JPH10225620A - Method for reducing sulfur trioxide - Google Patents

Method for reducing sulfur trioxide

Info

Publication number
JPH10225620A
JPH10225620A JP9031591A JP3159197A JPH10225620A JP H10225620 A JPH10225620 A JP H10225620A JP 9031591 A JP9031591 A JP 9031591A JP 3159197 A JP3159197 A JP 3159197A JP H10225620 A JPH10225620 A JP H10225620A
Authority
JP
Japan
Prior art keywords
coat
catalyst
honeycomb
parts
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9031591A
Other languages
Japanese (ja)
Other versions
JP3495542B2 (en
Inventor
Shigeru Nojima
野島  繁
Kozo Iida
耕三 飯田
Osamu Naito
内藤  治
Kazumasa Uchihashi
一雅 内橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP03159197A priority Critical patent/JP3495542B2/en
Publication of JPH10225620A publication Critical patent/JPH10225620A/en
Application granted granted Critical
Publication of JP3495542B2 publication Critical patent/JP3495542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce and remove the SO3 discharged from a boiler waste gas by bringing the combustion gas admixed with ammonia into contact with an Ir carrying catalyst. SOLUTION: Three parts of alumina sol, 55 parts of silica sol and 200 parts of water are added as a binder to 100 parts of H-type metallosilicate and sufficiently agitated to obtain a slurry for a wash coat. Subsequently, a monolithic substrate for cordierite is dipped in the wash-coat slurry, brought out and then dried at 200 deg.C after the excess slurry is swept off. The coat is deposited by 200g per 1 of the substrate to obtain a honeycomb coat. The honeycomb coat is dipped in iridium chloride (2.88g IrCl4 .H2 O/200cc of H2 O) and impregnated for 1hr, the liq. depositing on the substrate wall is scraped off, and the coat is dried at 200 deg.C. The coat is then purged with a nitrogen atmosphere at 500 deg.C to obtain a honeycomb catalyst. The SO3 discharged from the boiler waste gas, etc., is removed in this way.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はボイラ排ガス等から
排出されるSO3 を還元除去する方法に関する。
The present invention relates to relates to a method for reducing and removing the SO 3 discharged from the boiler exhaust gas or the like.

【0002】[0002]

【従来の技術】大気汚染防止の観点からボイラや各種燃
焼炉から発生するNOx を防止するための方法として脱
硝触媒を用いてNH3 を排ガス中に添加することによっ
て接触的に窒素と水に分解する選択的接触・還元法がガ
ス、油、石炭のいずれの燃焼排ガスにも広く適用されて
いる。本脱硝方法において、重質油やオリマルジョンの
ような粗悪な燃料油を燃料として燃焼させる排ガス中に
は多量のSOx が含有する。SOx の中でもSO3 は腐
食性のガスであり、後流の空気予熱器や電気集塵器へ硫
酸や硫酸アンモニウム(以下、硫安と略称する)あるい
は酸性硫酸アンモニウム(以下、酸性硫安と略称する)
等の形態で凝縮し、腐食や目詰まりの原因となる。更
に、ボイラ等の負荷が増大する場合、多量の硫安等のミ
ストが瞬時において大量に煙突から排出され、白く着色
した排ガスが排出される問題点が生じている。
The NH 3 with Related Art denitration catalyst as a method for preventing the NO x generated from the viewpoint of preventing air pollution from boilers and various combustion furnaces to catalytically nitrogen and water by adding to the exhaust gas The selective contact / reduction method that decomposes is widely applied to any exhaust gas of gas, oil and coal. In the denitration method, in the exhaust gas to burn inferior fuel oils such as heavy oils and orimulsion as fuel containing a large amount of SO x. Among SO x , SO 3 is a corrosive gas, and is supplied to an air preheater or an electrostatic precipitator downstream thereof with sulfuric acid or ammonium sulfate (hereinafter abbreviated as ammonium sulfate) or ammonium ammonium sulfate (hereinafter abbreviated as acid ammonium sulfate).
Etc., condensing in the form, etc., causing corrosion and clogging. Further, when the load on the boiler or the like increases, a large amount of mist such as ammonium sulfate is instantaneously discharged from the chimney in a large amount, and the white colored exhaust gas is discharged.

【0003】[0003]

【発明が解決しようとする課題】粗悪な燃料油の燃焼に
よる排ガス中のSOx はほとんどSO2 であるが、燃焼
方法により多量のSO3 が排出される場合もある。さら
に、脱硝触媒上において、SO2 +1/2O2 →SO3
の副反応によりSO3 濃度が増える不具合が生じる。
Although SO x in the exhaust gas due to combustion of the invention Problems to be Solved inferior fuel oil is almost SO 2, there is a case where a large amount of SO 3 is discharged by the combustion method. Further, on the denitration catalyst, SO 2 + / O 2 → SO 3
The disadvantage that the SO 3 concentration increases due to the side reaction of.

【0004】そこで、本発明者らは上記不具合を解決す
るために、生成したSO3 を還元除去する触媒の開発を
鋭意行ったところ、イリジウムを担持した触媒が目的に
かなった特性を有することを見い出し、本発明を完成す
るに至った。
In order to solve the above-mentioned problems, the present inventors have intensively developed a catalyst for reducing and removing generated SO 3, and found that a catalyst supporting iridium has desired characteristics. They have found and completed the present invention.

【0005】[0005]

【課題を解決するための手段】すなわち本発明は(1)
SO3 を含有する燃焼排ガスからSO3 を還元処理する
方法において、Ir を担持した触媒にアンモニアを添加
した該燃焼排ガスを接触させることを特徴とするSO3
還元処理方法及び(2)Ir を担持する触媒の担体がチ
タニア、アルミナ、シリカ、ジルコニア、シリカライト
及びメタロシリケートからなる群から選ばれた1種類以
上のものより構成されたものであることを特徴とする上
記(1)記載のSO3 還元処理方法である。
That is, the present invention provides (1)
A method of reduction treatment SO 3 from flue gas containing SO 3, SO 3, characterized in that contacting the flue gas with the addition of ammonia to the catalyst carrying Ir
The reduction treatment method and (2) the carrier of the Ir-supporting catalyst is composed of at least one selected from the group consisting of titania, alumina, silica, zirconia, silicalite and metallosilicate. The SO 3 reduction treatment method according to the above (1).

【0006】本発明において処理対象となるSO3 を含
有する燃焼排ガスとしては、燃焼排ガス中に一酸化炭
素、炭化水素などのSO3 の還元剤として作用する成分
を含むものでも、またそれらを全く含まないものでもよ
い。
The combustion exhaust gas containing SO 3 to be treated in the present invention may be one containing a component acting as a reducing agent for SO 3 , such as carbon monoxide or hydrocarbon, in the combustion exhaust gas. It may not be included.

【0007】本発明におけるIr を担持する担体として
はチタニア、アルミナ、シリカ、ジルコニア、シリカラ
イト及びメタロシリケートが使用される。ここにおい
て、シリカライトとは、ペンタシル型のSiとOとのみ
よりなるシリケートであり、メタロシリケートとは下記
表Aに示されるX線回折パターンを有し、脱水された状
態において酸化物のモル比で表わして、下記の化学式を
有する結晶性シリケートである。
[0007] In the present invention, titania, alumina, silica, zirconia, silicalite and metallosilicate are used as a carrier for supporting Ir. Here, silicalite is a silicate composed of only pentasil-type Si and O, and metallosilicate has an X-ray diffraction pattern shown in Table A below, and shows a molar ratio of oxide in a dehydrated state. And is a crystalline silicate having the following chemical formula.

【0008】[0008]

【化1】(1±0.8)R2 O・〔aM2 3 ・bM′
O・cAl2 3 〕・ySiO2(但し、上記式中、R
はアルカリ金属イオン及び/又は水素イオン、MはVIII
族元素、希土類元素、チタン、バナジウム、クロム、ニ
オブ、アンチモン及びガリウムからなる群より選ばれた
少なくとも1種以上の元素イオン、M′はマグネシウ
ム、カルシウム、ストロンチウム、バリウムのアルカリ
土類金属イオン、a>0、20>b≧0、a+c=1、
3000>y>11。)
Embedded image (1 ± 0.8) R 2 O. [aM 2 O 3 .bM ′
O · cAl 2 O 3 ] · ySiO 2 (where R is
Is an alkali metal ion and / or hydrogen ion, M is VIII
Group element, rare earth element, at least one or more element ions selected from the group consisting of titanium, vanadium, chromium, niobium, antimony and gallium, M 'is an alkaline earth metal ion of magnesium, calcium, strontium, barium, a > 0, 20> b ≧ 0, a + c = 1,
3000>y> 11. )

【0009】[0009]

【表1】 [Table 1]

【0010】(作用)Ir を特定の担体に担持した触媒
は特開平6−296870号公報にて示すように、酸素
が過剰な雰囲気においても排ガス中の一酸化炭素、炭化
水素を還元剤として、窒素酸化物を還元することができ
るものであるが、本発明者らは窒素酸化物(NOx )の
還元剤であるアンモニアが上記触媒を用いることにより
SO3も還元できることを見出して、本発明を完成した
ものである。アンモニアを用いたSO3 の還元反応は下
記式のとおりである。
(Action) As shown in JP-A-6-296870, a catalyst in which Ir is supported on a specific carrier can use carbon monoxide and hydrocarbons in exhaust gas as reducing agents even in an atmosphere where oxygen is excessive. Although the present invention can reduce nitrogen oxides, the present inventors have found that ammonia, which is a reducing agent for nitrogen oxides (NO x ), can also reduce SO 3 by using the above catalyst. Is completed. The reduction reaction of SO 3 using ammonia is as follows.

【0011】[0011]

【化2】 3SO3 +2NH3 →3SO2 +N2 +3H2 Embedded image 3SO 3 + 2NH 3 → 3SO 2 + N 2 + 3H 2 O

【0012】添加するアンモニアの量が多いほど、SO
3 の除去率は高くなる。アンモニア量は1ppm以上、
好ましくは10ppm以上が望ましい。
As the amount of added ammonia increases, the SO
The removal rate of 3 is higher. The amount of ammonia is 1 ppm or more,
Preferably 10 ppm or more is desirable.

【0013】担持するイリジウム量は0.002wt%
以上で活性を有するが、好ましくはは0.02wt%以
上が高い活性を有する。また、イリジウムの担持への担
持方法は含浸法、イオン交換法等があげられる。
The amount of iridium to be carried is 0.002 wt%
The above-mentioned activity is obtained, but preferably 0.02 wt% or more has a high activity. The method of supporting iridium on the carrier may be an impregnation method, an ion exchange method, or the like.

【0014】また、燃焼排ガス中のNOx 及びSO3
共に処理するために、ハニカム状脱硝触媒(例えばTi
2 −WO3 −V2 5 より構成された触媒)上に、本
発明で用いる触媒粉末をコートすることにより、アンモ
ニアを用いてNOx ,SO3ともに除去することが可能
である。
Further, in order to treat both NO x and SO 3 in the combustion exhaust gas, a honeycomb-shaped denitration catalyst (for example, Ti
By coating the catalyst powder used in the present invention on a catalyst composed of O 2 -WO 3 -V 2 O 5 ), it is possible to remove both NO x and SO 3 using ammonia.

【0015】[0015]

【実施例】以下、本発明の具体的な実施例をあげ、本発
明の効果を明らかにする。
EXAMPLES Hereinafter, specific examples of the present invention will be described to clarify the effects of the present invention.

【0016】(実施例1) (触媒の調製法1) ○(メタロシリケートの合成):水ガラス1号(SiO
2 :30%):5616gを水:5429gに溶解し、
この溶液を溶液Aとする。一方、水:4175gに硫酸
アルミニウム:718.9g、塩化第二鉄:110g、
酢酸カルシウム:47.2g、塩化ナトリウム:262
g、濃塩酸:2020gを溶解し、この溶液を溶液Bと
する。溶液Aと溶液Bを一定割合で供給し、沈殿を生成
させ、十分攪拌してpH=8.0のスラリを得る。この
スラリを20リットルのオートクレーブに仕込み、さら
にテトラプロピルアンモニウムブロマイドを500g添
加し、160℃にて72時間水熱合成を行い、合成後水
洗して乾燥させ、さらに500℃、3時間焼成させメタ
ロシリケート1を得る。このメタロシリケート1は酸化
物のモル比で(結晶水を省く)、下記の組成式で表さ
れ、結晶構造はX線回折で前記表Aにて表示されるもの
である。
(Example 1) (Preparation method 1 of catalyst) ○ (Synthesis of metallosilicate): Water glass No. 1 (SiO
2 : 30%): 5616 g was dissolved in 5429 g of water,
This solution is referred to as solution A. On the other hand, water: 4175 g, aluminum sulfate: 718.9 g, ferric chloride: 110 g,
Calcium acetate: 47.2 g, sodium chloride: 262
g, concentrated hydrochloric acid: 2020 g, and this solution is referred to as solution B. The solution A and the solution B are supplied at a constant rate to form a precipitate, and the mixture is sufficiently stirred to obtain a slurry having a pH of 8.0. This slurry was charged into a 20-liter autoclave, and 500 g of tetrapropylammonium bromide was further added. Hydrothermal synthesis was performed at 160 ° C. for 72 hours. After the synthesis, the resultant was washed with water and dried. Get 1. The metallosilicate 1 is represented by the following composition formula in terms of the molar ratio of the oxide (omitting the water of crystallization), and the crystal structure is shown in Table A by X-ray diffraction.

【0017】[0017]

【化3】0.5Na2 O・0.5H2 O・〔0.8Al
2 3 ・0.2Fe2 3 ・0.25CaO〕・25S
iO2 上記メタロシリケートを4NH4 Cl水溶液80℃に添
加し、3時間以上2回イオン交換を行い、水洗乾燥後、
500℃、3時間焼成後、H型のメタロシリケート1を
得た。
Embedded image 0.5Na 2 O · 0.5H 2 O · [0.8Al
2 O 3 .0.2Fe 2 O 3 .0.25CaO] .25S
iO 2 The above metallosilicate was added to a 4 NH 4 Cl aqueous solution at 80 ° C., ion-exchanged twice for 3 hours or more, washed with water and dried.
After firing at 500 ° C. for 3 hours, an H-type metallosilicate 1 was obtained.

【0018】○(触媒化):次に、上記100部のH型
のメタロシリケート1に対して、バインダとしてアルミ
ナゾル:3部、シリカゾル:55部(SiO2 :20
%)及び水:200部加え、充分攪拌を行いウォッシュ
コート用スラリとした。次にコージェライト用モノリス
基材(400セルの格子目)を上記スラリに浸漬し、取
り出した後余分なスラリを吹きはらい200℃で乾燥さ
せた。コート量は基材1リットルあたり200g担持
し、このコート物をハニカムコート物1とする。次に、
塩化イリジウム(Ir Cl4 ・H2 O:2.88g/H
2 O:200cc)に上記ハニカムコート物1を浸漬し
1時間含浸した後、基材の壁の付着した液をふきとり2
00℃で乾燥させた。次で500℃で窒素雰囲気で12
時間パージ処理を行い、ハニカム触媒1を得た。
○ (catalyzed): Next, alumina sol: 3 parts, silica sol: 55 parts (SiO 2 : 20) as a binder for the above 100 parts of H-type metallosilicate 1.
%) And water: 200 parts and sufficiently stirred to obtain a slurry for washcoat. Next, a monolith base material for cordierite (a grid of 400 cells) was immersed in the above slurry, taken out, and then sprayed with excess slurry and dried at 200 ° C. The coating amount is 200 g per 1 liter of the base material. next,
Iridium chloride (IrCl 4 .H 2 O: 2.88 g / H
2 O: 200 cc), the honeycomb coated article 1 was immersed and impregnated for 1 hour, and the liquid adhering to the substrate wall was wiped off.
Dried at 00 ° C. Next, at 500 ° C. in a nitrogen atmosphere, 12
A time purge process was performed to obtain a honeycomb catalyst 1.

【0019】上記触媒の調製法1におけるメタロシリケ
ート1の合成法において、塩化第二鉄の代わりに塩化コ
バルト、塩化ルテニウム、塩化ロジウム、塩化ランタ
ン、塩化セリウム、塩化チタン、塩化バナジウム、塩化
クロム、塩化アンチモン、塩化ガリウム及び塩化ニオブ
を各々酸化物換算でFe2 3 と同じモル数だけ添加し
た以外はメタロシリケート1と同様の操作を繰り返して
メタロシリケート2〜12を調製した。これらの結晶構
造はX線回折で前記表Aに表示されるものであり、その
組成は酸化物のモル比(脱水された形態)で表わして、
(1±0.8)R 2 O・(0.2M2 3 ・0.8Al
2 3 ・0.25CaO)・25SiO2である。ここ
でRはNa及びH、MはCo,Ru,Rh,La,C
e,Ti,V,Cr,Sb,Ga,Nbである。これら
メタロシリケートの構成は後記の表Bに示す。
The metallosilicate in Preparation method 1 of the above catalyst
In the method for synthesizing salt 1, instead of ferric chloride,
Baltic, ruthenium chloride, rhodium chloride, lanta chloride
, Cerium chloride, titanium chloride, vanadium chloride, chloride
Chromium, antimony chloride, gallium chloride and niobium chloride
Are converted to FeTwoOThreeAdd the same number of moles as
The same operation as for metallosilicate 1 was repeated except for
Metallosilicates 2-12 were prepared. These crystal structures
The structure is shown in Table A above by X-ray diffraction.
The composition is represented by the molar ratio of oxides (dehydrated form),
(1 ± 0.8) R TwoO ・ (0.2MTwoOThree・ 0.8Al
TwoOThree・ 0.25CaO) ・ 25SiOTwoIt is. here
R is Na and H, M is Co, Ru, Rh, La, C
e, Ti, V, Cr, Sb, Ga, Nb. these
The composition of the metallosilicate is shown in Table B below.

【0020】また、上記触媒の調製法1において、酢酸
カルシウムの代わりに酢酸マグネシウム、酢酸ストロン
チウム、酢酸バリウムを各々酸化物換算でCaOと同じ
モル数だけ添加した以外はメタロシリケート1と同様の
操作を繰り返してメタロシリケート13〜15を調製し
た。これらのメタロシリケートの結晶構造はX線回折で
前記表Aに表示されるものであり、その組成は酸化物の
モル比(脱水された形態)で表わして、0.5Na2
・0.5H2 O・(0.2Fe2 3 ・0.8Al2
3 ・0.25MeO)・25SiO2 である。ここでM
eはMg,Sr,Baである。
In the preparation method 1 of the above catalyst, the same operation as that of the metallosilicate 1 was carried out except that magnesium acetate, strontium acetate and barium acetate were each added in the same molar amount as CaO in terms of oxide in place of calcium acetate. Repeatedly, metallosilicates 13 to 15 were prepared. The crystal structures of these metallosilicates are those shown in Table A above by X-ray diffraction, and their compositions are expressed in terms of the molar ratio of oxides (dehydrated form) to 0.5 Na 2 O
・ 0.5H 2 O ・ (0.2Fe 2 O 3・ 0.8Al 2 O
A 3 · 0.25MeO) · 25SiO 2. Where M
e is Mg, Sr, Ba.

【0021】上記メタロシリケート2〜15を前記触媒
化と同様にH型にし、さらに、コージェライトモノリス
基材にコートしてハニカムコート物2〜15を得た。次
に塩化イリジウム水溶液に浸漬し、上記調製法1と同様
にハニカム触媒2〜15を得た。
The above metallosilicates 2 to 15 were converted into the H-form in the same manner as in the above-mentioned catalysis, and further coated on a cordierite monolith substrate to obtain honeycomb coated products 2 to 15. Next, it was immersed in an iridium chloride aqueous solution to obtain honeycomb catalysts 2 to 15 in the same manner as in Preparation method 1 described above.

【0022】(触媒の調製法2)TiO2 (石原産業製
Mc−90)、γ−Al2 3 (住友化学製)、Si
2 (富士シリシア化学製)、ZrO2 (日揮化学
製)、シリカライト(モービル社製)の各粉末を担体に
塩化イリジウム(Ir Cl4 ・H2 O)水溶液を粉末あ
たりのIr 担持量0.6wt%となるように含浸させ、
蒸発乾固後、500℃で12時間窒素雰囲気で焼成を行
った。この粉末触媒を400セル格子目のコージェライ
トハニカム基材1リットルあたり200g担持し、ハニ
カム触媒16〜20を得た。ハニカム触媒1〜20を表
Bに併せて示す。
(Catalyst Preparation Method 2) TiO 2 (Mc-90, manufactured by Ishihara Sangyo), γ-Al 2 O 3 (manufactured by Sumitomo Chemical), Si
Each of O 2 (Fuji Silysia Chemical), ZrO 2 (JGC Chemicals), and silicalite (Mobile) powders was used as a carrier, and an iridium chloride (IrCl 4 .H 2 O) aqueous solution was used. .6 wt%.
After evaporating to dryness, baking was performed at 500 ° C. for 12 hours in a nitrogen atmosphere. 200 g of this powder catalyst was supported per liter of cordierite honeycomb substrate of 400 cell lattice, and honeycomb catalysts 16 to 20 were obtained. The honeycomb catalysts 1 to 20 are also shown in Table B.

【0023】[0023]

【表2】 [Table 2]

【0024】(SO3 の還元試験)前記触媒の調製法で
得られたハニカム触媒1〜20を用いてSO3 の還元試
験を行った。試験条件は下記のとおり。 ○(ガス組成) NO:150ppm,SO2 :2000ppm,S
3 :100ppm,NH 3 :800ppm,O2
0.4%,H2 O:10%,N2 :残 ○(試験条件) ガス量:512Nl/h,触媒量:15.4cc(16
mm×16mm×60mm:12セル×12セル),G
HSV(触媒体積あたりのガス量):33300h-1
AV(触媒表面積あたりのガス量):14.8m3 /m
2 h,温度:400℃ 触媒1〜20のSO3 還元活性を表Cに示す。なお、S
3 濃度はミニスパイラル管を用いたアルセナゾIII 法
により分析した。
(SOThreeReduction test of the catalyst)
Using the obtained honeycomb catalysts 1 to 20, SOThreeReduction test
Test was carried out. The test conditions are as follows. ○ (gas composition) NO: 150ppm, SOTwo: 2000 ppm, S
OThree: 100 ppm, NH Three: 800 ppm, OTwo:
0.4%, HTwoO: 10%, NTwo: Residual ○ (test conditions) Gas amount: 512 Nl / h, catalyst amount: 15.4 cc (16
mm x 16 mm x 60 mm: 12 cells x 12 cells), G
HSV (gas amount per catalyst volume): 33300 h-1,
AV (gas amount per catalyst surface area): 14.8 mThree/ M
Twoh, temperature: 400 ° C. SO of catalysts 1 to 20ThreeThe reducing activity is shown in Table C. Note that S
OThreeArsenazo III method using mini-spiral tube
Was analyzed by

【0025】[0025]

【表3】 [Table 3]

【0026】(実施例2)実施例1のSO3 の還元試験
において、NH3 濃度を400ppm、800ppm、
1200ppmにおいてSO3 還元試験を実施した。ま
た、実施例1と同様な条件にてO2 濃度を0.2〜1.
0%において、SO3 還元試験を行った。上記試験は実
施例1の触媒1を用いて実施し、SO3 還元活性を表D
に示す。
Example 2 In the SO 3 reduction test of Example 1, the NH 3 concentration was 400 ppm, 800 ppm,
An SO 3 reduction test was performed at 1200 ppm. Further, under the same conditions as in Example 1, the O 2 concentration was set to 0.2 to 1.0.
At 0%, a SO 3 reduction test was performed. The above test was carried out using the catalyst 1 of Example 1, and the SO 3 reduction activity was measured in Table D.
Shown in

【0027】[0027]

【表4】 [Table 4]

【0028】(実施例2)成分としてV2 5 :0.6
%、WO3 :8%を含有し、TiO2 が主成分として構
成されており、7.4mmピッチのハニカム状触媒(壁
厚1mm)を基材に用いる。本基材上に実施例1で示す
粉末触媒1を基材表面積あたり100g/m2 (ハニカ
ム体積あたり50g/リットル)をコートした。本触媒
を触媒21とする。本触媒を用いて実施例1と同様のガ
ス組成で下記試験条件にてSO3 還元試験を行った。 ○(試験条件) ガス量:512Nl/h,触媒量:30.8cc(16
mm×16mm×120mm:2セル×2セル),GH
SV:16700h-1,温度:400℃ 触媒21のSO3 除去活性とNOx 除去活性を表Eに示
(Example 2) V 2 O 5 : 0.6 as a component
%, WO 3 : 8%, TiO 2 as a main component, and a 7.4 mm pitch honeycomb catalyst (wall thickness 1 mm) is used as a base material. The base material was coated with the powdered catalyst 1 shown in Example 1 at 100 g / m 2 per base material surface area (50 g / l per honeycomb volume). This catalyst is referred to as catalyst 21. Using this catalyst, a SO 3 reduction test was performed under the following test conditions with the same gas composition as in Example 1. ○ (Test conditions) Gas amount: 512 Nl / h, catalyst amount: 30.8 cc (16
mm x 16 mm x 120 mm: 2 cells x 2 cells), GH
SV: 16700 h -1 , temperature: 400 ° C. Table 3 shows the SO 3 removing activity and NO x removing activity of the catalyst 21.

【0029】[0029]

【表5】 本結果より触媒21は、窒素酸化物(NOx )、三酸化
硫黄(SO3 )の両方とも除去することができる。
[Table 5] From this result, the catalyst 21 can remove both nitrogen oxides (NO x ) and sulfur trioxide (SO 3 ).

【0030】[0030]

【発明の効果】以上実施例により詳述したように、本発
明方法により、有害なSO3 を還元除去することができ
る。
As described in detail in the above embodiments, harmful SO 3 can be reduced and removed by the method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内橋 一雅 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Kazumasa Uchihashi 1-1, Akunouramachi, Nagasaki City, Nagasaki Prefecture Inside Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 SO3 を含有する燃焼排ガスからSO3
を還元処理する方法において、Irを担持した触媒にア
ンモニアを添加した該燃焼排ガスを接触させることを特
徴とするSO3 還元処理方法。
1. A method for producing SO 3 from combustion exhaust gas containing SO 3
A method for reducing SO 3 , wherein the combustion exhaust gas obtained by adding ammonia to a catalyst supporting Ir is brought into contact with the catalyst.
【請求項2】 Irを担持する触媒の担体がチタニア、
アルミナ、シリカ、ジルコニア、シリカライト及びメタ
ロシリケートからなる群から選ばれた1種類以上のもの
より構成されたものであることを特徴とする請求項1記
載のSO3 還元処理方法。
2. The catalyst carrier for supporting Ir is titania,
Alumina, silica, zirconia, silicalite and SO 3 reduction processing method according to claim 1, characterized in that constructed than from the group consisting of metallosilicate of one or more selected.
JP03159197A 1997-02-17 1997-02-17 Sulfur trioxide reduction method Expired - Fee Related JP3495542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03159197A JP3495542B2 (en) 1997-02-17 1997-02-17 Sulfur trioxide reduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03159197A JP3495542B2 (en) 1997-02-17 1997-02-17 Sulfur trioxide reduction method

Publications (2)

Publication Number Publication Date
JPH10225620A true JPH10225620A (en) 1998-08-25
JP3495542B2 JP3495542B2 (en) 2004-02-09

Family

ID=12335441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03159197A Expired - Fee Related JP3495542B2 (en) 1997-02-17 1997-02-17 Sulfur trioxide reduction method

Country Status (1)

Country Link
JP (1) JP3495542B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1452222A1 (en) * 2003-02-27 2004-09-01 Mitsubishi Heavy Industries, Ltd. Exhaust gas treatment system and exhaust gas treatment
WO2016072109A1 (en) * 2014-11-07 2016-05-12 三菱日立パワーシステムズ株式会社 Exhaust gas treatment system and treatment method
WO2016072110A1 (en) * 2014-11-07 2016-05-12 三菱重工業株式会社 Exhaust gas treatment method and denitrification/so3 reduction apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1452222A1 (en) * 2003-02-27 2004-09-01 Mitsubishi Heavy Industries, Ltd. Exhaust gas treatment system and exhaust gas treatment
WO2016072109A1 (en) * 2014-11-07 2016-05-12 三菱日立パワーシステムズ株式会社 Exhaust gas treatment system and treatment method
WO2016072110A1 (en) * 2014-11-07 2016-05-12 三菱重工業株式会社 Exhaust gas treatment method and denitrification/so3 reduction apparatus

Also Published As

Publication number Publication date
JP3495542B2 (en) 2004-02-09

Similar Documents

Publication Publication Date Title
EP0686423B1 (en) Use of ammonia decomposition catalysts
JP3129377B2 (en) Exhaust gas purification catalyst
EP0988885A1 (en) Method of denitrating exhaust gas
JP3132959B2 (en) Ammonia decomposition catalyst
JP3495548B2 (en) Reduction method of sulfur trioxide
JP3495542B2 (en) Sulfur trioxide reduction method
JPH08215544A (en) Method for removing nitrogen oxide of diesel engine
JP3310781B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3495592B2 (en) Method for reducing SO3 in exhaust gas
JP3495527B2 (en) Sulfur trioxide reduction method
JP3129346B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP3212429B2 (en) Exhaust gas treatment method
JP3229136B2 (en) Ammonia decomposition method
JP3388941B2 (en) Exhaust gas purification method
JP3229117B2 (en) Ammonia decomposition method
JPH08196904A (en) Nitrogen oxide removing catalyst
JP3462580B2 (en) Exhaust gas denitration method
JP3970093B2 (en) Ammonia decomposition removal method
JPH08299761A (en) Decomposing and removing method of ammonia
JP3300721B2 (en) Exhaust gas purification catalyst
JP3310755B2 (en) Exhaust gas treatment catalyst
JP3276193B2 (en) Exhaust treatment catalyst
JP3154602B2 (en) Exhaust gas purification method
JP3015568B2 (en) Exhaust gas treatment catalyst
JP3249243B2 (en) Exhaust gas treatment catalyst

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031028

LAPS Cancellation because of no payment of annual fees