JPH10221498A - X-ray take-out window and x-ray exposure device - Google Patents

X-ray take-out window and x-ray exposure device

Info

Publication number
JPH10221498A
JPH10221498A JP3697997A JP3697997A JPH10221498A JP H10221498 A JPH10221498 A JP H10221498A JP 3697997 A JP3697997 A JP 3697997A JP 3697997 A JP3697997 A JP 3697997A JP H10221498 A JPH10221498 A JP H10221498A
Authority
JP
Japan
Prior art keywords
ray
beryllium foil
window frame
window
extraction window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3697997A
Other languages
Japanese (ja)
Inventor
Shigeru Terajima
茂 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3697997A priority Critical patent/JPH10221498A/en
Publication of JPH10221498A publication Critical patent/JPH10221498A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively cool an X-ray take-out window. SOLUTION: An X-ray take-out window 10 consisting of a beryllium foil 11 and a window frame 12 are fixed together with a cooling ring 13 and a spacer 14 in between a beam duct 2 and flanges 2a and 3a of an exposure room 3. The cooling ring 13 is cooled by refrigerant flowing in an inner pipe 13b and cools the beryllium foil 11 by touching the inner edge 13a to its surface. Thus, the exchange of the X-ray take-out window 10 is easy and such a troubles as degradation of the bonding agent of the window frame 12 and generation of gas can be avoided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、真空中にある光源
から発生されたX線を大気または減圧雰囲気中に取り出
すためのX線取り出し窓およびX線露光装置に関するも
のである。
[0001] 1. Field of the Invention [0002] The present invention relates to an X-ray extraction window and an X-ray exposure apparatus for extracting X-rays generated from a light source in a vacuum into the atmosphere or a reduced-pressure atmosphere.

【0002】[0002]

【従来の技術】従来から、X線を用いた回折装置を始め
とするX線分析装置やX線露光装置においては、真空中
にある光源から大気中または減圧雰囲気中にX線を取り
出すための圧力隔壁を兼ねたX線取り出し窓が必要であ
り、一般的には数μmから数百μmの厚さのベリリウム
箔が使われている。このベリリウム箔は、補強を兼ねた
窓枠を介して分析機器や露光室に固定される。ベリリウ
ム箔と窓枠の間は、接着剤を用いた接合方法、ろう付
け、拡散接合法等によって気密に接合されている。
2. Description of the Related Art Conventionally, in an X-ray analyzer and an X-ray exposure apparatus such as a diffraction apparatus using X-rays, an X-ray is extracted from a light source in a vacuum to the atmosphere or a reduced-pressure atmosphere. An X-ray extraction window also serving as a pressure partition is required, and a beryllium foil having a thickness of several μm to several hundred μm is generally used. This beryllium foil is fixed to an analytical instrument or an exposure room via a window frame that also serves as reinforcement. The beryllium foil and the window frame are hermetically bonded by a bonding method using an adhesive, brazing, a diffusion bonding method, or the like.

【0003】近年、X線を利用する装置はより高性能を
求められ、これに伴なってより強度の大きいX線が必要
となってきている。そこで、光源に荷電粒子蓄積リング
等を用いて光源出力を大きくする一方で、X線取り出し
窓の厚みを薄くしてX線の利用効率を上げる研究がなさ
れている。
In recent years, devices using X-rays have been required to have higher performance, and accordingly, X-rays having higher intensity have been required. Therefore, while increasing the output of the light source by using a charged particle storage ring or the like as the light source, studies have been made to increase the use efficiency of X-rays by reducing the thickness of the X-ray extraction window.

【0004】ところが、より薄いベリリウム箔を用いる
と、例えば、銀ろう付けの場合には加工の際に数百度と
いう高温に達するため、ベリリウムの再結晶化等の現象
により接合部分がもろくなるという問題点がある。ま
た、拡散接合法においても接合部分に熱と圧力をかける
ため薄いベリリウム箔には不向きであるという欠点があ
る。
However, when a thinner beryllium foil is used, for example, in the case of silver brazing, the temperature reaches a high temperature of several hundred degrees during processing, so that the junction becomes brittle due to a phenomenon such as recrystallization of beryllium. There is a point. Also, the diffusion bonding method has a drawback that it is unsuitable for thin beryllium foil because heat and pressure are applied to the bonding portion.

【0005】これに対して、例えば有機系の接着剤を用
いて固定する方法はベリリウム箔に熱的なストレスがあ
まりかからないので広く用いられている。
On the other hand, for example, a method of fixing using an organic adhesive is widely used because thermal stress is not applied to the beryllium foil so much.

【0006】しかしながら、前述のように光源出力が大
きい荷電粒子蓄積リング等を利用する場合に、ベリリウ
ム箔は荷電粒子蓄積リング放射光の波長領域の全てを透
過するものではなく、吸収する波長領域も広い。これら
の吸収されたエネルギーは熱となるが、ベリリウム箔の
片面は高真空領域、反対面は減圧雰囲気中にあり、空間
部へ逃げる熱が少量であるためにベリリウム箔が高温と
なる。そこで、図8に示すように窓枠101に冷媒流路
102を設けて窓枠101を冷却し、ベリリウム箔10
3の熱を窓枠101に逃がすという提案もなされている
(Rev.Sci.Instrum.Vol.63、N
o.1参照)。
However, when a charged particle storage ring or the like having a large light source output is used as described above, the beryllium foil does not transmit the entire wavelength region of the radiation of the charged particle storage ring, but also absorbs the wavelength region. wide. These absorbed energies become heat, but one side of the beryllium foil is in a high vacuum region, and the other side is in a reduced-pressure atmosphere, and the amount of heat escaping into the space is small, so that the beryllium foil has a high temperature. Therefore, as shown in FIG. 8, a coolant channel 102 is provided in the window frame 101 to cool the window frame 101, and the beryllium foil 10
3 is released to the window frame 101 (Rev. Sci. Instrument. Vol. 63, N.
o. 1).

【0007】[0007]

【発明が解決しようとする課題】しかしながら上記従来
の技術によれば、X線のエネルギーを吸収して昇温した
ベリリウム箔の熱を、窓枠を介して逃がすように構成さ
れているため、窓枠とベリリウム箔の結合部に大きな温
度勾配が発生し、特に有機系の接着剤を用いた場合に
は、接着力の低下や歪みが著しく、また接着剤から発生
するガスによるトラブルも大きな問題となる。
However, according to the above-mentioned prior art, since the heat of the beryllium foil, which has been heated by absorbing the energy of X-rays, is released through the window frame, the window is not provided. A large temperature gradient is generated at the joint between the frame and the beryllium foil, and especially when an organic adhesive is used, the adhesive strength is significantly reduced and the distortion is remarkable. Become.

【0008】加えて、ベリリウム箔は高真空と大気ある
いは減圧雰囲気の間の圧力差を受けながらX線のエネル
ギーを吸収して高温となるため、機械的疲労が蓄積され
て寿命が短い。従って、ベリリウム箔の交換が必要とな
るが、このときは、窓枠ごとベリリウム箔を交換するの
が一般的である。ところが、窓枠に冷媒流路が設けられ
ていると、窓枠を交換するたびに配管のつなぎ換えが必
要となり、交換作業が煩雑であるという不都合もある。
また、窓枠を交換するたびに、冷媒流路を備えた高価な
窓枠が無駄になり、コスト高であるという未解決の課題
もある。
In addition, beryllium foil absorbs X-ray energy while receiving a pressure difference between a high vacuum and the atmosphere or a reduced-pressure atmosphere and becomes high temperature, so that mechanical fatigue is accumulated and its life is short. Therefore, it is necessary to replace the beryllium foil. In this case, it is common to replace the beryllium foil for each window frame. However, if the window frame is provided with the refrigerant flow path, it is necessary to change the connection of the pipe every time the window frame is replaced, and there is also a disadvantage that the replacement operation is complicated.
There is also an unsolved problem that every time the window frame is replaced, an expensive window frame provided with a coolant flow path is wasted and the cost is high.

【0009】本発明は上記従来の技術の有する未解決の
課題に鑑みてなされたものであり、X線のエネルギーを
吸収して昇温するベリリウム箔等の透過膜を効果的に冷
却して、窓枠の接着剤の劣化やガスの発生を防ぐことが
できるうえに、窓枠の構造が簡単で、窓枠ごと透過膜を
交換する交換作業が煩雑になる等のトラブルも回避でき
る安価で高性能なX線取り出し窓およびX線露光装置を
提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and effectively cools a permeable film such as a beryllium foil which absorbs X-ray energy and raises the temperature. In addition to being able to prevent the deterioration of the adhesive in the window frame and the generation of gas, the structure of the window frame is simple, and the trouble of replacing the permeable membrane with the entire window frame becomes complicated. It is an object of the present invention to provide a high performance X-ray extraction window and an X-ray exposure apparatus.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに本発明のX線取り出し窓は、透過膜と、該透過膜の
外周部を支持する支持手段と、前記透過膜の所定の部位
に対向する対向部材と、該対向部材を冷却する冷却手段
を有することを特徴とする。
In order to achieve the above object, an X-ray extraction window according to the present invention comprises a permeable membrane, support means for supporting an outer peripheral portion of the permeable membrane, and a predetermined portion of the permeable membrane. And a cooling means for cooling the facing member.

【0011】透過膜がベリリウム箔であるとよい。The permeable film is preferably a beryllium foil.

【0012】また、透過膜の片側に開口するビームダク
トを有し、該ビームダクトと対向部材が一体であっても
よい。
[0012] Further, a beam duct opened on one side of the permeable membrane may be provided, and the beam duct and the facing member may be integrated.

【0013】[0013]

【作用】透過膜の片面あるいは両面に対向する対向部材
を冷却することで、該対向部材を介して透過膜を冷却す
る。透過膜を効率よく冷却できるうえに、透過膜の外周
部を支持する窓枠等の支持手段に透過膜の熱が伝わって
接着剤等が劣化する等のトラブルを回避できる。
The permeable membrane is cooled through the opposed member by cooling the opposed member facing one or both surfaces of the permeable membrane. In addition to efficiently cooling the permeable membrane, it is possible to avoid troubles such as deterioration of the adhesive and the like due to transmission of heat of the permeable membrane to supporting means such as a window frame for supporting an outer peripheral portion of the permeable membrane.

【0014】また、窓枠等の支持手段に冷媒流路等が設
けられている場合に比べて、窓枠等の構造が簡単であ
り、窓枠ごと透過膜を交換するときに配管等のつなぎ換
えを必要とすることもなく、交換作業も簡単である。
Further, the structure of the window frame and the like is simpler than the case where the coolant flow path and the like are provided in the supporting means such as the window frame and the like. No replacement is required, and the replacement operation is easy.

【0015】このようなX線取り出し窓を用いること
で、X線露光装置等の高性能化および低価格化、さらに
はランニングコストの低減等に大きく貢献できる。
By using such an X-ray extraction window, it is possible to greatly contribute to higher performance and lower cost of an X-ray exposure apparatus and the like, and further to reduction of running cost.

【0016】[0016]

【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明する。
Embodiments of the present invention will be described with reference to the drawings.

【0017】図1は一実施例によるX線取り出し窓10
を示すもので、これは厚さ数μmないし数百μmの透過
膜であるベリリウム箔11と、その外周部を支持する支
持手段である窓枠12を有し、窓枠12は、ベリリウム
箔11の外周部を挟んでその両面に接着された一対の窓
枠部材12aからなる。
FIG. 1 shows an X-ray extraction window 10 according to one embodiment.
This has a beryllium foil 11 which is a permeable film having a thickness of several μm to several hundred μm, and a window frame 12 which is a support means for supporting an outer peripheral portion thereof. And a pair of window frame members 12a adhered to both sides of the outer periphery of the window frame member 12a.

【0018】光源1から発生されたX線L1 は、超高真
空に保たれたビームダクト2を経て露光室3に導入され
る。露光室3はヘリウムガスの減圧雰囲気に制御されて
おり、X線取り出し窓10は、ビームダクト2の超高真
空と露光室3の減圧雰囲気を遮断するために設けられ
る。
The X-rays L 1 generated from the light source 1 are introduced into an exposure chamber 3 through a beam duct 2 maintained in an ultra-high vacuum. The exposure chamber 3 is controlled to a reduced pressure atmosphere of helium gas, and the X-ray extraction window 10 is provided to shut off the ultra-high vacuum of the beam duct 2 and the reduced pressure atmosphere of the exposure chamber 3.

【0019】ビームダクト2の端部には対向部材である
冷却リング13が設けられ、その内端縁13aがX線取
り出し窓10のベリリウム箔11に対向するように配設
されている。冷却リング13の材質は、熱伝導性の良好
な銅であり、図示しない冷媒供給源から供給される冷却
水等の冷媒流体を流動させる冷却手段である内部配管1
3bを有する。なお、冷却リング13の材質は、銅に限
らず、熱伝導性が良好で超高真空に用いることのできる
ものであれば他の材料でもよい。また、ベリリウム箔1
1の替わりに、他の金属箔や公知の有機膜等の透過膜を
用いることもできる。
At the end of the beam duct 2, a cooling ring 13 as an opposing member is provided, and its inner edge 13 a is arranged so as to face the beryllium foil 11 of the X-ray extraction window 10. The material of the cooling ring 13 is copper having good thermal conductivity, and the internal pipe 1 is a cooling means for flowing a coolant fluid such as cooling water supplied from a coolant supply source (not shown).
3b. The material of the cooling ring 13 is not limited to copper, but may be any other material as long as it has good thermal conductivity and can be used in an ultra-high vacuum. Beryllium foil 1
Instead of 1, a permeable film such as another metal foil or a known organic film can be used.

【0020】X線取り出し窓10の組み付けは、冷却リ
ング13との間にスペーサ14を介在させて、これらを
ビームダクト2のフランジ2aと露光室3のフランジ3
aの間に締着することによって行なわれる。スペーサ1
4は、冷却リング13の内端縁13aとベリリウム箔1
1の間隙を調節するもので、ビームダクト2と露光室3
の間に圧力差が無い状態では冷却リング13の内端縁1
3aとベリリウム箔11の間に1〜500μm程度の間
隙を形成するように組み付ける。ビームダクト2が超高
真空、露光室3がヘリウムガスの減圧雰囲気にそれぞれ
制御されると、図1の(b)に示すように、ベリリウム
箔11がビームダクト2側に湾曲して冷却リング13の
内端縁13aに接触する。
When assembling the X-ray extraction window 10, a spacer 14 is interposed between the cooling ring 13 and the X-ray extraction window 10.
a. Spacer 1
4 is the inner edge 13a of the cooling ring 13 and the beryllium foil 1
The beam duct 2 and the exposure chamber 3
When there is no pressure difference between the inner edge 1 of the cooling ring 13
3a and the beryllium foil 11 are assembled so as to form a gap of about 1 to 500 μm. When the beam duct 2 is controlled to an ultra-high vacuum and the exposure chamber 3 is controlled to a reduced pressure atmosphere of helium gas, the beryllium foil 11 bends toward the beam duct 2 and the cooling ring 13 as shown in FIG. Contacts the inner edge 13a of the second member.

【0021】初めから冷却リング13の内端縁13aと
ベリリウム箔11が接触するように組み付けを行なう
と、前記圧力差によってベリリウム箔11が湾曲したと
きにベリリウム箔11が冷却リング13に過大な圧力で
押し付けられる結果となり、ベリリウム箔11が破損す
るおそれがある。
When the beryllium foil 11 is assembled from the beginning so that the inner edge 13a of the cooling ring 13 and the beryllium foil 11 are in contact with each other, when the beryllium foil 11 is bent by the pressure difference, the beryllium foil 11 exerts an excessive pressure on the cooling ring 13. As a result, the beryllium foil 11 may be damaged.

【0022】図2はX線露光装置全体を示すもので、光
源1から発生されたX線L1 は、凸面ミラー4によって
所定のビーム幅に拡大され、ビームダクト2を通ってX
線取り出し窓10を透過し、露光室3内のマスクMを経
て基板保持手段であるウエハステージ上の基板であるウ
エハWを露光する。凸面ミラー4によって拡大されX線
はガウス分布に似た強度分布を有するため、露光室3内
に設けた移動シャッタ5の移動速度を制御することで露
光時間を調節し、ウエハWの露光むらを防ぐように工夫
されてる。
FIG. 2 shows the entire X-ray exposure apparatus. An X-ray L 1 generated from a light source 1 is expanded to a predetermined beam width by a convex mirror 4 and passes through a beam duct 2.
A wafer W, which is a substrate on a wafer stage as a substrate holding means, is exposed through a line extraction window 10 and a mask M in an exposure chamber 3. Since the X-rays magnified by the convex mirror 4 have an intensity distribution similar to a Gaussian distribution, the exposure time is adjusted by controlling the moving speed of a moving shutter 5 provided in the exposure chamber 3, and the exposure unevenness of the wafer W is reduced. It is devised to prevent it.

【0023】露光中は、X線取り出し窓10のベリリウ
ム箔11がX線L1 のエネルギーを吸収して昇温する。
そこで、冷却リング13の内部配管13bに冷媒流体を
流動させて冷却リング13を冷却し、ベリリウム箔11
に接触している内端縁13aの熱伝導等によってベリリ
ウム箔11を冷却する。冷却リング13の内端縁13a
は、ベリリウム箔11の窓枠12の内側でベリリウム箔
11に接触してこれを冷却するように構成されており、
加えて、ベリリウム箔11の周囲に放出される輻射熱も
冷却リング13に吸収される。このようにして、ベリリ
ウム箔11を効果的に冷却し、その熱が窓枠12に伝わ
って接着剤を劣化させたり、接着剤からガスを発生する
等のトラブルを効果的に回避できる。
[0023] During exposure, beryllium foil 11 of the X-ray extraction window 10 is to raise the temperature by absorbing the energy of the X-ray L 1.
Therefore, a cooling fluid is caused to flow through the internal piping 13 b of the cooling ring 13 to cool the cooling ring 13, and the beryllium foil 11 is cooled.
The beryllium foil 11 is cooled by heat conduction or the like of the inner edge 13a in contact with. Inner edge 13a of cooling ring 13
Is configured to contact and cool the beryllium foil 11 inside the window frame 12 of the beryllium foil 11,
In addition, radiant heat released around the beryllium foil 11 is also absorbed by the cooling ring 13. In this manner, the beryllium foil 11 is effectively cooled, and the heat is transmitted to the window frame 12 to effectively prevent the adhesive from deteriorating or generating a gas from the adhesive.

【0024】なお、冷却リング13はX線L1 の光路に
沿ってX線取り出し窓10の上流側に配設されるため、
X線取り出し窓10の窓枠12が不要なX線に曝される
のを軽減できる。これによってX線取り出し窓10の長
寿命化も期待できる。
[0024] Since the cooling ring 13 is disposed upstream of the X-ray extraction window 10 along the optical path of the X-ray L 1,
Exposure of the window frame 12 of the X-ray extraction window 10 to unnecessary X-rays can be reduced. As a result, the life expectancy of the X-ray extraction window 10 can be prolonged.

【0025】なお、冷却リング13の内端縁13aは、
ベリリウム箔11に接触する部分が角のないように適切
な曲率を有する曲面状に加工されている。
The inner edge 13a of the cooling ring 13 is
The portion in contact with the beryllium foil 11 is processed into a curved surface having an appropriate curvature so that there is no corner.

【0026】本実施例によれば、窓枠と別体である冷却
リングを直接ベリリウム箔に接触させてX線取り出し窓
を冷却するものであるため、窓枠の内部配管に冷媒流体
を流して窓枠を介してベリリウム箔を冷却する場合に比
べて、冷却効率が高く、しかも窓枠とベリリウム箔の接
着部が劣化したりガスを発生する等のトラブルもない。
According to this embodiment, the cooling ring, which is separate from the window frame, is brought into direct contact with the beryllium foil to cool the X-ray extraction window. The cooling efficiency is higher than when the beryllium foil is cooled through the window frame, and there is no trouble such as deterioration of the bonding portion between the window frame and the beryllium foil or generation of gas.

【0027】加えて、X線取り出し窓を交換するときに
は、冷却リングと窓枠を分離して、窓枠ごとX線取り出
し窓を交換すればよい。冷媒流体の配管の接続等の煩雑
な作業を必要とせず、X線取り出し窓の交換を簡単に行
なうことができるという利点もある。また、窓枠に内部
配管を設けた場合のように、ベリリウム箔とともに交換
される窓枠が高価になるおそれもない。
In addition, when the X-ray extraction window is replaced, the cooling ring and the window frame may be separated, and the X-ray extraction window may be replaced together with the window frame. There is also an advantage that the X-ray extraction window can be easily replaced without requiring a complicated operation such as connection of refrigerant fluid piping. Further, unlike the case where the internal piping is provided in the window frame, there is no possibility that the window frame exchanged with the beryllium foil becomes expensive.

【0028】このようなX線取り出し窓を用いること
で、X線露光装置等の高性能化および低価格化、さらに
はランニングコストの低減等に大きく貢献できる。
By using such an X-ray extraction window, it is possible to greatly contribute to higher performance and lower cost of an X-ray exposure apparatus and the like, and further to reduction of running cost.

【0029】図3は一変形例を示す。これは、ベリリウ
ム箔21と窓枠22からなるX線取り出し窓20の両面
に一対の冷却リング23をそれぞれ対向させたものであ
る。各冷却リング23は、スぺーサ24を介してビーム
ダクト2と露光室3のフランジ2a,3aに締着され、
各冷却リング23の内端縁23aがベリリウム箔21の
各面に対向し、内部配管23bを流動する冷媒流体によ
って冷却される。
FIG. 3 shows a modification. In this configuration, a pair of cooling rings 23 are opposed to both surfaces of an X-ray extraction window 20 including a beryllium foil 21 and a window frame 22, respectively. Each cooling ring 23 is fastened to the beam duct 2 and the flanges 2a, 3a of the exposure chamber 3 via a spacer 24,
The inner edge 23a of each cooling ring 23 faces each surface of the beryllium foil 21, and is cooled by the refrigerant fluid flowing through the internal piping 23b.

【0030】このようにベリリウム箔の両面に冷却リン
グを設ければ、極めて迅速にベリリウム箔を冷却して、
その昇温を効果的に回避できる。
By providing cooling rings on both sides of the beryllium foil, the beryllium foil can be cooled very quickly,
The temperature rise can be effectively avoided.

【0031】また、図4に示すように、ビームダクト2
の末端に一体的に設けられた冷却リング33を用いても
よい。この場合は、ビームダクト2の材質をベリリウム
−銅合金にすることで、冷却効率を向上させるとよい。
冷却リング33に内部配管を設ける替わりに、ビームダ
クト2の末端に冷却コイル33bを巻き付ける。このよ
うな構成を用いると、窓枠32とベリリウム箔31から
なるX線取り出し窓30を効果的に冷却できるうえに、
X線取り出し窓30の着脱が簡単であり、交換作業を迅
速に行なうことができるという利点が付加される。
Also, as shown in FIG.
A cooling ring 33 integrally provided at the end of the cooling ring 33 may be used. In this case, the material of the beam duct 2 may be a beryllium-copper alloy to improve the cooling efficiency.
Instead of providing an internal pipe in the cooling ring 33, a cooling coil 33b is wound around the end of the beam duct 2. With such a configuration, the X-ray extraction window 30 including the window frame 32 and the beryllium foil 31 can be effectively cooled, and
The additional advantage that the X-ray extraction window 30 can be easily attached and detached and the exchange operation can be performed quickly is added.

【0032】図5は、さらに別の変形例を示す。これ
は、ビームダクト2のフランジ2aと接続部材45の間
に、ねじ穴2b等を貫通するボルトによって冷却リング
43を締結し、同様の方法で接続部材45をスぺーサ4
4を介して露光室3のフランジ3aに締結したものであ
る。
FIG. 5 shows another modification. That is, the cooling ring 43 is fastened between the flange 2a of the beam duct 2 and the connecting member 45 by a bolt penetrating the screw hole 2b or the like, and the connecting member 45 is connected to the spacer 4 in the same manner.
4 and fastened to the flange 3a of the exposure chamber 3 via

【0033】ベリリウム箔41と窓枠42からなるX線
取り出し窓40の着脱が容易であり、しかも、冷却リン
グ43を組み付ける部分の真空シールを強化できるとい
う利点を有する。
The X-ray extraction window 40 composed of the beryllium foil 41 and the window frame 42 has an advantage that it can be easily attached and detached, and that the vacuum seal of the portion where the cooling ring 43 is assembled can be strengthened.

【0034】次に上記説明したX線露光装置を利用した
半導体ディバイスの製造方法の実施例を説明する。図6
は半導体ディバイス(ICやLSI等の半導体チップ、
あるいは液晶パネルやCCD等)の製造フローを示す。
ステップ1(回路設計)では半導体ディバイスの回路設
計を行なう。ステップ2(マスク製作)では設計した回
路パターンを形成したマスクを製作する。ステップ3
(ウエハ製造)ではシリコン等の材料を用いてウエハを
製造する。ステップ4(ウエハプロセス)は前工程と呼
ばれ、上記用意したマスクとウエハを用いて、リソグラ
フィ技術によってウエハ上に実際の回路を形成する。ス
テップ5(組み立て)は後工程と呼ばれ、ステップ4に
よって作製されたウエハを用いて半導体チップ化する工
程であり、アッセンブリ工程(ダイシング、ボンディン
グ)、パッケージング工程(チップ封入)等の工程を含
む。ステップ6(検査)ではステップ5で作製された半
導体ディバイスの動作確認テスト、耐久性テスト等の検
査を行なう。こうした工程を経て半導体ディバイスが完
成し、これが出荷(ステップ7)される。
Next, an embodiment of a method for manufacturing a semiconductor device using the above-described X-ray exposure apparatus will be described. FIG.
Is a semiconductor device (semiconductor chip such as IC or LSI,
Or, a production flow of a liquid crystal panel, a CCD or the like is shown.
In step 1 (circuit design), the circuit of the semiconductor device is designed. Step 2 is a process for making a mask on the basis of the circuit pattern design. Step 3
In (wafer manufacture), a wafer is manufactured using a material such as silicon. Step 4 (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by lithography using the prepared mask and wafer. Step 5 (assembly) is called a post-process, and is a process of forming a semiconductor chip using the wafer produced in step 4, and includes processes such as an assembly process (dicing and bonding) and a packaging process (chip encapsulation). . In step 6 (inspection), inspections such as an operation confirmation test and a durability test of the semiconductor device manufactured in step 5 are performed. Through these steps, a semiconductor device is completed and shipped (step 7).

【0035】図7は上記ウエハプロセスの詳細なフロー
を示す。ステップ11(酸化)ではウエハの表面を酸化
させる。ステップ12(CVD)ではウエハ表面に絶縁
膜を形成する。ステップ13(電極形成)ではウエハ上
に電極を蒸着によって形成する。ステップ14(イオン
打込み)ではウエハにイオンを打ち込む。ステップ15
(レジスト処理)ではウエハに感光剤を塗布する。ステ
ップ16(露光)では上記説明した露光装置によってマ
スクの回路パターンをウエハに焼付露光する。ステップ
17(現像)では露光したウエハを現像する。ステップ
18(エッチング)では現像したレジスト像以外の部分
を削り取る。ステップ19(レジスト剥離)ではエッチ
ングが済んで不要となったレジストを取り除く。これら
のステップを繰り返し行なうことによって、ウエハ上に
多重に回路パターンが形成される。本実施例の製造方法
を用いれば、従来は製造が難しかった高集積度の半導体
ディバイスを製造することができる。
FIG. 7 shows a detailed flow of the wafer process. Step 11 (oxidation) oxidizes the wafer's surface. Step 12 (CVD) forms an insulating film on the wafer surface. Step 13 (electrode formation) forms electrodes on the wafer by vapor deposition. In step 14 (ion implantation), ions are implanted into the wafer. Step 15
In (resist processing), a photosensitive agent is applied to the wafer. Step 16 (exposure) uses the above-described exposure apparatus to print and expose the circuit pattern of the mask onto the wafer. Step 17 (development) develops the exposed wafer. In step 18 (etching), portions other than the developed resist image are removed. In step 19 (resist stripping), unnecessary resist after etching is removed. By repeating these steps, multiple circuit patterns are formed on the wafer. By using the manufacturing method of this embodiment, it is possible to manufacture a highly integrated semiconductor device which has been conventionally difficult to manufacture.

【0036】[0036]

【発明の効果】本発明は上述のように構成されているの
で、以下に記載するような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0037】X線のエネルギーを吸収して昇温するベリ
リウム箔等を効果的に冷却できる。また、窓枠の構造が
簡単で、ベリリウム箔等とともに交換する作業が煩雑に
なるおそれがないうえに、窓枠の接着剤の劣化やガスの
発生等のトラブルを防ぐことができる。
Beryllium foil or the like, which is heated by absorbing X-ray energy, can be cooled effectively. Further, the structure of the window frame is simple, there is no possibility that the operation of replacing the window frame with beryllium foil or the like becomes complicated, and troubles such as deterioration of the adhesive of the window frame and generation of gas can be prevented.

【0038】このようなX線取り出し窓を用いること
で、X線露光装置等の高性能化と低価格化およびランニ
ングコストの低減等に大きく貢献できる。
By using such an X-ray extraction window, it is possible to greatly contribute to higher performance, lower cost, and lower running cost of an X-ray exposure apparatus and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施例によるX線取り出し窓を示すもので、
(a)はその模式断面図、(b)は(a)の一部分を拡
大して示す拡大部分断面図である。
FIG. 1 shows an X-ray extraction window according to one embodiment.
(A) is a schematic sectional view, and (b) is an enlarged partial sectional view showing a part of (a) in an enlarged manner.

【図2】X線露光装置全体を説明する図である。FIG. 2 is a diagram illustrating the entire X-ray exposure apparatus.

【図3】第1の変形例を示す模式断面図である。FIG. 3 is a schematic sectional view showing a first modification.

【図4】第2の変形例を示す模式断面図である。FIG. 4 is a schematic sectional view showing a second modification.

【図5】第3の変形例を示す模式断面図である。FIG. 5 is a schematic sectional view showing a third modification.

【図6】半導体製造工程を示すフローチャートである。FIG. 6 is a flowchart showing a semiconductor manufacturing process.

【図7】ウエハプロセスを示すフローチャートである。FIG. 7 is a flowchart showing a wafer process.

【図8】一従来例を示す模式断面図である。FIG. 8 is a schematic sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 光源 2 ビームダクト 3 露光室 10,20,30,40 X線取り出し窓 11,21,31,41 ベリリウム箔 12,22,32,42 窓枠 13,23,33,43 冷却リング 14,24,44 スぺーサ 45 接続部材 DESCRIPTION OF SYMBOLS 1 Light source 2 Beam duct 3 Exposure room 10, 20, 30, 40 X-ray extraction window 11, 21, 31, 41 Beryllium foil 12, 22, 32, 42 Window frame 13, 23, 33, 43 Cooling ring 14, 24, 44 Spacer 45 Connection member

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 透過膜と、該透過膜の外周部を支持する
支持手段と、前記透過膜の所定の部位に対向する対向部
材と、該対向部材を冷却する冷却手段を有するX線取り
出し窓。
1. An X-ray extraction window having a permeable membrane, supporting means for supporting an outer peripheral portion of the permeable membrane, an opposing member opposing a predetermined portion of the permeable membrane, and cooling means for cooling the opposing member. .
【請求項2】 透過膜がベリリウム箔であることを特徴
とする請求項1記載のX線取り出し窓。
2. The X-ray extraction window according to claim 1, wherein the permeable film is a beryllium foil.
【請求項3】 透過膜の片側に開口するビームダクトを
有し、該ビームダクトと対向部材が一体であることを特
徴とする請求項1または2記載のX線取り出し窓。
3. The X-ray extraction window according to claim 1, further comprising a beam duct opened on one side of the permeable membrane, wherein the beam duct and the facing member are integrated.
【請求項4】 請求項1ないし3いずれか1項記載のX
線取り出し窓と、該X線取り出し窓を経て取り出された
X線によって露光される基板を保持する基板保持手段を
有するX線露光装置。
4. The X according to claim 1, wherein
An X-ray exposure apparatus comprising: a line extraction window; and a substrate holding unit configured to hold a substrate exposed by X-rays extracted through the X-ray extraction window.
JP3697997A 1997-02-05 1997-02-05 X-ray take-out window and x-ray exposure device Pending JPH10221498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3697997A JPH10221498A (en) 1997-02-05 1997-02-05 X-ray take-out window and x-ray exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3697997A JPH10221498A (en) 1997-02-05 1997-02-05 X-ray take-out window and x-ray exposure device

Publications (1)

Publication Number Publication Date
JPH10221498A true JPH10221498A (en) 1998-08-21

Family

ID=12484882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3697997A Pending JPH10221498A (en) 1997-02-05 1997-02-05 X-ray take-out window and x-ray exposure device

Country Status (1)

Country Link
JP (1) JPH10221498A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6594341B1 (en) 2001-08-30 2003-07-15 Koninklijke Philips Electronics, N.V. Liquid-free x-ray insert window
JP2005135786A (en) * 2003-10-31 2005-05-26 Toshiba Corp Component mounting structure of electronic tube
JP2013115176A (en) * 2011-11-28 2013-06-10 Gigaphoton Inc Holder device, chamber device, and extreme-ultraviolet light generating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6594341B1 (en) 2001-08-30 2003-07-15 Koninklijke Philips Electronics, N.V. Liquid-free x-ray insert window
JP2005135786A (en) * 2003-10-31 2005-05-26 Toshiba Corp Component mounting structure of electronic tube
JP4601939B2 (en) * 2003-10-31 2010-12-22 株式会社東芝 Airtight connection structure of electron tube
JP2013115176A (en) * 2011-11-28 2013-06-10 Gigaphoton Inc Holder device, chamber device, and extreme-ultraviolet light generating device

Similar Documents

Publication Publication Date Title
US5563683A (en) Substrate holder
US6097790A (en) Pressure partition for X-ray exposure apparatus
US7591561B2 (en) Liquid cooled mirror for use in extreme ultraviolet lithography
US8425060B2 (en) Self-correcting optical elements for high-thermal-load optical systems
JP3244894B2 (en) Mask holding method, mask and mask chuck, and exposure apparatus and device manufacturing method using the same
US20050092013A1 (en) Cooling technique
US9041904B2 (en) High heat load optics with a liquid metal interface for use in an extreme ultraviolet lithography system
US5572563A (en) Mirror unit and an exposure apparatus using the unit
JPWO2009051199A1 (en) Optical member cooling apparatus, lens barrel, exposure apparatus, and device manufacturing method
JP4612847B2 (en) Container and exposure apparatus using the same
JPH1092738A (en) Substrate holding device and aligner using the same
US7185992B2 (en) Lens holding technique
JPH10221498A (en) X-ray take-out window and x-ray exposure device
JP2002257138A (en) Static pressure fluid bearing device, stage device using the same, exposure device, and manufacturing method for device
JPH1092728A (en) Device for holding substrate and aligner using the same
US20050207089A1 (en) Substrate holder and exposure apparatus using same
JP2005295762A (en) Stage device and exposing device
JP2003218023A (en) X-ray reflecting mirror, x-ray exposure transfer apparatus, and method of manufacturing semiconductor device
JP2005168089A (en) Coil supporter, motor and exposure apparatus using it, and device manufacturing method
JP3167098B2 (en) Radiation window, radiation device using this
JP3232232B2 (en) X-ray extraction window, method of manufacturing the same, and X-ray exposure apparatus using the X-ray extraction window
JP3083037B2 (en) Mask manufacturing method and manufacturing apparatus, mask manufactured using the same, and device manufacturing method using the mask
JP2006261273A (en) Chamber and exposure system using the same
JP2798792B2 (en) Resist processing equipment
JP2003332214A (en) Pressure reducing device, method of controlling substrate, exposure system, and method of manufacturing semiconductor device