JPH10220921A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH10220921A
JPH10220921A JP9022322A JP2232297A JPH10220921A JP H10220921 A JPH10220921 A JP H10220921A JP 9022322 A JP9022322 A JP 9022322A JP 2232297 A JP2232297 A JP 2232297A JP H10220921 A JPH10220921 A JP H10220921A
Authority
JP
Japan
Prior art keywords
heat transfer
refrigerant
flue gas
passage
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9022322A
Other languages
Japanese (ja)
Inventor
Motohiko Kitamura
基彦 北村
Akira Oshima
朗 大島
Tetsuo Imai
哲雄 今井
Shuji Ochiai
秀志 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9022322A priority Critical patent/JPH10220921A/en
Publication of JPH10220921A publication Critical patent/JPH10220921A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger in which refrigerant is heated by discharged gas of high temperature generated under combustion so as to be utilized in a heating device and a heat exchanging operation is carried out in a high efficiency to prevent a local overheating of equipment and thermal decomposition of refrigerant. SOLUTION: This heat exchanger is operated such that a large amount of combustion discharged gas is flowed at a downstream side of a porous pipe 11 where a large amount of liquid refrigerant is distributed by a resistor plate 16 and a resistor plate 17 controlling a distribution of flow rate of combustion discharged gas in horizontal and vertical directions of high temperature combustion gas flowing in heat transfer fins 8, 9, wherein the refrigerant becomes two phases of gas and liquid, the combustion discharged gas is divided to flow in upper and lower directions above the porous pipe 11 having a less amount of distribution of the liquid refrigerant, a large amount of combustion discharged gas is flowed in a horizontal direction as it approaches an inlet or outlet of the porous pipe 11 for refrigerant where a large amount of passing refrigerant is present, thereby local overheating of the heat transfer fins 8, 9 and the porous pipe 11 is eliminated, and then a thermal decomposition of refrigerant or an abnormal increasing in temperature of the device is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃焼による高温排
ガスにより冷媒を加熱し、暖房装置に利用する熱交換器
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger for heating a refrigerant with high temperature exhaust gas generated by combustion and utilizing the refrigerant in a heating device.

【0002】[0002]

【従来の技術】従来、燃焼により冷媒を加熱して液状冷
媒を蒸発気化させ、潜熱により熱を運び暖房を行う熱交
換器は、特公平7−18595号公報に記載されている
ようなものが一般的であった。この熱交換器は図6
(a)、(b)に示すように3は燃料供給装置1に接続
したバーナ2に一端側が接続された燃焼室で、この燃焼
室3は伝熱隔壁10に密着して設けられた燃焼排ガス通
路部材5に他端側が接続されている。なお燃焼排ガス通
路部材5には排気管6を有し、燃焼排ガス通路部材5に
伝熱隔壁10が組み合わさって燃焼排ガス通路が形成さ
れている。前記燃焼排ガス通路の内部には伝熱隔壁10
に密着し燃焼排ガス入口7を形成するように上下2つの
伝熱フィン8、9がそれぞれ設けられている。
2. Description of the Related Art Conventionally, a heat exchanger for heating a refrigerant by combustion to evaporate and evaporate a liquid refrigerant and carry heat by latent heat for heating is described in Japanese Patent Publication No. 7-18595. Was common. This heat exchanger is shown in FIG.
As shown in (a) and (b), reference numeral 3 denotes a combustion chamber having one end connected to a burner 2 connected to the fuel supply device 1, and the combustion chamber 3 is a combustion exhaust gas provided in close contact with the heat transfer partition 10. The other end is connected to the passage member 5. The flue gas passage member 5 has an exhaust pipe 6, and the flue gas passage member 5 is combined with a heat transfer partition 10 to form a flue gas passage. A heat transfer partition 10 is provided inside the flue gas passage.
The upper and lower two heat transfer fins 8 and 9 are provided so as to closely contact with each other and form a combustion exhaust gas inlet 7.

【0003】また図7に示すように前記伝熱フィン8、
9は伝熱隔壁10に取り付けられた状態において上下方
向に向かう多数の通路を形成し、この伝熱フィン8、9
が前記燃焼排ガス通路部材5で覆われた状態において伝
熱フィン8、9の外周を通り上側の伝熱フィン8の上方
中央で集合する排気通路15が形成されるようになって
いる。なお前記伝熱フィン8の通路8aの長さは伝熱フ
ィン9の通路9aの長さより長くなっている。前記伝熱
隔壁10の外面には熱的に連結させた多穴管11が設け
られ、この多穴管11には上下方向に向く通路12が多
数設けられている。前記多穴管11の下端には冷媒入口
ヘッダー管13が設けられ、多穴管11の上端には冷媒
出口ヘッダー管14が設けられている。
[0003] Further, as shown in FIG.
The heat transfer fins 8 and 9 form a large number of passages extending in the vertical direction when mounted on the heat transfer partition 10.
The exhaust passage 15 is formed so as to pass through the outer circumferences of the heat transfer fins 8 and 9 and to gather at the upper center of the upper heat transfer fin 8 in a state where the heat transfer fins 8 are covered with the combustion exhaust gas passage member 5. The length of the passage 8a of the heat transfer fin 8 is longer than the length of the passage 9a of the heat transfer fin 9. A heat-coupled multi-hole tube 11 is provided on the outer surface of the heat transfer partition 10, and the multi-hole tube 11 is provided with a large number of passages 12 extending vertically. A refrigerant inlet header tube 13 is provided at a lower end of the multi-hole tube 11, and a refrigerant outlet header tube 14 is provided at an upper end of the multi-hole tube 11.

【0004】燃料供給装置1より供給された燃料をバー
ナ2で燃焼し、燃焼室3で発生した燃焼排ガスは図7の
矢印に示すように燃焼排ガス入口7を通り燃焼排ガス通
路内部の伝熱フィン8、9の通路8a、9aを通り、排
気通路15から排気管6に流れる。冷媒入口ヘッダー管
13に入った液冷媒は多穴管11の下部より多数の上下
方向の通路12に分流し、一方伝熱フィン8、9が前記
通路8a、9aを流れる高温の燃焼排ガスの熱を多穴管
11に伝熱し、その結果通路12内の冷媒を加熱する。
そこで加熱された液状冷媒は気化蒸発を開始し、液の中
に気泡を生じる気液二相状態となる。発生した気泡は浮
力効果で上下方向の通路12内を上昇し、多穴管11の
上端より上方の冷媒出口ヘッダー管14に流出してゆ
く。
[0004] The fuel supplied from the fuel supply device 1 is burned by the burner 2, and the flue gas generated in the combustion chamber 3 passes through the flue gas inlet 7 as shown by the arrow in FIG. The gas flows from the exhaust passage 15 to the exhaust pipe 6 through the passages 8 a and 9 a of 8 and 9. The liquid refrigerant entering the refrigerant inlet header pipe 13 is diverted from the lower part of the multi-hole pipe 11 to a number of vertical passages 12, while the heat transfer fins 8, 9 generate heat of the high-temperature flue gas flowing through the passages 8 a, 9 a. Is transferred to the multi-hole tube 11, thereby heating the refrigerant in the passage 12.
Then, the heated liquid refrigerant starts vaporizing and evaporating, and enters a gas-liquid two-phase state in which bubbles are generated in the liquid. The generated bubbles rise in the vertical passage 12 due to the buoyancy effect, and flow out to the refrigerant outlet header tube 14 above the upper end of the multi-hole tube 11.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記した
従来の構成では、伝熱フィン8、9の長さによる上下方
向の燃焼排ガス量の最適化のみで水平方向の燃焼排ガス
の最適化手段を有していない為、ヘッダー管を有する多
穴管11の冷媒通路構成では排気口6の位置によっては
多穴管11に局部過熱部が生じ冷媒の熱分解や機器の異
常温度上昇が生じる問題があった。
However, the conventional structure described above has a means for optimizing the flue gas in the horizontal direction only by optimizing the amount of flue gas in the vertical direction by the length of the heat transfer fins 8 and 9. Therefore, in the configuration of the refrigerant passage of the multi-hole tube 11 having the header tube, there is a problem that depending on the position of the exhaust port 6, a locally overheated portion is generated in the multi-hole tube 11 to cause thermal decomposition of the refrigerant and abnormal temperature rise of the equipment. .

【0006】本発明は上記課題を解決するもので、排気
口6の位置にかかわらず、燃焼排ガス量の上下方向と水
平方向との最適化を図り冷媒の熱分解や機器の異常温度
上昇を防止し機器の信頼性の向上を図ることを目的とす
るものである。
The present invention solves the above-mentioned problems, and optimizes the amount of flue gas in the vertical and horizontal directions regardless of the position of the exhaust port 6 to prevent thermal decomposition of refrigerant and abnormal rise in temperature of equipment. It is intended to improve the reliability of the equipment.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するために、略水平である燃焼筒の一端にバーナ、他端
に排気管を有する燃焼排ガス通路部材と、伝熱隔壁とを
備えた燃焼室を構成し、前記伝熱隔壁の燃焼室側には燃
焼排ガス流入部となる燃焼排ガス入口を有して燃焼排ガ
ス通路を有する複数の伝熱フィンを有し、前記伝熱フィ
ンの前記燃焼室の反対側には前記伝熱フィンと前記伝熱
隔壁と密着接合した複数の上下方向に冷媒通路を有する
多穴管と、前記多穴管の下端には一端が閉塞した冷媒入
口ヘッダー管を、上端には前記冷媒入口ヘッダー管と同
じ側の一端を閉塞した冷媒出口ヘッダー管を設け、前記
複数伝熱フィンの上下燃焼排ガス流出部には、前記冷媒
出口ヘッダー管と冷媒入口ヘッダー管の閉塞側に近づく
程上下燃焼排ガス流出部の通路面積が小となる形状とし
た抵抗板を備えた構成としている。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention comprises a combustion exhaust gas passage member having a burner at one end and an exhaust pipe at the other end of a substantially horizontal combustion cylinder, and a heat transfer partition. A plurality of heat transfer fins having a combustion exhaust gas passage having a combustion exhaust gas inlet serving as a combustion exhaust gas inflow portion on the combustion chamber side of the heat transfer partition. On the opposite side of the combustion chamber, a multi-hole pipe having a plurality of vertically extending refrigerant passages which are in close contact with the heat transfer fins and the heat transfer partition, and a refrigerant inlet header pipe having one end closed at a lower end of the multi-hole pipe. The upper end is provided with a refrigerant outlet header tube having one end closed on the same side as the refrigerant inlet header tube, and the upper and lower combustion exhaust gas outflow portions of the plurality of heat transfer fins are provided with the refrigerant outlet header tube and the refrigerant inlet header tube. Upper and lower flue gas closer to the closed side Passage area of the exit portion is configured to include a resistive plate having a shape which is small.

【0008】上記発明によれば、伝熱フィンの下伝熱フ
ィンの通路抵抗すなわち下燃焼排ガス流出部の通路抵抗
より上伝熱フィンの通路抵抗および上燃焼排ガス流出部
の通路抵の方が大きく液冷媒が多く分布する多穴管の下
側の伝熱フィンに燃焼排ガスを多く流し、冷媒が気液二
相状態となり液冷媒の分布が少ない多穴管の上側の伝熱
フィンには燃焼排ガスを下側より少なく流すように燃焼
排ガスを上下方向に分流するため伝熱フィンおよび多穴
管を上下方向にバランス良く効果的に加熱することがで
き熱交換効率が向上する。
According to the above invention, the passage resistance of the upper heat transfer fin and the passage resistance of the upper combustion exhaust gas outlet are larger than the passage resistance of the lower heat transfer fin, that is, the passage resistance of the lower combustion exhaust gas outlet. A large amount of flue gas flows through the heat transfer fins on the lower side of the multi-hole tube where a large amount of liquid refrigerant is distributed, and the refrigerant becomes a gas-liquid two-phase state. The heat transfer fins and the multi-hole tube can be effectively heated in a well-balanced manner in the vertical direction so that the heat exchange efficiency is improved.

【0009】更に水平方向では、通路抵抗が少ない結果
冷媒の通過量が多い多穴管の冷媒出入口側になるほど燃
焼排ガスを多く流すことにより伝熱フィンの局部過熱が
なくなり冷媒の熱分解や機器の異常温度上昇を防止する
ことができる。
Further, in the horizontal direction, the flow of the combustion exhaust gas is increased toward the refrigerant inlet / outlet side of the multi-hole tube where the passage amount of the refrigerant is small as a result of the small passage resistance, so that the local overheating of the heat transfer fins is eliminated and the thermal decomposition of the refrigerant and the equipment Abnormal temperature rise can be prevented.

【0010】[0010]

【発明の実施の形態】本発明は略水平である燃焼筒の一
端にバーナ、他端に排気管を有する燃焼排ガス通路部材
と、伝熱隔壁とを備えて燃焼室を構成し、前記伝熱隔壁
の燃焼室側には燃焼排ガス流入部となる燃焼排ガス入口
を有した燃焼排ガス通路を有する複数の伝熱フィンを有
し、前記伝熱フィンの前記燃焼室の反対側には前記伝熱
フィンと前記伝熱隔壁と密着接合した複数の上下方向に
冷媒通路を有する多穴管と、前記多穴管の下端には一端
が閉塞した冷媒入口ヘッダー管を、上端には前記冷媒入
口ヘッダー管と同じ側の一端を閉塞した冷媒出口ヘッダ
ー管を設け、前記複数伝熱フィンの上下燃焼排ガス流出
部には、前記冷媒出口ヘッダー管と冷媒入口ヘッダー管
の閉塞側に近づく程上下燃焼排ガス流出部の通路面積が
小となる形状とした抵抗板を備えた構成となっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention provides a combustion chamber comprising a combustion gas passage member having a burner at one end and an exhaust pipe at the other end of a substantially horizontal combustion cylinder, and a heat transfer partition. A plurality of heat transfer fins having a flue gas passage having a flue gas inlet serving as a flue gas inflow portion are provided on the combustion chamber side of the partition wall, and the heat transfer fin is provided on a side of the heat transfer fin opposite to the combustion chamber. And a multi-hole pipe having a plurality of vertically extending refrigerant passages which are in close contact with the heat transfer partition, a refrigerant inlet header pipe having one end closed at a lower end of the multi-hole pipe, and a refrigerant inlet header pipe at an upper end. A refrigerant outlet header pipe having one end closed on the same side is provided, and the upper and lower flue gas outflow portions of the plurality of heat transfer fins are provided with the upper and lower flue gas outflow portions closer to the closed side of the refrigerant outlet header tube and the refrigerant inlet header tube. The passage area is small. It has become equipped with resistive plate configuration.

【0011】また、抵抗板は上方の燃焼排ガス流出部の
通路面積より下方の燃焼排ガス流出部の通路面積の方が
大きくなる形状とした構成となっている。
The resistance plate has a configuration in which the passage area of the lower combustion exhaust gas outlet is larger than the passage area of the upper combustion exhaust gas outlet.

【0012】また、伝熱フィンの上下燃焼排ガス流出部
と抵抗板の間に隙間を設け、前記隙間は上部より下部の
方を大とする構成となっている。
A gap is provided between the upper and lower combustion exhaust gas outflow portions of the heat transfer fins and the resistance plate, and the gap is larger in the lower part than in the upper part.

【0013】また、抵抗板は、板に複数の孔を設け、伝
熱フィンの上下燃焼排ガス流出部に密着接合され、抵抗
板の複数の孔が上下燃焼排ガス流出通路となる構成とな
っている。
Further, the resistance plate has a plurality of holes formed in the plate and is closely joined to the upper and lower combustion exhaust gas outflow portions of the heat transfer fins, and the plurality of holes of the resistance plate serve as upper and lower combustion exhaust gas outflow passages. .

【0014】また、伝熱フィンは上下方向の燃焼排ガス
通路を有する良伝熱性材料の押し出し材で構成し、下側
の燃焼排ガス入口から下方の燃焼排ガス流出部までの燃
焼排ガス通路は上側の燃焼排ガス入口から上方の燃焼排
ガス流出部までの燃焼排ガス通路より短い構成となって
いる。
The heat transfer fins are made of extruded material of a good heat transfer material having a vertical flue gas passage, and the flue gas passage from the lower flue gas inlet to the lower flue gas outlet is the upper flue gas outlet. The configuration is shorter than the flue gas passage from the flue gas inlet to the upper flue gas outflow portion.

【0015】そして抵抗板は、冷媒出口ヘッダー管と冷
媒入口ヘッダ管の閉塞側に近くなる程伝熱フィンの上下
燃焼排ガス流出部面積が小となり形状としているため、
水平方向では冷媒の通過量が多い多穴管程伝熱フィン側
に燃焼排ガスを多く流すことにより伝熱フィンの局部過
熱がなくなり冷媒の熱分解や機器の異常温度上昇を防止
することができ、また上下方向における燃焼通路も伝熱
フィンの上下燃焼排ガス流出部と抵抗板の隙間は上部よ
り下部の方を大とする構成となっているため液冷媒が多
く分布する多穴管の下側に燃焼排ガスを多く流れ、冷媒
が気液二相状態となり液冷媒の分布が少ない多穴管の上
側には燃焼排ガスを下側より少なく流すように燃焼排ガ
スを上下方向に分流するため伝熱フィンおよび多穴管を
上下方向にバランス良く効果的に加熱することができる
ため排気口の位置に関わらず燃焼の上下方向と水平方向
との最適化が図れる。
Since the resistance plate is shaped such that the area of the upper and lower combustion exhaust gas outflow portions of the heat transfer fins becomes smaller as the resistance outlet plate and the refrigerant inlet header tube become closer to the closed side.
In the horizontal direction, the larger the amount of refrigerant passing through the multi-hole tube, the more the combustion exhaust gas flows to the heat transfer fin side, eliminating local overheating of the heat transfer fins and preventing thermal decomposition of the refrigerant and abnormal temperature rise of equipment, In addition, the vertical passage of the combustion passage is such that the gap between the upper and lower combustion exhaust gas outlets of the heat transfer fins and the resistance plate is larger in the lower part than in the upper part. Heat transfer fins are used to divide the combustion exhaust gas in the vertical direction so that the combustion exhaust gas flows more in the upper part of the multi-hole pipe in which the refrigerant flows into a gas-liquid two-phase state and the distribution of the liquid refrigerant is less than in the lower part. Since the multi-hole tube can be effectively heated in the vertical direction in a well-balanced manner, the vertical and horizontal combustion can be optimized regardless of the position of the exhaust port.

【0016】以下、本発明の実施例について図面を用い
て説明する。なお従来例の図6、図7と同一の機能部品
には同一の符号を付している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same functional components as in FIGS. 6 and 7 of the conventional example are denoted by the same reference numerals.

【0017】(実施例1)図1(a)、(b)は本発明
の実施例1の熱交換器の断面図である。図1において3
は燃料供給装置1に接続したバーナ2に一端側が連通し
て設けた燃焼室で、この燃焼室3は伝熱隔壁10に密着
して設けられた燃焼排ガス通路部材5と一体の構成とな
っている。なお図2(a)、(b)、(c)に示すよう
に燃焼排ガス通路部材5は排気管6を有している。詳し
くは燃焼排ガス通路部材5に伝熱隔壁10が組み合わさ
って燃焼排ガス通路が形成されている。伝熱隔壁10の
外側には密着接合された多穴管11が設けられ、この多
穴管11は上下方向に貫通した多数の通路12が設けら
れている。多穴管11の下端には一端が閉塞された冷媒
入口ヘッダー管13が設けられ、多穴管11の上端には
冷媒入口ヘッダー管13の閉塞された一端と同方向の一
端が閉塞された冷媒出口ヘッダー管14が設けられてい
る。
Embodiment 1 FIGS. 1A and 1B are cross-sectional views of a heat exchanger according to Embodiment 1 of the present invention. In FIG. 1, 3
Is a combustion chamber provided at one end thereof in communication with a burner 2 connected to the fuel supply device 1. The combustion chamber 3 is integrated with a combustion exhaust gas passage member 5 provided in close contact with a heat transfer partition 10. I have. As shown in FIGS. 2A, 2B and 2C, the flue gas passage member 5 has an exhaust pipe 6. Specifically, the combustion exhaust gas passage member 5 is combined with the heat transfer partition 10 to form a combustion exhaust gas passage. A multi-hole tube 11 that is closely bonded to the outside of the heat transfer partition 10 is provided, and the multi-hole tube 11 is provided with a large number of passages 12 that penetrate vertically. The lower end of the multi-hole tube 11 is provided with a refrigerant inlet header tube 13 whose one end is closed, and the upper end of the multi-hole tube 11 is a refrigerant whose one end is closed in the same direction as the closed one end of the refrigerant inlet header tube 13. An outlet header tube 14 is provided.

【0018】そして冷媒出入口ヘッダー管13、14の
冷媒出入口13a、14aはそれぞれ冷媒回路と接続さ
れている。また冷媒入口ヘッダー管13と冷媒出口ヘッ
ダー管14は上下方向の通路11により互いに連通して
いる。前記燃焼排ガス通路の内部には伝熱隔壁10の内
面に伝熱フィン8、9が密着接合されている。ところ
で、燃焼室3は筒状であり、その内面には断熱材4が設
けられている。
The refrigerant ports 13a, 14a of the refrigerant port header tubes 13, 14 are connected to a refrigerant circuit, respectively. The refrigerant inlet header tube 13 and the refrigerant outlet header tube 14 are in communication with each other through a vertical passage 11. Inside the flue gas passage, heat transfer fins 8 and 9 are tightly joined to the inner surface of the heat transfer partition 10. Incidentally, the combustion chamber 3 is cylindrical, and a heat insulating material 4 is provided on an inner surface thereof.

【0019】また図2に示すように伝熱フィン8、9は
伝熱隔壁10に密着接合した状態において上下方向に向
く多数の伝熱フィン通路8a、9aを形成し、この伝熱
フィン8、9が燃焼排ガス通路部材5で覆われた状態に
おいて伝熱フィン8、9の外周を通り燃焼排ガス入口7
の左に集合する排気通路15が形成されるようになって
いる。そしてこの排気通路15は排気管6と連通するも
のである。なお伝熱隔壁10の内面には、伝熱フィン通
路8a、9aの出口を通過する燃焼排ガス量を規制する
抵抗板A16、抵抗板B17が設けられている。また伝
熱フィン8に伝熱フィン肉厚部20を設け、さらに伝熱
隔壁10を介して対応する位置の多穴管11にも上下連
続した多穴管肉厚部21を設け、伝熱フィン肉厚部20
の上方に温度検出部18を設け、伝熱フィン8の温度検
出部18を貫通し多穴管肉厚部21に達するようにして
温度検出センサー19を取り付けている。
As shown in FIG. 2, the heat transfer fins 8 and 9 form a large number of heat transfer fin passages 8a and 9a which are vertically oriented in a state of being closely bonded to the heat transfer partition 10. 9 is covered with the flue gas passage member 5 and passes through the outer circumferences of the heat transfer fins 8 and 9 and the flue gas inlet 7
The exhaust passage 15 is formed so as to be gathered to the left of the exhaust passage. The exhaust passage 15 communicates with the exhaust pipe 6. A resistance plate A16 and a resistance plate B17 are provided on the inner surface of the heat transfer partition 10 to regulate the amount of combustion exhaust gas passing through the outlets of the heat transfer fin passages 8a and 9a. The heat transfer fin 8 is provided with a heat transfer fin thick portion 20, and the heat transfer fin 8 is also provided with a multi-hole tube thick portion 21 which is vertically continuous at a corresponding position of the multi-hole tube 11. Thick part 20
A temperature detection unit 18 is provided above the heat transfer fins 8, and a temperature detection sensor 19 is attached so as to penetrate the temperature detection unit 18 of the heat transfer fin 8 and reach the multi-hole tube thick portion 21.

【0020】次に動作、作用について説明する。上記構
成において、燃料供給装置1より供給された燃料をバー
ナ2で燃焼し、燃焼室3で発生した高温の燃焼排ガスは
燃焼排ガス入口7を通り燃焼排ガス通路内部の伝熱フィ
ン8、9の伝熱フィン通路8a、9aを通り、排気通路
15から排気管6に流れる。冷媒入口ヘッダー管13に
入った液冷媒は多穴管11の下部より多数の上下方向の
通路12に分流し、一方伝熱フィン8、9が伝熱フィン
通路8a、9a内を流れる燃焼排ガスの熱を多穴管11
に伝熱し、その結果多穴管11の上下方向の通路12内
の冷媒を冷媒入口ヘッダー管13に近い下部より順に加
熱する。
Next, the operation and operation will be described. In the above configuration, the fuel supplied from the fuel supply device 1 is burned by the burner 2, and the high-temperature flue gas generated in the combustion chamber 3 passes through the flue gas inlet 7 and is transferred to the heat transfer fins 8 and 9 inside the flue gas passage. The gas flows from the exhaust passage 15 to the exhaust pipe 6 through the heat fin passages 8a and 9a. The liquid refrigerant that has entered the refrigerant inlet header tube 13 is diverted from the lower part of the multi-hole tube 11 into a number of vertical passages 12, while the heat transfer fins 8, 9 are used to separate the combustion exhaust gas flowing through the heat transfer fin passages 8 a, 9 a. Heat to multi-hole tube 11
As a result, the refrigerant in the vertical passage 12 of the multi-hole tube 11 is sequentially heated from the lower portion near the refrigerant inlet header tube 13.

【0021】そこで加熱された液状冷媒は気化蒸発を開
始し、液の中に気泡を生じる気液二相状態になる。発生
した気泡は浮力効果で上下方向の通路12内を上昇し、
液冷媒をともなって冷媒出口ヘッダー管14に流れてい
く。抵抗板A16の形状を抵抗板B17に対し燃焼排ガ
スが流れにくい形状とすることにより液冷媒が多く分布
する多穴管11の下側に燃焼排ガスを多く流し、冷媒が
気液二相状態となり液冷媒の分布が少ない多穴管11の
上側には燃焼排ガスを下側より少なく流すように燃焼排
ガスを上下方向に分流することができる。
Then, the heated liquid refrigerant starts vaporizing and evaporating, and enters a gas-liquid two-phase state in which bubbles are generated in the liquid. The generated bubbles rise in the vertical passage 12 due to the buoyancy effect,
The refrigerant flows into the refrigerant outlet header tube 14 with the liquid refrigerant. By making the shape of the resistance plate A16 a shape in which the combustion exhaust gas is difficult to flow with respect to the resistance plate B17, a large amount of the combustion exhaust gas flows under the multi-hole tube 11 where a large amount of the liquid refrigerant is distributed, and the refrigerant becomes a gas-liquid two-phase state. On the upper side of the multi-hole tube 11 where the distribution of the refrigerant is small, the flue gas can be divided vertically so that the flue gas flows less than on the lower side.

【0022】これにより伝熱フィン8、9は効果的に加
熱され、多穴管11内の冷媒も上下方向に効率的に加熱
される。この結果伝熱フィン8、9および多穴管11の
局部過熱なしに効率的に熱交換できる。また冷媒の熱分
解も生じない。
Thus, the heat transfer fins 8 and 9 are effectively heated, and the refrigerant in the multi-hole tube 11 is also efficiently heated in the vertical direction. As a result, heat can be exchanged efficiently without local overheating of the heat transfer fins 8, 9 and the multi-hole tube 11. Also, no thermal decomposition of the refrigerant occurs.

【0023】さらに抵抗板A16、抵抗板B17により
伝熱フィン8、9に流入する燃焼排ガスの水平方向の流
量分布を冷媒の通過量が多い多穴管11の冷媒出入口1
3a、冷媒出口14a側になるほど燃焼排ガスを多く流
すようコントロールし、伝熱フィン8、9および多穴管
11は水平方向においても効率的に加熱され熱交換され
る。
Further, the flow rate distribution of the combustion exhaust gas flowing into the heat transfer fins 8 and 9 in the horizontal direction by the resistance plates A16 and B17 is determined by the refrigerant inlet / outlet 1 of the multi-hole tube 11 through which a large amount of refrigerant passes.
3a, the exhaust gas is controlled to flow more toward the refrigerant outlet 14a, and the heat transfer fins 8, 9 and the multi-hole tube 11 are efficiently heated and exchanged heat even in the horizontal direction.

【0024】本実施例においては図2に示すように、構
成上多穴管11の水平方向の冷媒流量は流路抵抗の少な
い冷媒入口13aおよび冷媒出口14a側が多い傾向な
ので、伝熱フィン8、9内の水平方向の燃焼排ガス流量
分布も冷媒入口13aおよび冷媒出口14a側が多くな
るよう抵抗板A16、抵抗板B17により設定されてい
る。
In the present embodiment, as shown in FIG. 2, the flow rate of the refrigerant in the horizontal direction of the multi-hole tube 11 tends to be large at the refrigerant inlet 13a and the refrigerant outlet 14a having a small flow path resistance. The flow rate distribution of the combustion exhaust gas in the horizontal direction in 9 is also set by the resistance plates A16 and B17 so that the refrigerant inlet 13a and the refrigerant outlet 14a side are increased.

【0025】本実施例では図2に示すように抵抗板A1
6、抵抗板B17の形状を伝熱フィン8、9の燃焼排ガ
ス流出部の座標軸のX方向に高ければ抵抗が大、低けれ
ば抵抗が小となるようなものであり、燃焼排ガスを下方
向に多く分流したい場合、抵抗板16の座標軸X方向の
高さを抵抗板17の高さより高くすれば良い。また水平
方向については、冷媒の通過量が多い多穴管11の冷媒
出入口13a、14a側になるほど燃焼排ガスを多く流
すようコントロールするため、抵抗板A16、抵抗板B
17の形状を座標軸Y方向にいくほど座標軸X方向の高
さが段階的に減少するものとしている。
In this embodiment, as shown in FIG.
6. If the shape of the resistance plate B17 is high in the X direction of the coordinate axis of the flue gas discharge portion of the heat transfer fins 8 and 9, the resistance is large, and if the shape is low, the resistance is small. If it is desired to diverge a large amount, the height of the resistance plate 16 in the coordinate axis X direction may be higher than the height of the resistance plate 17. In the horizontal direction, the resistance plate A16 and the resistance plate B are controlled in such a manner that the combustion exhaust gas is controlled to flow toward the refrigerant inlet / outlet 13a, 14a side of the multi-hole tube 11 where the refrigerant passage amount is large.
It is assumed that the height in the coordinate axis X direction decreases stepwise as the shape 17 moves in the coordinate axis Y direction.

【0026】本実施例では、機器の縦方向のコンパクト
化を図り排気管6を伝熱フィン8、9に対し冷媒入口1
3aおよび冷媒出口14aの逆側に位置する構成として
いるが、抵抗板A16、抵抗板B17の形状により燃焼
排ガスの流量分布をコントロールすることができるの
で、排気管6の位置を伝熱フィン8、9に対し自由に設
定することが可能となる。
In this embodiment, the exhaust pipe 6 is connected to the heat transfer fins 8 and 9 by the refrigerant inlet 1 to make the equipment compact in the vertical direction.
3a and the refrigerant outlet 14a are located on opposite sides. However, since the flow distribution of the combustion exhaust gas can be controlled by the shapes of the resistance plates A16 and B17, the position of the exhaust pipe 6 is changed to the heat transfer fins 8, 9 can be set freely.

【0027】(実施例2)図3は本発明の実施例2の伝
熱フィンと抵抗板の位置関係図である。なお実施例1と
同一符号のものは同一構造を有し、説明は省略する。
(Embodiment 2) FIG. 3 is a diagram showing a positional relationship between a heat transfer fin and a resistance plate according to Embodiment 2 of the present invention. The components having the same reference numerals as those in the first embodiment have the same structure, and the description will be omitted.

【0028】実施例1と異なる点は、伝熱フィン8内の
燃焼排ガスの上下方向の分流を、抵抗板A16および抵
抗板B17と伝熱フィン9の座標軸Z方向隙間の大小に
よりコントロールすることである。
The difference from the first embodiment is that the vertical flow of the combustion exhaust gas in the heat transfer fins 8 is controlled by the size of the gap between the resistance plates A16 and B17 and the heat transfer fins 9 in the coordinate axis Z direction. is there.

【0029】次に動作、作用について説明する。実施例
1でも説明したように多穴官11内の冷媒は下部に液冷
媒が多く分布しているため高温の燃焼排ガスも伝熱フィ
ン8内の下方向に多く分流してやる必要がある。この場
合実施例1では抵抗板A16の座標軸X方向の高さを抵
抗板Bの高さより高くすることにより伝熱フィン9の上
燃焼排ガス流出部の抵抗を下燃焼排ガス流出部の抵抗よ
り大きくすることにより燃焼排ガスを下方向に多く分流
していることに対し、本実施例では図にしめすように伝
熱フィン9の下燃焼排ガス流出部と抵抗板17のZ方向
隙間を上燃焼排ガス流出部と抵抗板16とのZ方向隙間
より大きくすることにより燃焼排ガスを下方向に多く分
流している。
Next, the operation and operation will be described. As described in the first embodiment, since the refrigerant in the multi-hole officer 11 has a large amount of liquid refrigerant distributed below, it is necessary to diverge a large amount of high-temperature combustion exhaust gas downward in the heat transfer fins 8. In this case, in the first embodiment, the resistance of the upper combustion exhaust gas outflow portion of the heat transfer fin 9 is made larger than the resistance of the lower combustion exhaust gas outflow portion by making the height of the resistance plate A16 in the coordinate axis X direction higher than the height of the resistance plate B. As a result, in the present embodiment, as shown in the figure, the lower flue gas outflow portion of the heat transfer fin 9 and the Z-direction gap between the resistance plate 17 are separated from the upper flue gas outflow portion. By making the gap larger than the gap in the Z direction between the fuel gas and the resistance plate 16, the combustion exhaust gas is largely diverted downward.

【0030】これにより伝熱フィン8、9は効果的に加
熱され、多穴管11内の冷媒も上下方向に効率的に加熱
される。この結果伝熱フィン8、9および多穴管11の
局部過熱なしに効率的に熱交換できる。また冷媒の熱分
解も生じない。
Thus, the heat transfer fins 8 and 9 are effectively heated, and the refrigerant in the multi-hole tube 11 is also efficiently heated in the vertical direction. As a result, heat can be exchanged efficiently without local overheating of the heat transfer fins 8, 9 and the multi-hole tube 11. Also, no thermal decomposition of the refrigerant occurs.

【0031】(実施例3)図4は本発明の実施例3の伝
熱フィンと抵抗板を示す図である。なお実施例1と同一
符号のものは同一構造を有し、説明は省略する。
(Embodiment 3) FIG. 4 is a view showing a heat transfer fin and a resistance plate according to Embodiment 3 of the present invention. The components having the same reference numerals as those in the first embodiment have the same structure, and the description will be omitted.

【0032】実施例1と異なる点は、伝熱フィン8、9
内の燃焼排ガスの上下方向の分流及び水平方向の流量分
布を図4に示すように抵抗板の形状を一枚物の板に孔を
開け、その孔の形状および面積によって燃焼排ガスの通
過抵抗をコントロールすることである。
The difference from the first embodiment is that the heat transfer fins 8 and 9
As shown in FIG. 4, the vertical distribution and horizontal flow distribution of the combustion exhaust gas in the inside are made by forming a hole in a single plate having a resistance plate shape, and the passage resistance of the combustion exhaust gas is determined by the shape and area of the hole. It is to control.

【0033】次に動作、作用について説明すると、伝熱
フィン8、9内の水平方向の燃焼排ガス流量については
孔形状をY方向に進むにつれ幅広とすることによりコン
トロールし、上下方向の燃焼排ガスの分流バランスにつ
いては、抵抗板17の孔面積を抵抗板16の孔面積より
大きくすることにより燃焼排ガスは下方向に多く分流さ
れる。
Next, the operation and function will be described. The flow rate of the flue gas in the horizontal direction in the heat transfer fins 8 and 9 is controlled by increasing the width of the hole as it proceeds in the Y direction, and the flow rate of the flue gas in the vertical direction is controlled. With regard to the flow division balance, by making the hole area of the resistance plate 17 larger than the hole area of the resistance plate 16, a large amount of the combustion exhaust gas is diverted downward.

【0034】これにより伝熱フィン8、9は効果的に加
熱され、多穴管11内の冷媒も上下方向に効率的に加熱
される。この結果伝熱フィン8、9および多穴管11の
局部過熱なしに効率的に熱交換できる。また冷媒の熱分
解も生じない。
As a result, the heat transfer fins 8 and 9 are effectively heated, and the refrigerant in the multi-hole tube 11 is also efficiently heated in the vertical direction. As a result, heat can be exchanged efficiently without local overheating of the heat transfer fins 8, 9 and the multi-hole tube 11. Also, no thermal decomposition of the refrigerant occurs.

【0035】さらに燃焼排ガスの水平方向の流量分布を
冷媒の通過量が多い多穴管11の冷媒出入口13a、冷
媒出口14a側になるほど燃焼排ガスを多く流すようコ
ントロールし、伝熱フィン8、9および多穴管11は水
平方向においても効率的に加熱され熱交換される。
Further, the flow rate distribution of the flue gas in the horizontal direction is controlled such that the flue gas flows more toward the refrigerant inlet / outlet 13a and the refrigerant outlet 14a of the multi-hole tube 11 having a larger amount of refrigerant passing therethrough. The multi-hole tube 11 is efficiently heated and heat exchanged even in the horizontal direction.

【0036】(実施例4)図5は本発明の実施例3の伝
熱フィンの正面図である。なお実施例1と同一符号のも
のは同一構造を有し、説明は省略する。
Embodiment 4 FIG. 5 is a front view of a heat transfer fin according to Embodiment 3 of the present invention. The components having the same reference numerals as those in the first embodiment have the same structure, and the description will be omitted.

【0037】実施例1と異なる点は、伝熱フィン8、9
は一体型のアルミ押し出し材で燃焼排ガス入口7の下端
から下燃焼排ガス流出部までの燃焼通路は燃焼排ガス入
口7の上端から上燃焼排ガス流出部までの燃焼通路より
短い構成を有しているところである。
The difference from the first embodiment is that the heat transfer fins 8 and 9
Is an integrated aluminum extruded material, in which the combustion passage from the lower end of the flue gas inlet 7 to the lower flue gas outlet is shorter than the combustion passage from the upper end of the flue gas inlet 7 to the upper flue gas outlet. is there.

【0038】次に動作、作用について説明する。伝熱フ
ィン8、9の伝熱フィン通路8a、9aの通路長さが、
伝熱フィン通路8aの方が伝熱フィン通路9aより長く
設定する。よって伝熱フィン8、9内の燃焼排ガスの分
流は通路抵抗の小さい下方向に多いものとなる。
Next, the operation and operation will be described. The length of the heat transfer fin passages 8a, 9a of the heat transfer fins 8, 9 is
The heat transfer fin passage 8a is set longer than the heat transfer fin passage 9a. Therefore, the branch flow of the combustion exhaust gas in the heat transfer fins 8 and 9 increases in the downward direction where the passage resistance is small.

【0039】これにより伝熱フィン8、9は効果的に加
熱され、多穴管11内の冷媒も上下方向に効率的に加熱
される。この結果伝熱フィン8、9および多穴管11の
局部過熱なしに効率的に熱交換できる。また冷媒の熱分
解も生じない。
As a result, the heat transfer fins 8 and 9 are effectively heated, and the refrigerant in the multi-hole tube 11 is also efficiently heated in the vertical direction. As a result, heat can be exchanged efficiently without local overheating of the heat transfer fins 8, 9 and the multi-hole tube 11. Also, no thermal decomposition of the refrigerant occurs.

【0040】[0040]

【発明の効果】以上のように本発明によれば、略水平の
燃焼筒の一端にバーナ、他端に燃焼排ガス通路部材を設
け、伝熱隔壁と前記燃焼筒、バーナとで燃焼室を構成
し、前記伝熱隔壁の燃焼室側には多数の燃焼排ガス通路
を有する伝熱フィン、伝熱隔壁の燃焼室の反対側には複
数の冷媒通路を有する多穴管を密着接合し、多穴管の下
端には冷媒入口ヘッダー管が、上端には冷媒出口ヘッダ
ー管が設けられ、前記伝熱上下燃焼排ガス流出部に抵抗
板を設け、抵抗板は、冷媒出口ヘッダー管と冷媒入口ヘ
ッダー管の閉塞側に近づく程冷媒出入口側になる程伝熱
フィンの上下燃焼排ガス流出部面積を小さくする形状と
しているため、水平方向では冷媒の通過量が多い多穴管
の冷媒出入口側になるほど燃焼排ガスを多く流すことに
より伝熱フィンの局部過熱がなくなり冷媒の熱分解や機
器の異常温度上昇を防止することができ、また上下方向
における燃焼通路も伝熱フィンの上下燃焼排ガス流出部
と抵抗板の隙間は上部より下部の方を大とする構成とな
っているため液冷媒が多く分布する多穴管の下側に燃焼
排ガスを多く流し、冷媒が気液二相状態となり液冷媒の
分布が少ない多穴管の上側には燃焼排ガスを下側より少
なく流すように燃焼排ガスを上下方向に分流するため伝
熱フィンおよび多穴管を上下方向にバランス良く効果的
に加熱することができるため排気口の位置に関わらず燃
焼の上下方向と水平方向との最適化が図れ機器の信頼性
の向上が図れる効果を有する。
As described above, according to the present invention, a burner is provided at one end of a substantially horizontal combustion cylinder, and a combustion exhaust gas passage member is provided at the other end, and a combustion chamber is constituted by the heat transfer partition, the combustion cylinder, and the burner. A heat transfer fin having a large number of combustion exhaust gas passages on the combustion chamber side of the heat transfer partition, and a multi-hole pipe having a plurality of refrigerant passages on the opposite side of the combustion chamber of the heat transfer partition are closely joined to form a multi-hole pipe. A refrigerant inlet header tube is provided at a lower end of the tube, and a refrigerant outlet header tube is provided at an upper end, and a resistance plate is provided at the heat transfer upper and lower flue gas outflow portion, and the resistance plate is a refrigerant outlet header tube and a refrigerant inlet header tube. The closer to the closed side, the smaller the area of the upper and lower combustion flue gas outflow area of the heat transfer fins on the refrigerant inlet / outlet side. Heat transfer fin station by flowing a lot Overheating is eliminated, preventing thermal decomposition of the refrigerant and abnormal rise in temperature of the equipment.In addition, the upper and lower combustion passages have a larger gap between the upper and lower combustion exhaust gas outflow portions of the heat transfer fins and the resistance plate in the lower part than in the upper part. Therefore, a large amount of combustion exhaust gas flows under the multi-hole pipe where a large amount of liquid refrigerant is distributed, and the refrigerant becomes a gas-liquid two-phase state, and the combustion exhaust gas flows over the multi-hole pipe where the distribution of the liquid refrigerant is small. Dividing the flue gas in the vertical direction so that it flows less than the lower side, the heat transfer fins and the multi-hole tube can be effectively heated in a balanced manner in the vertical direction. This has the effect of optimizing the horizontal direction and improving the reliability of the device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)本発明の実施例1の熱交換器の断面図 (b)同の熱交換器のA−A断面図FIG. 1A is a sectional view of a heat exchanger according to a first embodiment of the present invention. FIG. 1B is a sectional view of the same heat exchanger taken along line AA.

【図2】(a)同燃焼排ガス通路内部の構成図 (b)同燃焼排ガス通路の要部と対応する燃焼排ガスと
冷媒の流量分布図 (c)同熱交換器の要部側面図
FIG. 2 (a) is a structural diagram of the inside of the flue gas passage, (b) a flow distribution diagram of the flue gas and the refrigerant corresponding to the essential part of the flue gas passage, and (c) a side view of the principal part of the heat exchanger.

【図3】実施例2の伝熱フィンと抵抗板の位置関係図FIG. 3 is a diagram showing a positional relationship between a heat transfer fin and a resistance plate according to the second embodiment.

【図4】(a)実施例3の抵抗板と伝熱フィン正面図 (b)同上面図 (c)同下面図FIG. 4A is a front view of the resistance plate and the heat transfer fin according to the third embodiment. FIG.

【図5】実施例4の伝熱フィンの正面図FIG. 5 is a front view of a heat transfer fin according to a fourth embodiment.

【図6】(a)従来例の熱交換器の断面図 (b)同熱交換器のA−A断面図6A is a cross-sectional view of a conventional heat exchanger. FIG. 6B is a cross-sectional view of the heat exchanger taken along line AA.

【図7】従来例の燃焼排ガス通路内部の構成図FIG. 7 is a configuration diagram of the inside of a flue gas passage of a conventional example.

【符号の説明】[Explanation of symbols]

2 バーナ 3 燃焼室 5 燃焼排ガス通路部材 6 排気管 7 燃焼排ガス入口 8 伝熱フィン 9 伝熱フィン 10 伝熱隔壁 11 多穴管 12 冷媒通路 13 冷媒入口ヘッダー管 14 冷媒出口ヘッダー管 Reference Signs List 2 burner 3 combustion chamber 5 flue gas passage member 6 exhaust pipe 7 flue gas inlet 8 heat transfer fin 9 heat transfer fin 10 heat transfer partition 11 multi-hole pipe 12 refrigerant passage 13 refrigerant inlet header pipe 14 refrigerant outlet header pipe

フロントページの続き (72)発明者 落合 秀志 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Continued on the front page (72) Inventor Hideshi Ochiai 1006 Kazuma Kadoma, Kadoma City, Osaka Inside Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】略水平である燃焼筒の一端にバーナ、他端
に排気管を有する燃焼排ガス通路部材と、伝熱隔壁とを
備えて燃焼室を構成し、前記伝熱隔壁の燃焼室側には燃
焼排ガス流入部となる燃焼排ガス入口を有した燃焼排ガ
ス通路を有する複数の伝熱フィンを有し、前記伝熱フィ
ンの前記燃焼室の反対側には前記伝熱フィンと前記伝熱
隔壁と密着接合した複数の上下方向に冷媒通路を有する
多穴管と、前記多穴管の下端には一端が閉塞した冷媒入
口ヘッダー管を、上端には前記冷媒入口ヘッダー管と同
じ側の一端を閉塞した冷媒出口ヘッダー管を設け、前記
複数伝熱フィンの上下燃焼排ガス流出部には、前記冷媒
出口ヘッダー管と冷媒入口ヘッダー管の閉塞側に近づく
程上下燃焼排ガス流出部の通路面積が小となる形状とし
た抵抗板を備えた熱交換器。
1. A combustion chamber comprising a combustion exhaust gas passage member having a burner at one end and an exhaust pipe at the other end, and a heat transfer partition, and a heat transfer partition, the combustion tube being substantially horizontal. Has a plurality of heat transfer fins having a flue gas passage having a flue gas inlet serving as a flue gas inflow portion, and the heat transfer fin and the heat transfer partition are provided on a side of the heat transfer fin opposite to the combustion chamber. A multi-hole pipe having a plurality of vertically extending refrigerant passages that are in close contact with a refrigerant inlet header pipe having one end closed at the lower end of the multi-hole pipe, and one end on the same side as the refrigerant inlet header pipe at the upper end. A closed refrigerant outlet header pipe is provided, and the upper and lower flue gas outflow portion of the plurality of heat transfer fins has a smaller passage area of the upper and lower flue gas outflow portion as approaching the closed side of the refrigerant outlet header tube and the refrigerant inlet header tube. Equipped with a resistor plate in the shape of Exchanger.
【請求項2】抵抗板は、上方の燃焼排ガス流出部の通路
面積より下方の燃焼排ガス流出部の通路面積の方が大き
くなる形状とした請求項1記載の熱交換器。
2. The heat exchanger according to claim 1, wherein the resistance plate has a shape in which a passage area of the lower combustion exhaust gas outlet is larger than a passage area of the upper combustion exhaust gas outlet.
【請求項3】伝熱フィンの上下燃焼排ガス流出部と抵抗
板の間に隙間を設け、前記隙間は上部より下部の方を大
とする構成とした請求項1記載の熱交換器。
3. The heat exchanger according to claim 1, wherein a gap is provided between the upper and lower combustion exhaust gas outflow portions of the heat transfer fins and the resistance plate, and the gap is larger at a lower portion than at an upper portion.
【請求項4】抵抗板は、板に複数の孔を設け、伝熱フィ
ンの上下燃焼排ガス流出部に密着接合され、抵抗板の複
数の孔が上下燃焼排ガス流出通路となる構成とした請求
項1記載の熱交換器。
4. A resistance plate, wherein a plurality of holes are provided in the plate, and the resistance plate is closely joined to a vertical flue gas outflow portion of a heat transfer fin, and the plurality of holes of the resistance plate form a vertical flue gas outflow passage. The heat exchanger according to 1.
【請求項5】伝熱フィンは上下方向の燃焼排ガス通路を
有する良伝熱性材料の押し出し材で構成し、下側の燃焼
排ガス入口から下方の燃焼排ガス流出部までの燃焼排ガ
ス通路は上側の燃焼排ガス入口から上方の燃焼排ガス流
出部までの燃焼排ガス通路より短い構成とした請求項1
記載の熱交換器。
5. The heat transfer fin comprises an extruded material of a good heat transfer material having a vertical flue gas passage, and a flue gas passage from a lower flue gas inlet to a lower flue gas outflow portion has an upper flue gas passage. 2. A structure in which the length of the flue gas passage from the flue gas inlet to the upper flue gas outflow portion is shorter.
The heat exchanger as described.
JP9022322A 1997-02-05 1997-02-05 Heat exchanger Pending JPH10220921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9022322A JPH10220921A (en) 1997-02-05 1997-02-05 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9022322A JPH10220921A (en) 1997-02-05 1997-02-05 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH10220921A true JPH10220921A (en) 1998-08-21

Family

ID=12079490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9022322A Pending JPH10220921A (en) 1997-02-05 1997-02-05 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH10220921A (en)

Similar Documents

Publication Publication Date Title
US7647897B2 (en) Heating apparatus
CN107923653B (en) Heat exchanger
EP3306220B1 (en) Heat source device
JP3865325B2 (en) Absorption refrigerator
JPH10220921A (en) Heat exchanger
JPH1137673A (en) Heat exchanger
CN107850342B (en) Heat exchanger
CN107850340B (en) Heat exchanger
JPH1130489A (en) Heat-exchanger
CN108518855B (en) Heat exchanger
JP2004245515A (en) Heat exchanging device
JP4565316B2 (en) Heat source equipment
CN112895845B (en) Electric vehicle, electric heater and electric heating cavity assembly thereof
CN113028646B (en) Heat exchanger and warm water device
CN112895846B (en) Electric vehicle, electric heater and electric heating cavity assembly thereof
JPH0351666A (en) Heat exchanger
JPH11230693A (en) Heat exchanger
JP3655688B2 (en) Combustion equipment
KR100432624B1 (en) A hot water supply apparatus for heating and the method thereof
RU19095U1 (en) WATER WATER HEATER
JPH09303875A (en) Hot water boiler for heating
JPH0229398Y2 (en)
JP2674217B2 (en) Heat exchange equipment
JPH06331102A (en) Once-through boiler
KR101023026B1 (en) Hybrid evaporator