JPH10225842A - Rotation axis structure - Google Patents

Rotation axis structure

Info

Publication number
JPH10225842A
JPH10225842A JP4293097A JP4293097A JPH10225842A JP H10225842 A JPH10225842 A JP H10225842A JP 4293097 A JP4293097 A JP 4293097A JP 4293097 A JP4293097 A JP 4293097A JP H10225842 A JPH10225842 A JP H10225842A
Authority
JP
Japan
Prior art keywords
pipe
fluid supply
supply hole
hole
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4293097A
Other languages
Japanese (ja)
Other versions
JP3624413B2 (en
Inventor
Yoshiro Hirose
義郎 広瀬
Etsuki Hirota
悦規 廣田
Akitoshi Sato
秋利 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Howa Machinery Ltd
Original Assignee
Howa Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Howa Machinery Ltd filed Critical Howa Machinery Ltd
Priority to JP04293097A priority Critical patent/JP3624413B2/en
Publication of JPH10225842A publication Critical patent/JPH10225842A/en
Application granted granted Critical
Publication of JP3624413B2 publication Critical patent/JP3624413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent warping and oscillation of a rotation axis for holding a pipe at an axial center. SOLUTION: This rotation shaft structure is provided with a fluid supply hole 27 through an axial center L in a pull rod 12 inserted into a through hole 11 in a main shaft 3 to be slidable in an axial direction, a pipe 28 through the axial center L is inserted into the fluid supply hole 27, the fluid supply hole 27 is set as an axial center coolant flow passage, and the pipe 28 is set as a tight adhesion checking air flow passage. Strength deterioration and oscillation of the pull rod 12 are thus prevented. Between the pipe 28 and the fluid supply hole 27, a coil spring which axial center coolant can pass is provided, theby the pipe 28 is held at the axial center L for preventing the pipe 28 from warping.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、複数の流体の流路を
回転軸内に設けた回転軸構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary shaft structure in which a plurality of fluid flow paths are provided in a rotary shaft.

【0002】[0002]

【従来の技術】従来、回転軸に複数の異なる流体を通
すために流路を設ける場合、回転軸の振れを防止するた
め、回転軸の動的バランスがとれるように夫々の流体の
流路である流体供給孔を回転軸線に対して複数対称に設
けていた。例えば、一方の流体がエアセンサやエアブロ
ウ等のための空気であり、他方の流体がシリンダのため
の油である場合、夫々比重が異なり、そのために図9に
示すようにエアはエア用通路71だけで回転軸72の軸
心に対して対称となるように複数設け、油は油用通路7
3だけで回転軸72に軸心に対して対称となるように複
数設けてあった。また、回転軸の軸心を通る流体供給
孔内にパイプを通してパイプ両端を支持し、パイプ外周
と流体供給孔内壁間及びパイプ内側を夫々流路とするも
のもあった。
2. Description of the Related Art Conventionally, when a flow path is provided for passing a plurality of different fluids through a rotating shaft, in order to prevent the rotation of the rotating shaft, the flow paths of the respective fluids are adjusted so that the rotating shaft can be dynamically balanced. A plurality of fluid supply holes are provided symmetrically with respect to the rotation axis. For example, when one fluid is air for an air sensor or an air blow, and the other fluid is oil for a cylinder, the specific gravities are different from each other. Therefore, as shown in FIG. Are provided symmetrically with respect to the axis of the rotary shaft 72, and oil is supplied to the oil passage 7.
A plurality of rotation shafts 72 are provided so as to be symmetrical about the axis with only three rotation shafts 72. In some cases, both ends of the pipe are supported through a pipe in a fluid supply hole passing through the axis of the rotating shaft, and flow paths are formed between the outer periphery of the pipe, the inner wall of the fluid supply hole, and the inside of the pipe.

【0003】[0003]

【発明が解決しようとする課題】上記の従来の技術で
は、回転軸に多数の流体供給孔をバランスがとれるよう
に対称に設けなければならず、比重の異なる流体用流路
が2つのみ必要な場合、例えば一方がクーラント液用で
あり、他方がエアブロウ用というようなときには、その
2系統のためにその2倍の数の流路を持つこととなって
合理的でない。しかも、回転軸が細い場合ではそのよう
にバランス良く多数の流体供給孔を設けることは極めて
困難であって採用できない問題があった。また、のよ
うに一方の流体の流体供給孔内に他方の流体の流路とし
てパイプを設けるものでは、回転軸に形成するべき流体
供給孔の2倍の数の流路が得られるので、回転軸には必
要とする流路数の半分の流体供給孔を穿設する手間で済
み、そのために比べて孔加工の手間が少なく、しかも
2系統の流路を必要とするときには、それと同じだけの
流路を持つのみであるから合理的であるが、パイプがそ
の直径に比して相当長い場合や、それ自体が細い場合に
は、パイプ中央部分がたわんでしまい、流体供給孔の孔
中心に確実にパイプを保持できず、これによって回転軸
の動的バランスを崩してしまうという問題があった。本
願の課題は前記の利点を生かしつつ、更に、流体供給
孔内にパイプを設けたときにパイプのたわみを防止し、
流体供給孔の軸心にパイプの軸心を確実に保持すること
で回転軸の動的バランスを崩すことを防止することにあ
る。
In the above prior art, a large number of fluid supply holes must be provided symmetrically in the rotating shaft so as to be balanced, and only two fluid flow paths having different specific gravities are required. In such a case, for example, when one is for a coolant liquid and the other is for an air blow, it is not reasonable to have twice as many channels for the two systems. In addition, when the rotating shaft is narrow, it is extremely difficult to provide a large number of fluid supply holes in such a well-balanced manner, and there is a problem that it cannot be adopted. In addition, in the case where a pipe is provided as a flow path for the other fluid in the fluid supply hole for one fluid, twice as many flow paths as the fluid supply holes to be formed on the rotating shaft can be obtained. In the shaft, the labor of drilling the fluid supply hole of half of the number of required flow paths is sufficient, and the labor for hole processing is less than that, and when two flow paths are required, the same amount of time is required. It is reasonable because it only has a flow path, but if the pipe is considerably long compared to its diameter or if it is thin, the pipe central part will bend and the center of the fluid supply hole will be bent. There was a problem that the pipe could not be reliably held, thereby breaking the dynamic balance of the rotating shaft. The object of the present application is to take advantage of the above advantages, and furthermore, to prevent the pipe from bending when the pipe is provided in the fluid supply hole,
An object of the present invention is to prevent the dynamic balance of the rotating shaft from being lost by securely holding the pipe center on the axis of the fluid supply hole.

【0004】[0004]

【課題を解決するための手段】前記課題の解決のため、
本願では、回転軸内に流路を有する回転軸構造におい
て、回転軸には流体供給孔を設け、その流体供給孔の内
側にパイプを配して、パイプの内側と外側に流路を形成
し、パイプ外周とその外側に位置されそのパイプ外周と
の間で流路を形成する内壁との間に前記パイプを流体供
給孔の軸心位置に保持し、流路内の流体の通過を妨げな
いパイプ保持部材を設けた。
In order to solve the above-mentioned problems,
In the present application, in a rotating shaft structure having a flow path in the rotating shaft, a fluid supply hole is provided in the rotating shaft, a pipe is arranged inside the fluid supply hole, and a flow path is formed inside and outside the pipe. The pipe is held at the axial position of the fluid supply hole between the outer periphery of the pipe and the inner wall positioned outside and forming a flow path between the outer periphery of the pipe and does not hinder the passage of the fluid in the flow path. A pipe holding member was provided.

【0005】また、特に2系統の流路のみ必要な場合に
おいては、前記課題を解決するため、回転軸内に流路を
有する回転軸構造において、回転軸の軸心に流体供給孔
を設け、その流体供給孔の内側にパイプを配して、パイ
プの内側と外側に流路を形成し、パイプ外周とその外側
に位置されそのパイプ外周との間で流路を形成する内壁
との間に前記パイプを回転軸の軸心位置に保持し、流路
内の流体の通過を妨げないパイプ保持部材を設けた。
In particular, when only two channels are required, in order to solve the above-mentioned problems, in a rotary shaft structure having a channel in the rotary shaft, a fluid supply hole is provided in the axis of the rotary shaft, A pipe is arranged inside the fluid supply hole, a flow path is formed inside and outside the pipe, and between the pipe outer periphery and an inner wall which is located outside the pipe and forms a flow path between the pipe outer periphery. A pipe holding member that holds the pipe at the position of the axis of the rotating shaft and does not hinder the passage of fluid in the flow path is provided.

【0006】前記パイプ保持部材は螺旋状の線材であ
り、流体供給孔を流れる流体の通過を妨げないものであ
り、具体的には例えばコイルバネとすると組立容易で好
ましい。また、前記回転軸は工作機械の主軸先端のテー
パ孔に着脱自在に装着される工具ホルダのプルスタッド
を引き込む細径のプルロッドである。
The pipe holding member is a helical wire and does not prevent passage of the fluid flowing through the fluid supply hole. Specifically, for example, a coil spring is preferable because it is easy to assemble. The rotating shaft is a small-diameter pull rod for pulling in a pull stud of a tool holder detachably mounted in a tapered hole at a tip of a main shaft of a machine tool.

【0007】[0007]

【発明の実施の形態】次に本願の回転軸構造の実施の形
態について図1から図6により説明する。主軸装置1の
主軸ヘッド2には主軸3が複数の軸受4を介して回動自
在に支持されている。この主軸3の略中央部外周にはロ
ーター5が一体に設けてあり、主軸ヘッド2内に設けた
ステータ6とで主軸3を回動する電動機を構成してい
る。主軸3の先端には工具を先端に保持する工具ホルダ
7を装着するテーパ孔8が形成されており、このテーパ
孔8に連続して主軸3の軸心に前方が小径孔9であり後
方が大径孔10である貫通孔11が穿設されている。貫
通孔11にはプルロッド12が軸方向摺動自在に挿通さ
れて、皿バネ13により後方に付勢されている。このプ
ルロッド12を前後方向に摺動するアンクランプシリン
ダ14が主軸ヘッド2の後部に一体に備えられている。
また、主軸ヘッド2には図1、図2に示すようにエアブ
ロウ用流路15が設けられており、主軸3の先端部に穿
設され、前記流路15と連通するエアブロウ用流路16
を介してテーパ孔8に向けてエアブロウを吹き出すよう
になっている。また、図2に示すように主軸3の先端部
には工具ホルダ7の密着確認用エア通路17が穿設され
ており、この密着確認用エア通路17の主軸3先端側は
テーパ孔8の周面にテーパ孔8内に向けて開口する密着
確認用エア噴射孔18となっており、主軸3後端側は貫
通孔11に向けて開口している。また、主軸3先端に
は、工具先端から噴射するクーラントのクーラント流路
19が設けられており、クーラント流路19の主軸3先
端側には付勢部材20により先端方向に付勢され工具ホ
ルダ7から工具先端にかけて連通しているクーラント流
路7bと主軸3のクーラント流路19とを切り離し可能
に連通する連通部材21が設けられており、主軸3後端
側は貫通孔11に向けて開口している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of a rotating shaft structure according to the present invention will be described with reference to FIGS. A spindle 3 is rotatably supported by a spindle head 2 of the spindle device 1 via a plurality of bearings 4. A rotor 5 is integrally provided on the outer periphery of a substantially central portion of the main shaft 3, and constitutes an electric motor that rotates the main shaft 3 together with a stator 6 provided in the main shaft head 2. A tapered hole 8 for mounting a tool holder 7 for holding a tool at the tip of the main shaft 3 is formed at the front end of the main shaft 3. A through hole 11 which is a large diameter hole 10 is formed. A pull rod 12 is inserted through the through hole 11 slidably in the axial direction, and is urged rearward by a disc spring 13. An unclamping cylinder 14 that slides the pull rod 12 in the front-rear direction is integrally provided at a rear portion of the spindle head 2.
As shown in FIGS. 1 and 2, an air blow passage 15 is provided in the spindle head 2. The air blow passage 16 is formed at the tip of the spindle 3 and communicates with the flow passage 15.
The air blow is blown out toward the tapered hole 8 through the hole. As shown in FIG. 2, an air passage 17 for confirming the close contact of the tool holder 7 is formed at the distal end of the main shaft 3. An air injection hole 18 for confirming close contact is formed on the surface of the main shaft 3 and opens toward the inside of the tapered hole 8. The rear end side of the main shaft 3 opens toward the through hole 11. At the tip of the main spindle 3, there is provided a coolant flow path 19 for the coolant injected from the tip of the tool, and the tip end side of the coolant flow path 19 is urged by the urging member 20 in the tip direction to the tool holder 7. A communication member 21 is provided so as to be capable of separating the coolant flow path 7b communicating from the tool path to the tool tip and the coolant flow path 19 of the main shaft 3 so that the rear end side of the main shaft 3 opens toward the through hole 11. ing.

【0008】プルロッド12は先端部に保持部22の後
端部が一体に螺合されており、プルロッド12の後端部
にロッド23の先端部が一体に螺合されている。保持部
22とプルロッド12とロッド23には夫々通孔24,
25,26が穿設されており、通孔24,25,26が
一直線に連通してクーラントが通過するクーラント流路
である流体供給孔27を構成しており、流体供給孔27
内にはプルロッド12の軸心(主軸の軸心でもある)L
を通るパイプ28が挿入されている。図2に示すように
保持部22はその先端に複数個の鋼球29を円周方向を
等分し半径方向に移動可能に組み込んであり、プルロッ
ド12の軸方向の摺動によって貫通孔11前方のカム面
30と協働して工具ホルダ7後端部のプルスタッド31
をクランプ、アンクランプするようになっている。ま
た、通孔24の先端側は保持部22の半径方向に向けて
開口したT字形状をしており、主軸3のクーラント流路
19と連通している。保持部22の略中央にはピン32
が嵌装される嵌装孔33が通孔24に対して直交するよ
うに設けられている。
The rear end of the holding portion 22 is integrally screwed with the front end of the pull rod 12, and the front end of the rod 23 is integrally screwed with the rear end of the pull rod 12. The holding portion 22, the pull rod 12, and the rod 23 have through holes 24, respectively.
25, 26 are formed, and the through holes 24, 25, 26 constitute a fluid supply hole 27 which is a coolant flow passage through which the coolant passes through in a straight line.
Inside the axis of the pull rod 12 (also the axis of the main shaft) L
Is inserted. As shown in FIG. 2, the holding portion 22 has a plurality of steel balls 29 incorporated at its tip so as to be movable in the radial direction while equally dividing the circumferential direction. Pull stud 31 at the rear end of tool holder 7 in cooperation with cam surface 30 of
Are clamped and unclamped. The distal end side of the through hole 24 has a T-shape that opens in the radial direction of the holding portion 22, and communicates with the coolant channel 19 of the main shaft 3. A pin 32 is provided substantially at the center of the holding portion 22.
Is provided so as to be orthogonal to the through hole 24.

【0009】ピン32は図2、図4に示すように太径部
34と細径部35とに形成されている。また、ピン32
には密着確認用エアが通過するエア用通孔36が穿設さ
れている。このエア用通孔36に向けて細径部35外周
から半径方向にパイプ28の一端が嵌挿される嵌挿孔3
7が穿設されている。このピン32を嵌装孔33に嵌装
したときに細径部35外周と嵌装孔33との間がクーラ
ントが通過するクーラント流路の一部になり、エア用通
孔36は密着確認用エア通路17の貫通孔11側の開口
に円弧溝32aと環状溝3aを介して連続する。
The pin 32 is formed in a large diameter portion 34 and a small diameter portion 35 as shown in FIGS. Also, the pin 32
Is provided with an air through hole 36 through which the air for checking the adhesion passes. A fitting hole 3 into which one end of the pipe 28 is radially inserted from the outer periphery of the small diameter portion 35 toward the air through hole 36.
7 are drilled. When the pin 32 is fitted into the fitting hole 33, the space between the outer periphery of the small diameter portion 35 and the fitting hole 33 becomes a part of the coolant flow path through which the coolant passes, and the air through hole 36 is used for confirming the close contact. The air passage 17 is continuous with the opening on the through hole 11 side through the arc groove 32a and the annular groove 3a.

【0010】ロッド23はアンクランプシリンダ14の
ピストンロッド38中心に遊嵌され、シリンダ本体14
aに回動自在に支持されたスリーブ14bに軸方向移動
自在に支持されている。先端部外周には前記アンクラン
プシリンダ14のピストン38が当接する顎部23aが
設けてあり、一体に螺合されており、ロッド23の後端
部にはロータリージョイント39のローター40が一体
に装着されている。ロッド23はアンクランプシリンダ
14のピストン38の前進時には、ピストン38に押さ
れて軸方向前方に移動し、これに伴いプルロッド12と
保持部22とロータリージョイント39も一体に移動す
る。アンクランプシリンダ14のピストン38を後退さ
せると、前記皿ばね13のばね力でプルロッド12、保
持部22、ロータリージョイント39、ロッド23が一
体に後退する。また、ロッド23は略中央にピン41を
嵌装する嵌装孔42が通孔26と直交するように設けら
れており、この嵌装孔42に連通する密着確認用エアの
エア用通路43が穿設されている。
The rod 23 is loosely fitted to the center of the piston rod 38 of the unclamping cylinder 14, and
a is movably supported in the axial direction by a sleeve 14b which is rotatably supported by a. A jaw 23a with which the piston 38 of the unclamping cylinder 14 abuts is provided on the outer periphery of the distal end, and is screwed integrally. The rotor 40 of the rotary joint 39 is integrally mounted on the rear end of the rod 23. Have been. When the piston 38 of the unclamping cylinder 14 moves forward, the rod 23 is pushed by the piston 38 and moves forward in the axial direction. Accordingly, the pull rod 12, the holding portion 22, and the rotary joint 39 also move integrally. When the piston 38 of the unclamping cylinder 14 is retracted, the pull rod 12, the holding portion 22, the rotary joint 39, and the rod 23 are integrally retracted by the spring force of the disc spring 13. The rod 23 is provided with a fitting hole 42 for fitting the pin 41 at substantially the center thereof so as to be orthogonal to the through hole 26, and an air passage 43 of the air for confirming adhesion that communicates with the fitting hole 42. Has been drilled.

【0011】ピン41は図3、図5に示すように太径部
44と細径部45とから形成され、また、一端側の側面
46に突出部47が形成されている。また、ピン41に
は一端が塞がれた突出部47端面と側面46とにかけて
開口し、密着確認用エアが通過するエア用通孔48が穿
設されている。このエア用通孔48に向けて細径部45
外周から半径方向にパイプ28の他端が嵌挿される嵌挿
孔49が穿設されている。このピン41を嵌装孔42に
嵌装したときに細径部45外周と嵌装孔42の間がクー
ラントが通過するクーラント流路の一部になり、ピン4
1の側面46と嵌装孔42の垂直面50とで囲まれた部
分を介してエア用通孔48とエア用通路43とが連通す
るようになっている。
The pin 41 has a large diameter portion 44 and a small diameter portion 45 as shown in FIGS. 3 and 5, and a projection 47 is formed on a side surface 46 at one end. The pin 41 is provided with an air hole 48 which is open to the end face and the side surface 46 of the protruding part 47, one end of which is closed, and through which the air for checking the adhesion passes. The small-diameter portion 45 faces toward the air through hole 48.
A fitting insertion hole 49 into which the other end of the pipe 28 is fitted in the radial direction from the outer periphery is formed. When the pin 41 is fitted in the fitting hole 42, the space between the outer periphery of the small diameter portion 45 and the fitting hole 42 becomes a part of the coolant flow path through which the coolant passes, and the pin 4
The air through hole 48 and the air passage 43 communicate with each other via a portion surrounded by the side surface 46 of the first and the vertical surface 50 of the fitting hole 42.

【0012】ロータリージョイント39はハウジング5
1内にローター40が回動自在に設けられており、ハウ
ジング51にはクーラント供給口52と密着確認用エア
供給口53を有し、クーラント供給口52と密着確認用
エア供給口53とが夫々ローター40に設けられたロッ
ド23の通孔26と連通するクーラント用通路54とロ
ッド23のエア用通路43に連通されたエア用通路55
とに連通している。また、密着確認用エア供給口53は
密着確認用エアを供給するコンプレッサ等の圧空源56
と連通し、その途中に密着確認用エアのエア圧を検出す
る圧力検出手段(圧力スイッチ)57が連結されてい
る。また、ハウジング51には検出部材58が設けられ
ており、アンクランプシリンダ14に取付けられた近接
スイッチ59とにより工具ホルダ7のアンクランプを確
認するアンクランプ確認手段60を構成している。圧力
検出手段57と密着確認用エアを噴出するための前述の
エア通路17、パイプ28等を連通した密着確認用エア
流路とにより、主軸3の工具保持確認装置が構成されて
いる。
The rotary joint 39 is a housing 5
1, a rotor 40 is rotatably provided, and a housing 51 has a coolant supply port 52 and an air supply port 53 for confirming adhesion, and the coolant supply port 52 and the air supply port 53 for confirmation of adhesion are respectively provided. A coolant passage 54 communicating with the through hole 26 of the rod 23 provided in the rotor 40 and an air passage 55 communicating with the air passage 43 of the rod 23.
And communicates with Further, the air supply port 53 for contact confirmation is provided with a compressed air source 56 such as a compressor for supplying air for contact confirmation.
A pressure detecting means (pressure switch) 57 for detecting the air pressure of the air for confirming the adhesion is connected in the middle thereof. The housing 51 is provided with a detection member 58, and constitutes an unclamping confirmation means 60 for confirming the unclamping of the tool holder 7 by the proximity switch 59 attached to the unclamping cylinder 14. A tool holding and checking device for the main shaft 3 is constituted by the pressure detecting means 57 and the above-described air passage 17 for ejecting the air for checking contact and the air flow path for checking contact which communicates with the pipe 28 and the like.

【0013】流体供給孔27に挿通されるパイプ28の
両端は夫々ピン32,41の嵌挿孔37,49に嵌挿さ
れている。このパイプ28の内側28aは密着確認用エ
ア流路となっており、パイプ28の外周28bと流体供
給孔27の内壁27aとによりクーラントが通過するク
ーラント用流路が形成されている。また、パイプ外周2
8bと流体供給孔27の内壁27aとの間にはパイプ2
8をプルロッド12の軸心位置に位置決め保持するパイ
プ保持部材であるコイルバネ(螺旋状の線材)61が挿
入されている。このコイルバネ61はクーラントが円滑
に通過可能な程度にリードが荒く形成されたものであ
る。尚、パイプ保持部材はパイプを軸心に固定し流体供
給孔内の流体の通過を妨げないものであればどのような
形状のものでも良く、パイプ外周に一体に設ける等して
も良い。
Both ends of a pipe 28 inserted into the fluid supply hole 27 are inserted into insertion holes 37 and 49 of pins 32 and 41, respectively. The inner side 28a of the pipe 28 is an air flow path for checking adhesion, and a coolant flow path through which the coolant passes is formed by the outer periphery 28b of the pipe 28 and the inner wall 27a of the fluid supply hole 27. In addition, pipe circumference 2
8b and the inner wall 27a of the fluid supply hole 27
A coil spring (spiral wire) 61 which is a pipe holding member for positioning and holding the position 8 at the axial center position of the pull rod 12 is inserted. The coil spring 61 is formed such that the leads are rough enough to allow the coolant to pass smoothly. The pipe holding member may have any shape as long as the pipe is fixed to the shaft center and does not hinder the passage of the fluid in the fluid supply hole, and may be provided integrally with the outer periphery of the pipe.

【0014】次に作用について説明する。ワークの加工
が終了すると、アンクランプシリンダ14のピストン3
8が主軸先端方向(工具ホルダアンクランプ方向)に移
動し、顎部23aが押されてプルロッド12が皿バネ1
3の付勢力に抗して主軸先端方向に移動し、保持部22
とカム面30との協働により主軸3にクランプされてい
た工具ホルダ7がアンクランプされる。この工具ホルダ
7は図示しない工具交換装置により主軸3先端から取り
出されて他の工具ホルダ7に交換され、工具ホルダ7が
テーパ孔8に嵌合される直前にエアブロウ用流路16か
らエアブロウが吹き出してこの部分を清掃する。そして
工具ホルダ7がテーパ孔8に嵌合されたタイミングでア
ンクランプシリンダ14のピストン38を後退させると
プルロッド12が皿バネ13により主軸後端方向(工具
ホルダクランプ方向)に付勢されて保持部22にプルス
タッド31が引き込まれながらクランプされ、テーパ孔
8にテーパ部7aが当接する。テーパ孔8にテーパ部7
aが密着すると、密着確認用エア噴射孔18から吹き出
していた密着確認用エアが吹き出すことができなくな
り、エア圧力が上昇し、圧力検出手段57により密着確
認用エアの所定の設定されたエア圧が検出されると、圧
力検出手段57の接点が閉じ、これによって圧力検出手
段57から密着信号が出力される。これによりテーパ孔
8にテーパ部7aが密着していることが確認されて次の
動作に移り、ワーク加工が再開される。
Next, the operation will be described. When the processing of the work is completed, the piston 3 of the unclamping cylinder 14
8 moves in the direction of the spindle tip (tool holder unclamping direction), the jaw 23a is pushed, and the pull rod 12
3 moves toward the tip of the spindle against the biasing force of
The tool holder 7 clamped on the main shaft 3 is unclamped by the cooperation of the tool holder 7 and the cam surface 30. The tool holder 7 is taken out from the tip of the spindle 3 by a tool changing device (not shown) and is replaced with another tool holder 7, and immediately before the tool holder 7 is fitted into the tapered hole 8, the air blow blows out from the air blow passage 16. Clean the leverage. When the piston 38 of the unclamping cylinder 14 is retracted at the timing when the tool holder 7 is fitted into the tapered hole 8, the pull rod 12 is urged toward the rear end of the main shaft (tool holder clamping direction) by the disc spring 13, and the holding portion The pull stud 31 is clamped while being pulled into the tube 22, and the tapered portion 7 a contacts the tapered hole 8. Tapered part 7 in tapered hole 8
When a is in close contact, the air for contact confirmation that has been blown out from the air ejection hole for contact confirmation 18 cannot be blown out, the air pressure rises, and the pressure detection means 57 sets a predetermined air pressure of the air for contact confirmation. Is detected, the contact point of the pressure detecting means 57 is closed, whereby the close contact signal is output from the pressure detecting means 57. As a result, it is confirmed that the tapered portion 7a is in close contact with the tapered hole 8, and the process proceeds to the next operation, and the work processing is restarted.

【0015】また、テーパ部7aとテーパ孔8間への切
粉等の浸入による異物のかみ込みや工具交換装置による
工具ホルダ挿入不良が発生した場合にはエアがテーパ孔
8とテーパ部7aの隙間から漏れるので圧力検出手段5
7により所定のエア圧が検出されず、圧力検出手段57
の接点が閉じない。この状態では圧力検出手段57から
密着信号が出力されないのでテーパ孔8とテーパ部7a
とが密着していないことが検出されて次の動作に移るこ
となく停止する。また、工具ホルダ7の密着していない
ことが検出されると作業者にランプ等の報知手段により
知らせ、作業者がテーパ孔8やテーパ部7aを清掃し、
工具ホルダ7を挿入しなおした後、加工が再開される。
If foreign matter is caught by intrusion of cuttings or the like between the tapered portion 7a and the tapered hole 8 or a tool holder is not properly inserted due to a tool changing device, air flows between the tapered hole 8 and the tapered portion 7a. Pressure detecting means 5
7, the predetermined air pressure is not detected, and the pressure detecting means 57
Contacts do not close. In this state, since the close contact signal is not output from the pressure detecting means 57, the tapered hole 8 and the tapered portion 7a
And stop without moving to the next operation. Further, when it is detected that the tool holder 7 is not in close contact, the operator is notified by a notifying means such as a lamp, and the operator cleans the tapered hole 8 and the tapered portion 7a.
After re-inserting the tool holder 7, the machining is resumed.

【0016】加工が開始されるとクーラントが流体供給
孔27を通過し、工具ホルダ7に設けたクーラント流路
7bを介して工具先端から噴出される。加工中に流体供
給孔27内に挿通されたパイプ28の外周にはクーラン
トが通過しており、また、パイプがたわもうとしても流
体供給孔内周27aとパイプ外周28bの間のコイルバ
ネ61によりパイプ28は主軸3の軸心位置に固定され
ているので主軸3の回転により振れることがない。尚、
流体供給孔に密着確認用エアを、パイプにクーラントを
通過するように構成しても良い。
When the machining is started, the coolant passes through the fluid supply hole 27 and is jetted from the tip of the tool through a coolant channel 7b provided in the tool holder 7. Coolant passes through the outer periphery of the pipe 28 inserted into the fluid supply hole 27 during processing, and the coil spring 61 between the inner periphery 27a of the fluid supply hole and the outer periphery 28b of the pipe even if the pipe bends. Since the pipe 28 is fixed at the axial position of the main shaft 3, it does not swing due to the rotation of the main shaft 3. still,
The air for confirming the close contact with the fluid supply hole may be configured to pass the coolant through the pipe.

【0017】次に図7において別の実施の形態を示す。
回転軸80に流体供給孔81が穿設され、この流体供給
孔81の内側にパイプ82を配し、パイプ82の内側に
更に別のパイプ83を配し、流体供給孔81の内壁81
aとパイプ82の外周とで第1の流路を形成し、また、
パイプ82の内周とパイプ83の外周とで第2の流路を
形成し、パイプ83の内周を第3の流路とし、内壁81
aとパイプ82外周の間とパイプ82内周とパイプ83
外周の間とに夫々第1の実施の形態と同じコイルバネ6
1A、コイルバネ61Bを挿入して、パイプ82とパイ
プ83とを流体供給孔81の軸心位置に保持されてパイ
プのたわみや振れが防止されている。このように構成す
れば、第1の実施の形態より多くの流体を通過させるこ
とや一方の流体を往復させることもでき、同様にパイプ
82,83も振れることなく回転軸80の軸心位置に保
持される。
Next, FIG. 7 shows another embodiment.
A fluid supply hole 81 is formed in the rotating shaft 80, a pipe 82 is disposed inside the fluid supply hole 81, and another pipe 83 is disposed inside the pipe 82, and an inner wall 81 of the fluid supply hole 81 is provided.
a and the outer periphery of the pipe 82 form a first flow path,
A second flow path is formed by the inner circumference of the pipe 82 and the outer circumference of the pipe 83, and the inner circumference of the pipe 83 is used as a third flow path.
a between the outer circumference of the pipe 82, the inner circumference of the pipe 82 and the pipe 83
The same coil spring 6 as in the first embodiment is provided between the outer periphery and the outer periphery.
1A, the coil spring 61B is inserted, and the pipe 82 and the pipe 83 are held at the axial center position of the fluid supply hole 81, thereby preventing the pipe from bending or swinging. With this configuration, it is possible to allow more fluid to pass therethrough and to reciprocate one of the fluids than in the first embodiment, and similarly, the pipes 82 and 83 can be moved to the axial center position of the rotary shaft 80 without swinging. Will be retained.

【0018】更に図8において別の実施の形態を示す。
回転軸84に複数(本実施の形態では2つ)の流体供給
孔85が回転軸84の軸心に対して対象に穿設されてお
り、この流体供給孔85内に夫々同じパイプ86が挿通
されており、流体供給孔内壁85aとパイプ86外周と
の間に第1の実施形態と略同様のコイルバネ61Cが挿
入されて、第1、第2の実施の形態と同様にパイプ86
が流体供給孔85の軸心位置に保持され、パイプがたわ
むことや振れることを防止している。
FIG. 8 shows another embodiment.
A plurality of (two in the present embodiment) fluid supply holes 85 are bored symmetrically with respect to the axis of the rotation shaft 84, and the same pipes 86 are inserted into the respective fluid supply holes 85. A coil spring 61C substantially similar to that of the first embodiment is inserted between the inner wall 85a of the fluid supply hole and the outer periphery of the pipe 86, and the pipe 86 is formed similarly to the first and second embodiments.
Is held at the axial center position of the fluid supply hole 85 to prevent the pipe from bending or swinging.

【0019】[0019]

【発明の効果】以上のように本発明によれば、異なる流
体の流路を回転軸に設けるときに夫々の流体の流路が同
一の軸心を有するように、一方の流路である流体供給孔
内に他方の流路であるパイプを設け、流体供給孔とパイ
プ間にパイプ保持部材を設けたので、多数の流体供給孔
を設ける必要がなく加工が容易であり、また、パイプ保
持部材によりパイプの中間部分を保持するのでパイプが
長いものや細いものであってもたわまない。また、その
ようにしてパイプがたわまないから、パイプのたわみに
よる動的バランスの崩れを防止できて、回転軸の振れを
防止できる。また、パイプ保持部材が螺旋状の線材であ
るのでパイプ外周に巻きつけるようにして流体供給孔に
挿入できて、組立容易であり、また、安価となる。
As described above, according to the present invention, when different fluid flow paths are provided on the rotating shaft, one fluid flow path is provided so that each fluid flow path has the same axis. Since the pipe serving as the other flow path is provided in the supply hole and the pipe holding member is provided between the fluid supply hole and the pipe, it is not necessary to provide a large number of fluid supply holes, and the processing is easy. Holds the middle part of the pipe, so that it does not bend even if the pipe is long or thin. Further, since the pipe does not bend in this way, it is possible to prevent the dynamic balance from being lost due to the bending of the pipe, and to prevent the rotation of the rotating shaft. In addition, since the pipe holding member is a spiral wire, it can be wound around the pipe and inserted into the fluid supply hole, so that the assembly is easy and the cost is low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】主軸装置の断面図である。FIG. 1 is a sectional view of a spindle device.

【図2】主軸装置の先端側拡大図である。FIG. 2 is an enlarged view of a tip side of a spindle device.

【図3】主軸装置の後端側拡大図である。FIG. 3 is an enlarged view of a rear end side of the spindle device.

【図4】保持部に嵌装したピンの図である。FIG. 4 is a view of a pin fitted to a holding unit.

【図5】ロッドに嵌装したピンの図である。FIG. 5 is a view of a pin fitted on a rod.

【図6】主軸装置のプルロッドの断面図である。FIG. 6 is a sectional view of a pull rod of the spindle device.

【図7】他の実施形態である。FIG. 7 is another embodiment.

【図8】他の実施形態である。FIG. 8 is another embodiment.

【図9】従来の回転軸構造である。FIG. 9 shows a conventional rotating shaft structure.

【符号の説明】[Explanation of symbols]

12 プルロッド(回転軸) 27,81,85 流体供給孔 27a,81a,85a 内壁 28,82,83,86 パイプ 28b パイプ外周 61,61A,61B,61C コイルバネ(パイプ保
持部材) L 軸心
12 Pull rod (rotary shaft) 27, 81, 85 Fluid supply holes 27a, 81a, 85a Inner wall 28, 82, 83, 86 Pipe 28b Pipe outer periphery 61, 61A, 61B, 61C Coil spring (pipe holding member) L axis

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 回転軸内に流路を有する回転軸構造にお
いて、回転軸には流体供給孔を設け、その流体供給孔の
内側にパイプを配して、パイプの内側と外側に流路を形
成し、パイプ外周とその外側に位置されそのパイプ外周
との間で流路を形成する内壁との間に前記パイプを流体
供給孔の軸心位置に保持し、流路内の流体の通過を妨げ
ないパイプ保持部材を設けたことを特徴とする回転軸構
造。
In a rotary shaft structure having a flow path in a rotary shaft, a fluid supply hole is provided in the rotary shaft, a pipe is arranged inside the fluid supply hole, and a flow path is formed inside and outside the pipe. The pipe is held at the axial center position of the fluid supply hole between the outer periphery of the pipe and the inner wall positioned outside and forming a flow path between the outer periphery of the pipe and the passage of the fluid in the flow path. A rotating shaft structure provided with a pipe holding member that does not hinder the rotation.
【請求項2】 回転軸内に流路を有する回転軸構造にお
いて、回転軸の軸心に流体供給孔を設け、その流体供給
孔の内側にパイプを配して、パイプの内側と外側に流路
を形成し、パイプ外周とその外側に位置されそのパイプ
外周との間で流路を形成する内壁との間に前記パイプを
回転軸の軸心位置に保持し、流路内の流体の通過を妨げ
ないパイプ保持部材を設けたことを特徴とする回転軸構
造。
2. A rotary shaft structure having a flow path in the rotary shaft, wherein a fluid supply hole is provided in the axis of the rotary shaft, a pipe is disposed inside the fluid supply hole, and a flow is provided inside and outside the pipe. A passage is formed, and the pipe is held at the axial center position of the rotating shaft between the outer periphery of the pipe and an inner wall which is located outside the outer periphery of the pipe and forms a flow passage between the outer periphery of the pipe and passage of fluid in the flow passage A rotating shaft structure provided with a pipe holding member that does not hinder the rotation.
【請求項3】 パイプ保持部材は螺旋状の線材であるこ
とを特徴とする請求項2記載の回転軸構造。
3. The rotary shaft structure according to claim 2, wherein the pipe holding member is a spiral wire.
【請求項4】 回転軸は工作機の主軸装置において、工
具ホルダを主軸に着脱自在に装着するプルロッドである
ことを特徴とする請求項2または請求項3いずれか1項
記載の回転軸構造。
4. The rotary shaft structure according to claim 2, wherein the rotary shaft is a pull rod for detachably mounting a tool holder on the main shaft in a spindle device of a machine tool.
JP04293097A 1997-02-11 1997-02-11 Rotating shaft structure Expired - Fee Related JP3624413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04293097A JP3624413B2 (en) 1997-02-11 1997-02-11 Rotating shaft structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04293097A JP3624413B2 (en) 1997-02-11 1997-02-11 Rotating shaft structure

Publications (2)

Publication Number Publication Date
JPH10225842A true JPH10225842A (en) 1998-08-25
JP3624413B2 JP3624413B2 (en) 2005-03-02

Family

ID=12649742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04293097A Expired - Fee Related JP3624413B2 (en) 1997-02-11 1997-02-11 Rotating shaft structure

Country Status (1)

Country Link
JP (1) JP3624413B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036583A (en) * 2006-08-09 2008-02-21 Sumitomo Heavy Industries Environment Co Ltd Flocculater
CN102837031A (en) * 2011-06-21 2012-12-26 大见工业株式会社 Oil supply device for hole cutting apparatus
CN103273090A (en) * 2013-05-28 2013-09-04 浙江日发精密机械股份有限公司 Spindle device with cooling water channel and scrap washing water channel
CN103567468A (en) * 2013-09-16 2014-02-12 浙江日发精密机械股份有限公司 Two-channel water-cooling electric spindle of digital controlled lathe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109482911B (en) * 2018-11-21 2020-05-12 上海机床厂有限公司 High-speed static pressure rear-mounted electric main shaft and dynamic balance method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036583A (en) * 2006-08-09 2008-02-21 Sumitomo Heavy Industries Environment Co Ltd Flocculater
CN102837031A (en) * 2011-06-21 2012-12-26 大见工业株式会社 Oil supply device for hole cutting apparatus
US8814481B2 (en) 2011-06-21 2014-08-26 Omi Kogyo Co., Ltd. Oil supply device for hole cutting apparatus
CN103273090A (en) * 2013-05-28 2013-09-04 浙江日发精密机械股份有限公司 Spindle device with cooling water channel and scrap washing water channel
CN103567468A (en) * 2013-09-16 2014-02-12 浙江日发精密机械股份有限公司 Two-channel water-cooling electric spindle of digital controlled lathe

Also Published As

Publication number Publication date
JP3624413B2 (en) 2005-03-02

Similar Documents

Publication Publication Date Title
JP3409321B2 (en) Spindle device of machine tool
JP3027505B2 (en) Spindle device
JPS6244302A (en) Chuck apparatus
JP4310301B2 (en) Workpiece ejecting device for machine tools
JPH10225842A (en) Rotation axis structure
JP2006233807A (en) Ejector
JPH0957582A (en) Main spindle device
JP4874663B2 (en) Air pressure measuring device for main spindle
JP2005103735A (en) Tool attachment confirmation device
JP2001259906A (en) Tool mounting confirming device
JP4232017B2 (en) Drawbar position detection mechanism for machine tools
JPH1199403A (en) Spindle device
JP4108828B2 (en) Cutting oil supply type tool holder
JP4994824B2 (en) Spindle device
JP4565725B2 (en) Air micro apparatus for measuring axis deviation and measuring method
CN109514319B (en) Automatic tool changing spindle motor
JP2001150295A (en) Main spindle device for machine tool
JP4472145B2 (en) Retractable chuck
JP6758477B2 (en) Machine tool spindle device
JPH03239408A (en) Machine tool
JPH08267339A (en) Rotary joint device of machine tool
JPH09314435A (en) Automatic chuck opening/closing mechanism of spindle
JP2000254846A (en) Method and device for removing burr of cross hole
JP2005186254A (en) Tool holder and method of supplying mist to tool
JPS5921721B2 (en) Gun drill using BTA pressure head

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees