JPH1022117A - Superconducting current supplying wire and method of its cooling, and method of its connection - Google Patents
Superconducting current supplying wire and method of its cooling, and method of its connectionInfo
- Publication number
- JPH1022117A JPH1022117A JP8169418A JP16941896A JPH1022117A JP H1022117 A JPH1022117 A JP H1022117A JP 8169418 A JP8169418 A JP 8169418A JP 16941896 A JP16941896 A JP 16941896A JP H1022117 A JPH1022117 A JP H1022117A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- supply line
- current supply
- pipe
- conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000001816 cooling Methods 0.000 title claims abstract description 31
- 239000004020 conductor Substances 0.000 claims abstract description 67
- 239000007788 liquid Substances 0.000 claims abstract description 25
- 229910052751 metal Inorganic materials 0.000 claims abstract description 21
- 239000002184 metal Substances 0.000 claims abstract description 21
- 239000003507 refrigerant Substances 0.000 claims description 22
- 239000011162 core material Substances 0.000 claims description 14
- 238000004804 winding Methods 0.000 claims description 6
- 238000009413 insulation Methods 0.000 abstract description 11
- 239000002826 coolant Substances 0.000 abstract description 8
- 238000010791 quenching Methods 0.000 abstract description 6
- 230000007704 transition Effects 0.000 abstract description 3
- 150000001875 compounds Chemical class 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 22
- 239000010410 layer Substances 0.000 description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 14
- 229910052802 copper Inorganic materials 0.000 description 14
- 239000010949 copper Substances 0.000 description 14
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 239000001307 helium Substances 0.000 description 9
- 229910052734 helium Inorganic materials 0.000 description 9
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000003466 welding Methods 0.000 description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- 230000005684 electric field Effects 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 239000002887 superconductor Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、超電導線路の技術
より具体的には超電導線材を用いた超電導電流供給線及
びその冷却方法ならびにその接続方法に関する。The present invention relates to a superconducting line technology, and more particularly to a superconducting current supply line using a superconducting wire, a method for cooling the same, and a method for connecting the same.
【0002】[0002]
【従来の技術】図10は、超電導材料を用いた従来の考
えによる超電導電流供給線のシステムを示し、図11に
超電導電流供給線の横断面構造を示す。このシステム
は、図10に示すように、超電導電流供給線を本体1a
と端末部1bで構成し、端末部1bで冷凍器1i及び熱
交換器1cを経由する冷媒を冷媒通路1dを通じて本体
1a内に循環させ、本体内の超電導導体全長が浸漬冷却
される方式からなる。2. Description of the Related Art FIG. 10 shows a conventional superconducting current supply line system using a superconducting material, and FIG. 11 shows a cross-sectional structure of the superconducting current supply line. In this system, as shown in FIG.
And the terminal portion 1b, and the terminal portion 1b circulates the refrigerant passing through the refrigerator 1i and the heat exchanger 1c into the main body 1a through the refrigerant passage 1d, so that the entire length of the superconducting conductor in the main body is immersed and cooled. .
【0003】かかる冷却方式に供される超電導電流供給
線自体は、図11のように、冷媒通路1gを中心に持つ
超電導線材1e上に電気絶縁体1f、超電導線材1eを
順次配し、さらにその外側に冷媒通路1gを確保しつつ
断熱層1hを施し、各層への被覆材を有せしめて構成さ
れている。冷媒としては、液体冷媒;液体ヘリウムまた
は液体窒素が使用される。As shown in FIG. 11, a superconducting current supply line itself used for such a cooling system is composed of a superconducting wire 1e having a coolant passage 1g as a center, an electric insulator 1f and a superconducting wire 1e arranged in this order. A heat insulating layer 1h is provided while securing a coolant passage 1g on the outside, and a coating material is applied to each layer. As the refrigerant, a liquid refrigerant; liquid helium or liquid nitrogen is used.
【0004】[0004]
【発明が解決しようとする課題】前述した従来技術によ
れば、冷媒を循環させるのに超電導電流供給線本体にお
いて冷媒通路を必要とするため、超電導電流供給線を
高低差の大きい所または高低差が安定しない場所で使う
場合に冷媒の圧力制御が困難、長尺線路として冷却を
行う場合の冷媒圧力降下、断熱管路内で熱暴走が起き
た時に冷媒が気化し超電導電流供給線自体が暴発する危
険性、冷媒通路断面積が超電導電流供給線のサイズコ
ンパクト化を制限する等という問題があった。According to the above-mentioned prior art, a refrigerant passage is required in the superconducting current supply line main body in order to circulate the refrigerant. Pressure control of the refrigerant is difficult when used in places where the temperature is not stable, the refrigerant pressure drops when cooling as a long line, the refrigerant vaporizes when thermal runaway occurs in the adiabatic pipeline, and the superconducting current supply line itself explodes And the cross-sectional area of the refrigerant passage limits the size reduction of the superconducting current supply line.
【0005】そこで、本発明の解決すべき課題(目的)
は、第一に、長尺の断熱管路内の冷媒圧力制御が不要且
つサイズコンパクト化が可能な超電導電流供給線を提供
することにある。第二に、当該超電導電流供給線を超電
導転移温度以下に冷却する方法を提供することにある。
第三に、当該超電導電流供給線のクエンチ対策を具備す
る接続方法を提供することにある。Therefore, the problems to be solved by the present invention (objects)
A first object of the present invention is to provide a superconducting current supply line that does not require refrigerant pressure control in a long heat-insulating conduit and can be reduced in size. A second object is to provide a method for cooling the superconducting current supply line to a superconducting transition temperature or lower.
Third, it is an object of the present invention to provide a connection method having a quench countermeasure for the superconducting current supply line.
【0006】[0006]
【課題を解決するための手段】本発明の第一の課題(目
的)を達成するために提供する第一の手段;超電導電流
供給線は、断熱管路付きの超電導電流供給線であって、
超電導導体が熱伝導率の大きい純金属製の巻芯材の外周
に複数本の超電導線材を巻き付けることで集合化され、
断熱管路の少なくとも内側管を熱伝導率の大きい純金属
製とした構造としてなるものである。Means for Solving the Problems First means provided to achieve the first object (object) of the present invention; the superconducting current supply line is a superconducting current supply line with an adiabatic conduit,
The superconducting conductor is assembled by winding a plurality of superconducting wires around the outer periphery of a core material made of pure metal having high thermal conductivity,
At least the inner pipe of the heat-insulating pipe has a structure made of pure metal having high thermal conductivity.
【0007】上記のように、超電導線材の複合基材と巻
芯材に、熱伝導率の大きい純金属(例えば、銀,銅、ア
ルミニウム)材料を用いることで長手方向への熱伝導を
大きくし、超電導線材と巻芯材自身が伝熱による冷却媒
体となる。また、断熱管路の内側パイプに同様の純金属
(例えば、銅、銀またはアルミニウム)材料を用いてい
るので、端部において冷媒か冷凍器で冷却するだけで、
本体部長手方向ではパイプ自身の固体伝熱で冷却され
る。また、断熱管路の内側パイプが断熱層の高温側から
の輻射熱を吸収し、超電導線材を輻射熱に対してシール
ドする。従って、冷媒を超電導導体に沿って長尺循環さ
せるシステム及び制御が不要となり、超電導電流供給線
の本体サイズも小さくすることができる。As described above, by using a pure metal (eg, silver, copper, aluminum) material having a high thermal conductivity for the composite base material and the core material of the superconducting wire, the heat conduction in the longitudinal direction is increased. The superconducting wire and the core material themselves serve as a cooling medium by heat transfer. In addition, since the same pure metal (for example, copper, silver or aluminum) material is used for the inner pipe of the heat-insulating conduit, only cooling with a refrigerant or a refrigerator at an end portion,
In the longitudinal direction of the main body, the pipe is cooled by the solid heat transfer of the pipe itself. Further, the inner pipe of the heat insulating pipe absorbs radiant heat from the high temperature side of the heat insulating layer, and shields the superconducting wire from the radiant heat. Therefore, a system and control for circulating the refrigerant along the superconducting conductor for a long time become unnecessary, and the main body size of the superconducting current supply line can be reduced.
【0008】また、第二の課題(目的)を達成するため
に提供する第二の手段;超電導電流供給線の冷却方法
は、当該第一手段の超電導電流供給線における断熱管路
の内側管と超電導導体と巻芯材の長手方向の一部が液体
冷媒を用いて直接冷却され、その他の部分は複合される
純金属自身の伝熱により長手方向に間接冷却されること
で、超電導導体全長が超電導の臨界温度以下に冷却され
る方法からなる。Further, a second means provided to achieve the second object (object); a method for cooling a superconducting current supply line, comprising: The superconducting conductor and part of the core material in the longitudinal direction are directly cooled using a liquid refrigerant, and the other parts are indirectly cooled in the longitudinal direction by the heat transfer of the composite pure metal itself, so that the total length of the superconducting conductor is reduced. It comprises a method of cooling below the critical temperature of superconductivity.
【0009】さらに、第三の課題(目的)を達成するた
めに提供する第三の手段;超電導電流供給線の接続方法
は、当該第一手段の超電導電流供給線における断熱管路
の内側管と外側管との両者または一方に対して、その両
端末で超電導導体を電気接続する方法からなる。このよ
うにすることで、断熱管路の金属管を超電導導体の電流
をバイパスする電気的安定化材として機能し、以て、ク
エンチ対策を図ることができる。Further, a third means provided to achieve a third object (object); a method for connecting a superconducting current supply line, comprising the steps of: A method of electrically connecting a superconducting conductor to both or one of the outer tube and both ends thereof. By doing so, the metal tube of the heat-insulating conduit functions as an electrical stabilizing material that bypasses the current of the superconducting conductor, so that quench countermeasures can be achieved.
【0010】尚、断熱管路の断熱方式は、真空か積層真
空で行うと良い。また、超電導導体は、冷凍器または液
体冷媒を用いることで超電導臨海温度以下に冷却するこ
とのできる超電導材料を用いる。尚また、超電導電流供
給線の本体部の必要最小限の構成は、超電導導体と断熱
管路と機械補強材である。必要に応じて電気絶縁体が使
われる。The heat insulation of the heat insulation pipe is preferably carried out in a vacuum or a laminated vacuum. The superconducting conductor is made of a superconducting material that can be cooled to a superconducting critical temperature or lower by using a refrigerator or a liquid refrigerant. In addition, the minimum necessary configuration of the main body of the superconducting current supply line is a superconducting conductor, a heat-insulating conduit, and a mechanical reinforcement. Electrical insulators are used as needed.
【0011】[0011]
〔実施例1〕図1は、本発明の第一手段である。超電導
電流供給線の具体例である。この具体例の超電導電流供
給線は、往路用超電導導体3aと復路用超電導導体3b
との同軸構造からなり、往路用超電導導体3aは、銅製
の丸棒からなる巻芯材3cの上に酸化物系Bi-2223 超電
導導銀シース線材の複数本を巻き付けて集合化された中
密構造の導体からなる。この往路用超電導導体3aの外
側にはポリエチレンテープを巻き付けて電気絶縁層3d
を成層し、該層の外側に酸化物系Bi-2223 超電導導銀シ
ース線材の複数本を巻き付けて復路用超電導導体3bを
形成してなるものである。3fはかかる復路用超電導導
体3bの上にカプトン(米・デュポン社の商品名)の名
で知られた芳香族ポリイミドフィルム(フィルムはテー
プを含む意味で使用)を巻き付けた補強層である。[Embodiment 1] FIG. 1 shows a first means of the present invention. It is a specific example of a superconducting current supply line. The superconducting current supply line in this specific example includes a forward superconducting conductor 3a and a return superconducting conductor 3b.
The superconducting conductor 3a for the outward path is formed by winding a plurality of oxide-based Bi-2223 superconducting silver sheathed wires around a core material 3c made of a copper round bar and assembling them. Consists of structured conductors. A polyethylene tape is wound around the outside of the outward superconducting conductor 3a to form an electric insulating layer 3d.
And a plurality of oxide-based Bi-2223 superconducting silver sheath wires are wound around the outside of the layer to form the return superconducting conductor 3b. Reference numeral 3f denotes a reinforcing layer formed by winding an aromatic polyimide film (film is used including a tape) known under the name of Kapton (trade name of DuPont, U.S.A.) on the return conductor 3b.
【0012】上記のようにして構成された超電導導体
は、断熱管路の内側管を構成する純銅製のコルゲートパ
イプ3gの中に挿入する。3hは断熱管路の外側管を構
成する純銅製のコルゲートパイプにして、内側のコルゲ
ートパイプ3gとの間にスペーサ3iを介して空間3k
を保持し、該空間を真空絶縁としている。3jは塩化ビ
ニール樹脂による外装補強層である。The superconducting conductor constructed as described above is inserted into a pure copper corrugated pipe 3g constituting the inner pipe of the heat insulating pipeline. Reference numeral 3h denotes a pure copper corrugated pipe constituting the outer pipe of the heat insulating pipeline, and a space 3k between the corrugated pipe and the inner corrugated pipe 3g via a spacer 3i.
And the space is vacuum-insulated. 3j is an exterior reinforcement layer made of vinyl chloride resin.
【0013】図2は、本発明の第三手段である。超電導
電流供給線の接続方法の具体例を示し、上記構成の超電
導電流供給線を電気接続する方法である。2aは断熱管
路の外側管、2bは断熱管路の内側管、2cは接続抵
抗、2d,2eは夫々超電導導体を示す。また、上記の
方法により接続された超電導電流供給線を本発明の第二
手段による冷却する方法である。冷却システムの概念を
図6に示した。この実施例では、図6のように、寒剤で
ある液体ヘリウム4aで冷却された超電導コイル4bと
室温下に置かれる電力供給源4cとの間の電流供給線と
して適用した例である。超電導電流供給線は、往路用超
電導導体4d、復路用超電導導体4e、断熱管路の内側
管4f、断熱管路の外側管4gで構成されており、断熱
管路の内側管4fは復路用超電導導体4eと並列に接続
され、断熱管路の外側管4gは往路用超電導導体4dと
並列に接続されている。FIG. 2 shows a third means of the present invention. A specific example of a method of connecting a superconducting current supply line is described below, which is a method of electrically connecting the superconducting current supply line having the above configuration. 2a is an outer tube of the heat-insulated conduit, 2b is an inner tube of the heat-insulated conduit, 2c is a connection resistance, and 2d and 2e are superconducting conductors, respectively. Further, a superconducting current supply line connected by the above method is cooled by the second means of the present invention. FIG. 6 shows the concept of the cooling system. In this embodiment, as shown in FIG. 6, the present invention is applied to a current supply line between a superconducting coil 4b cooled by liquid helium 4a as a cryogen and a power supply 4c placed at room temperature. The superconducting current supply line is composed of a superconducting conductor 4d for the forward path, a superconducting conductor 4e for the return path, an inner pipe 4f of the heat-insulating pipe, and an outer pipe 4g of the heat-insulating pipe. The outer tube 4g of the heat insulating conduit is connected in parallel with the conductor 4e, and is connected in parallel with the outward superconducting conductor 4d.
【0014】超電導電流供給線に関して、一方の端末部
での電気接続部4h,4i,4j,4kは液体窒素4v
に浸漬冷却され、他方の端末部での電気接続部4l,4
m,4n,4pは液体ヘリウム4aに浸漬冷却され、断
熱管路の外側管4gに関連する電気接続部4q,4s,
4tは室温下に置かれている。さらに、銅リード4uの
往路と復路で超電導コイル4bを励磁するように接続さ
れている。With respect to the superconducting current supply line, the electric connection portions 4h, 4i, 4j, and 4k at one end are connected to liquid nitrogen 4v.
Immersed and cooled in the other end, and the electrical connection portions 41, 4 at the other terminal portion
m, 4n, 4p are immersed and cooled in liquid helium 4a, and the electrical connections 4q, 4s, associated with the outer tube 4g of the adiabatic conduit.
4t is kept at room temperature. Further, the superconducting coil 4b is connected so as to excite the superconducting coil 4b on the outward path and the return path of the copper lead 4u.
【0015】上記のような冷却システムの液体ヘリウム
4a冷却側の端部構造の具体例を図7に示し、同冷却シ
ステムの液体窒素4v冷却側の端部構造の具体例を図8
に示す。図7の詳細構造について説明すると、電気的な
往路側(或いは高電圧側)は、超電導電流供給線の往路
用超電導導体5a、巻芯材5b、超電導コイル5cのリ
ード5d、該リード5dと往路用超電導導体5aと往路
用接続導体5hとを接続する接続部5e、断熱管路の外
側管5f、接続フランジ5g、往路用接続導体5hと接
続フランジ5gとの接続部5iからなっている。断熱管
路の外側管5fと接続フランジ5gは半田か、ロー付
け、ボルトまたは溶接で導体接続されている。往路用接
続導体5hはクライオスタット5j内を機械的に構成す
るステンレス、ブラス等の支持材を電気的に接続して導
体として併用するか、別途に設けるかのいずれかの手法
が取られる。往路用接続導体5hは、常時、定格電流を
流す導体ではなく、1分から30分程度の短時間通電に
よって、往路用接続導体5h自身がジュール発熱によっ
て焼損しないような導体とする。FIG. 7 shows a specific example of an end structure on the liquid helium 4a cooling side of the above-described cooling system, and FIG. 8 shows a specific example of an end structure on the liquid nitrogen 4v cooling side of the same cooling system.
Shown in To explain the detailed structure of FIG. 7, the electrical forward side (or high voltage side) includes the forward superconducting conductor 5a of the superconducting current supply line, the core material 5b, the lead 5d of the superconducting coil 5c, and the lead 5d and the forward path. 5e for connecting the superconducting conductor 5a to the outward connection conductor 5h, an outer pipe 5f of the heat insulating conduit, a connection flange 5g, and a connection portion 5i between the outward connection conductor 5h and the connection flange 5g. The outer tube 5f and the connection flange 5g of the heat-insulating pipeline are connected to each other by soldering, brazing, bolting, or welding. As the outward connection conductor 5h, a method of electrically connecting a support material such as stainless steel or brass mechanically constituting the inside of the cryostat 5j and using it together as a conductor or separately providing the conductor is adopted. The forward connection conductor 5h is not a conductor that always flows the rated current, but a conductor that does not burn out due to Joule heat by the short-time conduction of about 1 to 30 minutes.
【0016】電気的な復路側(或いは低圧側)は、復路
用超電導導体5k、断熱管路の内側管5l、超電導コイ
ルのリード5m、復路用超電導導体5kと超電導コイル
5cのリード5mと断熱管路の内側管5lとを電気接続
する接続部5nからなる。The electrical return path (or low voltage side) includes a return path superconductor 5k, an inner pipe 51 of an adiabatic conduit, a lead 5m of a superconducting coil, a return path superconductor 5k and a lead 5m of a superconducting coil 5c, and an insulating pipe. It comprises a connecting portion 5n for electrically connecting the inner tube 51 of the road.
【0017】往路側と復路側は、超電導電流供給線内の
電気絶縁層5p、端部での電界ストレスコーン5q、絶
縁フランジ5rで電気絶縁されている。The forward path and the return path are electrically insulated by an electric insulating layer 5p in the superconducting current supply line, an electric field stress cone 5q at the end, and an insulating flange 5r.
【0018】図7において、往路用超電導導体5a、巻
芯材5b、断熱管路の内側管5lの端部が液体ヘリウム
5tに浸漬されて直接冷却され、浸漬冷却されない部分
の超電導電流供給線を伝熱で冷却するようにしている。
断熱管路は、内側管5lとステンフランジ5vを溶接接
合5uすると共に、外側管5fと接続フランジ5gを溶
接接合5xすることで真空封入され端部から液体ヘリウ
ム5tの気体したガスが断熱真空部内に入り込まないよ
うになっている。In FIG. 7, the end of the outward superconducting conductor 5a, the core 5b, and the end of the inner tube 5l of the adiabatic conduit are immersed in liquid helium 5t and directly cooled, and the superconducting current supply line at the portion not immersed and cooled is Cooling by heat transfer.
The adiabatic conduit is vacuum-enclosed by welding and joining the inner tube 5l and the stainless steel flange 5v by welding 5u and the outer tube 5f and the connecting flange 5g by welding 5x. Not to enter.
【0019】次に、他方の端部構造を示す図8の具体例
について説明する。液体窒素6aのクライオスタット6
b内において、超電導電流供給線6cの端部と室温部の
電力供給源に接続された往路用銅リード6dと復路用銅
リード6eが電気接続されている。断熱管路の内側管6
fの端部は接続部6gにおいて溶接接合により電気接続
され、復路用超電導導体6Pと並列に接続されている。
また、断熱管路の内側管6fは、一部が液体窒素6aに
浸漬されていることで、断熱管路の外部侵入熱を伝熱冷
却し、管路自身を冷却する役割を果たしている。Next, a specific example of FIG. 8 showing the other end structure will be described. Cryostat 6 of liquid nitrogen 6a
Within b, the end of the superconducting current supply line 6c and the forward copper lead 6d and the return copper lead 6e connected to the power supply source at room temperature are electrically connected. Inner pipe 6 of heat insulation pipe
The end of f is electrically connected by welding at the connection portion 6g, and is connected in parallel with the return path superconducting conductor 6P.
The inner pipe 6f of the heat-insulating pipe has a part immersed in the liquid nitrogen 6a, thereby performing the heat transfer cooling of the heat that has entered the heat-insulating pipe from the outside and cooling the pipe itself.
【0020】断熱管路の外側管6iは、金属フランジ6
jと溶接接合6xにて電気接続されており、さらに、金
属フランジ6jは往路用銅リード6dにロー付け6yで
電気接続され、往路用超電導導体6hと並列に接続され
ている。往路と復路の電気絶縁は絶縁フランジ6lと超
電導電流供給線内の絶縁層6m、電界ストレスコーン6
nでなされている。超電導電流供給線の冷却は、断熱管
路の内側管6fと往路用超電導導体6hと巻芯材6qの
端部の液体窒素6aに浸漬される表面熱流束と長手方向
の固体伝熱による原理によってなされる。また、断熱管
路の真空層に液体窒素6aの気化したガスが入り込まな
いように、断熱管路の内側管6fとステンフランジ6z
を接合部6wで溶接し真空封止している。The outer pipe 6i of the heat-insulating pipe is provided with a metal flange 6
j and welding connection 6x, the metal flange 6j is electrically connected to the outward copper lead 6d by brazing 6y, and is connected in parallel with the outward superconductor 6h. The electrical insulation between the forward path and the return path includes an insulating flange 6l, an insulating layer 6m in the superconducting current supply line, and an electric field stress cone 6.
n. The cooling of the superconducting current supply line is performed by the principle of the surface heat flux immersed in the liquid nitrogen 6a at the end of the inner tube 6f of the heat insulating conduit, the outward superconducting conductor 6h, and the core material 6q and the solid heat transfer in the longitudinal direction. Done. Further, the inner pipe 6f of the heat insulating pipe and the stainless steel flange 6z are provided so that the vaporized liquid nitrogen 6a does not enter the vacuum layer of the heat insulating pipe.
Are welded at the joint 6w to be vacuum-sealed.
【0021】〔実施例2〕上述した実施例1のシステム
の変形例として、図1の往路用超電導導体3aと復路用
超電導導体3bを酸化物系Bi-2212 超電導銀シース線材
または酸化物系Tl-2223 超電導銀シース線材で構成し
た。[Embodiment 2] As a modified example of the system of Embodiment 1 described above, the superconducting conductor 3a for the forward path and the superconducting conductor 3b for the backward path of FIG. 1 are made of an oxide Bi-2212 superconducting silver sheath wire or oxide Tl. -2223 Made of superconducting silver sheath wire.
【0022】〔実施例3〕実施例1または実施例2のシ
ステムにおける変形例として、図7の液体ヘリウム5t
の部分を液体窒素に置き換えて構成した。[Embodiment 3] As a modification of the system of Embodiment 1 or 2, liquid helium 5t shown in FIG.
Was replaced with liquid nitrogen.
【0023】〔実施例4〕実施例1,2または実施例3
のシステムにおける変形例として、図1の保護層3fを
金属テープ製とする。これは、該保護層を電気的安定化
材としても併用すること、熱収縮率を超電導線材に近い
値とすることで、超電導線材の熱歪劣化を防止すると共
に端部での直接冷却面を通じての長手方向の伝熱を大き
くすることを目的としたためである。[Embodiment 4] Embodiment 1, 2 or 3
As a modification of the above system, the protective layer 3f in FIG. 1 is made of a metal tape. This is because the protective layer is also used as an electrical stabilizing material, and the heat shrinkage is set to a value close to that of the superconducting wire, thereby preventing the thermal distortion of the superconducting wire from deteriorating and through the direct cooling surface at the end. This is because the purpose is to increase the heat transfer in the longitudinal direction.
【0024】〔実施例5〕実施例1,2,3または実施
例4のシステムにおける断熱管路の内側管と外側管の電
気接続の変形例として、図3のように接続した。これは
外側管2aを超電導電流供給線に電気接続しない方式か
らなり、超電導導体2dを高電圧下で使う場合や、外側
管2aをアース線にしたり、同外側管2aに電圧サージ
が加わらないことを配慮している。この場合、図7の端
末構成部分では、往路用接続導体5h、導体接続部5i
が不要となり、そのため、接続フランジ5gに対する電
気絶縁の配慮も不要となり、また、図8の端末構成部分
では、往路用銅リード6d、金属フランジ6jの電気接
続部も不要となり、超電導電流供給線の接続が簡便な方
式となる。但し、この方式の場合、超電導導体2dは、
クエンチに対する並列導体が1項目減り信頼性に劣る
が、超電導導体2d自身に十分なクエンチ対策が施され
ている場合は、製作上簡便であるために低コストのシス
テムとなる。[Embodiment 5] As a modified example of the electrical connection between the inner pipe and the outer pipe of the heat-insulating pipe in the system of the first, second, third or fourth embodiment, they were connected as shown in FIG. This is a method in which the outer tube 2a is not electrically connected to the superconducting current supply line. When the superconducting conductor 2d is used under a high voltage, the outer tube 2a is used as a ground line, and no voltage surge is applied to the outer tube 2a. Is considered. In this case, in the terminal configuration portion of FIG. 7, the forward connection conductor 5h and the conductor connection portion 5i
8 is not required, so that consideration of electrical insulation for the connection flange 5g is not required. Further, in the terminal configuration portion in FIG. 8, the electrical connection portion of the outward copper lead 6d and the metal flange 6j is not required, and the superconducting current supply line is not required. The connection is simple. However, in the case of this method, the superconducting conductor 2d is
Although the number of parallel conductors with respect to the quench is reduced by one item and the reliability is inferior, if the superconducting conductor 2d itself has a sufficient quench countermeasure, the system is low in cost because it is simple to manufacture.
【0025】〔実施例6〕実施例5のシステムにおける
断熱管路の内側管と外側管の電気接続の変形例として、
図4の電気接続方法を採用した。これは、断熱管路の外
側管2aと内側管2bの両方を超電導導体2eを高電圧
下で使う場合や、超電導電流供給線の接続の簡便性を配
慮する時に適用される方式である。また、この方式で
は、接続抵抗2fを接続抵抗2gより大きく設計するこ
とで、断熱管路低温側の内側管2bのジュール発熱によ
る熱負荷を減らすことが可能となり、超電導導体の熱的
安定性の大きいシステムとなる。[Embodiment 6] As a modified example of the electrical connection between the inner pipe and the outer pipe of the heat insulating pipe in the system of the fifth embodiment,
The electrical connection method of FIG. 4 was adopted. This is a method applied when both the outer tube 2a and the inner tube 2b of the heat insulating conduit are used under the high voltage of the superconducting conductor 2e, or when the simplicity of the connection of the superconducting current supply line is considered. Further, in this method, by designing the connection resistance 2f to be larger than the connection resistance 2g, it is possible to reduce the heat load due to the Joule heat of the inner tube 2b on the low-temperature side of the heat-insulating pipeline, and to reduce the thermal stability of the superconducting conductor. It becomes a big system.
【0026】この場合の端末部分は、実施例5の構造と
基本的に同じであり、唯一の違いは断熱管路の内側管2
bと外側管2dの間を真空封止するために溶接接続し、
電気的にも内側管と外側管が接続されている点である。The terminal part in this case is basically the same as the structure of the fifth embodiment.
b and the outer tube 2d are connected by welding to vacuum seal them,
Another point is that the inner tube and the outer tube are electrically connected.
【0027】〔実施例7〕実施例5のシステムにおける
断熱管路の内側管と外側管の電気接続の変形例として、
図5の電気接続方法を採用した。これは、断熱管路の外
側管2aと内側管2bの両方を超電導導体から電気的に
絶縁して構成する方式からなる。断熱管路の外側管2a
と内側管2bは電気的に接続されていても構わない。[Embodiment 7] As a modified example of the electrical connection between the inner pipe and the outer pipe of the heat-insulated conduit in the system of the fifth embodiment,
The electrical connection method of FIG. 5 was adopted. This is a system in which both the outer tube 2a and the inner tube 2b of the heat insulating conduit are electrically insulated from the superconducting conductor. Outer pipe 2a of heat insulating pipeline
And the inner tube 2b may be electrically connected.
【0028】〔実施例8〕実施例4,5,6または実施
例7の冷却方法の変形例である。図7の端末部分を図9
の端末構造、すなわち超電導コイル用の冷却用寒剤7a
と超電導電流供給線冷却用の寒剤7bを別の空間に配置
した構造とした。Embodiment 8 This is a modification of the cooling method of Embodiment 4, 5, 6, or 7. FIG. 9 shows the terminal portion of FIG.
Terminal structure, ie, a cooling cryogen 7a for a superconducting coil
And a cryogen 7b for cooling the superconducting current supply line were arranged in another space.
【0029】〔応用システムに関して〕上述した実施例
では、電流の受電側を全て超電導コイルに限定して取り
上げが、これに限らず、大電流通電の通電ラインの一
部、または極低温下で作動するデバイスを用い、これに
超電導電流供給線を適用することも有用である。[Regarding Applied System] In the above-mentioned embodiment, the current receiving side is limited to the superconducting coil. However, the present invention is not limited to this. It is also useful to use a superconducting current supply line for the device.
【0030】[0030]
【発明の効果】以上説明したような本発明によれば、第
一に長尺の断熱管路内の冷媒圧力制御が不要且つサイズ
コンパクト化が可能な超電導電流供給線を提供する、第
二に当該超電導電流供給線を超電導転移温度以下に冷却
する方法を提供する、第三に当該超電導電流供給線をク
エンチ対策の具備する接続方法を提供するという所期の
目的を達成することができる。併せて、超電導電流供
給線を高低差の大きい所または高低差が安定しない場所
で大電流を供給する場合に冷媒の圧力制御が不要となる
点で有利である。長尺冷却を行う場合の冷媒圧力降下
の問題がない。断熱管路暴発の危険を完全に回避でき
る。冷媒を循環させるポンプが不要でメンテナンスが
容易となる。等の効果を奏することができる。According to the present invention as described above, firstly, there is provided a superconducting current supply line which does not require refrigerant pressure control in a long heat-insulating conduit and can be downsized. It is possible to achieve the intended object of providing a method of cooling the superconducting current supply line to a temperature lower than the superconducting transition temperature, and thirdly providing a connection method of the superconducting current supply line with quench measures. In addition, when a large current is supplied to the superconducting current supply line at a place where the height difference is large or where the height difference is not stable, it is advantageous in that the pressure control of the refrigerant becomes unnecessary. There is no problem of refrigerant pressure drop when performing long cooling. The risk of insulated pipeline explosion can be completely avoided. Maintenance is easy because a pump for circulating the refrigerant is not required. And the like.
【図1】本発明の実施例1における第一手段としての超
電導電流供給線の具体例を示す横断面図。FIG. 1 is a cross-sectional view showing a specific example of a superconducting current supply line as first means in Embodiment 1 of the present invention.
【図2】本発明の実施例1における第三手段としての超
電導電流供給線の接続方法の具体例を示す説明図。FIG. 2 is an explanatory view showing a specific example of a method of connecting a superconducting current supply line as a third means in the first embodiment of the present invention.
【図3】本発明の実施例5における第三手段としての超
電導電流供給線の接続方法の具体例を示す説明図。FIG. 3 is an explanatory view showing a specific example of a method of connecting a superconducting current supply line as a third means in a fifth embodiment of the present invention.
【図4】本発明の実施例6における第三手段としての超
電導電流供給線の接続方法の具体例を示す説明図。FIG. 4 is an explanatory view showing a specific example of a method of connecting a superconducting current supply line as a third means in a sixth embodiment of the present invention.
【図5】本発明の実施例7における第三手段としての超
電導電流供給線の接続方法の具体例を示す説明図。FIG. 5 is an explanatory view showing a specific example of a method of connecting a superconducting current supply line as a third means in a seventh embodiment of the present invention.
【図6】本発明の実施例1における第二手段としての超
電導電流供給線の冷却システムの概念図。FIG. 6 is a conceptual diagram of a superconducting current supply line cooling system as a second means in the first embodiment of the present invention.
【図7】本発明の実施例1における端末部構造(液体ヘ
リウム側)の詳細図。FIG. 7 is a detailed view of a terminal structure (liquid helium side) according to the first embodiment of the present invention.
【図8】本発明の実施例1における端末部構造(液体窒
素側)の詳細図。FIG. 8 is a detailed diagram of a terminal structure (liquid nitrogen side) according to the first embodiment of the present invention.
【図9】本発明の実施例8における超電導電流供給線の
端末部構造の詳細図。FIG. 9 is a detailed view of a terminal structure of a superconducting current supply line according to an eighth embodiment of the present invention.
【図10】超電導電流供給線における冷却システムの従
来例の説明図。FIG. 10 is an explanatory view of a conventional example of a cooling system in a superconducting current supply line.
【図11】従来の超電導電流供給線の例を示す横断面
図。FIG. 11 is a cross-sectional view showing an example of a conventional superconducting current supply line.
2a 断熱管路の外側管 2b 断熱管路の内側管 2c 接続抵抗 2d 超電導導体 2e 超電導導体 2f 接続抵抗(図4) 2g 接続抵抗(図4) 3a 往路用超電導導体 3b 復路用超電導導体 3c 巻芯材;銅製丸棒 3d 電気絶縁層 3f 補強層(芳香族ポリイミドフィルムの巻き付け
層) 3g 断熱管路の内側管;コルゲートパイプ 3h 断熱管路の外が件;コルゲートパイプ 3i スペーサ 3k 空間;真空絶縁 3j 外装補強層 4a 冷媒;液体ヘリウム 4b 超電導コイル 4c 電力供給源 4d 往路用超電導導体 4e 復路用超電導導体 4f 断熱管路の内側管 4g 断熱管路の外側管 4h 電気接続部 4i 電気接続部 4j 電気接続部 4k 電気接続部 4l 電気接続部 4m 電気接続部 4n 電気接続部 4q 電気接続部 4s 電気接続部 4t 電気接続部 4v 冷媒;液体窒素 4u 銅リード 5a 往路用超電導導体 5b 巻芯材 5c 超電導コイル 5d リード 5e 接続部 5f 断熱管路の外側管 5g 接続フランジ 5h 往路接続導体 5i 導体接続部 5j クライオスタット 5k 復路用超電導導体 5l 断熱管路の内側管 5m リード 5n 接続部 5p 電気絶縁層 5q 電界ストレスコーン 5r 絶縁フランジ 5t 液体ヘリウム 5v ステンフランジ 5u 溶接接合 5x 溶接接合 5y 真空断熱 6a 液体窒素 6b クライオスタット 6c 超電導電流供給線 6d 往路用銅リード 6e 復路用銅リード 6f 断熱管路の内側管 6g 接続部 6h 復路用超電導導体 6i 断熱管路の外側管 6j 金属フランジ 6l 絶縁フランジ 6m 絶縁層 6n 電界ストレスコーン 6p 復路用超電導導体 6q 巻芯材 7a 超電導コイル冷却用の寒剤 7b 超電導電流供給線冷却用の寒剤2a Outer pipe of heat insulating pipe 2b Inner pipe of heat insulating pipe 2c Connection resistance 2d Superconducting conductor 2e Superconducting conductor 2f Connection resistance (FIG. 4) 2g Connection resistance (FIG. 4) 3a Outgoing superconducting conductor 3b Returning superconducting conductor 3c Core Material: Copper round bar 3d Electrical insulating layer 3f Reinforcement layer (wrapping layer of aromatic polyimide film) 3g Inner pipe of heat insulating pipe; corrugated pipe 3h Outside heat insulating pipe; corrugated pipe 3i spacer 3k space; vacuum insulation 3j Exterior reinforcement layer 4a Refrigerant; liquid helium 4b Superconducting coil 4c Power supply source 4d Outgoing superconducting conductor 4e Incoming superconducting conductor 4f Inner pipe of heat insulating pipe 4g Outer pipe of heat insulating pipe 4h Electrical connection 4i Electrical connection 4j Electrical connection Part 4k electric connection part 4l electric connection part 4m electric connection part 4n electric connection part 4q electric connection part 4s electric connection part t Electrical connection part 4v Refrigerant; liquid nitrogen 4u Copper lead 5a Outgoing superconducting conductor 5b Core material 5c Superconducting coil 5d Lead 5e Connection part 5f Outer tube of heat insulating conduit 5g Connection flange 5h Outbound connection conductor 5i Conductor connection part 5j Cryostat 5k Return path superconducting conductor 5l Inner tube of heat insulating pipe 5m Lead 5n Connection 5p Electric insulating layer 5q Electric field stress cone 5r Insulating flange 5t Liquid helium 5v Stainless flange 5u Welding joint 5x Welding joint 5y Vacuum insulation 6a Liquid nitrogen 6b Cryostat flow 6c Superconductivity Supply line 6d Copper lead for forward path 6e Copper lead for return path 6f Inner tube of heat-insulated conduit 6g Connection part 6h Superconducting conductor for return path 6i Outer tube of heat-insulated conduit 6j Metal flange 6l Insulation flange 6m Insulation layer 6n Electric field stress cone 6p For return path Superconductivity Conductor 6q Core material 7a Coolant for cooling superconducting coil 7b Coolant for cooling superconducting current supply line
Claims (3)
て、超電導導体が熱伝導率の大きい純金属製の巻芯材の
外周に複数本の超電導線材を巻き付けることで集合化さ
れ、断熱管路の少なくとも内側管を熱伝導率の大きい純
金属製としたことを特徴とする超電導電流供給線。1. A superconducting current supply line with an adiabatic conduit, wherein a superconducting conductor is assembled by winding a plurality of superconducting wires around an outer periphery of a core material made of pure metal having a high thermal conductivity, and is insulated. A superconducting current supply line, characterized in that at least the inner pipe of the pipe is made of pure metal having a high thermal conductivity.
て、超電導導体が熱伝導率の大きい純金属製の巻芯材の
外周に複数本の超電導線材を巻き付けることで集合化さ
れ、断熱管路の少なくとも内側管を熱伝導率の大きい純
金属製とした構成の超電導電流供給線を冷却する方法に
おいて、該超電導電流供給線における断熱管路の内側管
と超電導導体と巻芯材の長手方向の一部が液体冷媒を用
いて直接冷却され、その他の部分は複合される純金属自
身の伝熱により長手方向に間接冷却されることで、超電
導導体全長が超電導の臨界温度以下に冷却されることを
特徴とする超電導電流供給線の冷却方法。2. A superconducting current supply line with an adiabatic conduit, wherein superconducting conductors are gathered by winding a plurality of superconducting wires around an outer periphery of a core material made of pure metal having a high thermal conductivity. A method for cooling a superconducting current supply line having a structure in which at least an inner tube of a conduit is made of a pure metal having a large thermal conductivity, comprising: Part of the direction is directly cooled using liquid refrigerant, and the other part is indirectly cooled in the longitudinal direction by the heat transfer of the pure metal itself, so that the entire length of the superconducting conductor is cooled below the critical temperature of superconductivity. A method for cooling a superconducting current supply line, comprising:
て、超電導導体が熱伝導率の大きい純金属製の巻芯材の
外周に複数本の超電導線材を巻き付けることで集合化さ
れ、断熱管路の少なくとも内側管を熱伝導率の大きい純
金属製とした構成の超電導電流供給線を接続する方法に
おいて、該超電導電流供給線における断熱管路の内側管
と外側管との両者または一方に対して、その両端末で超
電導導体を電気接続することを特徴とする超電導電流供
給線の接続方法。3. A superconducting current supply line with an adiabatic conduit, wherein the superconducting conductors are assembled by winding a plurality of superconducting wires around an outer periphery of a core material made of pure metal having high thermal conductivity. In a method of connecting a superconducting current supply line having a configuration in which at least an inner tube of a conduit is made of pure metal having a high thermal conductivity, the superconducting current supply line may be connected to at least one of the inner tube and the outer tube of the heat insulating conduit. On the other hand, a method for connecting a superconducting current supply line, wherein a superconducting conductor is electrically connected at both ends.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8169418A JPH1022117A (en) | 1996-06-28 | 1996-06-28 | Superconducting current supplying wire and method of its cooling, and method of its connection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8169418A JPH1022117A (en) | 1996-06-28 | 1996-06-28 | Superconducting current supplying wire and method of its cooling, and method of its connection |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1022117A true JPH1022117A (en) | 1998-01-23 |
Family
ID=15886234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8169418A Pending JPH1022117A (en) | 1996-06-28 | 1996-06-28 | Superconducting current supplying wire and method of its cooling, and method of its connection |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1022117A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100729924B1 (en) | 2005-12-16 | 2007-06-18 | 엘에스전선 주식회사 | Superconductor cable cryostat having adsorbent pad |
US20140228221A1 (en) * | 2011-10-28 | 2014-08-14 | Hyundai Heavy Industries Co., Ltd. | Superconducting rotating machines cooling apparatus using heating pipe |
CN111710462A (en) * | 2020-07-08 | 2020-09-25 | 芜湖利远电子技术有限公司 | Thermal lodging type low-aging-speed cable |
-
1996
- 1996-06-28 JP JP8169418A patent/JPH1022117A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100729924B1 (en) | 2005-12-16 | 2007-06-18 | 엘에스전선 주식회사 | Superconductor cable cryostat having adsorbent pad |
US20140228221A1 (en) * | 2011-10-28 | 2014-08-14 | Hyundai Heavy Industries Co., Ltd. | Superconducting rotating machines cooling apparatus using heating pipe |
CN111710462A (en) * | 2020-07-08 | 2020-09-25 | 芜湖利远电子技术有限公司 | Thermal lodging type low-aging-speed cable |
CN111710462B (en) * | 2020-07-08 | 2021-12-28 | 湖南湘联电缆有限公司 | Thermal lodging type low-aging-speed cable |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3749811A (en) | Superconducting cable | |
JP4191544B2 (en) | Superconducting cable joint structure | |
KR101380921B1 (en) | Superconducting cables and methods of making the same | |
JP4033509B2 (en) | Terminal for connecting a superconducting multiphase cable to an electrical device at room temperature | |
JPH0277106A (en) | Ceramic superconductor very low temperature current conductor | |
EP0596249B1 (en) | Compact superconducting magnet system free from liquid helium | |
JPH08185726A (en) | Ceramic superconducting lead wire assembly | |
US3619479A (en) | Electrical conductor of electrically normal conducting metal and superconducting material | |
US5298679A (en) | Current lead for cryostat using composite high temperature superconductors | |
US11488747B2 (en) | Superconducting power cable system | |
US3639672A (en) | Electrical conductor | |
US8594756B2 (en) | Superconducting element joint, a process for providing a superconducting element joint and a superconducting cable system | |
JP2005251570A (en) | Intermediate connection part of superconducting cable | |
US20050067184A1 (en) | Jointing structure and jointing method for superconducting cable | |
JP2002533894A (en) | Superconducting cable | |
EP1147524A1 (en) | Superconducting cable | |
US8923940B2 (en) | System with a three phase superconductive electrical transmission element | |
KR102033032B1 (en) | Arrangement with a superconducting direct-current electric cable system | |
KR20090110258A (en) | A connection arrangement for two superconductor cables | |
JP5266852B2 (en) | Superconducting current lead | |
JPH0335818B2 (en) | ||
JPH1022117A (en) | Superconducting current supplying wire and method of its cooling, and method of its connection | |
US6794579B1 (en) | High temperature superconducting cable | |
JP7040730B2 (en) | Permanent current switch | |
US5324891A (en) | Superconducting connecting leads having thermal plug |