JPH10221602A - Eccentric prism optical system - Google Patents

Eccentric prism optical system

Info

Publication number
JPH10221602A
JPH10221602A JP9025135A JP2513597A JPH10221602A JP H10221602 A JPH10221602 A JP H10221602A JP 9025135 A JP9025135 A JP 9025135A JP 2513597 A JP2513597 A JP 2513597A JP H10221602 A JPH10221602 A JP H10221602A
Authority
JP
Japan
Prior art keywords
optical system
axis
pupil
plane
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9025135A
Other languages
Japanese (ja)
Inventor
Kokichi Kenno
研野孝吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP9025135A priority Critical patent/JPH10221602A/en
Priority to US08/805,465 priority patent/US6034823A/en
Priority to DE69719949T priority patent/DE69719949T2/en
Priority to EP97107235A priority patent/EP0857992B1/en
Publication of JPH10221602A publication Critical patent/JPH10221602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an eccentric prism optical system constituting a surface with a wide effective area of a first surface having a transmissive action and a reflective action of a side close to a pupil with a rotation symmetric spherical surface or aspherical surface. SOLUTION: This optical system consists of three surfaces 3, 4, 5, and a transparent medium with a diffractive index of 1.3 or above is buried between these surfaces, and light flux outgoing from an object passes through the pupil 1 of the optical system 7 first along an optical axis 2, and is made incident on the first surface 3 to enter the optical system 7, and is reflected in the direction approaching the pupil 1 by a second surface 4, and is reflected in the direction receding from the pupil 1 by the first surface 3 this time, and its reflected light transmits through a third surface 5, and arrives at an image surface 6 to be image formed. The first surface 3 is constituted of a rotation symmetric surface such as an aspherical surface, etc., and the second surface 4 is constituted of a rotation asymmetric surface, and an angle α that the rotation central axis 12 of the rotation symmetric aspherical surface of the first surface 3 intersects with the optical axis 2 is decided within the range of 5 deg.<α<30 deg..

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、偏心プリズム光学
系に関し、特に、接眼光学系又は撮像光学系に利用でき
る製作性の良い偏心プリズム光学系に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eccentric prism optical system, and more particularly to an eccentric prism optical system having good manufacturability which can be used for an eyepiece optical system or an imaging optical system.

【0002】[0002]

【従来の技術】偏心プリズム光学系として従来の周知な
ものとして、特開平7−333551号と特開平8−2
34137号のものがある。また、本出願人の特開平8
−320452号、特開平8−313829号のものが
ある。これらのものは、何れも反射作用を有する面に回
転非対称な面形状を使用したものである。
2. Description of the Related Art Conventionally known well-known decentered prism optical systems are disclosed in Japanese Patent Application Laid-Open Nos. 7-333551 and 8-2.
No. 34137. Further, Japanese Patent Application Laid-Open No.
JP-A-320452 and JP-A-8-313829. Each of these uses a rotationally asymmetric surface shape for a surface having a reflecting action.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
従来技術では、透過と反射作用を有する瞳側の第1面を
回転非対称面で構成すると同時に、反射作用のみを有す
る瞳から遠い側の第2面も共に回転非対称面であるアナ
モルフィック面やトーリック面等で構成している。この
ために、光学系を製作する上で設計値通りの形状が出来
ているかどうかの測定を行う場合、回転非対称であるた
めに干渉計等の方法により面の精度を測定することがで
きず、3次元座標測定器で測定する必要がある。しか
し、3次元座標測定器は点の座標を1点1点測定するた
めに、測定精度が不足することと、測定に非常に時間が
かかる問題点があった。
However, in these prior arts, the first surface on the pupil side having the transmission and reflection functions is constituted by a rotationally asymmetric surface, and the second surface on the side far from the pupil having only the reflection function is formed. Both are composed of rotationally asymmetric surfaces such as an anamorphic surface and a toric surface. For this reason, when measuring whether the shape according to the design value is made in manufacturing the optical system, the accuracy of the surface can not be measured by a method such as an interferometer because it is rotationally asymmetric, It is necessary to measure with a three-dimensional coordinate measuring device. However, since the three-dimensional coordinate measuring device measures the coordinates of points one by one, there are problems that the measurement accuracy is insufficient and the measurement takes a very long time.

【0004】また、透過作用のみを有する第3面を回転
対称に設計することが、上記の従来技術に示されている
が、この透過作用のみを有する面は面の有効領域か狭
く、光学系全体が正しい形状に作製されているかをこの
面だけを基準として推定することは難しい。上記の瞳に
近い方の反射と透過作用を有する第1面は、その有効面
積が大きいことから、光学系全体に歪みがあるかどうか
を推定する場合に基準とすると都合が良い。特に、プラ
スチックの射出成形(モールド成形)を行う場合は、光
学系全体の形状の変化を少なくすることが重要であり、
有効面(面の全領域中で光束が透過あるいは反射の少な
くとも一方を行う領域)の大きい面を測定し、光学系全
体の形状を推定することが、量産を行う場合に有効な手
段となる。
It is disclosed in the above-mentioned prior art that the third surface having only the transmitting action is designed to be rotationally symmetric. However, the surface having only the transmitting action has a narrow effective area, and the optical system has a small area. It is difficult to estimate whether or not the whole is formed in the correct shape based on only this surface. Since the first surface having the reflection and transmission functions closer to the pupil has a large effective area, it is convenient to use it as a reference when estimating whether or not the entire optical system is distorted. In particular, when performing plastic injection molding (molding), it is important to reduce the change in the shape of the entire optical system.
Estimating the shape of the entire optical system by measuring a surface having a large effective surface (a region where a light flux transmits or reflects at least one of the entire region of the surface) is an effective means for mass production.

【0005】本発明は従来技術のこのような問題点に鑑
みてなされたものであり、その目的は、瞳に近い側の透
過作用と反射作用を有する第1面の有効域の広い面を回
転対称な球面又は非球面で構成した偏心プリズム光学系
を提供することである。
The present invention has been made in view of such problems of the prior art, and an object of the present invention is to rotate a surface having a wide effective area of a first surface having a transmitting action and a reflecting action near a pupil. An object of the present invention is to provide a decentered prism optical system constituted by a symmetric spherical or aspherical surface.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する本発
明の偏心プリズム光学系は、少なくとも3つの面が互い
に偏心して配置され、その3つの面の間が屈折率が1.
3以上の透明媒質で埋められた構成の偏心プリズム光学
系において、前記光学系は少なくとも2回の内部反射を
行うように、前記3つの面の中の少なくとも2つの面を
反射作用を有する面で形成すると共に、前記の2つの反
射作用を有する面によって反射された光線を前記光学系
内部で折り返すような位置に前記の2つの反射作用を有
する面を配置し、前記反射作用を有する2つの面の中、
1つの面の形状は面内及び面外共に回転対称軸を有さな
い回転非対称面にて形成され、他の1つの面の少なくと
も有効面(面の全領域中で光束が透過及び/又は反射を
する領域)の形状が有効面内に回転対称軸を有する回転
対称非球面にて構成され、前記対称非球面が、前記光学
系を通過する光束を入射若しくは射出させる透過作用と
前記光学系内部で前記光束を折り曲げる反射作用とを併
せ持つ第1面として形成され、前記回転非対称面が前記
第1面と対向配置された第2面として形成され、さら
に、前記光学系を通過する光束を射出若しくは入射させ
る透過作用を有する第3面が、前記第1面と前記第2面
との対向方向に対して略垂直方向の位置に配置され、か
つ、前記第1面が前記第2面の方向に凸面を向けた形状
に構成され、以下の条件を満足することを特徴とするも
のである。 5°<α<30° ・・・(0−1) ただし、αは、前記第1面の回転対称非球面の回転中心
軸が、前記光学系の瞳の中心を通り像面中心に到達する
軸上主光線が瞳を射出して前記第1面に交差するまでの
直線と交差する角度(面の傾き角度)である。
The eccentric prism optical system according to the present invention, which achieves the above object, has at least three surfaces decentered from each other, and a refractive index between the three surfaces is 1.0.
In a decentered prism optical system configured to be filled with three or more transparent media, at least two of the three surfaces are reflected by a surface having a reflecting action so that the optical system performs internal reflection at least twice. The two surfaces having the two reflecting functions are arranged at positions where the light rays reflected by the two surfaces having the two reflecting effects are turned back inside the optical system. in,
The shape of one surface is formed by a rotationally asymmetric surface having no axis of rotational symmetry both in-plane and out-of-plane, and at least an effective surface of another surface (light flux is transmitted and / or reflected in the entire area of the surface). Is formed of a rotationally symmetric aspherical surface having a rotationally symmetric axis in an effective plane, and the symmetrical aspherical surface has a transmissive action of allowing a light beam passing through the optical system to enter or exit, and the inside of the optical system. Is formed as a first surface having both a reflection function of bending the light beam and the rotationally asymmetric surface is formed as a second surface arranged opposite to the first surface, and further emits or transmits a light beam passing through the optical system. A third surface having a transmissive function to be incident is disposed at a position substantially perpendicular to a direction in which the first surface and the second surface face each other, and the first surface is oriented in the direction of the second surface. It is configured in a shape with a convex surface, and the following It is characterized in that to satisfy the matter. 5 ° <α <30 ° (0-1) where α is the rotation center axis of the rotationally symmetric aspheric surface of the first surface that reaches the image plane center through the center of the pupil of the optical system. This is the angle at which the on-axis principal ray intersects with the straight line from the exit of the pupil to the intersection with the first surface (the inclination angle of the surface).

【0007】本発明のもう1つの偏心プリズム光学系
は、少なくとも3つの面が互いに偏心して配置され、そ
の3つの面の間が屈折率が1.3以上の透明媒質で埋め
られた構成の偏心プリズム光学系において、前記光学系
は少なくとも2回の内部反射を行うように、前記3つの
面の中の少なくとも2つの面を反射作用を有する面で形
成すると共に、前記の2つの反射作用を有する面によっ
て反射された光線を前記光学系内部で折り返すような位
置に前記の2つの反射作用を有する面を配置し、前記反
射作用を有する2つの面の中、1つの面の形状は面内及
び面外共に回転対称軸を有さない回転非対称面にて形成
され、他の1つの面の少なくとも有効面(面の全領域中
で光束が透過及び/又は反射をする領域)の形状が有効
面内に回転対称軸を有する回転対称球面にて構成され、
前記対称球面が、前記光学系を通過する光束を入射若し
くは射出させる透過作用と前記光学系内部で前記光束を
折り曲げる反射作用とを併せ持つ第1面として形成さ
れ、前記回転非対称面が前記第1面と対向配置された第
2面として形成され、さらに、前記光学系を通過する光
束を射出若しくは入射させる透過作用を有する第3面
が、前記第1面と前記第2面との対向方向に対して略垂
直方向の位置に配置され、かつ、前記第1面が前記第2
面の方向に凸面を向けた形状に構成され、以下の条件を
満足することを特徴とするものである。 5°<α<30° ・・・(0−1) ただし、αは、前記光学系の瞳の中心を通り像面中心に
到達する軸上主光線が前記第1面により反射される点を
通る前記対称球面の回転中心軸が、前記光学系の瞳の中
心を通り像面中心に到達する軸上主光線が瞳を射出して
前記第1面に交差するまでの直線と交差する角度(面の
傾き角度)である。
Another eccentric prism optical system according to the present invention has an eccentric structure in which at least three surfaces are arranged eccentric to each other, and a space between the three surfaces is filled with a transparent medium having a refractive index of 1.3 or more. In the prism optical system, the optical system forms at least two of the three surfaces by a surface having a reflective function so as to perform at least two internal reflections, and has the two reflective functions. The two surfaces having the reflecting action are arranged at positions where the light reflected by the surface is turned back inside the optical system. Among the two surfaces having the reflecting action, the shape of one face is in-plane and It is formed of a rotationally asymmetric surface having no rotationally symmetric axis both out of the plane, and the shape of at least an effective surface of another surface (a region through which light flux is transmitted and / or reflected in the entire surface) is an effective surface. Within the axis of rotational symmetry It is composed of rotationally symmetric spherical surface,
The symmetric spherical surface is formed as a first surface having both a transmitting function of causing a light beam passing through the optical system to enter or exit and a reflecting function of bending the light beam inside the optical system, and the rotationally asymmetric surface is the first surface. And a third surface having a transmissive action of emitting or entering a light beam passing through the optical system with respect to a direction in which the first surface and the second surface face each other. In a substantially vertical position, and the first surface is the second surface.
It is configured in a shape with a convex surface facing the direction of the surface, and satisfies the following conditions. 5 ° <α <30 ° (0-1) where α is a point at which the axial principal ray reaching the center of the image plane through the center of the pupil of the optical system is reflected by the first surface. The angle at which the central axis of rotation of the passing symmetric sphere intersects with the straight line from the center of the pupil of the optical system to the axial principal ray reaching the center of the image plane exiting the pupil and intersecting the first surface ( Angle of inclination of the surface).

【0008】これらの偏心プリズム光学系において、第
1面が有効面内にてその透過作用と反射作用とが少なく
とも一部の領域で重なり合うように形成されていると共
に、少なくとも第1面の有効面内の透過作用と反射作用
との重なり合う領域での反射作用が全反射作用によるよ
うに構成することが望ましい。
In these decentered prism optical systems, the first surface is formed so that the transmission function and the reflection function overlap in at least a part of the effective surface, and at least the effective surface of the first surface. It is desirable that the reflection action in the area where the transmission action and the reflection action overlap in the inside is based on the total reflection action.

【0009】以下に、本発明において、上記のような構
成をとる理由と作用について説明する。まず、最初に、
本発明の偏心プリズム光学系の原理を説明する。その説
明に際し、内容をより理解しやすいものとするために、
本発明の中で構成の最も単純な3面構成プリズムの光路
図を図1に例示し、これを用いて説明する。図1の場合
は、偏心プリズム光学系7の光路上に配置された面は、
3つの面3、4、5からなっている。この光学系7は、
不図示の物体から発した光線束がまず光学系7の瞳1を
通過し、透過作用と反射作用を有する光学系7の第1面
3に入射する。そして、その入射光線は、瞳1から遠い
側の反射作用のみを有する反射面である第2面4で瞳1
に近づく方向に反射され、瞳1の近い方に配置されてい
る透過作用と反射作用を有する第1面3で今度は瞳1か
ら遠ざかる方向に再び反射される。そして、その反射光
線は、第1面3と第2面4の対向方向(図のZ軸方向)
に大して略垂直方向(図のY軸方向)の位置に配置され
透過作用のみを有する第3面5を透過して像面6に到達
し、結像する。なお、符号2は光軸である。このよう
に、本発明における光学系の面番号は、原則として瞳1
から像面6に到る順番で追跡を行っている。
In the following, the reason and operation of the above-described configuration in the present invention will be described. First of all,
The principle of the decentered prism optical system of the present invention will be described. In explaining, to make the content more understandable,
The optical path diagram of the simplest three-sided prism in the present invention is illustrated in FIG. 1 and will be described with reference to FIG. In the case of FIG. 1, the surface arranged on the optical path of the decentered prism optical system 7 is:
It consists of three faces 3, 4, 5. This optical system 7
A light beam emitted from an object (not shown) first passes through the pupil 1 of the optical system 7 and enters the first surface 3 of the optical system 7 having a transmitting action and a reflecting action. Then, the incident light is reflected on the second surface 4, which is a reflection surface having only a reflection action on the side far from the pupil 1, by the pupil 1.
Is reflected again in the direction away from the pupil 1 this time by the first surface 3 having a transmitting action and a reflecting action arranged closer to the pupil 1. Then, the reflected light is directed in the direction in which the first surface 3 and the second surface 4 face each other (the Z-axis direction in the figure).
The light passes through the third surface 5 which is arranged at a position substantially in the vertical direction (Y-axis direction in the drawing) and has only a transmitting action, reaches the image plane 6, and forms an image. Note that reference numeral 2 is an optical axis. Thus, the surface number of the optical system in the present invention is, in principle, the pupil 1
The tracking is performed in the order from to the image plane 6.

【0010】ただし、上記図1は例示であり、本発明の
偏心プリズム光学系7は、図2に示すように光学面が4
面あるものや、反射回数が2回より多いものであっても
よい。図2(a)は、第1面3、第2面4、第3面5に
加えて第4面8の面が4つある偏心プリズム光学系7で
あり、反射作用を有する第4面8は回転対称球面や回転
対称非球面でもよいが、望ましくはアナモルフィック面
や対称面を1つのみ有する回転非対称非球面で構成す
る。また、図2(b)は、第1面3と第3面5とが同一
面で兼用されている例である。
However, FIG. 1 is an example, and the decentered prism optical system 7 of the present invention has four optical surfaces as shown in FIG.
It may have a surface, or may have more than two reflections. FIG. 2A shows an eccentric prism optical system 7 having four surfaces of a fourth surface 8 in addition to the first surface 3, the second surface 4, and the third surface 5, and the fourth surface 8 having a reflecting action. May be a rotationally symmetric spherical surface or a rotationally symmetric aspherical surface, but is preferably formed of a rotationally asymmetrical aspherical surface having only one anamorphic surface or one symmetrical surface. FIG. 2B is an example in which the first surface 3 and the third surface 5 are shared by the same surface.

【0011】さて、このような偏心プリズム光学系を構
成する少なくとも3つの面の中、瞳側に配置された透過
作用と反射作用を有する第1面を回転対称な面で構成
し、瞳から遠い反射作用のみを有する第2面を回転非対
称な面で構成することが好ましい。
Now, of at least three surfaces constituting such an eccentric prism optical system, a first surface having a transmitting action and a reflecting action arranged on the pupil side is constituted by a rotationally symmetric face, and is far from the pupil. It is preferable that the second surface having only the reflection function is constituted by a rotationally asymmetric surface.

【0012】これは、物体中心を射出して瞳中心を通過
し、像面中心に到達する光線を軸上主光線とするとき、
透過と反射作用を有する第1面の軸上主光線が反射する
点は、反射作用のみを有する第2面で軸上主光線が反射
する点より屈折力(パワー)が弱いためである。このた
め、基本的に第1面で偏心により発生する偏心収差が少
なく、この面を回転対称面で構成しても偏心収差を他の
面で補正することが可能なためである。
This is because, when a light ray that exits the center of the object, passes through the center of the pupil, and reaches the center of the image plane is defined as an axial principal ray,
The point at which the axial principal ray of the first surface having the transmitting and reflecting actions is reflected is because the refractive power is lower than the point at which the axial principal ray is reflected at the second face having only the reflecting action. For this reason, eccentric aberration generated by eccentricity on the first surface is basically small, and even if this surface is configured by a rotationally symmetric surface, eccentric aberration can be corrected by another surface.

【0013】さて、第1面3は回転対称球面又は回転対
称非球面で構成できるが、回転対称非球面で構成する場
合、図1に示すように、その回転対称非球面の中心(面
頂)10を通る回転中心軸12と光軸2とが交差する角
度をαしたときに、以下の条件(0−1)を満足するこ
とが、偏心収差と色収差とをバランス良く補正する上で
望ましい。
The first surface 3 can be composed of a rotationally symmetric spherical surface or a rotationally symmetric aspheric surface. When the first surface 3 is composed of a rotationally symmetric aspheric surface, as shown in FIG. It is desirable that the following condition (0-1) be satisfied when the angle at which the optical axis 2 intersects with the rotation center axis 12 passing through 10 is satisfied in a well-balanced manner between eccentric aberration and chromatic aberration.

【0014】 5°<α<30° ・・・(0−1) ここで、αが下限値の5°を越えると、第1面3の光軸
2に対する傾きが小さくなりすぎるため、第2面4で発
生する偏心収差を補正しきれなくなり、収差性能上第1
面3を回転非対称面にて構成しなければならなくなって
しまう。反対に、αが上限値の30°を越えると、第1
面3の光軸2に対する傾きが大きくなりすぎるため、第
1面3を透過(入射又は射出)する光束に色分散が大き
く発生してしまい、光学性能を劣化させてしまう。
5 ° <α <30 ° (0-1) Here, when α exceeds the lower limit of 5 °, the inclination of the first surface 3 with respect to the optical axis 2 becomes too small. The eccentric aberration generated on the surface 4 cannot be corrected completely, and the first
The surface 3 must be constituted by a rotationally asymmetric surface. Conversely, when α exceeds the upper limit of 30 °, the first
Since the inclination of the surface 3 with respect to the optical axis 2 becomes too large, a large chromatic dispersion occurs in a light beam transmitted (incident or emitted) through the first surface 3, thereby deteriorating the optical performance.

【0015】なお、αの算出において、回転対称面の回
転中心軸12は、中心10のY−Z断面(図1の断面。
座標系の定義は後記する。)内での接線11からの法線
によって求めてもよい。なお、第1面3が回転対称球面
にて構成されている場合、中心10は第1面3に無数に
存在することとなるため、その場合のαは、光軸2上を
進む軸上主光線が第1面3で内部反射する点13を中心
10と定義し、この点13を通る回転中心軸12と光軸
2とが交差する角度をαとする(後記の実施例における
αは条件(0−1)のαと同じである。)。
In the calculation of α, the rotation center axis 12 of the rotationally symmetric surface is taken along the YZ section of the center 10 (the section in FIG. 1).
The definition of the coordinate system will be described later. ) May be obtained by the normal from the tangent 11 in the parentheses. When the first surface 3 is constituted by a rotationally symmetric spherical surface, the center 10 exists innumerably on the first surface 3, and in this case, α is an axial main axis traveling on the optical axis 2. The point 13 at which the light ray is internally reflected by the first surface 3 is defined as the center 10, and the angle at which the rotation center axis 12 and the optical axis 2 passing through the point 13 intersect is α (α in the following embodiment is a condition (It is the same as α in (0-1).)

【0016】さらに、上記αは、より良い光学性能を持
った偏心プリズム光学系を形成する上で、以下の条件
(0−2)を満足することが望ましい。
Further, the above α is desirably satisfying the following condition (0-2) in order to form a decentered prism optical system having better optical performance.

【0017】 5°<α<25° ・・・(0−2) さらに好ましくは、以下の条件(0−3)を満足するこ
とである。 10°<α<20° ・・・(0−3) 次に、以下の説明において用いる座標系について説明す
る。
5 ° <α <25 ° (0-2) More preferably, the following condition (0-3) is satisfied. 10 ° <α <20 ° (0-3) Next, a coordinate system used in the following description will be described.

【0018】図1に示すように、偏心プリズム光学系7
の瞳1の中心を通り、像面6(接眼光学系として用いる
場合は、画像表示素子)中心に到達する軸上主光線が瞳
1を射出し偏心プリズム光学系7の第1面3に交差する
までの直線(光軸2と一致。接眼光学系として用いる場
合は、観察者視軸となる。)によって定義される軸をZ
軸とし、このZ軸と直交しかつ偏心プリズム光学系7を
構成する各面の偏心面内の軸をY軸と定義し、Z軸と直
交しかつY軸と直交する軸をX軸とする。また、瞳1の
中心をこの座標系の原点とする。そして、軸上主光線が
が物点から像面に到る方向をZ軸の正方向、像面6が位
置する方向をY軸の正方向、Y軸とZ軸と右手系を構成
するX軸の方向をX軸の正方向とする。
As shown in FIG. 1, an eccentric prism optical system 7
An axial principal ray passing through the center of the pupil 1 and reaching the center of the image plane 6 (image display element when used as an eyepiece optical system) exits the pupil 1 and intersects the first surface 3 of the eccentric prism optical system 7 (In the case of using as an eyepiece optical system, it becomes an observer's visual axis).
An axis perpendicular to the Z axis and within an eccentric plane of each surface constituting the eccentric prism optical system 7 is defined as a Y axis, and an axis orthogonal to the Z axis and orthogonal to the Y axis is defined as an X axis. . The center of the pupil 1 is set as the origin of this coordinate system. The direction in which the on-axis principal ray reaches the image plane from the object point is the positive direction of the Z-axis, the direction in which the image plane 6 is located is the positive direction of the Y-axis, and the Y-axis and the Z-axis constitute a right-handed X The direction of the axis is defined as the positive direction of the X axis.

【0019】さて、一般に、偏心プリズム光学系は研磨
により製作することは難しく、研削により1面ずつ形成
するか、プラスチックの射出成形又はガラスモールド成
形により作製することになる。このとき、偏心プリズム
光学系の面が所定の形状に作製されているかどうかを確
認する必要がある。このような3次元の回転非対称な形
状の測定には、一般的に3次元座標測定器が使用される
が、測定時間がかかり、現実的ではない。
In general, it is difficult to manufacture the eccentric prism optical system by polishing, and it is necessary to form one surface at a time by grinding, or to manufacture by plastic injection molding or glass molding. At this time, it is necessary to confirm whether the surface of the decentered prism optical system is formed in a predetermined shape. A three-dimensional coordinate measuring device is generally used for measuring such a three-dimensional rotationally asymmetric shape, but it takes a long measurement time and is not practical.

【0020】本発明では、偏心プリズム光学系を構成す
る少なくとも3つの面の中、少なくとも1面を回転対称
面で構成することが重要である。
In the present invention, it is important that at least one of the at least three surfaces constituting the decentered prism optical system be a rotationally symmetric surface.

【0021】さらに好ましくは、最も有効面積が広く、
比較的収差の劣化が大きい瞳に近い側の透過作用と内部
反射作用を有する第1面3を回転対称面として構成する
ことにより、面形状の出来上がり具合を簡単に短時間で
評価することが可能な偏心プリズム光学系を構成するこ
とに成功したものである。
More preferably, the effective area is widest,
By configuring the first surface 3 having a transmission function and an internal reflection function on the side close to the pupil where the aberration is relatively deteriorated as a rotationally symmetric surface, it is possible to easily evaluate the finished state of the surface shape in a short time. A successful decentered prism optical system has been successfully constructed.

【0022】本発明の偏心プリズム光学系を結像光学系
として説明する。なお、当然、物点と像点を逆に配置し
て(図1の像面6に画像表示素子を配置し、瞳1に観察
者の瞳孔を位置させて)、接眼光学系として利用できる
ことはいうまでもない。もちろん、瞳1側に画像表示素
子を配置し、像面6側からこの画像表示素子の像を観察
する構成にもできる。
The decentered prism optical system of the present invention will be described as an image forming optical system. It should be noted that, naturally, the object point and the image point are arranged in reverse (the image display element is arranged on the image plane 6 in FIG. 1 and the pupil of the observer is located on the pupil 1), and can be used as the eyepiece optical system. Needless to say. Of course, an image display element may be arranged on the pupil 1 side, and an image of this image display element may be observed from the image plane 6 side.

【0023】上述の定義に従ってX軸、Y軸、Z軸が決
まったとき、瞳位置中心を射出し、像面に入射する主光
線の中、X方向画角ゼロ、X方向最大画角、Y正方向最
大画角、Y方向画角ゼロ、Y負方向最大画角のX方向、
Y方向の組み合わせにより、次の表−1のように、6つ
の主光線〜が定まる。
When the X-axis, Y-axis, and Z-axis are determined according to the above definitions, the center of the pupil position is emitted, and among the principal rays incident on the image plane, the angle of view in the X direction is zero, the maximum angle of view in the X direction, The maximum angle of view in the positive direction, the angle of view in the Y direction is zero, the maximum angle of view in the Y negative direction is the X direction,
Six principal rays are determined by the combination in the Y direction as shown in Table 1 below.

【0024】 [0024]

【0025】すなわち、上記の表−1中に記載したよう
に、画面中心の軸上主光線をとし、X方向画角ゼロ、
Y正方向最大画角を通る主光線を、X方向画角ゼロ、
Y負方向最大画角を通る主光線を、X方向最大画角、
Y正方向最大画角を通る主光線を、X方向最大画角、
Y方向画角ゼロを通る主光線を、X方向最大画角、Y
負方向最大画角を通る主光線をとする。これらの主光
線〜が各面と交差する領域を有効領域と定義し、そ
の有効領域で各面の形状を定義する式(Z軸を面の軸と
して表した式、あるいは、その面を偏心がないとして、
Z=f(X,Y)の形式で表した式)の面の偏心方向に
当たるY軸と平行な方向の前記各主光線〜が面に当
たる位置でのその面の法線を含む面内の曲率をCy1〜
Cy6とする。また、Y軸と直交するX軸方向の面の法
線を含む面内の曲率をCx1〜Cx6とする。
That is, as described in Table 1 above, the axial principal ray at the center of the screen is defined as,
The principal ray passing through the Y positive direction maximum angle of view is defined as the X direction angle of view zero,
The principal ray passing through the Y negative direction maximum angle of view is converted into the X direction maximum angle of view,
The principal ray passing through the Y positive direction maximum angle of view is converted into the X direction maximum angle of view,
The principal ray passing through the zero angle of view in the Y direction is defined as the maximum angle of view in the X direction, Y
Let the principal ray pass through the maximum angle of view in the negative direction. An area in which these principal rays intersect each surface is defined as an effective area, and an expression defining the shape of each surface in the effective area (an expression expressing the Z axis as an axis of the surface, or an eccentricity of the surface Not as
Z = f (X, Y)) In-plane curvature including the normal of the surface at a position where each of the principal rays 〜 hits the surface in a direction parallel to the Y-axis corresponding to the eccentric direction of the surface. To Cy1
Let it be Cy6. In addition, curvatures in a plane including a normal to a plane in the X-axis direction orthogonal to the Y-axis are defined as Cx1 to Cx6.

【0026】まず、本発明の光学系全体に対する反射作
用のみを有する第2面の焦点距離に関する条件式を示
す。本発明の反射作用のみを有する第2面は偏心してお
り、その面の形状が面内及び面外共に回転対称軸を有し
ない回転非対称面形状であることが特徴であるので、近
軸計算から焦点距離を導くことは意味がないので、焦点
距離を次のように定義する。
First, a conditional expression relating to the focal length of the second surface having only a reflecting effect on the entire optical system of the present invention will be described. The second surface having only the reflection function of the present invention is eccentric, and its shape is a rotationally asymmetric surface shape having no rotationally symmetric axis both in-plane and out-of-plane. Since it is meaningless to derive the focal length, the focal length is defined as:

【0027】物点中心から光学系の入射瞳中心を通る軸
上主光線と平行に瞳中心からX軸方向に微小量H(m
m)の点を通り、その軸上主光線と平行に光学系に入射
する光線を光線追跡したときの射出光線のNA(軸上主
光線となす角のsinの値)を上記Hで割った値を光学
系全体のX方向の焦点距離Fx(mm)と定義する。ま
た、瞳中心からY方向にH(mm)の点を通り、その軸
上主光線と平行に光学系に入射する光線を光線追跡した
ときの射出光線NA(軸上主光線となす角のsinの
値)を上記Hで割った値を光学系全体のY方向の焦点距
離Fy(mm)と定義する。
A minute amount H (m) in the X-axis direction from the center of the pupil in parallel with the axial principal ray passing from the center of the object point to the center of the entrance pupil of the optical system.
m), the NA of the emitted light (the value of the sin of the angle formed with the on-axis principal ray) when the ray incident on the optical system in parallel with the on-axis principal ray is traced by the above H. The value is defined as the focal length Fx (mm) in the X direction of the entire optical system. Also, the exit ray NA (the sin of the angle formed with the on-axis principal ray) when the ray passing through the point of H (mm) in the Y direction from the pupil center and entering the optical system in parallel with the on-axis principal ray is traced. Is defined as the focal length Fy (mm) of the entire optical system in the Y direction.

【0028】Fx、Fyを用いて、Fx/FyをFAと
すると 0.7<FA<1.3 ・・・(A−1) なる条件式を満足することが重要となってくる。
Assuming that Fx / Fy is FA using Fx and Fy, it is important to satisfy the following conditional expression: 0.7 <FA <1.3 (A-1).

【0029】本条件は像の縦横比に関する条件であり、
その下限の0.7を越えると、X方向の像が小さくな
り、正方形を結像した場合に縦長の画像になり、上限の
1.3を越えると、横長の像になってしまう。FAの値
は当然1が最も好ましいが、像歪みを補正するために
は、面の高次係数との関係で、1からずらした上記条件
式の範囲でバランス良く補正することが重要になる。
This condition relates to the aspect ratio of the image.
If the lower limit of 0.7 is exceeded, the image in the X direction will be small, and if a square is formed, the image will be vertically long. If the upper limit of 1.3 is exceeded, the image will be horizontally long. Naturally, the FA value is most preferably 1. However, in order to correct the image distortion, it is important to perform the correction in a well-balanced manner within the range of the conditional expression shifted from 1 in relation to the higher order coefficient of the surface.

【0030】さらに好ましくは、 0.8<FA<1.2 ・・・(A−2) なる条件を満足することが重要である。More preferably, it is important to satisfy the following condition: 0.8 <FA <1.2 (A-2)

【0031】次に、物点中心を出て瞳中心を通る軸上主
光線が反射作用のみを有する第2面に当たる位置での面
のX方向、Y方向の屈折力(パワー)Pxn、Pyn
と、光学系全体のX方向、Y方向の焦点距離Fx、Fy
の逆数である屈折力(パワー)Px、Pyとの関係は、
Pxn/PxをPxB、Pyn/PyをPyCとすると
き、 0.8<|PxB|<1.3 ・・・(B−1) 0.8<|PyC|<1.3 ・・・(C−1) なる条件のどちらかを満足することが好ましい。
Next, the refracting powers (powers) Pxn and Pyn in the X and Y directions of the surface at the position where the axial chief ray passing through the center of the pupil and passing through the center of the pupil hits the second surface having only the reflecting action.
And the focal lengths Fx and Fy in the X and Y directions of the entire optical system.
The relationship with the refraction power (power) Px, Py, which is the reciprocal of
When Pxn / Px is PxB and Pyn / Py is PyC, 0.8 <| PxB | <1.3 (B-1) 0.8 <| PyC | <1.3 (C -1) It is preferable to satisfy one of the following conditions.

【0032】これらの条件の下限の0.8を越えると、
X方向、Y方向共に反射作用のみを有する第2面の反射
面が有するパワーが光学系全体のパワーに比べて小さく
なりすぎ、他の面にパワーを負担させることになり、収
差補正上好ましくない。
When the lower limit of 0.8 of these conditions is exceeded,
The power of the second reflecting surface, which has only a reflecting action in both the X and Y directions, is too small compared to the power of the entire optical system, causing the other surfaces to bear the power, which is not preferable for aberration correction. .

【0033】また、上限の1.3を越えると、その第2
面の反射面のパワーが強くなりすぎ、この第2面で発生
する像歪みと像面湾曲収差をバランス良く補正すること
が不可能になる。さらに好ましくは、上記条件式(B−
1)と(C−1)を両方満足することが好ましい。
If the upper limit of 1.3 is exceeded, the second
The power of the reflecting surface of the surface becomes too strong, and it becomes impossible to correct the image distortion and the field curvature occurring on the second surface in a well-balanced manner. More preferably, conditional expression (B-
It is preferable that both 1) and (C-1) be satisfied.

【0034】次に、反射作用のみを有する第2面に当た
る位置での面曲率についての条件を説明する。この条件
は第2面で発生する非点収差を少なくするために必要と
なる条件であり、軸上主光線が当たる位置での第2面の
法線を含むX方向の曲率Cx2とY方向の曲率Cy2の
比Cx2/Cy2をCxyDとするとき、 0.8<CxyD<1.2 ・・・(D−1) なる条件を満足することが重要となる。
Next, the condition of the surface curvature at the position corresponding to the second surface having only the reflecting action will be described. This condition is a condition necessary for reducing astigmatism generated on the second surface. The X-direction curvature Cx2 including the normal of the second surface and the Y-direction curvature Cx2 at the position where the axial principal ray falls. When the ratio Cx2 / Cy2 of the curvature Cy2 is CxyD, it is important to satisfy the following condition: 0.8 <CxyD <1.2 (D-1).

【0035】反射作用のみを有する第2面は偏心して配
置された面であり、この面を回転対称な面で構成する
と、像歪みを初め、非点収差、コマ収差等が大きく発生
するため、収差を良好に補正することは不可能である。
そのため、この反射作用のみを有する第2面を回転非対
称面で構成することが重要になってくるが、回転対称な
面で構成すると、この面で発生する非点収差の発生が大
きくなり、他の面で補正することが不可能になる。そこ
で、これらを補正するためには、対称面を1面しか持た
ない面で反射作用のみを有する第2面を構成し、なおか
つ、上記条件式(D−1)を満足することにより、初め
て各収差が良好に補正され、しかも、軸上においても非
点収差のない像を得ることあるいは観察像を観察するこ
とが可能となる。下限の0.8と上限の1.2について
は、非点収差が大きく発生しないための限界である。
The second surface having only the reflecting function is a surface arranged eccentrically. If this surface is constituted by a rotationally symmetric surface, large astigmatism, coma, etc., including image distortion, occur. It is impossible to satisfactorily correct aberrations.
For this reason, it is important to form the second surface having only the reflection function as a rotationally asymmetric surface. However, if the second surface has a rotationally symmetric surface, astigmatism occurring on this surface increases, and It becomes impossible to correct in terms of Therefore, in order to correct them, a second surface having only a reflection function is constituted by a surface having only one symmetric surface, and the above condition (D-1) is satisfied. It is possible to obtain an image free of astigmatism and to observe an observation image even on the axis, in which aberration is well corrected. The lower limit of 0.8 and the upper limit of 1.2 are limits at which astigmatism does not significantly occur.

【0036】さらに好ましくは、 0.95<CxyD<1.1 ・・・(D−2) なる条件を満足することが重要である。More preferably, it is important to satisfy the following condition: 0.95 <CxyD <1.1 (D-2)

【0037】さらに好ましくは、 1<CxyD<1.05 ・・・(D−3) なる条件を満足することが重要である。More preferably, it is important to satisfy the following condition: 1 <CxyD <1.05 (D-3)

【0038】次に、反射作用のみを有する第2面は、各
像位置毎に異なる収差が発生するので、反射面の形状を
変化させて各収差の補正を行わなければならなく、その
量は反射面の場所により微妙に異なり、次の述べる条件
式を満足させることが重要になる。
Next, since the second surface having only the reflecting action causes different aberrations at each image position, it is necessary to correct the aberrations by changing the shape of the reflecting surface. It depends slightly on the location of the reflecting surface, and it is important to satisfy the following conditional expression.

【0039】軸上主光線が反射作用のみを有する第2
面で反射するときのX方向の曲率をCx2とし、画角の
最大主光線、〜が各面と当たる有効領域のX方向
の曲率Cxn(nは1、3〜6)との差Cxn−Cx2
を光学系全体のX方向のパワーPxで割った値(Cxn
−Cx2)/Pxの中、最大のものをCxMaxE、最
小のものをCxMinE、同様にY方向の曲率Cyn−
Cy2を光学系のY方向のパワーPyで割った値(Cy
n−Cy2)/Pyの中、最大のものをCyMaxF、
最小のものをCyMinFとすると、 −0.05<CxMinE (1/mm) ・・・(E−1) CxMaxE<0.05 (1/mm) ・・・(E−1') −0.1<CyMinF (1/mm) ・・・(F−1) CyMaxF<0.1 (1/mm) ・・・(F−1') なる条件式の(E−1)、(E−1’)又は(F−
1)、(F−1’)のどちらか一方を満足することが収
差補正上好ましい。
The second in which the axial chief ray has only a reflecting action
The curvature in the X direction at the time of reflection on the surface is Cx2, and the difference between the maximum principal ray of the angle of view, the curvature Cxn in the X direction (n is 1, 3 to 6) of the effective area where each surface 〜 hits each surface is Cxn-Cx2.
Divided by the power Px in the X direction of the entire optical system (Cxn
Of Cx2) / Px, the largest one is CxMaxE, the smallest one is CxMinE, and similarly the curvature Cyn in the Y direction.
The value obtained by dividing Cy2 by the power Py in the Y direction of the optical system (Cy
Among n-Cy2) / Py, the largest one is CyMaxF,
If the smallest one is CyMinF, −0.05 <CxMinE (1 / mm) (E-1) CxMaxE <0.05 (1 / mm) (E-1 ′) −0.1 <CyMinF (1 / mm) (F-1) CyMaxF <0.1 (1 / mm) (F-1 ′) Conditional expressions (E-1) and (E-1 ′) Or (F-
It is preferable to satisfy either one of (1) and (F-1 ′) for aberration correction.

【0040】上記条件式(E−1)、(F−1)の下
限、(E−1’)、(F−1’)の上限を越えると、有
効領域内の面の曲率が大きく異なりすぎ、光学系の中で
最も強い屈折力を有する第2面の有効域全体の曲率が大
きく変化しすぎてしまい、画角全体で広く平坦な像を得
ることあるいは観察像を観察することができなくなって
しまう。
If the lower limits of the conditional expressions (E-1) and (F-1) and the upper limits of (E-1 ') and (F-1') are exceeded, the curvatures of the surfaces in the effective area are greatly different. However, the curvature of the entire effective area of the second surface having the strongest refracting power in the optical system is greatly changed, and it is impossible to obtain a wide flat image over the entire angle of view or to observe the observation image. Would.

【0041】さらに好ましくは、 −0.03<CxMinE (1/mm) ・・・(E−2) CxMaxE<0.015 (1/mm) ・・・(E−2') −0.08<CyMinF (1/mm) ・・・(F−2) CyMaxF<0.07 (1/mm) ・・・(F−2') なる条件式を全て満足することが、画角が30°を越え
る場合に重要になってくる。さらに好ましくは、上記条
件式の両方を同時に満足することが好ましい。
More preferably, -0.03 <CxMinE (1 / mm) (E-2) CxMaxE <0.015 (1 / mm) (E-2 ') -0.08 < CyMinF (1 / mm) (F-2) CyMaxF <0.07 (1 / mm) (F-2 ′) Satisfying all of the following conditional expressions requires that the angle of view exceeds 30 °. When it comes to importance. More preferably, it is preferable to satisfy both of the above conditional expressions at the same time.

【0042】次に、第2面のY方向の曲率の有効領域の
上と下の差、Cy1−Cy3をPyで割ったものをCy
Gとするとき、 −0.05<CyG<0.5 ・・・(G−1) なる条件を満足することが重要である。この条件は、像
面の上と下の上下方向の像歪みを良好に補正するために
必要となる条件で、下限の−0.05を越えると、画面
下の倍率が小さくなってしまい、上限の0.5を越える
と、画面上のY(上下)方向の倍率が画面の他の部分に
比べて小さくなってしまい、像が歪んでしまう。特に、
本発明のように反射作用と透過作用を有する第1面を回
転対称面で構成し、製作性を向上させた偏心プリズム光
学系においては、この像歪みを他の面で補正するには、
最も像に近い透過作用のみを有する第3面で補正しない
と、基本的上記像歪みを補正することができない。しか
し、その透過作用のみを有する第3面は、像面湾曲を主
に補正するために、反射作用のみを有する第2面が本条
件を満足しないと、光学系全体として像面湾曲と像歪み
を同時に補正することができなくなってしまう。
Next, the difference between the upper and lower effective areas of the curvature of the second surface in the Y direction, that is, Cy1-Cy3 divided by Py, is Cy.
When G, it is important to satisfy the following condition: -0.05 <CyG <0.5 (G-1) This condition is a condition necessary for satisfactorily correcting image distortion in the vertical direction above and below the image plane. If the lower limit of -0.05 is exceeded, the magnification below the screen becomes small, and the upper limit of 0 is set. If it exceeds 0.5, the magnification in the Y (up / down) direction on the screen will be smaller than that of other parts of the screen, and the image will be distorted. Especially,
In the decentered prism optical system in which the first surface having the reflection function and the transmission function as the present invention has a rotationally symmetric surface and the manufacturability is improved, in order to correct this image distortion on another surface,
Unless the correction is made on the third surface having only the transmission function closest to the image, the above-described image distortion cannot be corrected basically. However, since the third surface having only the transmission function mainly corrects the field curvature, if the second surface having only the reflection function does not satisfy this condition, the field curvature and the image distortion as a whole of the optical system are caused. Cannot be corrected at the same time.

【0043】さらに好ましくは、 0<CyG<0.2 ・・・(G−2) なる条件を満足することが収差補正上好ましい。More preferably, it is preferable to satisfy the following condition: 0 <CyG <0.2 (G-2) for aberration correction.

【0044】さらに好ましくは、 0<CyG<0.15 ・・・(G−3) なる条件を満足することが収差補正上好ましい。More preferably, it is preferable to satisfy the following condition: 0 <CyG <0.15 (G-3) for aberration correction.

【0045】次に、第2面のX方向の曲率の有効領域の
上と下の差Cx1−Cx3をPxで割ったものをCxH
とするとき、 −0.01<CxH<0.1 ・・・(H−1) なる条件を満足することが重要である。この条件も、像
面の上と下の左右方向の像歪みを良好に補正するために
必要となる条件で、下限の−0.01を越えると、画面
下の倍率が小さくなってしまい、上限0.1を越える
と、画面上のX(左右)方向の倍率が画面の他の部分に
比べて小さくなってしまい、台形に像が歪んでしまう。
Next, the value obtained by dividing the difference Cx1-Cx3 between the upper and lower effective areas of the curvature in the X direction of the second surface by Px to CxH
It is important to satisfy the following condition: -0.01 <CxH <0.1 (H-1) This condition is also a condition necessary for satisfactorily correcting the image distortion in the horizontal direction above and below the image plane. If the lower limit of -0.01 is exceeded, the magnification below the screen becomes small, and the upper limit of 0. If it exceeds 1, the magnification in the X (left / right) direction on the screen becomes smaller than that of other parts of the screen, and the image is distorted into a trapezoid.

【0046】さらに好ましくは、 0<CxH<0.05 ・・・(H−2) なる条件を満足することが収差補正上好ましい。More preferably, it is preferable to satisfy the following condition: 0 <CxH <0.05 (H-2) from the viewpoint of aberration correction.

【0047】さらに好ましくは、 0.01<CxH<0.05 ・・・(H−3) なる条件を満足することが収差補正上好ましい。It is more preferable to satisfy the following condition: 0.01 <CxH <0.05 (H-3) for aberration correction.

【0048】次に、像面に対向して配置される透過作用
のみを有する第3面は下記に述べる条件を満足すること
が重要になる。透過作用をのみを有する第3面を定義す
る座標(Z軸を面の軸とし、その面をZ=f(X,Y)
の形式で表す場合の座標)のY軸正の方向を瞳に近づく
方向に取ると、Y軸正の方向のY方向曲率に比べてY軸
負の方向のY方向曲率が負の方向に大きくなるのが好ま
しい。
Next, it is important that the third surface having only the transmission function, which is disposed to face the image plane, satisfies the following conditions. Coordinates defining a third surface having only a transmissive action (the Z axis is the axis of the surface, and the surface is Z = f (X, Y)
When the positive direction of the Y-axis of the coordinates in the form of () is taken in the direction approaching the pupil, the Y-direction curvature in the negative Y-axis direction is larger in the negative direction than the Y-direction curvature in the Y-axis positive direction. Is preferred.

【0049】さらに、第3面の画角との主光線が第
3面を透過する部分のY方向の曲率をCy1、Cy3と
したとき、Cy1−Cy3をPyで割ったものをCyI
とするとき、 0<CyI<5 ・・・(I−1) なる条件式を満足することが収差補正上好ましい。
When the curvature in the Y direction of the portion where the principal ray with the angle of view of the third surface passes through the third surface is Cy1, Cy3, the value obtained by dividing Cy1-Cy3 by Py is CyI.
In this case, it is preferable from the viewpoint of aberration correction that the following conditional expression is satisfied: 0 <CyI <5 (I-1)

【0050】本発明のように偏心した反射面が光学系の
主なパワーを有する光学系は、偏心による像歪みが発生
するが、この像歪みの補正には、収差に余り大きく影響
をしない面である第3面での補正が効果的である。上記
条件式において、CyIが下限の0を越えると、Y軸が
正のY方向曲率に比べてY軸負の方向のY方向の曲率が
負の方向に大きくならないので、反射作用のみを有する
第2面で発生する画面の上下方向の像歪みをバランスを
とって補正することができなくなる。また、上限の5を
越えると、同様に上下方向の像歪みにおいて良い結果を
得られず、偏心による像歪みの補正がし切れなくなる。
In an optical system in which the decentered reflecting surface has the main power of the optical system as in the present invention, image distortion due to eccentricity occurs. However, correction of this image distortion does not greatly affect aberration. Is effective on the third surface. In the above conditional expression, when CyI exceeds the lower limit of 0, the curvature of the Y axis in the negative direction of the Y axis in the negative direction of the Y axis does not increase in the negative direction as compared with the curvature of the positive Y direction. It becomes impossible to balance and correct image distortion in the vertical direction of the screen generated on two surfaces. On the other hand, when the value exceeds the upper limit of 5, good results cannot be obtained for image distortion in the vertical direction, and image distortion due to eccentricity cannot be completely corrected.

【0051】さらに好ましくは、 0<CyI<2 ・・・(I−2) なる条件を満足するとさらに良い結果を得る。More preferably, the following condition is satisfied: 0 <CyI <2 (I-2)

【0052】次に、透過作用のみを有する第3面を定義
する座標のY軸正の方向を瞳に近づく方向に取ると、Y
軸正の方向のX方向曲率に比べてY軸負の方向のX方向
曲率が負の方向に大きくなるのが好ましい。
Next, when the positive direction of the Y-axis of the coordinates defining the third surface having only the transmissive action is taken in the direction approaching the pupil, Y
Preferably, the X-direction curvature in the negative Y-axis direction is greater in the negative direction than the X-direction curvature in the positive axis direction.

【0053】さらに、第3面の画角との主光線が第
3面を透過する部分のX方向の曲率をCx1、Cx3と
したとき、Cx1−Cx3をPxで割ったものをCxJ
とするとき、 0<CxJ<1 ・・・(J−1) なる条件式を満足することが収差補正上好ましい。
Further, when the curvature in the X direction of the portion where the principal ray with the angle of view of the third surface passes through the third surface is Cx1 and Cx3, the value obtained by dividing Cx1−Cx3 by Px is CxJ.
In this case, it is preferable from the viewpoint of aberration correction that the following conditional expression is satisfied: 0 <CxJ <1 (J-1)

【0054】上記条件式において、CxJが下限の0を
越えると、Y軸が正のX方向曲率に比べてY軸負の方向
のX方向曲率が負の方向に大きくならないので、反射作
用のみを有する第2面で発生する台形の像歪みをバラン
スをとって補正することができなくなる。また、上限の
1を越えると、同様に台形の像歪みにおいて良い結果を
得られず、偏心による像歪みの補正がし切れなくなる。
In the above conditional expression, when CxJ exceeds the lower limit of 0, the curvature of the Y axis in the negative direction of the Y axis does not increase in the negative direction as compared with the curvature of the positive X direction. This makes it impossible to balance and correct trapezoidal image distortion generated on the second surface. If the upper limit of 1 is exceeded, similarly, good results cannot be obtained for trapezoidal image distortion, and it becomes impossible to correct image distortion due to eccentricity.

【0055】さらに好ましくは、 0<CxJ<0.3 ・・・(J−2) なる条件を満足することがさらに良い結果を得る。It is more preferable that the following condition is satisfied: 0 <CxJ <0.3 (J-2)

【0056】さて、以上の条件(0−1)から(J−
2)については、反射作用と透過作用を有する第1面を
回転対称面で構成し、反射作用のみを有する第2面をそ
の面内及び面外共に回転対称軸を有せずしかも対称面を
1つのみ有する面対称自由曲面で構成することが好まし
い。さらに、面対称自由曲面だけでなく、その面内及び
面外共に回転対称軸を有しないアナモルフィック面で構
成した場合にも、すなわち、その面内及び面外共に回転
対称軸を有しない回転非対称面形状にした何れの場合に
も適用できる。
Now, from the above conditions (0-1) to (J-
Regarding 2), the first surface having the reflecting action and the transmitting action is constituted by a rotationally symmetric surface, and the second face having only the reflecting action is defined as having no rotationally symmetric axis both in-plane and out-of-plane. It is preferable to configure a plane symmetric free-form surface having only one. Furthermore, not only a plane-symmetric free-form surface but also an anamorphic surface having no rotational symmetry axis both in-plane and out-of-plane, that is, a rotation having no rotational symmetry axis in-plane and out-of-plane. The present invention can be applied to any case having an asymmetric surface shape.

【0057】[0057]

【発明の実施の形態】以下に、本発明の偏心プリズム光
学系の実施例1〜4について説明する。後述する各実施
例の構成パラメータにおいては、図1に示すように、光
学系7の瞳1の中心を光学系の原点として、光軸2を物
体中心から瞳1の中心(原点)を通る光線で定義し、瞳
1から光軸2に進む方向をZ軸方向、このZ軸に直交し
瞳1中心を通り、光線が光学系7によって折り曲げられ
る面内の方向をY軸方向、Y軸、Z軸に直交し、瞳1中
心を通る方向をX軸方向とし、瞳1から光学系7に向か
う方向をZ軸の正方向、光軸2から像面6の側をY軸の
正方向、そしてこれらY軸、Z軸と右手系を構成する方
向をX軸の正方向とする。なお、光線追跡は光学系7の
瞳1側の物体側から光学系7に入射する方向としてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments 1 to 4 of the decentered prism optical system according to the present invention will be described below. In the configuration parameters of each embodiment to be described later, as shown in FIG. 1, a light ray passing from the center of the pupil 1 of the optical system 7 to the origin of the optical system and passing the optical axis 2 from the center of the object to the center of the pupil 1 (origin). The direction from the pupil 1 to the optical axis 2 is the Z-axis direction, the direction in the plane perpendicular to the Z-axis and passing through the center of the pupil 1 and where the light beam is bent by the optical system 7 is the Y-axis direction, the Y-axis direction, The direction orthogonal to the Z axis and passing through the center of the pupil 1 is the X axis direction, the direction from the pupil 1 toward the optical system 7 is the positive direction of the Z axis, the direction from the optical axis 2 to the image plane 6 is the positive direction of the Y axis, The direction forming the right-handed system with these Y axis and Z axis is defined as the positive direction of the X axis. Note that the ray tracing is a direction in which the light enters the optical system 7 from the object side of the optical system 7 on the pupil 1 side.

【0058】そして、偏心が与えられている面について
は、その面の面頂位置の光学系7の原点である瞳1の中
心からのX軸方向、Y軸方向、Z軸方向の偏心量と、そ
の面の中心軸(自由曲面については、以下の(b)式の
Z軸)のX軸、Y軸、Z軸それぞれを中心とする傾き角
(それぞれα、β、γ)とが与えられている。なお、そ
の場合、αとβの正はそれぞれの軸の正方向に対しての
反時計回りを、γの正はZ軸の正方向に対しての時計回
りを意味する。その他、球面の曲率半径、面間隔、媒質
の屈折率、アッベ数が慣用法に従って与えられている。
For a surface having eccentricity, the eccentricity in the X-axis direction, the Y-axis direction, and the Z-axis direction from the center of the pupil 1 which is the origin of the optical system 7 at the top of the surface is determined. The inclination angles (α, β, and γ) of the central axis of the surface (the Z axis of the following equation (b) for the free-form surface) around the X, Y, and Z axes are given. ing. In this case, the positive α and β mean counterclockwise in the positive direction of each axis, and the positive γ means clockwise in the positive direction of the Z axis. In addition, the radius of curvature of the spherical surface, the spacing between the surfaces, the refractive index of the medium, and the Abbe number are given according to conventional methods.

【0059】なお、アナモルフィック面の形状は以下の
式により定義する。面形状の原点を通り、光学面に垂直
な直線がアナモルフィック面の軸となる。
The shape of the anamorphic surface is defined by the following equation. A straight line passing through the origin of the surface shape and perpendicular to the optical surface is the axis of the anamorphic surface.

【0060】Z=(Cx・X2 +Cy・Y2 )/[1+
{1−(1+Kx)Cx2 ・X2−(1+Ky)Cy2
・Y2 1/2 ]+ΣRn{(1−Pn)X2 +(1+P
n)Y2 (n+1) ここで、例としてn=4(4次項)を考えると、展開し
たとき、以下の式(a)で表すことができる。
Z = (Cx · X 2 + Cy · Y 2 ) / [1+
{1- (1 + Kx) Cx 2 · X 2 − (1 + Ky) Cy 2
・ Y 21/2 ] + {Rn} (1-Pn) X 2 + (1 + P
n) Y 2(n + 1) Here, when n = 4 (fourth-order term) is considered as an example, when expanded, it can be expressed by the following equation (a).

【0061】 Z=(Cx・X2 +Cy・Y2 )/[1+{1−(1+Kx)Cx2 ・X2 −(1+Ky)Cy2 ・Y2 1/2 ] +R1{(1−P1)X2 +(1+P1)Y2 2 +R2{(1−P2)X2 +(1+P2)Y2 3 +R3{(1−P3)X2 +(1+P3)Y2 4 +R4{(1−P4)X2 +(1+P4)Y2 5 ・・・(a) ただし、Zは面形状の原点に対する接平面からのずれ
量、CxはX軸方向曲率、CyはY軸方向曲率、Kxは
X軸方向円錐係数、KyはY軸方向円錐係数、Rnは非
球面項回転対称成分、Pnは非球面項回転非対称成分で
ある。なお、X軸方向曲率半径Rx、Y軸方向曲率半径
Ryと曲率Cx、Cyとの間には、 Rx=1/Cx,Ry=1/Cy の関係にある。
Z = (Cx · X 2 + Cy · Y 2 ) / [1+ {1− (1 + Kx) Cx 2 · X 2 − (1 + Ky) Cy 2 · Y 21/2 ] + R1} (1-P1) X 2 + (1 + P1) Y 2} 2 + R2 {(1-P2) X 2 + (1 + P2) Y 2} 3 + R3 {(1-P3) X 2 + (1 + P3) Y 2} 4 + R4 {(1-P4 ) X 2 + (1 + P4) Y 25 (a) where Z is the amount of deviation from the tangent plane to the origin of the surface shape, Cx is the curvature in the X-axis direction, Cy is the curvature in the Y-axis direction, and Kx is X The axial conic coefficient, Ky is the Y-axial conic coefficient, Rn is the rotationally symmetric component of the aspherical term, and Pn is the rotationally asymmetrical component of the aspherical term. The X-axis curvature radius Rx, the Y-axis curvature radius Ry, and the curvatures Cx, Cy have a relationship of Rx = 1 / Cx, Ry = 1 / Cy.

【0062】また、回転非対称面の面の形状は以下の式
により定義する。その定義式のZ軸が回転非対称面の軸
となる。 Z=Σn Σm nmn n-m ただし、Σn はΣのnが0〜k、Σm はΣのmが0〜n
を表す。
The shape of the rotationally asymmetric surface is defined by the following equation. The Z axis of the definition formula is the axis of the rotationally asymmetric surface. Z = Σ n Σ m proviso C nm X n Y nm, n is 0~k of sigma n is sigma, m of sigma m is sigma is 0~n
Represents

【0063】また、面対称自由曲面(対称面を1つのみ
有する回転非対称面)を、この回転非対称面を表す式に
より定義する場合は、その対称面により生ずる対称性を
X方向に求める場合は、Xの奇数次項を0に(例えばX
奇数次項の係数を0にする)、その対称面により生ずる
対称性をY方向に求める場合は、Yの奇数次項を0に
(例えばY奇数次項の係数を0にする)すればよい。
When a plane-symmetric free-form surface (a rotationally asymmetric surface having only one plane of symmetry) is defined by an expression representing this rotationally asymmetric surface, when the symmetry caused by the plane of symmetry is determined in the X direction, , X to zero (eg, X
In order to determine the symmetry caused by the plane of symmetry in the Y direction, the odd-order term of Y may be set to 0 (for example, the coefficient of the Y-odd-order term may be set to 0).

【0064】ここで、例としてk=7(7次項)で、X
方向に対称な面対称自由曲面を上記定義式を展開した形
で表すと、以下の式となる。
Here, as an example, if k = 7 (seventh-order term), X
When a plane-symmetric free-form surface symmetrical in the direction is expressed in a form in which the above-described definition expression is expanded, the following expression is obtained.

【0065】 Z=C2 +C3 Y+C4 X +C5 2 +C6 YX+C7 2 +C8 3 +C9 2 X+C10YX2 +C113 +C124 +C133 X+C142 2 +C15YX3 +C164 +C175 +C184 X+C193 2 +C202 3 +C21YX4 +C225 +C236 +C245 X+C254 2 +C263 3 +C272 4 +C28YX5 +C296 +C307 +C316 X+C325 2 +C334 3 +C343 4 +C352 5 +C36YX6 +C377 ・・・(b) そして、X奇数次項の係数C4 ,C6 ,C9 ・・・を0
とする(後記の実施例)。なお、後記する構成のパラメ
ータ中において、記載のない非球面に関する係数は0で
ある。
Z = C 2 + C 3 Y + C 4 X + C 5 Y 2 + C 6 YX + C 7 X 2 + C 8 Y 3 + C 9 Y 2 X + C 10 YX 2 + C 11 X 3 + C 12 Y 4 + C 13 Y 3 X + C 14 Y 2 X 2 + C 15 YX 3 + C 16 X 4 + C 17 Y 5 + C 18 Y 4 X + C 19 Y 3 X 2 + C 20 Y 2 X 3 + C 21 YX 4 + C 22 X 5 + C 23 Y 6 + C 24 Y 5 X + C 25 Y 4 X 2 + C 26 Y 3 X 3 + C 27 Y 2 X 4 + C 28 YX 5 + C 29 X 6 + C 30 Y 7 + C 31 Y 6 X + C 32 Y 5 X 2 + C 33 Y 4 X 3 + C 34 Y 3 X 4 + C 35 Y 2 X 5 + C 36 YX 6 + C 37 X 7 ... (B) Then, the coefficients C 4 , C 6 , C 9.
(Examples described later). In the parameters of the configuration described later, a coefficient relating to an aspheric surface not described is 0.

【0066】また、面対称自由曲面の他の定義式とし
て、Zernike多項式がある。この面の形状は以下
の式(c)により定義する。その定義式のZ軸がZer
nike多項式の軸となる。 X=R×cos(A) Y=R×sin(A) Z=D2 +D3 Rcos(A)+D4 Rsin(A) +D5 2 cos(2A)+D6 (R2 −1)+D7 2 sin(2A) +D8 3 cos(3A) +D9 (3R3 −2R)cos(A) +D10(3R3 −2R)sin(A)+D113 sin(3A) +D124cos(4A)+D13(4R4 −3R2 )cos(2A) +D14(6R4 −6R2 +1)+D15(4R4 −3R2 )sin(2A) +D164 sin(4A) +D175 cos(5A) +D18(5R5 −4R3 )cos(3A) +D19(10R5 −12R3 +3R)cos(A) +D20(10R5 −12R3 +3R)sin(A) +D21(5R5 −4R3 )sin(3A) +D225 sin(5A) +D236cos(6A)+D24(6R6 −5R4 )cos(4A) +D25(15R6 −20R4 +6R2 )cos(2A) +D26(20R6 −30R4 +12R2 −1) +D27(15R6 −20R4 +6R2 )sin(2A) +D28(6R6 −5R4 )sin(4A) +D296sin(6A)・・・・・ ・・・(c) なお、上記においてX方向に対称な面として表した。た
だし、Dm (mは2以上の整数)は係数である。
Another definition of a plane-symmetric free-form surface is a Zernike polynomial. The shape of this surface is defined by the following equation (c). The Z axis of the definition formula is Zer
This is the axis of the Nike polynomial. X = R × cos (A) Y = R × sin (A) Z = D 2 + D 3 R cos (A) + D 4 R sin (A) + D 5 R 2 cos (2A) + D 6 (R 2 -1) + D 7 R 2 sin (2A) + D 8 R 3 cos (3A) + D 9 (3R 3 -2R) cos (A) + D 10 (3R 3 -2R) sin (A) + D 11 R 3 sin (3A) + D 12 R 4 cos (4A) + D 13 ( 4R 4 -3R 2) cos (2A) + D 14 (6R 4 -6R 2 +1) + D 15 (4R 4 -3R 2) sin (2A) + D 16 R 4 sin (4A) + D 17 R 5 cos (5A) + D 18 (5R 5 -4R 3) cos (3A) + D 19 (10R 5 -12R 3 + 3R) cos (A) + D 20 (10R 5 -12R 3 + 3R) sin (A) + D 21 ( 5R 5 -4R 3) sin (3A ) + D 22 R 5 sin (5A) + D 23 R 6 cos (6A) + D 24 (6R 6 -5R 4) cos (4A) + D 25 (15R 6 -20R 4 + 6R 2) cos (2A) + D 26 ( 20R 6 -30R 4 + 12R 2 -1) + D 27 (15R 6 -20R 4 + 6R 2) sin (2A) + D 28 (6R 6 −5R 4 ) sin (4A) + D 29 R 6 sin (6A) (c) In the above description, the plane is symmetric in the X direction. Here, D m (m is an integer of 2 or more) is a coefficient.

【0067】本発明において使用可能なその他の面の表
現例として、上記定義式(Z=ΣnΣm nm
n n-m )を、(b)式と同様、X方向に対称な面で、
k=7とした面を表す場合、以下の(d)式のように展
開することもできる。
As an expression example of another surface that can be used in the present invention, the above defined formula (Z = {n} m C nm X
n Y nm ), as in the case of equation (b),
In the case of representing a plane where k = 7, it can be expanded as in the following equation (d).

【0068】 Z=C2 +C3 Y+C4 |X| +C5 2 +C6 Y|X|+C7 2 +C8 3 +C9 2 |X|+C10YX2 +C11|X3 | +C124 +C133 |X|+C142 2 +C15Y|X3 |+C164 +C175 +C184 |X|+C193 2 +C202 |X3 | +C21YX4 +C22|X5 | +C236 +C245 |X|+C254 2 +C263 |X3 | +C272 4 +C28Y|X5 |+C296 +C307 +C316 |X|+C325 2 +C334 |X3 | +C343 4 +C352 |X5 |+C36YX6 +C37|X7 | ・・・(d) また、回転対称非球面の形状は以下の式により定義す
る。その定義式のZ軸が回転対称非球面の軸となる。 Z=(Y2 /R)/[1+{1−P(Y2 /R2 )}1/2 ] +A4 4 +A6 6 +A8 8 +A1010・・・ ・・・(e) ただし、YはZに垂直な方向であり、Rは近軸曲率半
径、Pは円錐係数、A4、A6 、A8 、A10は非球面係
数である。
Z = C 2 + C 3 Y + C 4 | X | + C 5 Y 2 + C 6 Y | X | + C 7 X 2 + C 8 Y 3 + C 9 Y 2 | X | + C 10 YX 2 + C 11 | X 3 | + C 12 Y 4 + C 13 Y 3 | X | + C 14 Y 2 X 2 + C 15 Y | X 3 | + C 16 X 4 + C 17 Y 5 + C 18 Y 4 | X | + C 19 Y 3 X 2 + C 20 Y 2 | X 3 | + C 21 YX 4 + C 22 | X 5 | + C 23 Y 6 + C 24 Y 5 | X | + C 25 Y 4 X 2 + C 26 Y 3 | X 3 | + C 27 Y 2 X 4 + C 28 Y | X 5 | + C 29 X 6 + C 30 Y 7 + C 31 Y 6 | X | + C 32 Y 5 X 2 + C 33 Y 4 | X 3 | + C 34 Y 3 X 4 + C 35 Y 2 | X 5 | + C 36 YX 6 + C 37 | X 7 | (d) The shape of the rotationally symmetric aspherical surface is defined by the following equation. The Z axis in the definition formula is the axis of the rotationally symmetric aspherical surface. Z = (Y 2 / R) / [1+ {1-P (Y 2 / R 2)} 1/2] + A 4 Y 4 + A 6 Y 6 + A 8 Y 8 + A 10 Y 10 ··· ··· ( e) where Y is the direction perpendicular to Z, R is the paraxial radius of curvature, P is the conic coefficient, and A 4 , A 6 , A 8 and A 10 are the aspheric coefficients.

【0069】なお、後記する構成パラメータにおいて、
データの記載されていない非球面に関する項は0であ
る。屈折率についてはd線(波長587.56nm)に
対するものを表記してある。長さの単位はmmである。
In the configuration parameters described below,
The term relating to an aspheric surface for which no data is described is zero. The refractive index for d-line (wavelength 587.56 nm) is shown. The unit of the length is mm.

【0070】次に、図3〜図6にそれぞれ実施例1〜4
の偏心プリズム光学系7の光軸2を含むY−Z断面図を
示す。何れの実施例の偏心プリズム光学系7も、図1の
場合と同様に、3つの面3、4、5からなっており、そ
の3つの面3〜5の間が屈折率が1より大きい透明媒質
で埋められていて、不図示の物体から発した光線束が光
軸2に沿って光学系7の瞳1をまず通過し、透過作用と
反射作用を有する第1面3に入射して光学系7内に入
り、その入射光線は瞳1から遠い側の反射作用のみを有
する反射面である第2面4で瞳1に近づく方向に反射さ
れ、今度は第1面3で瞳1から遠ざかる方向に再び反射
され、その反射光線は、透過作用のみを有する第3面5
を透過して像面6に到達し、結像する。そして、実施例
1〜3においては、第1面3は瞳1側に凹面を向けて偏
心した球面でなり、実施例4においては、第1面3は瞳
1側に凹面を向けて偏心した前記の(e)式で定義され
る回転対称非球面でなり、また、何れの実施例において
も、第2面4、第3面5は前記の(b)式で定義される
自由曲面からなる。また、実施例1〜4は各実施例共、
水平画角37°、垂直画角27.6°、瞳径4mmであ
る。以下に、上記実施例1〜4の構成パラメータを示
す。
FIGS. 3 to 6 show Examples 1 to 4 respectively.
3 is a YZ sectional view including the optical axis 2 of the eccentric prism optical system 7 of FIG. The decentered prism optical system 7 of any of the embodiments has three surfaces 3, 4, and 5, as in the case of FIG. 1, and a transparent portion having a refractive index larger than 1 between the three surfaces 3 to 5. A light beam, which is buried in a medium and emitted from an object (not shown), first passes through a pupil 1 of an optical system 7 along an optical axis 2 and is incident on a first surface 3 having a transmitting action and a reflecting action. The incident light enters the system 7 and is reflected in a direction approaching the pupil 1 by the second surface 4, which is a reflecting surface having only a reflection function farther from the pupil 1, and then moves away from the pupil 1 by the first surface 3. Direction, the reflected light of which is reflected by a third surface 5 having only a transmissive action.
And reaches the image plane 6 to form an image. In Examples 1 to 3, the first surface 3 is a spherical surface eccentric with the concave surface facing the pupil 1 side, and in Example 4, the first surface 3 is eccentric with the concave surface facing the pupil 1 side. It is a rotationally symmetric aspheric surface defined by the above equation (e), and in each of the embodiments, the second surface 4 and the third surface 5 are composed of free-form surfaces defined by the above equation (b). . In addition, Examples 1 to 4 are
The horizontal angle of view is 37 °, the vertical angle of view is 27.6 °, and the pupil diameter is 4 mm. Hereinafter, the configuration parameters of Examples 1 to 4 will be described.

【0071】実施例1 面番号 曲率半径 間隔 偏心 屈折率 アッベ数 物体面 ∞ ∞ 1 ∞(瞳) 2 -167.559 偏心(1) 1.4922 57.5 3 自由曲面 偏心(2) 1.4922 57.5 4 -167.559 偏心(1) 1.4922 57.5 5 自由曲面 偏心(3) 像 面 ∞ 偏心(4) 自由曲面 C5 -8.2644×10-37 -8.9985×10-38 3.7852×10-510 1.3727×10-512 3.4753×10-814 -3.2511×10-616 -7.6369×10-717 1.5767×10-719 -6.2172×10-821 2.9399×10-823 5.8293×10-925 4.0550×10-927 1.7532×10-929 -9.2932×10-10 30 7.9948×10-11 32 4.2710×10-10 34 2.2002×10-10 36 -1.1987×10-10 自由曲面 C5 -2.4569×10-27 -9.2271×10-38 1.8803×10-310 9.0656×10-412 5.3303×10-514 1.8144×10-416 8.6739×10-617 -1.1351×10-519 -1.6466×10-521 -9.3221×10-7 X Y Z α(°) β(°) γ(°) 偏心(1) 0.000 7.108 25.777 19.22 0.00
0.00 偏心(2) 0.000 4.756 37.554 -8.06
0.00 0.00 偏心(3) 0.000 19.525 30.305 86.90 0.00 0.00 偏心(4) 0.000 23.309 33.150 61.64 0.00 0.00 。
Example 1 Surface number Curvature radius Interval Eccentricity Refractive index Abbe number Object plane 面 ∞ 1 ∞ (pupil) 2 -167.559 Eccentricity (1) 1.4922 57.5 3 Free-form surface Eccentricity (2) 1.4922 57.5 4 -167.559 Eccentricity (1) 1.4922 57.5 5 Free-form surface Eccentricity (3) Image surface ∞ Eccentricity (4) Free-form surface C 5 -8.2644 × 10 -3 C 7 -8.9985 × 10 -3 C 8 3.7852 × 10 -5 C 10 1.3727 × 10 -5 C 12 3.4753 × 10 -8 C 14 -3.2 511 × 10 -6 C 16 -7.6369 × 10 -7 C 17 1.5767 × 10 -7 C 19 -6.2172 × 10 -8 C 21 2.9 399 × 10 -8 C 23 5.8 293 × 10 -9 C 25 4.0550 × 10 -9 C 27 1.7532 × 10 -9 C 29 -9.2932 × 10 -10 C 30 7.9948 × 10 -11 C 32 4.2710 × 10 -10 C 34 2.2002 × 10 -10 C 36 -1.1987 × 10 - 10 free-form surface C 5 -2.4569 × 10 -2 C 7 -9.2271 × 10 -3 C 8 1.8803 × 10 -3 C 10 9.0656 × 10 -4 C 12 5.3303 × 10 -5 C 14 1.8144 × 10 -4 C 16 8.6739 × 10 -6 C 17 -1.1351 × 10 -5 C 19 -1.6466 × 10 -5 C 21 -9.3221 × 10 -7 XYZ Z α (°) β (°) γ (°) Eccentricity (1) 0.000 7.108 25.777 19.22 0.00
0.00 Eccentricity (2) 0.000 4.756 37.554 -8.06
0.00 0.00 Eccentricity (3) 0.000 19.525 30.305 86.90 0.00 0.00 Eccentricity (4) 0.000 23.309 33.150 61.64 0.00 0.00.

【0072】実施例2 面番号 曲率半径 間隔 偏心 屈折率 アッベ数 物体面 ∞ ∞ 1 ∞(瞳) 2 -109.365 偏心(1) 1.4922 57.5 3 自由曲面 偏心(2) 1.4922 57.5 4 -109.365 偏心(1) 1.4922 57.5 5 自由曲面 偏心(3) 像 面 ∞ 偏心(4) 自由曲面 C5 -1.0133×10-27 -1.0025×10-28 5.6608×10-510 2.5415×10-512 -2.1481×10-614 -3.4315×10-616 -1.3836×10-617 -4.1483×10-819 6.6703×10-821 3.5615×10-823 8.7397×10-925 -1.2505×10-827 -4.5501×10-10 29 2.6484×10-10 30 -1.9631×10-10 32 4.6259×10-10 34 -4.9439×10-12 36 -1.1870×10-10 自由曲面 C5 -1.6101×10-27 8.9510×10-38 -2.3326×10-310 -7.6454×10-512 -1.8499×10-414 -5.5035×10-416 2.0491×10-519 -3.6151×10-521 1.5782×10-6 X Y Z α(°) β(°) γ(°) 偏心(1) 0.000 7.977 25.617 14.61 0.00 0.00 偏心(2) 0.000 -2.742 35.528 -19.28 0.00 0.00 偏心(3) 0.000 19.605 22.719 93.54 0.00 0.00 偏心(4) 0.000 22.522 33.564 58.60 0.00 0.00 。Example 2 Surface number Curvature radius Interval Eccentricity Refractive index Abbe number Object plane 数 ∞ 1 ∞ (pupil) 2 -109.365 Eccentricity (1) 1.4922 57.5 3 Free-form surface Eccentricity (2) 1.4922 57.5 4 -109.365 Eccentricity (1) 1.4922 57.5 5 Free-form surface Eccentricity (3) Image surface ∞ Eccentricity (4) Free-form surface C 5 -1.0133 × 10 -2 C 7 -1.0025 × 10 -2 C 8 5.6608 × 10 -5 C 10 2.5415 × 10 -5 C 12 -2.1481 × 10 -6 C 14 -3.4315 × 10 -6 C 16 -1.3836 × 10 -6 C 17 -4.1483 × 10 -8 C 19 6.6703 × 10 -8 C 21 3.5615 × 10 -8 C 23 8.7397 × 10 - 9 C 25 -1.2505 × 10 -8 C 27 -4.5501 × 10 -10 C 29 2.6484 × 10 -10 C 30 -1.9631 × 10 -10 C 32 4.6259 × 10 -10 C 34 -4.9439 × 10 -12 C 36 - 1.1870 × 10 -10 Free-form surface C 5 -1.6101 × 10 -2 C 7 8.9 510 × 10 -3 C 8 -2.3326 × 10 -3 C 10 -7.6454 × 10 -5 C 12 -1.8499 × 10 -4 C 14 -5.5035 × 10 -4 C 16 2.0491 × 10 -5 C 19 -3.6151 × 10 -5 C 21 1.5782 × 10 -6 XYZ Zα (°) β (°) γ (°) Eccentricity (1) 0.000 7.977 25.617 14.61 0.00 0.00 Eccentricity (2) 0.000 -2.742 35.5 28 -19.28 0.00 0.00 Eccentricity (3) 0.000 19.605 22.719 93.54 0.00 0.00 Eccentricity (4) 0.000 22.522 33.564 58.60 0.00 0.00.

【0073】実施例3 面番号 曲率半径 間隔 偏心 屈折率 アッベ数 物体面 ∞ ∞ 1 ∞(瞳) 2 -131.243 偏心(1) 1.4922 57.5 3 自由曲面 偏心(2) 1.4922 57.5 4 -131.243 偏心(1) 1.4922 57.5 5 自由曲面 偏心(3) 像 面 ∞ 偏心(4) 自由曲面 C5 -8.9284×10-37 -9.2053×10-38 3.8229×10-510 4.2262×10-512 -7.2223×10-714 -1.3031×10-616 -1.9520×10-617 1.1271×10-719 -3.6870×10-821 -1.1768×10-723 1.6276×10-925 -6.7166×10-927 -7.7763×10-929 3.4606×10-930 -2.4515×10-10 32 2.9077×10-10 34 -1.8189×10-10 36 -1.8698×10-10 自由曲面 C5 -4.9779×10-37 -1.7671×10-28 -7.3015×10-410 2.7601×10-312 -1.6689×10-414 -3.4904×10-416 2.3877×10-419 -2.6265×10-521 -1.7550×10-525 -4.7065×10-727 3.7320×10-629 -1.1090×10-632 -1.0260×10-734 2.4355×10-736 1.6830×10-7 X Y Z α(°) β(°) γ(°) 偏心(1) 0.000 8.065 25.582 15.00 0.00 0.00 偏心(2) 0.000 1.394 37.156 -13.88 0.00 0.00 偏心(3) 0.000 20.169 24.811 92.24 0.00 0.00 偏心(4) 0.000 23.024 33.868 57.68 0.00 0.00 。Example 3 Surface number Curvature radius Interval Eccentricity Refractive index Abbe number Object plane 面 ∞ 1 ∞ (pupil) 2 -131.243 Eccentricity (1) 1.4922 57.5 3 Free-form surface Eccentricity (2) 1.4922 57.5 4 -131.243 Eccentricity (1) 1.4922 57.5 5 Free-form surface Eccentricity (3) Image surface ∞ Eccentricity (4) Free-form surface C 5 -8.9284 × 10 -3 C 7 -9.2053 × 10 -3 C 8 3.8229 × 10 -5 C 10 4.2262 × 10 -5 C 12 -7.2223 × 10 -7 C 14 -1.3031 × 10 -6 C 16 -1.9520 × 10 -6 C 17 1.1271 × 10 -7 C 19 -3.6870 × 10 -8 C 21 -1.1768 × 10 -7 C 23 1.6276 × 10 -9 C 25 -6.7166 × 10 -9 C 27 -7.7763 × 10 -9 C 29 3.4606 × 10 -9 C 30 -2.4515 × 10 -10 C 32 2.9077 × 10 -10 C 34 -1.8189 × 10 -10 C 36 -1.8698 × 10 -10 free curved surface C 5 -4.9779 × 10 -3 C 7 -1.7671 × 10 -2 C 8 -7.3015 × 10 -4 C 10 2.7601 × 10 -3 C 12 -1.6689 × 10 -4 C 14 - 3.4904 × 10 -4 C 16 2.3877 × 10 -4 C 19 -2.6265 × 10 -5 C 21 -1.7550 × 10 -5 C 25 -4.7065 × 10 -7 C 27 3.7320 × 10 -6 C 29 -1.1090 × 10 - 6 C 32 -1.0 260 × 10 -7 C 34 2.4355 × 10 -7 C 36 1. 6830 × 10 -7 XYZ α (°) β (°) γ (°) Eccentricity (1) 0.000 8.065 25.582 15.00 0.00 0.00 Eccentricity (2) 0.000 1.394 37.156 -13.88 0.00 0.00 Eccentricity (3) 0.000 20.169 24.811 92.24 0.00 0.00 Eccentricity (4) 0.000 23.024 33.868 57.68 0.00 0.00.

【0074】実施例4 面番号 曲率半径 間隔 偏心 屈折率 アッベ数 物体面 ∞ ∞ 1 ∞(瞳) 2 -121.590(非球面) 偏心(1) 1.4922 57.5 3 自由曲面 偏心(2) 1.4922 57.5 4 -121.590(非球面) 偏心(1) 1.4922 57.5 5 自由曲面 偏心(3) 像 面 ∞ 偏心(4) 非球面係数 面番号:2,4 P = 1 A4 =-0.47078 ×10-56 = 0.91622 ×10-88 = 0.14049 ×10-10 10=-0.31035 ×10-13 自由曲面 C5 -9.8116×10-37 -9.9228×10-38 3.0681×10-510 4.5462×10-512 -3.8345×10-614 -4.1008×10-616 -4.6317×10-617 2.1625×10-719 1.6597×10-721 -1.6454×10-723 1.0751×10-825 4.0250×10-927 3.4501×10-929 8.6519×10-930 -5.3805×10-10 32 -1.0139×10-934 -5.5962×10-10 36 2.7231×10-10 自由曲面 C5 -4.7478×10-27 -1.8423×10-28 -5.2664×10-310 5.1605×10-412 -2.4447×10-414 -5.4622×10-416 4.7482×10-419 -1.2350×10-421 -2.0224×10-525 -1.1895×10-527 3.5172×10-729 -2.4403×10-6 C32 -3.8988×10-734 -1.1605×10-836 2.3716×10-7 X Y Z α(°) β(°) γ(°) 偏心(1) 0.000 7.771 25.658 15.00 0.00 0.00 偏心(2) 0.000 1.049 36.261 -14.93 0.00 0.00 偏心(3) 0.000 19.049 21.405 98.38 0.00 0.00 偏心(4) 0.000 22.022 33.091 59.19 0.00 0.00 。Example 4 Surface Number Curvature Radius Interval Eccentricity Refractive Index Abbe Number Object Surface ∞ ∞ 1 ∞ (pupil) 2 -121.590 (aspherical surface) Eccentricity (1) 1.4922 57.5 3 Free-form surface Eccentricity (2) 1.4922 57.5 4 -121.590 (aspherical) eccentric (1) 1.4922 57.5 5 free curved eccentric (3) image surface ∞ eccentricity (4) aspheric coefficient surface number: 2,4 P = 1 A 4 = -0.47078 × 10 -5 A 6 = 0.91622 × 10 -8 A 8 = 0.14049 × 10 -10 A 10 = -0.31035 × 10 -13 Free-form surface C 5 -9.8116 × 10 -3 C 7 -9.9228 × 10 -3 C 8 3.0681 × 10 -5 C 10 4.5462 × 10 -5 C 12 -3.8345 × 10 -6 C 14 -4.1008 × 10 -6 C 16 -4.6317 × 10 -6 C 17 2.1625 × 10 -7 C 19 1.6597 × 10 -7 C 21 -1.6454 × 10 -7 C 23 1.0751 × 10 -8 C 25 4.0 250 × 10 -9 C 27 3.4501 × 10 -9 C 29 8.6 519 × 10 -9 C 30 -5.3805 × 10 -10 C 32 -1.0139 × 10 -9 C 34 -5.5962 × 10 -10 C 36 2.7231 × 10 -10 Free-form surface C 5 -4.7478 × 10 -2 C 7 -1.8423 × 10 -2 C 8 -5.2664 × 10 -3 C 10 5.1605 × 10 -4 C 12 -2.4447 × 10 -4 C 14 -5.4622 × 10 -4 C 16 4.748 2 × 10 -4 C 19 -1.2 350 × 10 -4 C 21 -2.0 224 × 10 -5 C 25 -1.1895 × 10 -5 C 27 3.5 172 × 10 -7 C 29 -2.4403 × 10 -6 C 32 -3.8988 × 10 -7 C 34 -1.1605 × 10 -8 C 36 2.3716 × 10 -7 XYZ α (°) β (°) γ (°) Eccentricity (1) 0.000 7.771 25.658 15.00 0.00 0.00 Eccentricity (2) 0.000 1.049 36.261- 14.93 0.00 0.00 Eccentricity (3) 0.000 19.049 21.405 98.38 0.00 0.00 Eccentricity (4) 0.000 22.022 33.091 59.19 0.00 0.00.

【0075】以上の実施例1〜4の像歪みを表す収差図
をそれぞれ図7〜図10に示す。これら収差図中、縦軸
はX方向の像高、横軸はY方向の像高を表す。また、実
施例1の収差補正状態を表すスポットダイアグラムを図
11〜図13に示す。これらの図において、スポットダ
イアグラムの左側の4つの数字の中、上段2つの数字
は、長方形の画面中央の座標(X,Y)を(0.00,
0.00)、右端中央の座標を(0、00,−1.0
0)、右上隅の座標を(1.00,−1.00)、上端
中央の座標を(1.00,0.00)のように表現した
場合の座標(X,Y)を示し、下段の2つの数字は、光
軸(画面中央)に対して上記座標(X,Y)方向がなす
角度(画角)のX成分、Y成分(度表示)を示す。
FIGS. 7 to 10 show aberration diagrams representing image distortions in the above-described first to fourth embodiments. In these aberration diagrams, the vertical axis represents the image height in the X direction, and the horizontal axis represents the image height in the Y direction. FIGS. 11 to 13 show spot diagrams showing the aberration correction state of the first embodiment. In these figures, among the four numbers on the left side of the spot diagram, the upper two numbers indicate coordinates (X, Y) of the center of the rectangular screen at (0.00, 0.00).
0.00), and the coordinates at the center of the right end are (0, 00, -1.0).
0), coordinates (X, Y) when the coordinates of the upper right corner are expressed as (1.00, -1.00) and the coordinates of the center of the upper end are expressed as (1.00, 0.00). Indicate the X component and the Y component (degree display) of the angle (angle of view) formed by the above-mentioned coordinate (X, Y) direction with respect to the optical axis (center of the screen).

【0076】次に、上記実施例1〜4の前記条件式(0
−1)〜(J−1)に関するパラメータの値を示す。
Next, the conditional expressions (0)
-1) to (J-1) are shown.

【0077】以上のような本発明の偏心プリズム光学系
は、画像表示装置に利用することができる。その一例と
して、図14に頭部装着型の画像表示装置を観察者頭部
に装着した状態を、図15にその断面図を示す。この構
成は、本発明の偏心プリズム光学系を図15に示すよう
に接眼光学系100として用いており、接眼光学系10
0と画像表示素子101からなる組みを左右一対用意
し、それらを眼輻距離だけ離して支持することにより、
両眼で観察できる据え付け型又は頭部装着型画像表示装
置のようなポータブル型の画像表示装置102として構
成されている。
The eccentric prism optical system of the present invention as described above can be used for an image display device. As an example, FIG. 14 shows a state in which the head-mounted image display device is mounted on the observer's head, and FIG. 15 is a cross-sectional view thereof. This configuration uses the decentered prism optical system of the present invention as the eyepiece optical system 100 as shown in FIG.
By preparing a pair consisting of 0 and the image display element 101 on the left and right, and supporting them at a distance of the eye distance,
It is configured as a portable image display device 102 such as a stationary or head mounted image display device that can be observed with both eyes.

【0078】すなわち、表示装置本体102には、上記
のような接眼光学系100が左右一対備えられ、それら
に対応して像面に液晶表示素子からなる画像表示素子1
01が配置されている。そして、表示装置本体102に
は、図14に示すように、左右に連続して図示のような
側頭フレーム103が設けられ、表示装置本体102を
観察者の眼前に保持できるようになっている。
That is, the display device main body 102 is provided with a pair of left and right eyepiece optical systems 100 as described above, and the image display element 1 comprising a liquid crystal display element on the image plane corresponding to them.
01 is arranged. Then, as shown in FIG. 14, the display device main body 102 is provided with a temporal frame 103 as shown in the figure continuously on the left and right, so that the display device main body 102 can be held in front of the observer. .

【0079】また、側頭フレーム103にはスピーカ1
04が付設されており、画像観察と共に立体音響を聞く
ことができるようになっている。このようにスピーカ1
04を有する表示装置本体102には、映像音声伝達コ
ード105を介してポータブルビデオカセット等の再生
装置106が接続されているので、観察者はこの再生装
置106を図示のようにベルト箇所等の任意の位置に保
持して、映像音響を楽しむことができるようになってい
る。図14の符号107は再生装置106のスイッチ、
ボリューム等の調節部である。なお、表示装置本体10
2の内部に映像処理、音声処理回路等の電子部品を内蔵
させてある。
The speaker 1 is provided on the temporal frame 103.
04 is provided so that stereophonic sound can be heard together with image observation. Thus, the speaker 1
Since the playback device 106 such as a portable video cassette is connected to the display device main body 102 having the video signal 04 via the video / audio transmission code 105, the observer can attach the playback device 106 to an arbitrary portion such as a belt as shown in the figure. , So that the user can enjoy video and audio. Reference numeral 107 in FIG.
This is an adjustment unit for adjusting the volume and the like. The display device body 10
2, electronic components such as a video processing circuit and an audio processing circuit are incorporated.

【0080】なお、コード105は先端をジャックにし
て、既存のビデオデッキ等に取り付け可能としてもよ
い。さらに、TV電波受信用チューナーに接続してTV
鑑賞用としてもよいし、コンピュータに接続してコンピ
ュータグラフィックスの映像や、コンピュータからのメ
ッセージ映像等を受信するようにしてもよい。また、邪
魔なコードを排斥するために、アンテナを接続して外部
からの信号を電波によって受信するようにしてもよい。
さらに、本発明の偏心プリズム光学系は、接眼光学系を
左右何れか一方の眼前に配置した片眼用の頭部装着型画
像表示装置に用いてもよい。
The cord 105 may have a jack at the tip so that it can be attached to an existing video deck or the like. Furthermore, it is connected to a tuner for TV radio wave reception,
It may be used for viewing, or may be connected to a computer to receive computer graphics images, message images from the computer, and the like. Also, in order to reject an obstructive code, an antenna may be connected to receive an external signal by radio waves.
Further, the decentered prism optical system of the present invention may be used in a head mounted image display device for one eye in which an eyepiece optical system is disposed in front of one of the left and right eyes.

【0081】また、本発明の偏心プリズム光学系は、撮
影光学装置や観察光学装置にも利用できる。その例とし
て、図16に示したような撮影光学系とファインダー光
学系とを有するカメラへの利用があげられる。まず、図
17に光路図を示すように、瞳位置(絞り又は仮想絞り
位置)152を挟んで前群151と後群153からなる
対物レンズ150の後群153として本発明の偏心プリ
ズム光学系を配置する。こうすることにより、従来の撮
影光学系では光軸Lbに対して垂直にしか配置できなか
ったフィルム154を光軸Lbに対して斜めに配置で
き、配置の自由度が増し、コンパクト化が図れる。な
お、フィルム154の代わりにCCD等の電子受光素子
を配置すれば、電子カメラにも利用できる。次に、図1
8に光路図を示すように、ファインダー光学系の対物レ
ンズ群200により形成される像を正立させる手段とし
て偏心プリズム光学系201とダハ面202を有するダ
ハプリズム203とを配置し、正立した像を接眼レンズ
204により観察者眼球205に導く構成とする。この
構成により、従前のポロプリズムよりも高さ方向が低く
でき、コンパクト化が図れる。なお、図中、Leはファ
インダー光学系の光軸である。
The eccentric prism optical system of the present invention can also be used for a photographing optical device and an observation optical device. As an example, there is a use in a camera having a photographing optical system and a finder optical system as shown in FIG. First, as shown in the optical path diagram in FIG. 17, the decentered prism optical system of the present invention is formed as a rear group 153 of an objective lens 150 including a front group 151 and a rear group 153 with a pupil position (aperture or virtual diaphragm position) 152 interposed therebetween. Deploy. By doing so, the film 154, which can be arranged only perpendicularly to the optical axis Lb in the conventional photographing optical system, can be arranged obliquely to the optical axis Lb, so that the degree of freedom of arrangement increases and the size can be reduced. If an electronic light receiving element such as a CCD is arranged instead of the film 154, it can be used for an electronic camera. Next, FIG.
As shown in FIG. 8, an eccentric prism optical system 201 and a roof prism 203 having a roof surface 202 are arranged as means for erecting an image formed by the objective lens group 200 of the finder optical system. Is guided to the observer's eyeball 205 by the eyepiece 204. With this configuration, the height direction can be made lower than that of the conventional Porro prism, and compactness can be achieved. In the drawing, Le is the optical axis of the finder optical system.

【0082】さらに、リレーレンズを用いて接眼レンズ
に像を伝達する硬性型内視鏡の対物レンズや、光ファイ
バー束を用いて像を接眼レンズに伝達する軟性型内視鏡
の対物レンズ、CCDによって像を受光する電子内視鏡
の対物レンズにも利用できる。その一例を図19、図2
0に示す。図19は、硬性型内視鏡(いわゆる硬性鏡)
を用いた内視鏡装置の全体の構成図である。図19に示
す内視鏡装置30は対物レンズ及び照明光学系を内装す
る挿入部22を有する内視鏡20とカメラ24とモニタ
ー25と光源装置27とを有している。上記内視鏡20
は、その挿入部22の先端部21には、図20に示すよ
うに、本発明の偏心プリズム光学系31を用いた対物レ
ンズ32とその視野方向を照射するライトガイド33と
が組み込まれている。上記挿入部22には、対物レンズ
32に続き、像や瞳の伝達光学系であるリレーレンズ系
が設けられている。内視鏡20の基部23には、図示し
ない接眼光学系が配置され、その接続光学系の後には、
撮像手段としてのカメラ24を取り付けることが可能で
ある。ここで、内視鏡20の基部23及びカメラ24は
一体式又は脱着式で構成されている。カメラ24で撮像
された被写体は、最終的にモニター25で内視鏡画像と
して観察者に観察可能に表示される。上記光源装置27
からの照明光は、ライトガイドケーブル26を通し、上
記基部23、挿入部22及び先端部21を経て視野方向
を照明する。
Further, an objective lens of a rigid endoscope that transmits an image to an eyepiece using a relay lens, an objective lens of a flexible endoscope that transmits an image to the eyepiece using an optical fiber bundle, and a CCD. It can also be used for an objective lens of an electronic endoscope that receives an image. One example is shown in FIGS.
0 is shown. FIG. 19 shows a rigid endoscope (a so-called rigid endoscope).
FIG. 1 is an overall configuration diagram of an endoscope apparatus that uses an electronic device. An endoscope device 30 shown in FIG. 19 includes an endoscope 20 having an insertion section 22 in which an objective lens and an illumination optical system are provided, a camera 24, a monitor 25, and a light source device 27. Endoscope 20
As shown in FIG. 20, an objective lens 32 using an eccentric prism optical system 31 of the present invention and a light guide 33 for irradiating the visual field direction are incorporated in the distal end portion 21 of the insertion portion 22 as shown in FIG. . Following the objective lens 32, the insertion section 22 is provided with a relay lens system that is a transmission optical system for an image and a pupil. An eyepiece optical system (not shown) is arranged at the base 23 of the endoscope 20, and after the connection optical system,
It is possible to attach a camera 24 as an imaging means. Here, the base 23 and the camera 24 of the endoscope 20 are configured as an integral type or a detachable type. The subject imaged by the camera 24 is finally displayed on the monitor 25 as an endoscope image so as to be observable to an observer. The light source device 27
Illuminates the viewing direction through the light guide cable 26, the base 23, the insertion section 22 and the tip 21.

【0083】以上の本発明の偏心プリズム光学系は、例
えば次のように構成することができる。 〔1〕 少なくとも3つの面が互いに偏心して配置さ
れ、その3つの面の間が屈折率が1.3以上の透明媒質
で埋められた構成の偏心プリズム光学系において、前記
光学系は少なくとも2回の内部反射を行うように、前記
3つの面の中の少なくとも2つの面を反射作用を有する
面で形成すると共に、前記の2つの反射作用を有する面
によって反射された光線を前記光学系内部で折り返すよ
うな位置に前記の2つの反射作用を有する面を配置し、
前記反射作用を有する2つの面の中、1つの面の形状は
面内及び面外共に回転対称軸を有さない回転非対称面に
て形成され、他の1つの面の少なくとも有効面(面の全
領域中で光束が透過及び/又は反射をする領域)の形状
が有効面内に回転対称軸を有する回転対称非球面にて構
成され、前記対称非球面が、前記光学系を通過する光束
を入射若しくは射出させる透過作用と前記光学系内部で
前記光束を折り曲げる反射作用とを併せ持つ第1面とし
て形成され、前記回転非対称面が前記第1面と対向配置
された第2面として形成され、さらに、前記光学系を通
過する光束を射出若しくは入射させる透過作用を有する
第3面が、前記第1面と前記第2面との対向方向に対し
て略垂直方向の位置に配置され、かつ、前記第1面が前
記第2面の方向に凸面を向けた形状に構成され、以下の
条件を満足することを特徴とする偏心プリズム光学系。 5°<α<30° ・・・(0−1) ただし、αは、前記第1面の回転対称非球面の回転中心
軸が、前記光学系の瞳の中心を通り像面中心に到達する
軸上主光線が瞳を射出して前記第1面に交差するまでの
直線と交差する角度(面の傾き角度)である。
The above-described decentered prism optical system of the present invention can be constituted, for example, as follows. [1] In an eccentric prism optical system having a configuration in which at least three surfaces are eccentrically arranged with respect to each other and a space between the three surfaces is filled with a transparent medium having a refractive index of 1.3 or more, the optical system is at least twice. At least two of the three surfaces are formed as surfaces having a reflection effect so as to perform internal reflection of light, and light rays reflected by the two surfaces having a reflection effect are formed inside the optical system. Arrange the two surfaces having the above-mentioned reflective action at a position where it turns back,
Among the two surfaces having the reflecting action, the shape of one surface is formed as a rotationally asymmetric surface having no rotationally symmetric axis both in-plane and out-of-plane. The shape of the area where the light beam is transmitted and / or reflected in the entire area) is constituted by a rotationally symmetric aspherical surface having a rotationally symmetric axis in the effective plane, and the symmetrical aspherical surface transmits the light beam passing through the optical system. It is formed as a first surface having both a transmitting action for entering or emitting and a reflecting action for bending the light beam inside the optical system, and the rotationally asymmetric face is formed as a second face opposed to the first face, and further, A third surface having a transmission function of emitting or entering a light beam passing through the optical system is disposed at a position substantially perpendicular to a direction in which the first surface and the second surface face each other, and The first surface is in the direction of the second surface Configured shape with its surface, decentered prism optical system satisfies the following conditions. 5 ° <α <30 ° (0-1) where α is the rotation center axis of the rotationally symmetric aspheric surface of the first surface that reaches the image plane center through the center of the pupil of the optical system. This is the angle at which the on-axis principal ray intersects with the straight line from the exit of the pupil to the intersection with the first surface (the inclination angle of the surface).

【0084】〔2〕 少なくとも3つの面が互いに偏心
して配置され、その3つの面の間が屈折率が1.3以上
の透明媒質で埋められた構成の偏心プリズム光学系にお
いて、前記光学系は少なくとも2回の内部反射を行うよ
うに、前記3つの面の中の少なくとも2つの面を反射作
用を有する面で形成すると共に、前記の2つの反射作用
を有する面によって反射された光線を前記光学系内部で
折り返すような位置に前記の2つの反射作用を有する面
を配置し、前記反射作用を有する2つの面の中、1つの
面の形状は面内及び面外共に回転対称軸を有さない回転
非対称面にて形成され、他の1つの面の少なくとも有効
面(面の全領域中で光束が透過及び/又は反射をする領
域)の形状が有効面内に回転対称軸を有する回転対称球
面にて構成され、前記対称球面が、前記光学系を通過す
る光束を入射若しくは射出させる透過作用と前記光学系
内部で前記光束を折り曲げる反射作用とを併せ持つ第1
面として形成され、前記回転非対称面が前記第1面と対
向配置された第2面として形成され、さらに、前記光学
系を通過する光束を射出若しくは入射させる透過作用を
有する第3面が、前記第1面と前記第2面との対向方向
に対して略垂直方向の位置に配置され、かつ、前記第1
面が前記第2面の方向に凸面を向けた形状に構成され、
以下の条件を満足することを特徴とする偏心プリズム光
学系。 5°<α<30° ・・・(0−1) ただし、αは、前記光学系の瞳の中心を通り像面中心に
到達する軸上主光線が前記第1面により反射される点を
通る前記対称球面の回転中心軸が、前記光学系の瞳の中
心を通り像面中心に到達する軸上主光線が瞳を射出して
前記第1面に交差するまでの直線と交差する角度(面の
傾き角度)である。
[2] An eccentric prism optical system having a configuration in which at least three surfaces are arranged eccentrically to each other and a space between the three surfaces is filled with a transparent medium having a refractive index of 1.3 or more. At least two of the three surfaces are formed of reflective surfaces so as to perform at least two internal reflections, and the light reflected by the two reflective surfaces is reflected by the optical surface. The two surfaces having the reflecting action are arranged at such a position as to be turned back in the system. Among the two surfaces having the reflecting action, the shape of one face has a rotational symmetry axis both in-plane and out-of-plane. A rotationally asymmetric surface which is formed of no rotationally asymmetric surface and at least the effective surface of another surface (the region through which light flux is transmitted and / or reflected in the entire surface) has a rotational symmetry axis in the effective surface Consists of a spherical surface, front The first symmetrical spherical surface has both a transmitting function of causing a light beam passing through the optical system to enter or exit and a reflecting function of bending the light beam inside the optical system.
A third surface having a transmission function of emitting or entering a light beam passing through the optical system, wherein the rotationally asymmetric surface is formed as a second surface facing the first surface. The first surface is disposed at a position substantially perpendicular to the direction in which the first surface faces the second surface, and the first surface
The surface is configured in a shape with a convex surface facing the direction of the second surface,
An eccentric prism optical system characterized by satisfying the following conditions. 5 ° <α <30 ° (0-1) where α is a point at which the axial principal ray reaching the center of the image plane through the center of the pupil of the optical system is reflected by the first surface. The angle at which the central axis of rotation of the passing symmetric sphere intersects with the straight line from the center of the pupil of the optical system to the axial principal ray reaching the center of the image plane exiting the pupil and intersecting the first surface ( Angle of inclination of the surface).

【0085】〔3〕 上記〔1〕又は〔2〕記載の偏心
プリズム光学系において、前記第1面が有効面内にてそ
の透過作用と反射作用とが少なくとも一部の領域で重な
り合うように形成されていると共に、少なくとも前記第
1面の有効面内の透過作用と反射作用との重なり合う領
域での反射作用が全反射作用によるように構成されてい
ることを特徴とする偏心プリズム光学系。
[3] In the decentered prism optical system according to the above [1] or [2], the first surface is formed such that its transmission function and reflection function overlap in at least a part of the effective plane. A decentered prism optical system, wherein at least a reflection action in a region where the transmission action and the reflection action in the effective surface of the first surface overlap with each other is based on a total reflection action.

【0086】〔4〕 上記〔1〕又は〔2〕記載の偏心
プリズム光学系において、前記第1面の回転対称面は前
記第2面の方向に凸面と向けた非球面又は球面にて形成
されていることを特徴とする偏心プリズム光学系。
[4] In the decentered prism optical system according to the above [1] or [2], the rotationally symmetric surface of the first surface is formed by an aspheric surface or a spherical surface facing a convex surface in the direction of the second surface. An eccentric prism optical system characterized by:

【0087】〔5〕 上記〔1〕から〔4〕の何れか1
項記載の偏心プリズム光学系において、前記第2面がア
ナモルフィック面にて形成されていることを特徴とする
偏心プリズム光学系。
[5] Any one of the above [1] to [4]
3. The decentered prism optical system according to claim 1, wherein said second surface is formed by an anamorphic surface.

【0088】〔6〕 上記〔5〕記載の偏心プリズム光
学系において、前記アナモルフィック面の有する2つの
対称面の中、少なくとも1つの対称面内に前記第1面の
回転対称面の回転対称軸が位置するように、前記第1面
と前記第2面とが配置されていることを特徴とする偏心
プリズム光学系。
[6] In the decentered prism optical system according to the above [5], the rotational symmetry of the rotational symmetry plane of the first surface is included in at least one symmetry plane among the two symmetry planes of the anamorphic surface. The decentered prism optical system, wherein the first surface and the second surface are arranged so that an axis is positioned.

【0089】〔7〕 上記〔1〕から〔4〕の何れか1
項記載の偏心プリズム光学系において、前記第2面が対
称面を1つのみ有する回転非対称面にて形成されている
ことを特徴とする偏心プリズム光学系。
[7] Any one of the above [1] to [4]
3. The decentered prism optical system according to claim 1, wherein the second surface is formed by a rotationally asymmetric surface having only one symmetric surface.

【0090】〔8〕 上記〔7〕記載の偏心プリズム光
学系において、前記の対称面を1つのみ有する回転非対
称面の対称面内に前記第1面の回転対称面の回転対称軸
が位置するように、前記第1面と前記第2面とが配置さ
れていることを特徴とする偏心プリズム光学系。
[8] In the decentered prism optical system according to the above [7], the rotation symmetry axis of the first surface is located within the symmetry plane of the rotation asymmetric surface having only one symmetry plane. The decentered prism optical system, wherein the first surface and the second surface are arranged as described above.

【0091】[0091]

〔9〕 上記〔1〕から〔8〕の何れか1
項記載の偏心プリズム光学系において、前記第3面から
光束が入射し、その入射した光束が前記光学系内部を通
過して前記第1面で反射され、その第1面で反射された
光束が前記第2面で反射され、その第2面で反射された
光束が前記第1面から射出するように、前記第1面と前
記第2面と前記第3面とが配置されていることを特徴と
する偏心プリズム光学系。
[9] Any one of the above [1] to [8]
In the decentered prism optical system according to the item, a light beam enters from the third surface, the incident light beam passes through the inside of the optical system, is reflected by the first surface, and a light beam reflected by the first surface is The first surface, the second surface, and the third surface are arranged such that the light beam reflected by the second surface and the light beam reflected by the second surface exits from the first surface. A decentered prism optical system.

【0092】〔10〕 上記[10] The above

〔9〕記載の偏心プリズム
光学系において、前記第3面は画像を表示する手段から
の光束が入射する位置に配置されると共に、前記第1面
は前記第1面から射出された光束が観察者眼球に導かれ
るような位置に配置され、前記光束の形成する画像を観
察できるようにした画像観察装置用に用いられることを
特徴とする偏心プリズム光学系。
[9] In the eccentric prism optical system according to [9], the third surface is arranged at a position where a light beam from a means for displaying an image is incident, and the first surface is used for observing a light beam emitted from the first surface. An eccentric prism optical system which is arranged at a position where it is guided to a subject's eyeball and is used for an image observation device which enables an image formed by the light beam to be observed.

【0093】〔11〕 上記〔1〕から〔8〕の何れか
1項記載の偏心プリズム光学系において、前記第1面か
ら光束が入射し、その入射した光束が前記第2面で反射
され、その第2面で反射された光束が前記第1面で反射
され、その第1面で反射された光束が前記光学系内部を
通過して前記第3面から射出するように、前記第1面と
前記第2面と前記第3面とが配置されていることを特徴
とする偏心プリズム光学系。
[11] In the eccentric prism optical system according to any one of [1] to [8], a light beam enters from the first surface, and the incident light beam is reflected by the second surface. The first surface such that the light beam reflected by the second surface is reflected by the first surface, and the light beam reflected by the first surface passes through the inside of the optical system and exits from the third surface. A decentered prism optical system, wherein the second surface and the third surface are arranged.

【0094】〔12〕 上記〔11〕記載の偏心プリズ
ム光学系において、前記第1面は物体からの光束が入射
する位置に配置されると共に、前記第3面は前記第3面
から射出された光束が観察者眼球に導かれるような位置
に配置され、前記光束の形成する画像を観察できるよう
にした画像観察装置用に用いられることを特徴とする偏
心プリズム光学系。
[12] In the eccentric prism optical system according to the above [11], the first surface is arranged at a position where a light beam from an object is incident, and the third surface is emitted from the third surface. An eccentric prism optical system, which is used for an image observing device which is arranged at a position where a light beam is guided to an observer's eyeball and enables observation of an image formed by the light beam.

【0095】〔13〕 上記〔11〕記載の偏心プリズ
ム光学系において、前記第1面は物体からの光束が入射
する位置に配置されると共に、前記第3面は前記第3面
から射出された光束が物体像を受光する手段に導かれる
ような位置に配置され、前記光束の形成する物体像を撮
影できるようにした撮影光学装置用に用いられることを
特徴とする偏心プリズム光学系。
[13] In the decentered prism optical system according to the above [11], the first surface is arranged at a position where a light beam from an object is incident, and the third surface is emitted from the third surface. An eccentric prism optical system, which is used for a photographing optical device which is arranged at a position where a light beam is guided to a means for receiving an object image and which can photograph an object image formed by the light beam.

【0096】〔14〕 上記〔1〕から〔8〕の何れか
1項記載の偏心プリズム光学系において、前記偏心プリ
ズム光学系の瞳の中心を通り、像面中心に到達する軸上
主光線が瞳を射出し前記第1面に交差するまでの直線に
よって定義される軸をZ軸とし、このZ軸と直交しかつ
前記偏心プリズム光学系を構成する各面の偏心面内の軸
をY軸と定義し、Z軸と直交しかつY軸と直交する軸を
X軸と定義するとき、次に条件を満足することを特徴と
する偏心プリズム光学系。 0.7<FA<1.3 ・・・(A−1) ただし、前記軸上主光線と平行に瞳中心からX軸方向に
微小量Hの点を通り、その軸上主光線と平行に前記光学
系に入射する光線を光線追跡したときの射出光線のNA
(軸上主光線となす角のsinの値)を前記Hで割った
値を光学系全体のX方向の焦点距離Fxとし、また、瞳
中心からY方向にHの点を通り、その軸上主光線と平行
に前記光学系に入射する光線を光線追跡したときの射出
光線のNA(軸上主光線となす角のsinの値)を前記
Hで割った値を光学系全体のY方向の焦点距離Fyと定
義し、Fx/FyをFAとする。
[14] In the decentered prism optical system according to any one of the above [1] to [8], an axial principal ray passing through the center of a pupil of the decentered prism optical system and reaching the center of an image plane is formed. An axis defined by a straight line from the exit of the pupil to the intersection with the first surface is defined as a Z axis, and an axis perpendicular to the Z axis and within an eccentric plane of each surface constituting the eccentric prism optical system is defined as a Y axis. And an axis orthogonal to the Z axis and orthogonal to the Y axis is defined as an X axis, wherein the following condition is satisfied. 0.7 <FA <1.3 (A-1) However, the light passes through a point of a small amount H in the X-axis direction from the pupil center in parallel with the axial principal ray and in parallel with the axial principal ray. NA of an emitted light ray when a light ray incident on the optical system is traced.
The value obtained by dividing (the value of the sine of the angle formed by the on-axis principal ray) by the above H is defined as the focal length Fx of the entire optical system in the X direction. The value obtained by dividing the NA of the exit ray (the value of the sin of the angle formed with the axial principal ray) when the ray incident on the optical system in parallel with the principal ray by the ray tracing is divided by the H is used in the Y direction of the entire optical system. The focal length is defined as Fy, and Fx / Fy is defined as FA.

【0097】〔15〕 上記〔1〕から〔8〕、〔1
4〕の何れか1項記載の偏心プリズム光学系において、
前記偏心プリズム光学系の瞳の中心を通り、像面中心に
到達する軸上主光線が瞳を射出し前記第1面に交差する
までの直線によって定義される軸をZ軸とし、このZ軸
と直交しかつ前記偏心プリズム光学系を構成する各面の
偏心面内の軸をY軸と定義し、Z軸と直交しかつY軸と
直交する軸をX軸と定義するとき、次に条件を満足する
ことを特徴とする偏心プリズム光学系。 0.8<|PxB|<1.3 ・・・(B−1) ただし、前記軸上主光線と平行に瞳中心からX軸方向に
微小量Hの点を通り、その軸上主光線と平行に前記光学
系に入射する光線を光線追跡したときの射出光線のNA
(軸上主光線となす角のsinの値)を前記Hで割った
値を光学系全体のX方向の焦点距離Fxとし、また、瞳
中心からY方向にHの点を通り、その軸上主光線と平行
に前記光学系に入射する光線を光線追跡したときの射出
光線のNA(軸上主光線となす角のsinの値)を前記
Hで割った値を光学系全体のY方向の焦点距離Fyと定
義し、前記軸上主光線が前記第2面に当たる位置での面
のX方向、Y方向の屈折力(パワー)をそれぞれPx
n、Pynとし、前記X方向の焦点距離Fx、Y方向の
焦点距離Fyの逆数をそれぞれPx、Pyとし、Pxn
/PxをPxBとする。
[15] The above [1] to [8], [1]
4] The decentered prism optical system according to any one of
An axis defined by a straight line from the center of the pupil of the eccentric prism optical system to the axial principal ray reaching the center of the image plane exiting the pupil and intersecting the first surface is defined as a Z axis. When an axis perpendicular to the axis and within the eccentric plane of each surface constituting the eccentric prism optical system is defined as a Y axis, and an axis orthogonal to the Z axis and orthogonal to the Y axis is defined as an X axis, the following conditions are satisfied. An eccentric prism optical system characterized by satisfying the following. 0.8 <| PxB | <1.3 (B-1) However, the light passes through a point of a small amount H in the X-axis direction from the pupil center in parallel with the on-axis principal ray, and NA of the exit ray when the ray incident on the optical system is traced in parallel
The value obtained by dividing (the value of the sine of the angle formed by the on-axis principal ray) by the above H is defined as the focal length Fx of the entire optical system in the X direction. The value obtained by dividing the NA of the exit ray (the value of the sin of the angle formed with the axial principal ray) when the ray incident on the optical system in parallel with the principal ray by the ray tracing is divided by the H is used in the Y direction of the entire optical system. The focal length Fy is defined as the refractive power (power) in the X and Y directions of the surface at the position where the axial principal ray hits the second surface, respectively, Px
n and Pyn, and the reciprocals of the focal length Fx in the X direction and the focal length Fy in the Y direction are Px and Py, respectively, and Pxn
/ Px is set to PxB.

【0098】〔16〕 上記〔1〕から〔8〕、〔1
4〕の何れか1項記載の偏心プリズム光学系において、
前記偏心プリズム光学系の瞳の中心を通り、像面中心に
到達する軸上主光線が瞳を射出し前記第1面に交差する
までの直線によって定義される軸をZ軸とし、このZ軸
と直交しかつ前記偏心プリズム光学系を構成する各面の
偏心面内の軸をY軸と定義し、Z軸と直交しかつY軸と
直交する軸をX軸と定義するとき、次に条件を満足する
ことを特徴とする偏心プリズム光学系。 0.8<|PyC|<1.3 ・・・(C−1) ただし、前記軸上主光線と平行に瞳中心からX軸方向に
微小量Hの点を通り、その軸上主光線と平行に前記光学
系に入射する光線を光線追跡したときの射出光線のNA
(軸上主光線となす角のsinの値)を前記Hで割った
値を光学系全体のX方向の焦点距離Fxとし、また、瞳
中心からY方向にHの点を通り、その軸上主光線と平行
に前記光学系に入射する光線を光線追跡したときの射出
光線のNA(軸上主光線となす角のsinの値)を前記
Hで割った値を光学系全体のY方向の焦点距離Fyと定
義し、前記軸上主光線が前記第2面に当たる位置での面
のX方向、Y方向の屈折力(パワー)をそれぞれPx
n、Pynとし、前記X方向の焦点距離Fx、Y方向の
焦点距離Fyの逆数をそれぞれPx、Pyとし、Pyn
/PyをPyCとする。
[16] The above [1] to [8], [1]
4] The decentered prism optical system according to any one of
An axis defined by a straight line from the center of the pupil of the eccentric prism optical system to the axial principal ray reaching the center of the image plane exiting the pupil and intersecting the first surface is defined as a Z axis. When an axis perpendicular to the axis and within the eccentric plane of each surface constituting the eccentric prism optical system is defined as a Y axis, and an axis orthogonal to the Z axis and orthogonal to the Y axis is defined as an X axis, the following conditions are satisfied. An eccentric prism optical system characterized by satisfying the following. 0.8 <| PyC | <1.3 (C-1) However, the light passes through a point of a small amount H in the X-axis direction from the pupil center in parallel with the on-axis principal ray. NA of the exit ray when the ray incident on the optical system is traced in parallel
The value obtained by dividing (the value of the sine of the angle formed by the on-axis principal ray) by the above H is defined as the focal length Fx of the entire optical system in the X direction. The value obtained by dividing the NA of the exit ray (the value of the sin of the angle formed with the axial principal ray) when the ray incident on the optical system in parallel with the principal ray by the ray tracing is divided by the H is used in the Y direction of the entire optical system. The focal length Fy is defined as the refractive power (power) in the X and Y directions of the surface at the position where the axial principal ray hits the second surface, respectively, Px
n and Pyn, and the reciprocals of the focal length Fx in the X direction and the focal length Fy in the Y direction are Px and Py, respectively, and Pyn
/ Py is PyC.

【0099】〔17〕 上記〔1〕から〔8〕、〔1
4〕から〔16〕の何れか1項記載の偏心プリズム光学
系において、前記偏心プリズム光学系の瞳の中心を通
り、像面中心に到達する軸上主光線が瞳を射出し前記第
1面に交差するまでの直線によって定義される軸をZ軸
とし、このZ軸と直交しかつ前記偏心プリズム光学系を
構成する各面の偏心面内の軸をY軸と定義し、Z軸と直
交しかつY軸と直交する軸をX軸と定義するとき、次に
条件を満足することを特徴とする偏心プリズム光学系。 0.8<CxyD<1.2 ・・・(D−1) ただし、前記軸上主光線が前記第2面に当たる位置での
その面の法線を含むX方向の曲率Cx2、Y方向の曲率
Cy2との比Cx2/Cy2をCxyDとする。
[17] The above [1] to [8], [1]
The decentered prism optical system according to any one of [4] to [16], wherein an axial principal ray passing through the center of the pupil of the decentered prism optical system and reaching the center of the image plane exits the pupil and the first surface An axis defined by a straight line that intersects with the axis is defined as a Z-axis, an axis orthogonal to the Z-axis and within the eccentric plane of each surface constituting the eccentric prism optical system is defined as a Y-axis, and orthogonal to the Z-axis. And an axis orthogonal to the Y axis is defined as an X axis, wherein the following condition is satisfied. 0.8 <CxyD <1.2 (D-1) Here, the curvature Cx2 in the X direction including the normal of the surface at the position where the axial principal ray hits the second surface, and the curvature in the Y direction The ratio Cx2 / Cy2 to Cy2 is defined as CxyD.

【0100】〔18〕 上記〔1〕から〔8〕、〔1
4〕から〔17〕の何れか1項記載の偏心プリズム光学
系において、前記偏心プリズム光学系の瞳の中心を通
り、像面中心に到達する軸上主光線が瞳を射出し前記第
1面に交差するまでの直線によって定義される軸をZ軸
とし、このZ軸と直交しかつ前記偏心プリズム光学系を
構成する各面の偏心面内の軸をY軸と定義し、Z軸と直
交しかつY軸と直交する軸をX軸と定義するとき、次に
条件を満足することを特徴とする偏心プリズム光学系。 −0.05<CxMinE (1/mm) ・・・(E−1) CxMaxE<0.05 (1/mm) ・・・(E−1') ただし、前記軸上主光線と平行に瞳中心からX軸方向に
微小量Hの点を通り、その軸上主光線と平行に前記光学
系に入射する光線を光線追跡したときの射出光線のNA
(軸上主光線となす角のsinの値)を前記Hで割った
値を光学系全体のX方向の焦点距離Fxとし、また、瞳
中心からY方向にHの点を通り、その軸上主光線と平行
に前記光学系に入射する光線を光線追跡したときの射出
光線のNA(軸上主光線となす角のsinの値)を前記
Hで割った値を光学系全体のY方向の焦点距離Fyと定
義し、前記X方向の焦点距離Fx、Y方向の焦点距離F
yの逆数をそれぞれPx、Pyとし、かつ、前記軸上主
光線が前記第2面に当たる位置でのその面の法線を含む
X方向の曲率Cx2、Y方向の曲率Cy2とし、X方向
画角ゼロでY正方向最大画角を通る主光線、X方向画角
ゼロでY負方向最大画角を通る主光線、X方向最大画角
でY正方向最大画角を通る主光線、X方向最大画角でY
方向画角ゼロを通る主光線、X方向最大画角でY負方向
最大画角を通る主光線が前記第2面と当たる有効領域の
X方向の曲率Cxn、Y方向の曲率Cynとし、(Cx
n−Cx2)/Pxの中、最大のものをCxMaxE、
最小のものをCxMinE、(Cyn−Cy2)/Py
の中、最大のものをCyMaxF、最小のものをCyM
inFとする。
[18] [1] to [8], [1]
In the decentered prism optical system according to any one of [4] to [17], an axial principal ray passing through the center of a pupil of the decentered prism optical system and reaching the center of an image plane exits the pupil, and the first surface An axis defined by a straight line that intersects with the axis is defined as a Z-axis, an axis orthogonal to the Z-axis and within the eccentric plane of each surface constituting the eccentric prism optical system is defined as a Y-axis, and orthogonal to the Z-axis. And an axis orthogonal to the Y axis is defined as an X axis, wherein the following condition is satisfied. −0.05 <CxMinE (1 / mm) (E-1) CxMaxE <0.05 (1 / mm) (E-1 ′) However, the pupil center is parallel to the axial principal ray. Of the exit ray when a ray passing through the point of the minute amount H in the X-axis direction and entering the optical system in parallel with the axial principal ray is traced.
The value obtained by dividing (the value of the sine of the angle formed by the on-axis principal ray) by the above H is defined as the focal length Fx of the entire optical system in the X direction. The value obtained by dividing the NA of the exit ray (the value of the sin of the angle formed with the axial principal ray) when the ray incident on the optical system in parallel with the principal ray by the ray tracing is divided by the H is used in the Y direction of the entire optical system. The focal length Fy is defined as the focal length Fx in the X direction and the focal length F in the Y direction.
The reciprocals of y are Px and Py, respectively, and a curvature Cx2 in the X direction and a curvature Cy2 in the Y direction including the normal to the second surface at the position where the axial principal ray hits the second surface, and the angle of view in the X direction A chief ray passing through the maximum Y positive direction view angle at zero, a chief ray passing through the Y negative direction maximum view angle at zero X direction view angle, a principal ray passing through the Y positive direction maximum view angle at the X direction maximum view angle, and the X direction maximum. Y at angle of view
A principal ray passing through the zero direction angle of view, a principal ray passing through the maximum negative angle of view in the X direction at the maximum angle of view in the X direction, and a curvature Cxn in the X direction and a curvature Cyn in the Y direction of the effective area corresponding to the second surface, (Cx
n-Cx2) / Px, the largest one is CxMaxE,
The smallest one is CxMinE, (Cyn-Cy2) / Py
Among them, the largest one is CyMaxF and the smallest one is CyM
inF.

【0101】〔19〕 上記〔1〕から〔8〕、〔1
4〕から〔17〕の何れか1項記載の偏心プリズム光学
系において、前記偏心プリズム光学系の瞳の中心を通
り、像面中心に到達する軸上主光線が瞳を射出し前記第
1面に交差するまでの直線によって定義される軸をZ軸
とし、このZ軸と直交しかつ前記偏心プリズム光学系を
構成する各面の偏心面内の軸をY軸と定義し、Z軸と直
交しかつY軸と直交する軸をX軸と定義するとき、次に
条件を満足することを特徴とする偏心プリズム光学系。 −0.1<CyMinF (1/mm) ・・・(F−1) CyMaxF<0.05 (1/mm) ・・・(F−1') ただし、前記軸上主光線と平行に瞳中心からX軸方向に
微小量Hの点を通り、その軸上主光線と平行に前記光学
系に入射する光線を光線追跡したときの射出光線のNA
(軸上主光線となす角のsinの値)を前記Hで割った
値を光学系全体のX方向の焦点距離Fxとし、また、瞳
中心からY方向にHの点を通り、その軸上主光線と平行
に前記光学系に入射する光線を光線追跡したときの射出
光線のNA(軸上主光線となす角のsinの値)を前記
Hで割った値を光学系全体のY方向の焦点距離Fyと定
義し、前記X方向の焦点距離Fx、Y方向の焦点距離F
yの逆数をそれぞれPx、Pyとし、かつ、前記軸上主
光線が前記第2面に当たる位置でのその面の法線を含む
X方向の曲率Cx2、Y方向の曲率Cy2とし、X方向
画角ゼロでY正方向最大画角を通る主光線、X方向画角
ゼロでY負方向最大画角を通る主光線、X方向最大画角
でY正方向最大画角を通る主光線、X方向最大画角でY
方向画角ゼロを通る主光線、X方向最大画角でY負方向
最大画角を通る主光線が前記第2面と当たる有効領域の
X方向の曲率Cxn、Y方向の曲率Cynとし、(Cx
n−Cx2)/Pxの中、最大のものをCxMaxE、
最小のものをCxMinE、(Cyn−Cy2)/Py
の中、最大のものをCyMaxF、最小のものをCyM
inFとする。
[19] The above [1] to [8], [1]
In the decentered prism optical system according to any one of [4] to [17], an axial principal ray passing through the center of a pupil of the decentered prism optical system and reaching the center of an image plane exits the pupil, and the first surface An axis defined by a straight line that intersects with the axis is defined as a Z-axis, an axis orthogonal to the Z-axis and within the eccentric plane of each surface constituting the eccentric prism optical system is defined as a Y-axis, and orthogonal to the Z-axis. And an axis orthogonal to the Y axis is defined as an X axis, wherein the following condition is satisfied. −0.1 <CyMinF (1 / mm) (F-1) CyMaxF <0.05 (1 / mm) (F-1 ′) However, the pupil center is parallel to the axial principal ray. Of the exit ray when a ray passing through the point of the minute amount H in the X-axis direction and entering the optical system in parallel with the axial principal ray is traced.
The value obtained by dividing (the value of the sine of the angle formed by the on-axis principal ray) by the above H is defined as the focal length Fx of the entire optical system in the X direction. The value obtained by dividing the NA of the exit ray (the value of the sin of the angle formed with the axial principal ray) when the ray incident on the optical system in parallel with the principal ray by the ray tracing is divided by the H is used in the Y direction of the entire optical system. The focal length Fy is defined as the focal length Fx in the X direction and the focal length F in the Y direction.
The reciprocals of y are Px and Py, respectively, and a curvature Cx2 in the X direction and a curvature Cy2 in the Y direction including the normal to the second surface at the position where the axial principal ray hits the second surface, and the angle of view in the X direction A chief ray passing through the maximum Y positive direction view angle at zero, a chief ray passing through the Y negative direction maximum view angle at zero X direction view angle, a principal ray passing through the Y positive direction maximum view angle at the X direction maximum view angle, and the X direction maximum. Y at angle of view
A principal ray passing through the zero direction angle of view, a principal ray passing through the maximum negative angle of view in the X direction at the maximum angle of view in the X direction, and a curvature Cxn in the X direction and a curvature Cyn in the Y direction of the effective area corresponding to the second surface, (Cx
n-Cx2) / Px, the largest one is CxMaxE,
The smallest one is CxMinE, (Cyn-Cy2) / Py
Among them, the largest one is CyMaxF and the smallest one is CyM
inF.

【0102】〔20〕 上記〔1〕から〔8〕、〔1
4〕から〔19〕の何れか1項記載の偏心プリズム光学
系において、前記偏心プリズム光学系の瞳の中心を通
り、像面中心に到達する軸上主光線が瞳を射出し前記第
1面に交差するまでの直線によって定義される軸をZ軸
とし、このZ軸と直交しかつ前記偏心プリズム光学系を
構成する各面の偏心面内の軸をY軸と定義し、Z軸と直
交しかつY軸と直交する軸をX軸と定義するとき、次に
条件を満足することを特徴とする偏心プリズム光学系。 −0.05<CyG<0.5 ・・・(G−1) ただし、前記軸上主光線と平行に瞳中心からX軸方向に
微小量Hの点を通り、その軸上主光線と平行に前記光学
系に入射する光線を光線追跡したときの射出光線のNA
(軸上主光線となす角のsinの値)を前記Hで割った
値を光学系全体のX方向の焦点距離Fxとし、また、瞳
中心からY方向にHの点を通り、その軸上主光線と平行
に前記光学系に入射する光線を光線追跡したときの射出
光線のNA(軸上主光線となす角のsinの値)を前記
Hで割った値を光学系全体のY方向の焦点距離Fyと定
義し、前記X方向の焦点距離Fx、Y方向の焦点距離F
yの逆数をそれぞれPx、Pyとし、X方向画角ゼロで
Y正方向最大画角を通る主光線が前記第2面と当たる有
効領域のY方向の曲率Cy1と、X方向画角ゼロでY負
方向最大画角を通る主光線が前記第2面と当たる有効領
域のY方向の曲率Cy3との差Cy1−Cy3を前記P
yで割ったものをCyGとする。
[20] The above [1] to [8], [1]
In the eccentric prism optical system according to any one of [4] to [19], an axial principal ray passing through the center of a pupil of the eccentric prism optical system and reaching the center of an image plane exits the pupil, and the first surface An axis defined by a straight line that intersects with the axis is defined as a Z-axis, an axis orthogonal to the Z-axis and within the eccentric plane of each surface constituting the eccentric prism optical system is defined as a Y-axis, and orthogonal to the Z-axis. And an axis orthogonal to the Y axis is defined as an X axis, wherein the following condition is satisfied. −0.05 <CyG <0.5 (G-1) However, the light passes through a point of a small amount H in the X-axis direction from the center of the pupil in parallel with the axial principal ray, and is parallel to the axial principal ray. The NA of the exit ray when the ray incident on the optical system is traced
The value obtained by dividing (the value of the sine of the angle formed by the on-axis principal ray) by the above H is defined as the focal length Fx of the entire optical system in the X direction. The value obtained by dividing the NA of the exit ray (the value of the sin of the angle formed with the axial principal ray) when the ray incident on the optical system in parallel with the principal ray by the ray tracing is divided by the H is used in the Y direction of the entire optical system. The focal length Fy is defined as the focal length Fx in the X direction and the focal length F in the Y direction.
Let Px and Py be the reciprocals of y, respectively, the curvature Cy1 in the Y direction of the effective area where the principal ray passing through the maximum field angle in the positive Y direction at the angle of view in the X direction and the second surface, and Y at the field angle of zero in the X direction. The difference Cy1-Cy3 from the curvature Cy3 in the Y direction of the effective area where the principal ray passing through the maximum angle of view in the negative direction hits the second surface is defined as P
The value obtained by dividing by y is CyG.

【0103】〔21〕 上記〔1〕から〔8〕、〔1
4〕から〔20〕の何れか1項記載の偏心プリズム光学
系において、前記偏心プリズム光学系の瞳の中心を通
り、像面中心に到達する軸上主光線が瞳を射出し前記第
1面に交差するまでの直線によって定義される軸をZ軸
とし、このZ軸と直交しかつ前記偏心プリズム光学系を
構成する各面の偏心面内の軸をY軸と定義し、Z軸と直
交しかつY軸と直交する軸をX軸と定義するとき、次に
条件を満足することを特徴とする偏心プリズム光学系。 −0.01<CxH<0.1 ・・・(H−1) ただし、前記軸上主光線と平行に瞳中心からX軸方向に
微小量Hの点を通り、その軸上主光線と平行に前記光学
系に入射する光線を光線追跡したときの射出光線のNA
(軸上主光線となす角のsinの値)を前記Hで割った
値を光学系全体のX方向の焦点距離Fxとし、また、瞳
中心からY方向にHの点を通り、その軸上主光線と平行
に前記光学系に入射する光線を光線追跡したときの射出
光線のNA(軸上主光線となす角のsinの値)を前記
Hで割った値を光学系全体のY方向の焦点距離Fyと定
義し、前記X方向の焦点距離Fx、Y方向の焦点距離F
yの逆数をそれぞれPx、Pyとし、X方向画角ゼロで
Y正方向最大画角を通る主光線が前記第2面と当たる有
効領域のX方向の曲率Cx1と、X方向画角ゼロでY負
方向最大画角を通る主光線が前記第2面と当たる有効領
域のX方向の曲率Cx3との差Cx1−Cx3を前記P
xで割ったものをCxHとする。
[21] The above [1] to [8], [1]
4] In the eccentric prism optical system according to any one of [20], an axial principal ray passing through the center of the pupil of the eccentric prism optical system and reaching the center of the image plane exits the pupil and the first surface. An axis defined by a straight line that intersects with the axis is defined as a Z-axis, an axis orthogonal to the Z-axis and within the eccentric plane of each surface constituting the eccentric prism optical system is defined as a Y-axis, and orthogonal to the Z-axis. And an axis orthogonal to the Y axis is defined as an X axis, wherein the following condition is satisfied. −0.01 <CxH <0.1 (H-1) However, the light passes through a point of a small amount H in the X-axis direction from the pupil center in parallel with the axial principal ray, and is parallel to the axial principal ray. The NA of the exit ray when the ray incident on the optical system is traced
The value obtained by dividing (the value of the sine of the angle formed by the on-axis principal ray) by the above H is defined as the focal length Fx of the entire optical system in the X direction. The value obtained by dividing the NA of the exit ray (the value of the sin of the angle formed with the axial principal ray) when the ray incident on the optical system in parallel with the principal ray by the ray tracing is divided by the H is used in the Y direction of the entire optical system. The focal length Fy is defined as the focal length Fx in the X direction and the focal length F in the Y direction.
The reciprocals of y are Px and Py, respectively. The curvature Cx1 in the X direction of the effective area where the principal ray passing through the maximum field angle in the Y positive direction at the angle of view in the X direction is zero and the Y angle at the field angle in the X direction is zero. The difference Cx1-Cx3 between the effective area where the principal ray passing through the maximum angle of view in the negative direction hits the second surface and the curvature Cx3 in the X direction is defined as P
The value obtained by dividing x is CxH.

【0104】〔22〕 上記〔1〕から〔8〕、〔1
4〕から〔21〕の何れか1項記載の偏心プリズム光学
系において、前記偏心プリズム光学系の瞳の中心を通
り、像面中心に到達する軸上主光線が瞳を射出し前記第
1面に交差するまでの直線によって定義される軸をZ軸
とし、このZ軸と直交しかつ前記偏心プリズム光学系を
構成する各面の偏心面内の軸をY軸と定義し、Z軸と直
交しかつY軸と直交する軸をX軸と定義するとき、次に
条件を満足することを特徴とする偏心プリズム光学系。 0<CyI<5 ・・・(I−1) ただし、前記軸上主光線と平行に瞳中心からX軸方向に
微小量Hの点を通り、その軸上主光線と平行に前記光学
系に入射する光線を光線追跡したときの射出光線のNA
(軸上主光線となす角のsinの値)を前記Hで割った
値を光学系全体のX方向の焦点距離Fxとし、また、瞳
中心からY方向にHの点を通り、その軸上主光線と平行
に前記光学系に入射する光線を光線追跡したときの射出
光線のNA(軸上主光線となす角のsinの値)を前記
Hで割った値を光学系全体のY方向の焦点距離Fyと定
義し、前記X方向の焦点距離Fx、Y方向の焦点距離F
yの逆数をそれぞれPx、Pyとし、X方向画角ゼロで
Y正方向最大画角を通る主光線が前記第3面と当たる有
効領域のY方向の曲率Cy1と、X方向画角ゼロでY負
方向最大画角を通る主光線が前記第3面と当たる有効領
域のY方向の曲率Cy3との差Cy1−Cy3を前記P
yで割ったものをCyIとする。
[22] The above [1] to [8], [1]
[4] In the decentered prism optical system according to any one of [21] to [21], an axial principal ray passing through the center of the pupil of the decentered prism optical system and reaching the center of the image plane exits the pupil, and the first surface An axis defined by a straight line that intersects with the axis is defined as a Z-axis, an axis orthogonal to the Z-axis and within the eccentric plane of each surface constituting the eccentric prism optical system is defined as a Y-axis, and orthogonal to the Z-axis. And an axis orthogonal to the Y axis is defined as an X axis, wherein the following condition is satisfied. 0 <CyI <5 (I-1) However, the light passes through a point of a minute amount H in the X-axis direction from the pupil center in parallel with the axial principal ray, and enters the optical system in parallel with the axial principal ray. NA of exit ray when ray tracing the incident ray
The value obtained by dividing (the value of the sine of the angle formed by the on-axis principal ray) by the above H is defined as the focal length Fx of the entire optical system in the X direction. The value obtained by dividing the NA of the exit ray (the value of the sin of the angle formed with the axial principal ray) when the ray incident on the optical system in parallel with the principal ray by the ray tracing is divided by the H is used in the Y direction of the entire optical system. The focal length Fy is defined as the focal length Fx in the X direction and the focal length F in the Y direction.
Let Px and Py be the reciprocals of y, respectively, the curvature Cy1 in the Y direction of the effective area in which the principal ray passing through the maximum field angle in the positive Y direction at the angle of view in the X direction and the third surface, and Y at the angle of view in the X direction are zero. The difference Cy1-Cy3 from the curvature Cy3 in the Y direction of the effective area where the principal ray passing through the maximum angle of view in the negative direction hits the third surface is defined as P
The value obtained by dividing y is referred to as CyI.

【0105】〔23〕 上記〔1〕から〔8〕、〔1
4〕から〔22〕の何れか1項記載の偏心プリズム光学
系において、前記偏心プリズム光学系の瞳の中心を通
り、像面中心に到達する軸上主光線が瞳を射出し前記第
1面に交差するまでの直線によって定義される軸をZ軸
とし、このZ軸と直交しかつ前記偏心プリズム光学系を
構成する各面の偏心面内の軸をY軸と定義し、Z軸と直
交しかつY軸と直交する軸をX軸と定義するとき、次に
条件を満足することを特徴とする偏心プリズム光学系。 0<CxJ<1 ・・・(J−1) ただし、前記軸上主光線と平行に瞳中心からX軸方向に
微小量Hの点を通り、その軸上主光線と平行に前記光学
系に入射する光線を光線追跡したときの射出光線のNA
(軸上主光線となす角のsinの値)を前記Hで割った
値を光学系全体のX方向の焦点距離Fxとし、また、瞳
中心からY方向にHの点を通り、その軸上主光線と平行
に前記光学系に入射する光線を光線追跡したときの射出
光線のNA(軸上主光線となす角のsinの値)を前記
Hで割った値を光学系全体のY方向の焦点距離Fyと定
義し、前記X方向の焦点距離Fx、Y方向の焦点距離F
yの逆数をそれぞれPx、Pyとし、X方向画角ゼロで
Y正方向最大画角を通る主光線が前記第3面と当たる有
効領域のX方向の曲率Cx1と、X方向画角ゼロでY負
方向最大画角を通る主光線が前記第3面と当たる有効領
域のX方向の曲率Cx3との差Cx1−Cx3を前記P
xで割ったものをCxJとする。
[23] [1] to [8], [1]
4] In the eccentric prism optical system according to any one of [22], an axial principal ray passing through the center of the pupil of the eccentric prism optical system and reaching the center of the image plane exits the pupil, and the first surface An axis defined by a straight line that intersects with the axis is defined as a Z-axis, an axis orthogonal to the Z-axis and within the eccentric plane of each surface constituting the eccentric prism optical system is defined as a Y-axis, and orthogonal to the Z-axis. And an axis orthogonal to the Y axis is defined as an X axis, wherein the following condition is satisfied. 0 <CxJ <1 (J-1) However, the light passes through a point of a small amount H in the X-axis direction from the pupil center in parallel with the axial principal ray, and passes through the optical system in parallel with the axial principal ray. NA of exit ray when ray tracing the incident ray
The value obtained by dividing (the value of the sine of the angle formed by the on-axis principal ray) by the above H is defined as the focal length Fx of the entire optical system in the X direction. The value obtained by dividing the NA of the exit ray (the value of the sin of the angle formed with the axial principal ray) when the ray incident on the optical system in parallel with the principal ray by the ray tracing is divided by the H is used in the Y direction of the entire optical system. The focal length Fy is defined as the focal length Fx in the X direction and the focal length F in the Y direction.
Let Px and Py be the reciprocals of y, respectively, the curvature Cx1 in the X direction of the effective area where the principal ray passing through the maximum field angle in the Y positive direction at the angle of view in the X direction is zero and the angle of view in the X direction is zero. The difference Cx1-Cx3 from the curvature Cx3 in the X direction of the effective area in which the principal ray passing through the maximum angle of view in the negative direction hits the third surface is represented by P
The value divided by x is defined as CxJ.

【0106】〔24〕 少なくとも3つの面が互いに偏
心して配置され、その間を屈折率が1.3以上の透明媒
質で埋めた構成で、像面から射出された光束を受光して
射出瞳を形成する偏心プリズム光学系において、前記光
学系が、少なくとも、前記光学系に入射した光束を射出
させる透過作用と前記光学系内部で前記光束を折り曲げ
る反射作用とを併せ持つ回転対称面で形成された第1面
と、前記第1面と対向して配置され前記光学系に入射し
光束を前記光学系内部で前記第1面に向けて反射させる
作用を有する回転非対称面で形成された第2面と、前記
像面に対して面を対向するように配置し前記像面から射
出した光束を前記光学系内部に入射させる作用を有する
第3面とを有し、前記第3面は、前記第1面と前記第2
面との対向方向に対して略垂直方向の位置に配置され、
前記第1面は、前記第2面の方向に凸面を向けた形状で
構成され、少なくとも前記第3面から入射した光束は前
記光学系内部を通過して前記第1面で反射され、前記第
1面で反射された光束は前記光学系内部を通過して前記
第2面で反射され、前記第2面で反射された光束は前記
第2面と対向する第1面から射出瞳に向けて射出される
ように、前記第1面と前記第2面と前記第3面とが前記
光学系を構成する面として配置され、さらに、光線の折
り返し方向であるY−Z断面内で、前記光学系の像面の
中心を通り射出瞳中心に到達する軸上主光線が前記第1
面を射出して前記射出瞳に入射するまでの直線を境にし
て、その直線に沿う方向の前記射出瞳からの前記第1面
までの距離が、前記像面側の方が前記像面と反対側より
小さくなるように、前記第1面が前記直線に対して傾い
て配置されていることを特徴とする偏心プリズム光学
系。
[24] At least three surfaces are arranged eccentrically to each other, and a space between them is filled with a transparent medium having a refractive index of 1.3 or more, and a light beam emitted from the image surface is received to form an exit pupil. In the decentered prism optical system, the first optical system is formed of a rotationally symmetric surface having at least a transmission function of emitting a light beam incident on the optical system and a reflection function of bending the light beam inside the optical system. A second surface formed of a rotationally asymmetric surface that is disposed to face the first surface and that has a function of entering the optical system and reflecting a light beam inside the optical system toward the first surface; A third surface arranged so that the surface faces the image surface, and having a function of causing a light beam emitted from the image surface to enter the inside of the optical system, wherein the third surface is the first surface And the second
It is arranged at a position substantially perpendicular to the direction facing the surface,
The first surface has a shape with a convex surface directed in the direction of the second surface, and at least a light beam incident from the third surface passes through the inside of the optical system, is reflected by the first surface, and The light beam reflected by one surface passes through the inside of the optical system and is reflected by the second surface, and the light beam reflected by the second surface is directed from the first surface facing the second surface to the exit pupil. The first surface, the second surface, and the third surface are arranged as surfaces constituting the optical system so that the light is emitted. The axial chief ray passing through the center of the image plane of the system and reaching the center of the exit pupil is the first principal ray.
With a straight line extending from the exit pupil in a direction along the straight line extending from the exit pupil to entering the exit pupil, the distance from the exit pupil to the first surface in the direction along the straight line is closer to the image plane than to the image plane. The decentered prism optical system, wherein the first surface is arranged to be inclined with respect to the straight line so as to be smaller than the opposite side.

【0107】〔25〕 少なくとも3つの面が互いに偏
心して配置され、その間を屈折率が1.3以上の透明媒
質で埋めた構成で、瞳面から入射した光束を受光して像
面を形成する偏心プリズム光学系において、前記光学系
が、少なくとも、前記瞳面に対して面を対向するように
配置され前記瞳面から射出した光束を前記光学系内部に
入射させる透過作用と前記光学系内部で前記光束を折り
曲げる反射作用とを併せ持つ回転対称面で形成された第
1面と、前記第1面と対向して配置され前記光学系に入
射し光束を前記光学系内部で前記第1面に向けて反射さ
せる作用を有する回転非対称面で形成された第2面と、
前記第1面と前記第2面との対向方向に対して略垂直方
向の位置に配置され前記光学系に入射した光束を前記像
面に向けて射出させる透過作用を有する第3面とを有
し、前記第1面は、前記第2面の方向に凸面を向けた形
状で構成され、少なくとも前記第1面から入射した光束
は前記第1面と対向する第2面で反射され、前記第2面
で反射された光束は前記第2面と対向する前記第1面で
反射され、前記第1面で反射された光束は前記光学系内
部を通過して前記第3面から像面に向けて射出されるよ
うに、前記第1面と前記第2面と前記第3面とが前記光
学系を構成する面として配置され、さらに、光線の折り
返し方向であるY−Z断面内で、前記光学系の瞳面の中
心を通り像面中心に到達する軸上主光線が瞳面を射出し
て前記第1面と交差するまでの直線を境にして、その直
線に沿う方向の前記瞳面からの前記第1面までの距離
が、前記像面側の方が前記像面と反対側より小さくなる
ように、前記第1面が前記直線に対して傾いて配置され
ていることを特徴とする偏心プリズム光学系。
[25] At least three planes are arranged eccentrically to each other, and a space between them is filled with a transparent medium having a refractive index of 1.3 or more, and a light beam incident from a pupil plane is received to form an image plane. In the decentered prism optical system, at least the optical system is disposed so that a surface thereof faces the pupil plane, and has a transmission function of causing a light flux emitted from the pupil plane to enter the interior of the optical system, and a transmission function of A first surface formed of a rotationally symmetric surface having a reflection function of bending the light beam, and a light beam incident on the optical system disposed opposite to the first surface and directed to the first surface inside the optical system; A second surface formed of a rotationally asymmetric surface having an action of reflecting
A third surface disposed at a position substantially perpendicular to a direction in which the first surface and the second surface face each other, and having a transmission function of emitting a light beam incident on the optical system toward the image surface; The first surface has a shape with a convex surface facing in the direction of the second surface, and at least a light beam incident from the first surface is reflected by a second surface facing the first surface, and The light beam reflected by the two surfaces is reflected by the first surface facing the second surface, and the light beam reflected by the first surface passes through the inside of the optical system and is directed from the third surface to the image surface. The first surface, the second surface, and the third surface are arranged as surfaces constituting the optical system, and further, in the YZ cross-section, which is a turning direction of light rays, An axial principal ray passing through the center of the pupil plane of the optical system and reaching the center of the image plane exits the pupil plane and intersects the first surface. The distance from the pupil plane to the first surface in a direction along the straight line until the image plane side is smaller than the opposite side to the image plane. An eccentric prism optical system, wherein one surface is arranged to be inclined with respect to the straight line.

【0108】[0108]

【発明の効果】以上の説明から明らかなように、本発明
によると、広い画角においても明瞭で歪みの少ない像を
得られる撮像光学系又は眼光学系に使用可能であって、
1つの有効領域の広い面が回転対称面により構成され、
製作時の評価が簡単に行える偏心プリズム光学系を提供
することができる。
As is apparent from the above description, according to the present invention, the present invention can be used in an imaging optical system or an eye optical system capable of obtaining an image with a clear and less distortion even at a wide angle of view.
A wide surface of one effective area is constituted by a rotationally symmetric surface,
An eccentric prism optical system that can be easily evaluated at the time of manufacture can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の偏心プリズム光学系を3面構成とした
ときの光路図である。
FIG. 1 is an optical path diagram when a decentered prism optical system according to the present invention has a three-plane configuration.

【図2】本発明の偏心プリズム光学系の別の構成を例示
するための光路図である。
FIG. 2 is an optical path diagram illustrating another configuration of the decentered prism optical system of the present invention.

【図3】本発明の実施例1の偏心プリズム光学系の断面
図である。
FIG. 3 is a cross-sectional view of the decentered prism optical system according to the first embodiment of the present invention.

【図4】本発明の実施例2の偏心プリズム光学系の断面
図である。
FIG. 4 is a sectional view of an eccentric prism optical system according to a second embodiment of the present invention.

【図5】本発明の実施例3の偏心プリズム光学系の断面
図である。
FIG. 5 is a sectional view of an eccentric prism optical system according to a third embodiment of the present invention.

【図6】本発明の実施例4の偏心プリズム光学系の断面
図である。
FIG. 6 is a sectional view of an eccentric prism optical system according to a fourth embodiment of the present invention.

【図7】実施例1の像歪みを表す収差図である。FIG. 7 is an aberration diagram illustrating image distortion of the first embodiment.

【図8】実施例2の像歪みを表す収差図である。FIG. 8 is an aberration diagram illustrating image distortion of the second embodiment.

【図9】実施例3の像歪みを表す収差図である。FIG. 9 is an aberration diagram illustrating image distortion of the third embodiment.

【図10】実施例4の像歪みを表す収差図である。FIG. 10 is an aberration diagram illustrating image distortion of the fourth embodiment.

【図11】実施例1の収差補正状態を表すスポットダイ
アグラムの一部の図である。
FIG. 11 is a partial diagram of a spot diagram showing an aberration correction state according to the first embodiment.

【図12】実施例1の収差補正状態を表すスポットダイ
アグラムの別の一部の図である。
FIG. 12 is another partial diagram of the spot diagram showing the aberration correction state in the first embodiment.

【図13】実施例1の収差補正状態を表すスポットダイ
アグラムの残りの部分の図である。
FIG. 13 is a diagram of the remaining part of the spot diagram representing the aberration correction state of the first embodiment.

【図14】本発明の偏心プリズム光学系を用いた頭部装
着型画像表示装置を観察者頭部に装着した状態を示す図
である。
FIG. 14 is a diagram showing a state in which a head-mounted image display device using the eccentric prism optical system of the present invention is mounted on the observer's head.

【図15】図14の頭部近傍の断面図である。15 is a sectional view of the vicinity of the head in FIG.

【図16】本発明の偏心プリズム光学系を用いたカメラ
の構成を示す斜視図である。
FIG. 16 is a perspective view showing a configuration of a camera using the decentered prism optical system of the present invention.

【図17】本発明の偏心プリズム光学系を用いた撮影光
学系の光路図である。
FIG. 17 is an optical path diagram of a photographing optical system using the decentered prism optical system of the present invention.

【図18】本発明の偏心プリズム光学系を用いたファイ
ンダー光学系の光路図である。
FIG. 18 is an optical path diagram of a finder optical system using the decentered prism optical system of the present invention.

【図19】内視鏡装置の全体の構成図である。FIG. 19 is an overall configuration diagram of the endoscope apparatus.

【図20】本発明の偏心プリズム光学系を用いた硬性型
内視鏡の先端部の断面図である。
FIG. 20 is a sectional view of a distal end portion of a rigid endoscope using the eccentric prism optical system of the present invention.

【符号の説明】[Explanation of symbols]

1…瞳 2…光軸 3…第1面 4…第2面 5…第3面 6…像面 7…偏心プリズム光学系 8…題4面 10…回転対称非球面の中心(面頂) 11…接線 12…回転中心軸 13…軸上主光線が内部反射する点 20…内視鏡 21…先端部 22…挿入部 23…基部 24…カメラ 25…モニター 26…ライトガイドケーブル 27…光源装置 30…内視鏡装置 31…偏心プリズム光学系 32…対物レンズ 33…ライトガイド 100…接眼光学系 101…画像表示素子 102…画像表示装置(表示装置本体) 103…側頭フレーム 104…スピーカ 105…映像音声伝達コード 106…再生装置 107…調節部 150…対物レンズ 151…前群 152…瞳位置 153…後群 154…フィルム 200…対物レンズ群 201…偏心プリズム光学系 202…ダハ面 203…ダハプリズム 204…接眼レンズ 205…観察者眼球 La…ファインダー光学系のの光軸 Lb…撮影光学系の光軸 DESCRIPTION OF SYMBOLS 1 ... Pupil 2 ... Optical axis 3 ... 1st surface 4 ... 2nd surface 5 ... 3rd surface 6 ... Image surface 7 ... Eccentric prism optical system 8 ... 4th subject 10 ... Center of rotationally symmetric aspherical surface (top surface) 11 ... Tangent line 12 ... Rotation center axis 13 ... Point where the axial chief ray is internally reflected 20 ... Endoscope 21 ... Tip 22 ... Insertion part 23 ... Base 24 ... Camera 25 ... Monitor 26 ... Light guide cable 27 ... Light source device 30 ... Endoscope device 31 ... Eccentric prism optical system 32 ... Objective lens 33 ... Light guide 100 ... Eyepiece optical system 101 ... Image display element 102 ... Image display device (display device main body) 103 ... Temporal frame 104 ... Speaker 105 ... Video Voice transmission code 106 playback device 107 adjustment unit 150 objective lens 151 front group 152 pupil position 153 rear group 154 film 200 objective lens group 201 eccentric prism Manabu system 202 ... roof surface 203 ... roof prism 204 ... eyepiece 205 ... observer's eyeball La ... optical axis Lb ... optical axis of the imaging optical system of the finder optical system

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも3つの面が互いに偏心して配
置され、その3つの面の間が屈折率が1.3以上の透明
媒質で埋められた構成の偏心プリズム光学系において、
前記光学系は少なくとも2回の内部反射を行うように、
前記3つの面の中の少なくとも2つの面を反射作用を有
する面で形成すると共に、前記の2つの反射作用を有す
る面によって反射された光線を前記光学系内部で折り返
すような位置に前記の2つの反射作用を有する面を配置
し、前記反射作用を有する2つの面の中、1つの面の形
状は面内及び面外共に回転対称軸を有さない回転非対称
面にて形成され、他の1つの面の少なくとも有効面(面
の全領域中で光束が透過及び/又は反射をする領域)の
形状が有効面内に回転対称軸を有する回転対称非球面に
て構成され、前記対称非球面が、前記光学系を通過する
光束を入射若しくは射出させる透過作用と前記光学系内
部で前記光束を折り曲げる反射作用とを併せ持つ第1面
として形成され、前記回転非対称面が前記第1面と対向
配置された第2面として形成され、さらに、前記光学系
を通過する光束を射出若しくは入射させる透過作用を有
する第3面が、前記第1面と前記第2面との対向方向に
対して略垂直方向の位置に配置され、かつ、前記第1面
が前記第2面の方向に凸面を向けた形状に構成され、以
下の条件を満足することを特徴とする偏心プリズム光学
系。 5°<α<30° ・・・(0−1) ただし、αは、前記第1面の回転対称非球面の回転中心
軸が、前記光学系の瞳の中心を通り像面中心に到達する
軸上主光線が瞳を射出して前記第1面に交差するまでの
直線と交差する角度(面の傾き角度)である。
1. An eccentric prism optical system in which at least three surfaces are arranged decentered from each other, and a space between the three surfaces is filled with a transparent medium having a refractive index of 1.3 or more.
The optical system performs at least two internal reflections,
At least two of the three surfaces are formed by reflecting surfaces, and the two light reflecting surfaces by the two reflecting surfaces are folded back inside the optical system. Two reflective surfaces are arranged, and among the two surfaces having the reflective effect, the shape of one surface is formed by a rotationally asymmetric surface having no rotationally symmetric axis both in-plane and out-of-plane. The shape of at least an effective surface of one surface (a region through which light flux is transmitted and / or reflected in the entire surface) is a rotationally symmetric aspheric surface having an axis of rotational symmetry in the effective surface, and the symmetric aspheric surface Is formed as a first surface having both a transmission function of causing a light beam passing through the optical system to enter or exit and a reflection function of bending the light beam inside the optical system, and the rotationally asymmetric surface is disposed to face the first surface. 2nd surface And a third surface having a transmissive function of emitting or entering a light beam passing through the optical system is located at a position substantially perpendicular to the opposing direction of the first surface and the second surface. A decentered prism optical system which is arranged and has a configuration in which the first surface has a convex surface facing the direction of the second surface, and satisfies the following conditions. 5 ° <α <30 ° (0-1) where α is the rotation center axis of the rotationally symmetric aspheric surface of the first surface that reaches the image plane center through the center of the pupil of the optical system. This is the angle at which the on-axis principal ray intersects with the straight line from the exit of the pupil to the intersection with the first surface (the inclination angle of the surface).
【請求項2】 少なくとも3つの面が互いに偏心して配
置され、その3つの面の間が屈折率が1.3以上の透明
媒質で埋められた構成の偏心プリズム光学系において、
前記光学系は少なくとも2回の内部反射を行うように、
前記3つの面の中の少なくとも2つの面を反射作用を有
する面で形成すると共に、前記の2つの反射作用を有す
る面によって反射された光線を前記光学系内部で折り返
すような位置に前記の2つの反射作用を有する面を配置
し、前記反射作用を有する2つの面の中、1つの面の形
状は面内及び面外共に回転対称軸を有さない回転非対称
面にて形成され、他の1つの面の少なくとも有効面(面
の全領域中で光束が透過及び/又は反射をする領域)の
形状が有効面内に回転対称軸を有する回転対称球面にて
構成され、前記対称球面が、前記光学系を通過する光束
を入射若しくは射出させる透過作用と前記光学系内部で
前記光束を折り曲げる反射作用とを併せ持つ第1面とし
て形成され、前記回転非対称面が前記第1面と対向配置
された第2面として形成され、さらに、前記光学系を通
過する光束を射出若しくは入射させる透過作用を有する
第3面が、前記第1面と前記第2面との対向方向に対し
て略垂直方向の位置に配置され、かつ、前記第1面が前
記第2面の方向に凸面を向けた形状に構成され、以下の
条件を満足することを特徴とする偏心プリズム光学系。 5°<α<30° ・・・(0−1) ただし、αは、前記光学系の瞳の中心を通り像面中心に
到達する軸上主光線が前記第1面により反射される点を
通る前記対称球面の回転中心軸が、前記光学系の瞳の中
心を通り像面中心に到達する軸上主光線が瞳を射出して
前記第1面に交差するまでの直線と交差する角度(面の
傾き角度)である。
2. A decentered prism optical system in which at least three surfaces are arranged decentered from each other, and a space between the three surfaces is filled with a transparent medium having a refractive index of 1.3 or more.
The optical system performs at least two internal reflections,
At least two of the three surfaces are formed by reflecting surfaces, and the two light reflecting surfaces by the two reflecting surfaces are folded back inside the optical system. Two reflective surfaces are arranged, and among the two surfaces having the reflective effect, the shape of one surface is formed by a rotationally asymmetric surface having no rotationally symmetric axis both in-plane and out-of-plane. The shape of at least an effective surface of one surface (a region where a light beam transmits and / or reflects in the entire surface) is constituted by a rotationally symmetric spherical surface having a rotationally symmetric axis in the effective surface, and the symmetrical spherical surface is: The first surface is formed as a first surface having both a transmissive function of allowing a light beam passing through the optical system to enter or exit and a reflective function of bending the light beam inside the optical system, and the rotationally asymmetric surface is disposed to face the first surface. As the second side A third surface, which is formed and has a transmission function of emitting or entering a light beam passing through the optical system, is disposed at a position substantially perpendicular to a direction in which the first surface and the second surface face each other. A decentered prism optical system, wherein the first surface has a shape with a convex surface facing the direction of the second surface, and satisfies the following conditions. 5 ° <α <30 ° (0-1) where α is a point at which the axial principal ray reaching the center of the image plane through the center of the pupil of the optical system is reflected by the first surface. The angle at which the central axis of rotation of the passing symmetric sphere intersects with the straight line from the center of the pupil of the optical system to the axial principal ray reaching the center of the image plane exiting the pupil and intersecting the first surface ( Angle of inclination of the surface).
【請求項3】 請求項1又は2記載の偏心プリズム光学
系において、前記第1面が有効面内にてその透過作用と
反射作用とが少なくとも一部の領域で重なり合うように
形成されていると共に、少なくとも前記第1面の有効面
内の透過作用と反射作用との重なり合う領域での反射作
用が全反射作用によるように構成されていることを特徴
とする偏心プリズム光学系。
3. The decentered prism optical system according to claim 1, wherein the first surface is formed such that the transmission function and the reflection function overlap in at least a part of the effective plane. An eccentric prism optical system characterized in that at least a reflection action in a region where the transmission action and the reflection action in the effective surface of the first surface overlap with each other is based on a total reflection action.
JP9025135A 1997-02-07 1997-02-07 Eccentric prism optical system Pending JPH10221602A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9025135A JPH10221602A (en) 1997-02-07 1997-02-07 Eccentric prism optical system
US08/805,465 US6034823A (en) 1997-02-07 1997-02-25 Decentered prism optical system
DE69719949T DE69719949T2 (en) 1997-02-07 1997-04-30 Optical system with decentered prism
EP97107235A EP0857992B1 (en) 1997-02-07 1997-04-30 Decentered prism optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9025135A JPH10221602A (en) 1997-02-07 1997-02-07 Eccentric prism optical system

Publications (1)

Publication Number Publication Date
JPH10221602A true JPH10221602A (en) 1998-08-21

Family

ID=12157533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9025135A Pending JPH10221602A (en) 1997-02-07 1997-02-07 Eccentric prism optical system

Country Status (1)

Country Link
JP (1) JPH10221602A (en)

Similar Documents

Publication Publication Date Title
US6201646B1 (en) Image-forming optical system and viewing optical system
US6310736B1 (en) Image-forming optical system and viewing optical system
EP0857992B1 (en) Decentered prism optical system
US6333820B1 (en) Image display apparatus
JP2006276884A (en) Eccentric prism optical system
JPH09258104A (en) Optical system
JP2002107658A (en) Picture observation optical system
US20050254107A1 (en) Observation optical system
JP5791991B2 (en) Decentered optical system, and image display device and imaging device using decentered optical system
JP2000206446A (en) Image display device
JPH09197337A (en) Eyepiece optical system
JP2000221440A (en) Picture display device
US6822770B1 (en) Observation optical system and photographing optical system and apparatus using the same
JPH10123454A (en) Head mounted picture display device
JP5653816B2 (en) Image display apparatus having decentered optical system
JP5108966B2 (en) Image display device
JP2000131614A (en) Image forming optical system and observation optical system
US6337776B1 (en) Prism optical system and image pickup apparatus using the same
JP2002055303A (en) Picture display device provided with three-dimensional eccentric optical path
JP2000105338A (en) Optical system
US6388827B2 (en) Image display apparatus having three-dimensionally decentered optical path
JPH10282421A (en) Eccentric prism optical system
JP2002139695A (en) Optical system for observation
JPH10260357A (en) Eccentric prism optical system
US6373645B1 (en) Prism optical system and image pickup apparatus using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060913