、本発明を実施例に基づき具体的に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments.

【0017】実施例1 β型鉄フタロシアニン粉末を原料に、ガラス基板上に、
真空蒸着により膜厚1μmの鉄フタロシアニン薄膜を作
製した。この段階の薄膜は、α型の鉄フタロシアニンを
主として複数の結晶質および非結晶質も含まれる薄膜で
あった。これをガラス容器に入れ、電気炉で300℃、
2時間加熱処理を行い、その後炉冷した。その結果、β
型鉄フタロシアニン単相の均質な結晶質膜が得られた。
Example 1 A β-type iron phthalocyanine powder was used as a raw material on a glass substrate.
An iron phthalocyanine thin film having a thickness of 1 μm was prepared by vacuum evaporation. The thin film at this stage was a thin film mainly containing α-type iron phthalocyanine and a plurality of crystalline and non-crystalline materials. Put this in a glass container, 300 ℃ in an electric furnace,
Heat treatment was performed for 2 hours, and then the furnace was cooled. As a result, β
As a result, a homogeneous crystalline film of single-phase iron phthalocyanine was obtained.

【0018】実施例2 磁場中でミセル電解法により無金属フタロシアニン配向
膜を作製した。この時点ではX型となっていると推測さ
れるが、殆どX線回折でも結晶が確認できないレベルの
ものであった。これをガラス容器に入れ、電気炉で30
0℃、2時間加熱処理を行い、その後炉冷した。その結
果、β型鉄フタロシアニン単相の結晶配向膜が得られ
た。
Example 2 A metal-free phthalocyanine alignment film was prepared by micellar electrolysis in a magnetic field. At this point, it is presumed that the crystal is of the X type, but the crystal was almost at a level at which no crystal could be confirmed by X-ray diffraction. Put this in a glass container and place it in an electric furnace for 30 minutes.
Heat treatment was performed at 0 ° C. for 2 hours, followed by furnace cooling. As a result, a β-type iron phthalocyanine single-phase crystal orientation film was obtained.

【0019】実施例3 β型鉄フタロシアニン粉末を原料に、ガラス基板上に真
空蒸着法により、膜厚1μmの鉄フタロシアニン薄膜を
作製した。これをガラス容器に入れ、8Tの磁場中で赤
外線加熱器により300℃2時間加熱処理を行い、その
後一定速度で徐冷した。その結果、β型鉄フタロシアニ
ン単相の結晶質配向膜が得られた。
Example 3 Using a β-type iron phthalocyanine powder as a raw material, a 1 μm-thick iron phthalocyanine thin film was formed on a glass substrate by a vacuum evaporation method. This was placed in a glass container, and heated at 300 ° C. for 2 hours by an infrared heater in a magnetic field of 8 T, and then gradually cooled at a constant rate. As a result, a crystalline alignment film of β-type iron phthalocyanine single phase was obtained.

【0020】実施例4 鉄フタロシアニンとカリウムを1:4の比で同時蒸着
し、これをガラス容器に入れ、電気炉で300℃2時間
加熱処理を行い、その後炉冷した。前記蒸着はβ型鉄フ
タロシアニンは抵抗加熱方式で、カリウムはEB加熱方
式で前記比率になるように制御を行いながら膜厚1μm
の膜を作製した。この結果、β型結晶で、15emu/
gの磁化を示す薄膜が得られた。
Example 4 Iron phthalocyanine and potassium were co-deposited at a ratio of 1: 4, placed in a glass container, heated at 300 ° C. for 2 hours in an electric furnace, and then cooled in the furnace. In the vapor deposition, the β-type iron phthalocyanine is controlled by the resistance heating method, and the potassium is controlled by the EB heating method so as to have the above-mentioned ratio.
Was prepared. As a result, in the β-type crystal, 15 emu /
A thin film having a magnetization of g was obtained.

【0021】実施例5 鉄フタロシアニンとカリウムを1:4の比になるように
交互に500nmの周期で10周期蒸着し、これをガラ
ス容器に入れ、電気炉で300℃2時間加熱処理を行
い、その後炉冷した。この結果5μm厚のβ型の結晶
で、15emu/gの磁化を示す薄膜が得られた。
Example 5 Iron phthalocyanine and potassium were alternately vapor-deposited for 10 cycles at a cycle of 500 nm in a ratio of 1: 4, placed in a glass container, and heated at 300 ° C. for 2 hours in an electric furnace. Thereafter, the furnace was cooled. As a result, a thin film of β-type crystal having a thickness of 5 μm and having a magnetization of 15 emu / g was obtained.

【0022】[0022]

【効果】【effect】

1.請求項1 均一の結晶質で安定なフタロシアニン薄膜が得られる。 2.請求項2 磁気特性の優れたフタロシアニン有機磁性薄膜が得られ
る。 3.請求項3 請求項2の発明の効果に加えて、熱処理時間の短縮或は
低い温度による熱処理が可能となり、製造コストの削
減、或は、不必要な化学反応が起こらず膜の均一性の向
上の効果が得られる。 4.請求項4および5 結晶配向したフタロシアニン薄膜が得られる。これによ
り磁性膜の場合には磁気異方性を有する薄膜或は飽和磁
化の大きな薄膜が得られ、光学薄膜の場合には光学異方
性を有する薄膜が得られる。 5.請求項6 不必要な化学反応が起こらず膜の均一性の向上の効果あ
る。 6.請求項7 請求項6の発明の効果に加えて、熱処理中の蒸発が抑え
られ、収率が向上する。 7.請求項8 安定で磁気特性、光学特性等に優れ、デバイスの性能向
上或は信頼性向上が計れる。
1. Claim 1 A uniform crystalline and stable phthalocyanine thin film can be obtained. 2. Claim 2 A phthalocyanine organic magnetic thin film having excellent magnetic properties can be obtained. 3. Claim 3 In addition to the effect of the invention of claim 2, it is possible to shorten the heat treatment time or perform heat treatment at a low temperature, thereby reducing the manufacturing cost or improving the uniformity of the film without unnecessary chemical reaction. The effect of is obtained. 4. Claims 4 and 5 A phthalocyanine thin film having a crystal orientation is obtained. As a result, a thin film having magnetic anisotropy or a thin film having large saturation magnetization can be obtained in the case of a magnetic film, and a thin film having optical anisotropy can be obtained in the case of an optical thin film. 5. Claim 6 Unnecessary chemical reaction does not occur, and is effective in improving the uniformity of the film. 6. Claim 7 In addition to the effect of the invention of claim 6, evaporation during heat treatment is suppressed, and the yield is improved. 7. Claim 8 It is stable and excellent in magnetic characteristics, optical characteristics, etc., and can improve the performance or reliability of the device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 氏家 孝二 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 三好 康雄 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Koji Ujiie, 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Company, Ltd. (72) Yasuo Miyoshi 1-3-6 Nakamagome, Ota-ku, Tokyo Share Inside the company Ricoh

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基板上にフタロシアニン分子あるいは微
粒子を堆積して薄膜を形成した後、該薄膜を熱処理する
ことを特徴とするフタロシアニン結晶質薄膜の作製法。
1. A method for producing a phthalocyanine crystalline thin film, comprising: depositing phthalocyanine molecules or fine particles on a substrate to form a thin film; and heat-treating the thin film.
【請求項2】 鉄、コバルトまたはニッケルフタロシア
ニン分子あるいは微粒子の他にカリウムおよび/または
ナトリウムを堆積する請求項1記載のフタロシアニン結
晶質薄膜の作製法。
2. The method for producing a phthalocyanine crystalline thin film according to claim 1, wherein potassium and / or sodium are deposited in addition to iron, cobalt or nickel phthalocyanine molecules or fine particles.
【請求項3】 鉄、コバルトまたはニッケルフタロシア
ニン分子あるいは微粒子とカリウムおよび/またはナト
リウムを周期的に堆積する請求項2記載のフタロシアニ
ン結晶質薄膜の作製法。
3. The method for producing a phthalocyanine crystalline thin film according to claim 2, wherein potassium and / or sodium are periodically deposited with iron, cobalt or nickel phthalocyanine molecules or fine particles.
【請求項4】 堆積を磁場中で行う請求項1、2または
3記載のフタロシアニン結晶質配向膜の作製法。
4. The method according to claim 1, wherein the deposition is performed in a magnetic field.
【請求項5】 薄膜の熱処理を磁場中で行う請求項1、
2、3または4記載のフタロシアニン結晶質配向膜の作
製法。
5. The method according to claim 1, wherein the heat treatment of the thin film is performed in a magnetic field.
5. The method for producing a crystalline phthalocyanine alignment film according to 2, 3, or 4.
【請求項6】 薄膜の熱処理を真空中で行う請求項1、
2、3、4または5記載のフタロシアニン結晶質薄膜の
作製法。
6. The method according to claim 1, wherein the heat treatment of the thin film is performed in a vacuum.
The method for producing a phthalocyanine crystalline thin film according to 2, 3, 4, or 5.
【請求項7】 薄膜の熱処理を不活性ガス中で行う請求
項1、2、3、4または5記載のフタロシアニン結晶質
薄膜の作製方法。
7. The method for producing a phthalocyanine crystalline thin film according to claim 1, wherein the heat treatment of the thin film is performed in an inert gas.
【請求項8】 請求項1、2、3、4、5、6または7
記載の作製法で作製したフタロシアニン結晶質薄膜。
8. The method of claim 1, 2, 3, 4, 5, 6, or 7.
A phthalocyanine crystalline thin film produced by the method described in the above.
JP4989297A 1997-02-18 1997-02-18 Manufacture of phthalocyanine crystalline thin film Pending JPH10226883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4989297A JPH10226883A (en) 1997-02-18 1997-02-18 Manufacture of phthalocyanine crystalline thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4989297A JPH10226883A (en) 1997-02-18 1997-02-18 Manufacture of phthalocyanine crystalline thin film

Publications (1)

Publication Number Publication Date
JPH10226883A true JPH10226883A (en) 1998-08-25

Family

ID=12843693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4989297A Pending JPH10226883A (en) 1997-02-18 1997-02-18 Manufacture of phthalocyanine crystalline thin film

Country Status (1)

Country Link
JP (1) JPH10226883A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100429069C (en) * 2003-03-25 2008-10-29 浙江大学 Method for controlling molecules orientation in organic phthalocyanine film by magnetic field
JP2010500527A (en) * 2006-08-12 2010-01-07 アクアフュエル リサーチ リミテッド Coal with improved combustion characteristics
JP2010036109A (en) * 2008-08-05 2010-02-18 Hirosaki Univ Method for producing organic photocatalytic film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100429069C (en) * 2003-03-25 2008-10-29 浙江大学 Method for controlling molecules orientation in organic phthalocyanine film by magnetic field
JP2010500527A (en) * 2006-08-12 2010-01-07 アクアフュエル リサーチ リミテッド Coal with improved combustion characteristics
JP2010036109A (en) * 2008-08-05 2010-02-18 Hirosaki Univ Method for producing organic photocatalytic film

Similar Documents

Publication Publication Date Title
Cohen Anomalous magnetic films
Sherwood et al. MnAlGe Films for Magneto‐Optic Applications
US3039891A (en) Method of treating ni-fe thin metal film of body of magnetic material by subjecting to heat treatment in a magnetic field oriented transversely to the preferred axis of magnetization
CN110289349B (en) Magnetic adjustable composite metal phthalocyanine film and preparation method thereof
JPH10226883A (en) Manufacture of phthalocyanine crystalline thin film
Inoue et al. Magnetic properties of single-crystalline FeRh alloy thin films
JPH0696947A (en) Thin belt-like iron nitride material
Boakes et al. PARAMAGNETIC RESONANCE OF Yb $ sup 3+ $ IN YTTRIUM GALLIUM GARNET
EP0154158B1 (en) Process for manufacturing magnetic recording media
Song et al. Examining imprinted ferroelectric hysteresis loops and improved energy storage properties of Mn-doped epitaxial SrTiO3 thin films using heat treatment
EP0187169B1 (en) Process of manufacturing magnetic recording media and the media
JPH0721544A (en) Magnetic recording medium and its production
Bis et al. Alloy Films of PbTe x Se1− x
JPS63452A (en) Manufacture of magnetic thin film
Honda et al. Crystal growth and recovery of ferromagnetism during thermal cycle in MnBi films
JPH01118238A (en) Production of magneto-optical recording medium
JPH02430B2 (en)
JP3038758B2 (en) Method for producing oxide superconducting thin film
JPH02296723A (en) Manufacture of thin film superconductor
JP3814049B2 (en) Organic magnetic thin film and method for producing the thin film
JP2595638B2 (en) Magneto-optical recording medium and method of manufacturing the same
JPS61216125A (en) Production of magnetic recording medium
JP2604372B2 (en) Manufacturing method of soft magnetic amorphous alloy
JP2595656B2 (en) Method for manufacturing perpendicular magnetic recording film
JPH0192359A (en) Manufacture of thin amorphous film