JPH10220236A - Tial made turbine rotor - Google Patents

Tial made turbine rotor

Info

Publication number
JPH10220236A
JPH10220236A JP2763097A JP2763097A JPH10220236A JP H10220236 A JPH10220236 A JP H10220236A JP 2763097 A JP2763097 A JP 2763097A JP 2763097 A JP2763097 A JP 2763097A JP H10220236 A JPH10220236 A JP H10220236A
Authority
JP
Japan
Prior art keywords
tial
turbine rotor
shaft
turbine
impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2763097A
Other languages
Japanese (ja)
Other versions
JP3829388B2 (en
Inventor
Toshiharu Noda
俊治 野田
Takao Hiyamizu
孝夫 冷水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP02763097A priority Critical patent/JP3829388B2/en
Priority to US08/953,249 priority patent/US6007301A/en
Priority to DE69724730T priority patent/DE69724730T2/en
Priority to AT97118046T priority patent/ATE249571T1/en
Priority to EP97118046A priority patent/EP0837221B1/en
Publication of JPH10220236A publication Critical patent/JPH10220236A/en
Application granted granted Critical
Publication of JP3829388B2 publication Critical patent/JP3829388B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a TiAl made turbine rotor composed by connecting a structural steel or a heat resistance steel to a TiAl made turbine rotor runner excellent in heat resistance with their cores accurately conformed to each other and providing high connecting strength between the rotor and the shaft runner. SOLUTION: With regard to a turbine rotor (a) composed by connecting a rotor shaft (b) to a TiAl made turbine runner manufactured by precision casting, it is a TiAl made turbine rotor made by using a structural steel or a martensite heat resistance steel as a shaft material, forming a recessed part (or a protruded part) and a protruded part (or a recessed part) of a concentric circle with the contour on the runner base and the shaft end, fitting the protruded part into the recessed part and connecting them together by soldering the ring shape portion on the outer side of the recessed and protruded parts.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の過給機
の部品であるTiAl製タービンローターに関する。
The present invention relates to a turbine rotor made of TiAl, which is a part of a supercharger of an internal combustion engine.

【0002】[0002]

【従来の技術】これまで、内燃機関の過給機のタービン
ローターとしては、高温強度に優れた鋳造用のNi基超
合金Inconel-713Cのような材料を精密鋳造して得たター
ビン羽根車に、構造用鋼からなるシャフトを、摩擦接合
や電子ビーム溶接によって接合した製品が用いられてき
た。
2. Description of the Related Art Heretofore, as a turbine rotor for a supercharger of an internal combustion engine, a turbine impeller obtained by precision casting of a material such as a Ni-base superalloy Inconel-713C for casting having excellent high-temperature strength has been used. A product in which a shaft made of structural steel is joined by friction welding or electron beam welding has been used.

【0003】近年、タービン羽根車の耐熱性を高めると
ともに、軽量化によるイナーシャの低下によってエンジ
ンの応答性を向上させることを意図して、窒化珪素から
なるセラミックスローターが実用化された。
In recent years, ceramic rotors made of silicon nitride have been put to practical use with the aim of improving the heat resistance of turbine impellers and improving the responsiveness of engines by reducing inertia due to weight reduction.

【0004】しかし、このセラミックス羽根車には、
1)材料の靱性が乏しいため、従来の金属性の羽根車よ
り肉厚を厚くしなければならないこと、および、2)熱
膨張が小さいため、ケーシングなど周囲の金属製の部品
との間で熱膨張のバランスが取りにくいこと、などの欠
点があった。
However, this ceramic impeller includes:
1) The material is poor in toughness, so that it must be thicker than a conventional metallic impeller; and 2) The thermal expansion is small, so that heat is not generated between surrounding metal parts such as a casing. There are drawbacks such as difficulty in balancing the expansion.

【0005】そこで、セラミックスに替わる新しい材料
として、比重が3.8とセラミックスに近く、高温の比
強度(強度を密度で割った値)は前記したようなNi基
超合金と同等以上で、しかも、セラミックスよりも靱性
が高く、かつ熱膨張率が金属に近いTiAl金属間化合
物が注目され、これをタービン羽根車の材料とすること
が提案された(たとえば、特開昭61−22990
1)。 実用されている材料はTiAl金属間化合物を
主成分とする合金であり、組成によりその内容には多少
の変動があるが、以下の説明においては一括して「Ti
Al」とよぶ。
Therefore, as a new material replacing ceramics, the specific gravity is 3.8, which is close to that of ceramics, and the high-temperature specific strength (the value obtained by dividing the strength by the density) is equal to or higher than that of the above-mentioned Ni-base superalloy, and Attention has been paid to a TiAl intermetallic compound having higher toughness than ceramics and a thermal expansion coefficient close to that of a metal, and it has been proposed to use this as a material for a turbine impeller (for example, Japanese Patent Application Laid-Open No. 61-22990).
1). Practical materials are alloys containing a TiAl intermetallic compound as a main component, and the content thereof varies slightly depending on the composition.
Al ".

【0006】このTiAlを材料とするタービン羽根車
は精密鋳造または恒温鍛造によって製造され、この羽根
車に構造用鋼のシャフトを接合してローターが製造され
る。ただし接合に当って、従来のNi基超合金の羽根車
と構造用鋼のシャフトとを接合する手段として採用され
ている摩擦接合を適用することはできない。 その理由
は、摩擦接合を行なっても、冷却時に構造用鋼がオース
テナイトからマルテンサイトに変態する際に発生する体
積膨張によって残留応力が発生し、TiAlはセラミッ
クスにない靱性を有し脆くはないものの、室温延性は1
%程度しかないためにTiAlが割れるという問題と、
接合界面において構造用鋼中の炭素とTiAl中のTi
とが反応して炭化物を生成し、界面強度を低下させると
いう問題とにある。
The turbine impeller made of TiAl is manufactured by precision casting or constant temperature forging, and a rotor of the rotor is manufactured by joining a structural steel shaft to the impeller. However, friction joining, which has been employed as a means for joining a conventional Ni-base superalloy impeller and a structural steel shaft, cannot be applied to joining. The reason is that even when friction welding is performed, residual stress is generated by volume expansion generated when the structural steel transforms from austenite to martensite during cooling, and although TiAl has toughness not found in ceramics and is not brittle, , Room temperature ductility is 1
% TiAl cracks because there is only about
Carbon in structural steel and Ti in TiAl at the joint interface
React with each other to form carbides and reduce interface strength.

【0007】これらの問題を解決するために、真空ロウ
付けによって接合する方法や、TiAl羽根車と構造用
鋼のシャフトとの間にマルテンサイト変態をしないオー
ステナイト系材料を中間材として挿入し、摩擦接合によ
り接合することが提案された(たとえば、特開平2−1
33183)。
[0007] In order to solve these problems, a method of joining by vacuum brazing or inserting an austenitic material which does not undergo martensitic transformation as an intermediate material between a TiAl impeller and a shaft of structural steel is used as an intermediate material. It has been proposed to join by joining (for example, Japanese Unexamined Patent Application Publication No.
33183).

【0008】しかし、真空ロウ付けは高真空中で実施し
なければならず、真空雰囲気の形成を含めて処理に時間
がかかり、コストが高くなる。 オーステナイト系材料
を中間材として使用する摩擦接合法は、まず中間材をた
とえばシャフトに摩擦接合した後、中間材を接合したシ
ャフトをさらに羽根車に接合するか、またはこの逆の順
で、いずれにせよ2回の接合をしなければならないか
ら、やはり接合コストが高い。 それに加えて、中間材
の接合後の厚さをコントロールすることが難しい、とい
う問題もあった。
[0008] However, vacuum brazing must be performed in a high vacuum, and the processing including the formation of a vacuum atmosphere takes a long time and the cost increases. The friction joining method using an austenitic material as an intermediate material is to first friction-join the intermediate material to, for example, a shaft, and then further join the shaft joined with the intermediate material to the impeller, or vice versa. Even so, the joining must be performed twice, so that the joining cost is also high. In addition, there is a problem that it is difficult to control the thickness of the intermediate material after joining.

【0009】そこで、迅速かつ低コストに実施できる高
周波ロウ付けが試みられた。 しかし、ロウ付けは接合
界面が平面のため、ディスクの軸とシャフトの軸とを正
確に合致させることが難しく、偏心したまま接合するこ
とがある。 また、TiAlは熱伝導率が高く、従って
運転中に高温にさらされたTiAl羽根車からシャフト
への熱伝導が大きいため、シャフトの温度が高くなり、
軸受け部が焼き付くことがあるという経験もした。
Therefore, high-frequency brazing that can be performed quickly and at low cost has been attempted. However, in brazing, since the joining interface is flat, it is difficult to accurately match the axis of the disk with the axis of the shaft, and the joining may be performed with eccentricity. In addition, TiAl has a high thermal conductivity, and therefore, a large heat conduction from the TiAl impeller exposed to a high temperature during operation to the shaft.
I also had the experience that the bearings could seize.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、Ti
Al羽根車の軸と鋼製のシャフトの軸とを正確に合致さ
せ、かつ羽根車からシャフトへの熱伝導を少なくしたT
iAl製タービンローターを提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to solve the problem of Ti
T that precisely matches the axis of the Al impeller with the axis of the steel shaft and reduces heat conduction from the impeller to the shaft
An object of the present invention is to provide an iAl turbine rotor.

【0011】[0011]

【課題を解決するための手段】本発明のTiAl製ター
ビンローターは、図1に示すような、精密鋳造により製
造したTiAl製タービンローター(1)にローターシャ
フト(2)を接合したタービンローターにおいて、シャフ
ト材料として構造用鋼またはマルテンサイト系耐熱鋼を
使用し、図2または図3に示すように、羽根車基部(1
1)とシャフト端部(21)にそれらの輪郭と同心円状
の凹部(または凸部)および凸部(または凹部)を形成
して凹部(3)と凸部(4)とをはめ合わせ、凹凸の外
側のリング状部分(5)をロウ付けにより接合してなる
ことを特徴とする。
SUMMARY OF THE INVENTION A TiAl turbine rotor according to the present invention is a turbine rotor in which a rotor shaft (2) is joined to a TiAl turbine rotor (1) manufactured by precision casting as shown in FIG. Structural steel or martensitic heat-resistant steel is used as the shaft material, and as shown in FIG. 2 or FIG.
1) and a concave portion (or a convex portion) and a convex portion (or a concave portion) concentric with the contour thereof are formed on the shaft end portion (21), and the concave portion (3) and the convex portion (4) are fitted to each other. The outer ring-shaped portion (5) is joined by brazing.

【0012】図2および3に示した例は、羽根車基部が
凸、シャフト端部が凹の組み合わせであり、図4に示し
た例はそれと逆の、羽根車基部が凹でシャフト端部が凸
の組み合わせである。
The example shown in FIGS. 2 and 3 is a combination in which the impeller base is convex and the shaft end is concave, and the example shown in FIG. 4 is the opposite, that is, the impeller base is concave and the shaft end is concave. It is a combination of convex.

【0013】タービン羽根車は、高温の使用条件下に高
速回転する部品であるから、その材料とするTiAlは
高温強度および延性にすぐれ、かつ耐酸化性をもつこと
が必要である。 この観点から、TiAlは基本的に
は、Al:31〜35%を含有し残部が実質上Tiから
なる合金組成をもつべきである。 この合金は、さらに
下記の添加元素グループのひとつまたはふたつ以上を含
有することが好ましく、 1)Cr,MnおよびVからえらんだ1種または2種以
上(2種以上の場合は合計で):0.2〜4% 2)Nb,Ta,WおよびReからえらんだ1種または
2種以上(2種以上の場合は合計で):0.2〜10% 3)Si:0.01〜1.00% さらに不純物は下記のように規制することが好ましい: 4)Zr:1.0%未満、Fe:1.0%未満、C:
0.2%未満、O:0.2%未満、かつN:0.2%未
満。
[0013] Since a turbine impeller is a component that rotates at a high speed under a high-temperature use condition, it is necessary that the TiAl used as the material has excellent high-temperature strength and ductility and has oxidation resistance. From this viewpoint, TiAl should basically have an alloy composition containing 31 to 35% of Al and the balance substantially consisting of Ti. This alloy preferably further contains one or more of the following additional element groups: 1) One or more of Cr, Mn, and V (in the case of two or more, a total of 0): 0 2-4% 2) One or more of Nb, Ta, W and Re (in the case of two or more, in total): 0.2-10% 3) Si: 0.01-1. 00% Further impurities are preferably regulated as follows: 4) Zr: less than 1.0%, Fe: less than 1.0%, C:
Less than 0.2%, O: less than 0.2%, and N: less than 0.2%.

【0014】タービンローターを構成するTiAl製タ
ービン羽根車は、精密鋳造または恒温鍛造のいずれの方
法によって製造したものでもよい。 TiAl製タービ
ン羽根車は1200℃〜1350℃の範囲での熱処理に
よって延性を改善することが可能で、精密鋳造材につい
ては、1200℃〜1350℃の温度と1000kgf/cm
2 以上の圧力でHIP熱処理を加えることにより内部の
鋳造欠陥をなくし、信頼性を向上させるとともに、強度
および延性を改善することが可能である。
The TiAl turbine impeller constituting the turbine rotor may be manufactured by either precision casting or constant temperature forging. The ductility of a TiAl turbine impeller can be improved by heat treatment in the range of 1200 ° C. to 1350 ° C., and the precision cast material has a temperature of 1200 ° C. to 1350 ° C. and 1000 kgf / cm.
By applying HIP heat treatment at a pressure of 2 or more, it is possible to eliminate internal casting defects, improve reliability, and improve strength and ductility.

【0015】ロウ付けによる接合は、前記した羽根車基
部(11)とシャフト端部(21)との接合部におい
て、界面に0.01kgf/mm2 以上の圧力、ただし接合温
度において羽根車基部およびシャフトの降伏応力のいず
れよりも低い圧力を加え、非酸化性つまり不活性または
還元性のガスの雰囲気中で、高周波誘導加熱により加熱
することによって行なえる。 このとき、凹凸外側のリ
ング状部分の形状・寸法に適合させて箔を打ち抜いてリ
ング状にしたロウ材を使用すると、好適である。接合面
に圧力を加えることは、濡れを促進してロウ付けされて
いない部分ができることを防ぎ、さらに凹凸のはめ合い
部にもロウが回って接合面積を実質上増大させ強度を高
めるはたらきをする。 とくに接合面のアラサが大きい
ときは圧力を高くするとよい。 加熱温度は、ロウ材の
液相線温度以上でなければならないが、温度があまり高
くなると被接合材とロウ材とが反応して接合界面に化合
物を生成し、接合強度が低下するおそれがあるから、そ
れを避けるため、ロウ材の液相線温度以上+100℃以
下の温度をえらぶのがよい。
In the joining by brazing, the interface between the impeller base (11) and the shaft end (21) has a pressure of 0.01 kgf / mm 2 or more at the interface, but at the joining temperature, the impeller base and This can be achieved by applying a pressure lower than any of the yield stresses of the shaft and heating by high-frequency induction heating in an atmosphere of a non-oxidizing or inert or reducing gas. At this time, it is preferable to use a brazing material in which a foil is punched into a ring shape in conformity with the shape and dimensions of the ring-shaped portion on the outer side of the unevenness. Applying pressure to the joint surface promotes wetting and prevents the formation of a non-brazed part, and furthermore, the brazing also turns to the fitting part of the unevenness, thereby substantially increasing the joint area and increasing the strength. . Especially when the joint surface is large, the pressure should be increased. The heating temperature must be equal to or higher than the liquidus temperature of the brazing material. However, if the temperature is too high, the material to be joined and the brazing material react to generate a compound at the bonding interface, and the bonding strength may be reduced. Therefore, in order to avoid this, it is preferable to select a temperature not lower than the liquidus temperature of the brazing material and not higher than + 100 ° C.

【0016】ロウ材としては種々のものが使用可能であ
るが、Ag,Ni,CuまたはTiを主成分とするもの
であって、融点が800℃以上の合金が好適である。
ロウ材の使用に当っては、ロウ材の液相線温度がシャフ
ト材のオーステナイト化温度より高くなるようなものを
えらぶとよい。
Various brazing materials can be used, but an alloy containing Ag, Ni, Cu or Ti as a main component and having a melting point of 800 ° C. or more is preferable.
In using the brazing material, it is preferable to select one in which the liquidus temperature of the brazing material is higher than the austenitizing temperature of the shaft material.

【0017】接合部に形成する凹凸の径の差は、実質上
ゼロであるとシマリバメとなってはめ合が容易でなくな
るから、若干の差があるスキマバメの状態が好ましい。
それにより接合時にロウ材が隙間に入り、強度を高め
ることが期待できる。 ただし、羽根車基部とシャフト
との芯が一致した状態でロウ付けするという観点から
は、差はあまり大きくない方がよい。 通常は、径の差
が1mm以内であれば問題ない。
If the difference between the diameters of the concavities and convexities formed at the joint portion is substantially zero, it becomes a shrink fit and the fitting is not easy.
Thereby, the brazing material enters the gap at the time of joining, and it can be expected that the strength is increased. However, from the viewpoint of brazing in a state where the cores of the impeller base and the shaft are aligned, it is better that the difference is not so large. Normally, there is no problem if the difference in diameter is within 1 mm.

【0018】凹凸部分とロウ付けされるリング状部分と
の面積比は、リング状部分が全断面積の20%以上を占
めるようにすれば、必要な強度が得られる。
The required strength can be obtained if the area ratio between the concavo-convex portion and the ring-shaped portion to be brazed is such that the ring-shaped portion occupies 20% or more of the total cross-sectional area.

【0019】接合部において、凹部の深さを凸部の高さ
より大きくし、内部に空洞が形成されるようにすると、
凹凸部分における羽根車からシャフトへの熱伝導が妨げ
られて、シャフト温度の上昇度合が低くなる。 この態
様は、軸受部の保護という観点から好ましいものであ
る。 空洞部分の高さは、いうまでもなく凹部の深さと
凸部の高さの差によって決定される。 数mm〜15mmが
適当である。 空洞の形成にはいくつかの態様が可能で
あり、図5Aに示すような単純な深さ/高さの差を設け
たもののほか、図5Bに示すように凹部の底をスリバチ
型にしたものであってもよい。 この逆に、凸部の先端
をくぼませてもよいことは、もちろんである。
At the joint, if the depth of the concave portion is made larger than the height of the convex portion so that a cavity is formed inside,
Heat conduction from the impeller to the shaft in the uneven portion is hindered, and the degree of increase in the shaft temperature is reduced. This aspect is preferable from the viewpoint of protection of the bearing. Needless to say, the height of the hollow portion is determined by the difference between the depth of the concave portion and the height of the convex portion. Several mm to 15 mm is appropriate. Several forms are possible for the formation of the cavity, in addition to a simple depth / height difference as shown in FIG. 5A, or a sliver-shaped bottom of the recess as shown in FIG. 5B. It may be. On the contrary, it is a matter of course that the tip of the projection may be recessed.

【0020】ロウ付けのための高周波誘導加熱は、接合
部付近だけを対象に行なえばよいが、このときにシャフ
ト全体をも同時に高周波加熱により加熱し、ロウ付け
後、シャフトに冷却ガスたとえばArやHe、または冷
却液たとえば水を吹き付けて急冷することによって、シ
ャフトの焼入れを同時に行なうことができる。 本発明
のタービンローターは、多くの場合にシャフトの焼入れ
・焼戻しと、機械加工の後のシャフト表面の硬化処理と
を施して製品とする。
The high-frequency induction heating for brazing may be performed only on the vicinity of the joint. At this time, the entire shaft is simultaneously heated by high-frequency heating, and after brazing, a cooling gas such as Ar or By quenching with He or a cooling liquid such as water to quench the shaft, quenching can be performed simultaneously. In many cases, the turbine rotor of the present invention is obtained by subjecting a shaft to quenching / tempering and a hardening treatment of the shaft surface after machining.

【0021】加熱中にロウ材および被接合面が酸化され
るとロウ材の濡れ性が低下して非接合部ができ、その結
果、接合強度が低下する。 これを避けるため、TiA
lタービン羽根車とシャフトとを耐熱ガラスなどで覆
い、耐熱ガラスとこれら部品との間に不活性ガスまたは
還元性ガスを流し、酸化を防止する。 ロウ材が活性金
属を含む場合には、還元性ガス(たとえば水素を5%含
むHeガス)を流すことが望ましい。
When the brazing material and the surface to be joined are oxidized during the heating, the wettability of the brazing material is reduced, and a non-joined portion is formed. As a result, the joining strength is reduced. In order to avoid this, TiA
(1) The turbine impeller and the shaft are covered with heat-resistant glass or the like, and an inert gas or a reducing gas is flowed between the heat-resistant glass and these components to prevent oxidation. When the brazing material contains an active metal, it is desirable to flow a reducing gas (for example, a He gas containing 5% of hydrogen).

【0022】ロウ付けに要する時間は短く、通常30秒
間で十分な接合強度が得られることが判明した。 直径
17mmのシャフトの例では、加熱開始からの時間を含め
接合終了まで、約90秒という短時間で接合が可能であ
った。
It has been found that the time required for brazing is short, and usually sufficient bonding strength can be obtained in 30 seconds. In the case of the shaft having a diameter of 17 mm, joining was possible in a short time of about 90 seconds until the end of joining including the time from the start of heating.

【0023】接合後にシャフトの焼入れ・焼戻しを行な
う場合には、シャフトの焼入れ時にロウ材が再び溶融し
て接合に不都合が生じることのないように、用いるロウ
材とシャフトとの組み合わせを吟味し、前記したよう
に、ロウ材の液相線温度がシャフトのオーステナイト化
温度以上であるものをえらぶ。 実際には、接合後の接
合部のロウ材は、接合中に接合部からの他元素の拡散に
よって、液相線温度が本来ロウ材がもっていた液相線温
度よりは若干高くなるため、ロウ材の液相線温度がシャ
フトのオーステナイト化温度とほぼ同じ組み合わせであ
っても一般に大きな支障はない。
When quenching and tempering of the shaft is performed after the joining, the combination of the brazing material and the shaft to be used is examined so that the brazing material does not melt again at the time of quenching of the shaft and inconvenience occurs in the joining. As described above, those having a liquidus temperature of the brazing material equal to or higher than the austenitizing temperature of the shaft are selected. In practice, the brazing material in the joint after joining has a liquidus temperature slightly higher than the liquidus temperature originally possessed by the brazing material due to diffusion of other elements from the joining portion during joining. Even if the liquidus temperature of the material is almost the same as the austenitizing temperature of the shaft, there is generally no major problem.

【0024】[0024]

【作用】本発明のTiAl製タービン羽根車の材料とす
る合金の組成を前記のように限定した理由は、つぎのと
おりである。
The reasons why the composition of the alloy used as the material of the TiAl turbine impeller of the present invention is limited as described above are as follows.

【0025】Al:31〜35% AlはTiと結合して金属間化合物TiAlおよびTi
3 Alを生成する。TiAlおよびTi3Al の単相は
いずれも脆く、強度が低い化合物であるが、Alが31
〜35%の範囲になると、TiAl相中にTi3 Alが
体積率で5〜30%を含まれるようになり、二相状態に
なって延性および強度が高くなる。 Alが31%以下
になってTi3 Al量が過大になるか、または、Alが
35%以上になってTi3 Al量が過少になると、強度
および延性が著しく低下する。
Al: 31-35% Al combines with Ti to form intermetallic compounds TiAl and Ti
3 to generate the Al. The single phases of TiAl and Ti 3 Al are both brittle and low in strength,
If the range of 35%, is as Ti 3 Al is contained 5 to 30% by volume in TiAl phase, ductility and strength becomes higher becomes two-phase state. If the Al content is less than 31% and the Ti 3 Al content is too large, or if the Al content is 35% or more and the Ti 3 Al content is too small, the strength and ductility are significantly reduced.

【0026】Cr,MnおよびVの1種および2種以上
(2種以上のときは合計):0.2〜4.0% これらはいずれもTiAlの延性を改善する元素であ
る。 この効果は0.2%以上の存在で得られる。 添
加量が4%を超えると、耐酸化性が低下するとともにβ
相が生成し、高温強度が低下するという不都合が生じ
る。
One, two or more of Cr, Mn and V (total if two or more): 0.2 to 4.0% These are all elements that improve the ductility of TiAl. This effect is obtained in the presence of 0.2% or more. If the addition amount exceeds 4%, the oxidation resistance decreases and β
The disadvantage is that phases are formed and the high-temperature strength is reduced.

【0027】Nb,Ta,WおよびReの1種および2
種以上(2種以上のときは合計):0.2〜10.0% これらの元素はTiAlの耐酸化性を改善する。 この
効果も0.2%以上の添加で得られる。 添加量が10
%を超えると、延性が低下するとともに、高比重のため
TiAl合金の密度を高くして、低密度というTiAl
の利点がうすれてくる。
One of Nb, Ta, W and Re and 2
Species or more (total when two or more): 0.2 to 10.0% These elements improve the oxidation resistance of TiAl. This effect can also be obtained by adding 0.2% or more. 10 added
%, The ductility is reduced, and the density of the TiAl alloy is increased due to the high specific gravity.
The benefits will be diminished.

【0028】Si:0.01〜1.00% Tiと反応してシリサイド(Ti5 Si3 )を生成し、
TiAlのクリープ特性を改善するばかりでなく、耐酸
化性を改善する。 こうした効果があらわれるのは添加
量0.01%以上であり、1.00%を超えて添加する
と延性が低下する。
Si: 0.01 to 1.00% Reacts with Ti to produce silicide (Ti 5 Si 3 ),
It not only improves the creep characteristics of TiAl, but also improves the oxidation resistance. Such effects are exhibited when the addition amount is 0.01% or more, and when added in excess of 1.00%, the ductility decreases.

【0029】Zr:<1.0%、Fe:<1.0%、
C:<0.2%、O:<0.2%、N:<0.2% Zr,Fe,C,OおよびNは、TiAl製ローター羽
根車の精密鋳造の工程および原料から混入する不純物で
あり、これらが多量に混入すると、TiAlの延性が著
しく低下する。 そこで、これらの上限値をそれぞれ、
1.0%、1.0%、0.2%、0.2%および0.2
%とした。
Zr: <1.0%, Fe: <1.0%,
C: <0.2%, O: <0.2%, N: <0.2% Zr, Fe, C, O and N are impurities mixed from the precision casting process of TiAl rotor impeller and raw materials. When these are mixed in a large amount, the ductility of TiAl is significantly reduced. Therefore, these upper limits are
1.0%, 1.0%, 0.2%, 0.2% and 0.2
%.

【0030】[0030]

【実施例】【Example】

〔実施例1〕TiAl製タービン羽根車として、Ti−
33.5Al−4.8Nb−1.0Cr−0.2Si(w
t%)の組成を有するTiAlを精密鋳造して、直径52
mmの製品を用意した。 シャフト材としては、外径D0
=17mm、長さ110mmのJIS−G4103に規定さ
れる構造用鋼SNCM439を用いた。 ロウ材には、
Ag−35.3Cu−1.7Ti(wt%)の組成を有す
る銀ロウの、厚さ50μmの箔を用いた。 タービン羽
根車とシャフトの接合部における形状・寸法を、表1に
示す。
[Example 1] As a TiAl turbine impeller, Ti-
33.5Al-4.8Nb-1.0Cr-0.2Si (w
t%) by precision casting with a diameter of 52%.
mm products were prepared. As the shaft material, the outer diameter D 0
Structural steel SNCM439 defined by JIS-G4103 having a length of 17 mm and a length of 110 mm was used. For brazing material,
A 50 μm thick foil of silver brazing having a composition of Ag-35.3Cu-1.7Ti (wt%) was used. Table 1 shows the shape and dimensions of the joint between the turbine impeller and the shaft.

【0031】[0031]

【表1】 TiAl製タービン羽根車 シ ャ フ ト No. 接合部 H1212 接合部 H1212 形 状 形 状 本発明1 凸 - 1.0 - 12.5 凹 1.5 - 13.0 - 本発明2 凹 2.0 - 7.0 - 凸 - 1.0 - 6.8 本発明3 凸 - 1.0 - 7.9 凹 6.0 - 8.0 - 本発明4 凹 8.0 - 10.0 - 凸 - 1.0 -
9.9 比較例1 平面 - - - - 平面 - - - -
比較例2 凹 2.0 - 7.0 - 凸 - 1.0 - 4.0 比較例3 凸 - 1.0 - 15.5 凹 1.5 - 16.0 - 接合は、高周波加熱により行なった。 接合界面にロウ
材dを挿入した状態で羽根車を固定し、シャフト上部か
ら加圧して接合界面に0.5kgf/mm2 の圧力を負荷し
た。 加熱時に接合部が不活性雰囲気下にあるようにす
るため、被接合材の周囲を耐熱ガラスで覆い、被接合材
と耐熱ガラスとの間にArガスを流した。高周波誘導加
熱は、耐熱ガラスの外側に加熱コイルを置いて通電する
ことにより850℃まで昇温させ、温度が一定になって
から30秒間保持した後、電力の供給を止めて冷却し
た。
TABLE 1 the TiAl turbine wheel sheet catcher oice No. junction H 1 H 2 D 1 D 2 joints H 1 H 2 D 1 D 2 Shape Shape invention first convex - 1.0 - 12.5 concave 1.5 - 13.0-Invention 2 concave 2.0-7.0-convex-1.0-6.8 Invention 3 convex-1.0-7.9 concave 6.0-8.0-Invention 4 concave 8.0-10.0-convex-1.0-
9.9 Comparative example 1 plane----plane----
Comparative Example 2 Concave 2.0-7.0-Convex-1.0-4.0 Comparative Example 3 Convex-1.0-15.5 Concave 1.5-16.0-Bonding was performed by high frequency heating. The impeller was fixed with the brazing material d inserted into the joint interface, and a pressure of 0.5 kgf / mm 2 was applied to the joint interface by applying pressure from above the shaft. In order to keep the joint under an inert atmosphere during heating, the periphery of the material to be joined was covered with heat-resistant glass, and Ar gas was flowed between the material to be joined and the heat-resistant glass. In the high-frequency induction heating, the temperature was raised to 850 ° C. by energizing a heating coil placed outside the heat-resistant glass. After the temperature was stabilized, the temperature was maintained for 30 seconds, and then the supply of power was stopped to cool.

【0032】このようにして製造したタービンローター
のシャフトを一定の位置に置いて(8cmの間隔をおいた
2点で支持)回転させ、タービン羽根車の最外径の変化
の最大値を軸芯の振れとした。(3個の平均) 振れを測
定した後、600℃に30分間加熱して空冷する焼戻し
を施してから、接合部の捩り試験を行なった。 その結
果をD1 2/D0 2(接合部断面積中で凹部が占める割
合)、D1−D2(凹部凸部の径の差)およびH1−H
2(凸部の深さと凹部の高さの差)の値とともに、表2
に示す。 本発明に従い、接合面を凹凸にしてはめ合わ
せ接合を行なったタービンローターは、比較例1の、接
合部を平面にして接合したものにくらべて軸芯の振れが
著しく小さいことがわかる。 また、D1 2/D0 0>0.
8である比較例3のローターは、接合部のロウ付け面積
が小さいため十分な捩り破断トルクが得られなかった。
比較例2のローターはD1−D2>1.0mmであり、凹
凸部のはめ合い隙間が大きいことに起因して、接合部が
平面の場合と同様に、軸芯の振れが大きかった。
The shaft of the turbine rotor manufactured as described above is rotated at a fixed position (supported at two points with an interval of 8 cm), and the maximum value of the change in the outermost diameter of the turbine impeller is determined by the shaft center. And the swing. After measuring the run-out, tempering was performed by heating to 600 ° C. for 30 minutes and air-cooling, and then a torsional test of the joint was performed. The results (ratio of the recess at the junction cross-sectional area in) D 1 2 / D 0 2 , ( the difference between the diameter of the concave convex part) D 1 -D 2 and H 1 -H
2 along with the value of (the difference between the depth of the protrusions and the height of the recesses)
Shown in According to the present invention, it is found that the turbine rotor in which the fitting surface is uneven and which is fitted and bonded is significantly smaller than the comparative example 1 in which the bonding portion is flat and bonded. In addition, D 1 2 / D 0 0 > 0.
In the rotor of Comparative Example 3, which was No. 8, a sufficient torsional rupture torque could not be obtained because the brazing area of the joint was small.
The rotor of Comparative Example 2 had D 1 -D 2 > 1.0 mm, and the shaft gap was large in the same manner as in the case where the joint was flat due to the large fitting gap between the concave and convex portions.

【0033】[0033]

【表2】 D1 2/ D1−D21−H2 軸芯の 捩り破断 No. D0 2 振 れ ト ル ク (mm) (mm) (mm) (kgf・m)
本発明1 0.58 0.50 0.50 0.53 11.2 本発明2 0.17 0.20 1.00 0.24 13.2 本発明3 0.22 0.10 5.00 0.16 14.9 本発明4 0.35 0.10 7.00 0.21 13.1 比較例1 − − − 1.10 13.9 比較例2 0.17 3.00 1.00 1.31 9.2 比較例3 0.89 0.50 0.50 0.36 2.3 〔実施例2〕表3に示した合金組成のTiAl合金を材
料として、実施例1と同じ形状・寸法(直径52mm)
のTiAl製タービン羽根車を用意した。 これらに、
表3に示す、シャフトおよび合金組成のロウ材を組み合
わせ、タービンローターを製作した。 シャフト材には
実施例1で用いたSNCM439に加えて、JIS−G
4311に規定のマルテンサイト系耐熱鋼SUH11を
用いた。 接合部は、シャフト材の方が凹で、D1=8m
m、H1 =6mmとし、TiAl羽根車は凸で、D2=7.
9mm、H2=1mmとした。
TABLE 2 D 1 2 / D 1 -D 2 H 1 -H 2 axial center of the torsion fracture No. D 0 2 vibration is Preparative Torque (mm) (mm) (mm ) (kgf · m)
Invention 1 0.58 0.50 0.50 0.53 11.2 Invention 2 0.17 0.20 1.00 0.24 13.2 Invention 3 0.22 0.10 5.00 00. 16 14.9 Present Invention 4 0.35 0.10 7.00 0.21 13.1 Comparative Example 1 --- 1.10 13.9 Comparative Example 2 0.17 3.00 1.00 1.319 2.2 Comparative Example 3 0.89 0.50 0.50 0.36 2.3 [Example 2] Using a TiAl alloy having an alloy composition shown in Table 3 as a material, the same shape and dimensions (diameter 52 mm) as in Example 1 were used. )
Was prepared. In these,
A turbine rotor was manufactured by combining the shaft and the brazing material having the alloy composition shown in Table 3. In addition to SNCM439 used in Example 1, JIS-G
4311 martensitic heat-resistant steel SUH11 was used. At the joint, the shaft material is more concave, D 1 = 8m
m, H 1 = 6 mm, the TiAl impeller is convex, and D 2 = 7.
9 mm and H 2 = 1 mm.

【0034】[0034]

【表3】 TiAl羽根車 シャフト ろう材 組 成 オーステナ 液相線 No. (wt%) 鋼種 イト化温度 種 類 温 度 本発明1 BAg-13A 893℃ 本発明2 Ti-33.5Al- SNCM 750℃ A 820℃ 本発明3 0.5Cr-1Nb-0.5Si 439 B 1000℃ 本発明4 C 960℃ 本発明5 BNi-3 1040℃ 本発明6 Ti-34Al- SUHII 850℃ BNi-3 1040℃ 1Cr-5Nb-0.2Si 比較例1 Ti-33.5Al-0.5Cr SNCM 750℃ BAg-7 650℃ -1Nb-0.5Si 439 比較例2 Ti−34Al−1Cr−5Nb SUHII 850℃ BAg-
7 650℃ 比較例3 -0.2Si A 820℃ ロウ材には、JIS−Z3251に規定の銀ロウである
「BAg−7」および「13A」と、Ag−35.3C
u−1.7Ti(wt%)の組成を有する銀ロウ「A」
を、また、JIS−Z3265に規定のニッケルロウで
ある「BNi−3」と、Cu−10Co−31.5Mn
(wt%)の組成を有する銅ロウ「B」と、Ti−15N
i−15Cu(wt%)の組成を有するチタンロウ「C」と
を用いた。
[Table 3] TiAl impeller shaft brazing filler metal composition Austena Liquidus line No. (wt%) Steel grade Iitization temperature Type temperature Invention 1 BAg-13A 893 ℃ Invention 2 Ti-33.5Al-SNCM 750 ℃ A 820 ℃ Invention 3 0.5Cr-1Nb-0.5Si 439B 1000 ℃ Invention 4C 960 ℃ Invention 5 BNi-3 1040 ℃ Invention 6 Ti-34Al-SUHII 850 ℃ BNi-3 1040 ℃ 1Cr-5Nb-0.2 Si Comparative Example 1 Ti-33.5Al-0.5Cr SNCM 750 ℃ BAg-7 650 ℃ -1Nb-0.5Si 439 Comparative Example 2 Ti-34Al-1Cr-5Nb SUHII 850 ℃ BAg-
7 650 ° C. Comparative Example 3 -0.2 Si A 820 ° C. The brazing materials include “BAg-7” and “13A”, which are silver brasses specified in JIS-Z3251, and Ag-35.3C.
Silver wax “A” having a composition of u-1.7Ti (wt%)
And “BNi-3” which is a nickel solder specified in JIS-Z3265, and Cu-10Co-31.5Mn.
(Wt%) of copper brazing “B” and Ti-15N
A titanium wax “C” having a composition of i-15Cu (wt%) was used.

【0035】接合は、実施例1と同様に高周波加熱によ
って行ない、接合部には0.5kgf/mm2 の圧力をかけ
た。 接合部はロウ材の液相線温度+50℃の温度まで
加熱し、温度が一定になってから30秒間保持した後、
電力の供給を止めて冷却した。
The joining was performed by high-frequency heating as in Example 1, and a pressure of 0.5 kgf / mm 2 was applied to the joint. The joint is heated to the temperature of the liquidus temperature of the brazing material + 50 ° C, and after the temperature is stabilized, is held for 30 seconds.
The power supply was stopped to cool.

【0036】得られたタービンローターは、接合ままの
ものと、表4に示す各条件でそれぞれ焼入れ・焼戻しを
施してから接合部を直径16mmに機械加工したものにつ
いて、捩り試験を室温で実施した。 その結果を、表4
に示す。 本発明のタービンローターは、接合ままのも
のも焼入れ・焼戻しをしたものも、10 kgf・m以上の
捩り破断トルクを有し、十分な強度を示した。
The obtained turbine rotor was subjected to quenching and tempering under the conditions shown in Table 4 and the machined joint was machined to a diameter of 16 mm, and the torsional test was carried out at room temperature. . Table 4 shows the results.
Shown in The turbine rotor of the present invention, both as-bonded and quenched and tempered, had a torsional rupture torque of 10 kgf · m or more, and showed sufficient strength.

【0037】一方、比較例1〜3のローターは、ロウ材
の液相線温度がシャフトのオーステナイト化温度と同等
であるかまたはそれより低いため、焼入れ・焼戻し後は
熱処理前にくらべて強度が著しく低下して、タービンロ
ーターとしては不満足なものであった。
On the other hand, in the rotors of Comparative Examples 1 to 3, since the liquidus temperature of the brazing material is equal to or lower than the austenitizing temperature of the shaft, the strength after quenching / tempering is higher than before the heat treatment. It decreased remarkably, and was unsatisfactory as a turbine rotor.

【0038】[0038]

【表4】 焼入れ・ 捩り破断トルク(kgf・m) 焼戻し条件 焼入れ・ 接合後 焼戻し後 本発明1 11.9 11 本発明2 820℃/0.5hr/OQ 12.5 13.1 本発明3 +600℃/1hr/WC 11.5 11.9 本発明4 12.8 12 本発明5 15.6 15.1 本発明6 1000℃/0.5hr/OQ 16.1 15.5 +750℃/1hr/WC 比較例1 820℃/0.5hr/OQ 7.6 2.3 +650℃/1hr/WC 比較例2 1000℃/0.5hr/OQ 8.1 0.9 比較例3 +750℃/1hr/WC 14.3 5.1 〔実施例3〕実施例2の本発明No.5と同じ TiAl
製タービン羽根車、シャフト材およびロウ材を用いて、
同じ条件でシャフトの接合を行ない、続いて焼入れを行
なった。 焼入れは、シャフト全体を高周波誘導によっ
て加熱し、加熱・保持して接合を完了したところで、耐
熱ガラス製の冷却ガス吹き出しノズルから高圧のArガ
スをシャフトに吹きつけて、シャフトを急冷することに
より行なった。
[Table 4] Quenching / torsional breaking torque (kgf · m) tempering conditions After quenching / joining After tempering Invention 1 11.9 11 Invention 2 820 ° C / 0.5hr / OQ 12.5 13.1 Invention 3 +600 ° C / 1hr / WC 11.5 11.9 Present invention 4 12.8 12 Present invention 5 15.6 15.1 Present invention 6 1000 ° C / 0.5hr / OQ 16.1 15.5 + 750 ° C / 1hr / WC Comparative Example 1 820 ° C / 0.5hr / OQ 7.6 2.3 + 650 ° C / 1hr / WC Comparative Example 2 1000 ° C / 0.5hr / OQ 8.1 0.9 Comparative Example 3 + 750 ° C / 1hr / WC 14 3.3 5.1 [Third Embodiment] The present invention. TiAl same as 5
Using turbine impeller, shaft material and brazing material,
The shafts were joined under the same conditions, followed by quenching. The quenching is performed by heating the entire shaft by high-frequency induction, heating and holding to complete the joining, and then blasting the shaft with high-pressure Ar gas from a heat-resistant glass cooling gas blowing nozzle to rapidly cool the shaft. Was.

【0039】このようにして製造したタービンローター
は、室温で接合部の捩り試験を行なうとともに、シャフ
トの硬さを測定した。 室温における捩り破断トルクは
13.7kgf・mと十分な強度を示し、シャフトの表層硬
さはHRC55と十分な焼入れ硬さを示した。
The turbine rotor thus manufactured was subjected to a torsional test of the joint at room temperature and the hardness of the shaft was measured. The torsional rupture torque at room temperature was 13.7 kgf · m, indicating a sufficient strength, and the surface hardness of the shaft was HRC55, indicating a sufficient quenching hardness.

【0040】〔実施例4〕実施例1の本発明No.3に示
した、接合部に空洞を有するタービンローターと、やは
り実施例1の比較例No.1の、接合部が平面で空洞を有
しないタービンローターとを対象に、接合部外径D0
15mmのローターに機械加工し、軸受け部を高周波焼き
入れしてターボチャジャーを試作した。 エンジン実用
試験はディーゼルエンジンを用い、エンジン回転数40
00rpm で耐久試験を実施した。100時間後、比較例
No.1の空洞のないタービンローターの軸受け部は一部
変色し、温度が高まったことを示したが、本発明No.3
の空洞を有するローターの軸受け部には変色は認められ
ず、温度が高まらなかったことが確認された。
[Embodiment 4] The turbine rotor having a cavity at the joint shown in the present invention No. 3 of the first embodiment and the turbine rotor of the comparative example No. 1 of the first embodiment having a flat joint at the joint. For the turbine rotor without the joint, the outer diameter of the joint D 0 =
The turbocharger was prototyped by machining into a 15 mm rotor and induction hardening the bearing. The engine practical test uses a diesel engine and has an engine speed of 40
The durability test was performed at 00 rpm. After 100 hours, the bearing of the hollow turbine rotor of Comparative Example No. 1 was partially discolored, indicating an increase in temperature.
No discoloration was observed in the bearing portion of the rotor having the hollow, and it was confirmed that the temperature did not increase.

【0041】[0041]

【発明の効果】本発明により、耐熱性に優れたTiAl
ローター羽根車の芯と構造用鋼または耐熱鋼のシャフト
の芯とが精度よく合致し、かつシャフトとローター羽根
車の接合強度が高いTiAl製タービンローターが提供
される。 その製造コストは既有のものより低い。
According to the present invention, TiAl having excellent heat resistance can be obtained.
The present invention provides a TiAl turbine rotor in which the core of the rotor impeller and the core of the structural steel or heat-resistant steel shaft match precisely, and the joint strength between the shaft and the rotor impeller is high. Its manufacturing cost is lower than existing ones.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のTiAl製タービンローターの側面
図。
FIG. 1 is a side view of a TiAl turbine rotor of the present invention.

【図2】 図1のTiAl製タービンローターの羽根車
基部とシャフト端部との、接合に先立つ各部の形状を示
す縦断面図。
FIG. 2 is a longitudinal sectional view showing the shape of each part of the TiAl turbine rotor shown in FIG. 1 before joining an impeller base and a shaft end before joining.

【図3】 図2に続く、接合後の段階を示す縦断面図。FIG. 3 is a longitudinal sectional view showing a stage after joining, following FIG. 2;

【図4】 接合部分の、図3とは別の態様を示す縦断面
図。
FIG. 4 is a longitudinal sectional view showing another aspect of the joining portion, which is different from FIG. 3;

【図5】 AおよびBともに、接合部分のさらに別の態
様を示す縦断面図。
FIG. 5 is a longitudinal sectional view showing still another embodiment of the joining portion in both A and B.

【符号の説明】[Explanation of symbols]

a TiAl製タービン羽根車 b シャフト c 接合部 d ロウ材 D0 シャフトの外径 D1 凹部の内径 D2 凸部の外径 H1 凹部の深さ H2 凸部の高さa TiAl manufactured turbine wheel b shaft c joints d braze D 0 level of the depth H 2 protrusions of the outer diameter H 1 recess having an inner diameter D 2 protrusions of the outer diameter D 1 recess of the shaft

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 14/00 C22C 14/00 Z F01D 5/28 F01D 5/28 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 14/00 C22C 14/00 Z F01D 5/28 F01D 5/28

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 精密鋳造により製造したTiAl製ター
ビン羽根車にローターシャフトを接合したタービンロー
ターにおいて、シャフト材料として構造用鋼またはマル
テンサイト系耐熱鋼を使用し、羽根車基部とシャフト端
部にそれらの輪郭と同心円状の凹部(または凸部)およ
び凸部(または凹部)を形成して凹部と凸部とをはめ合
わせ、凹凸の外側のリング状部分をロウ付けにより接合
してなることを特徴とするTiAl製タービンロータ
ー。
1. A turbine rotor in which a rotor shaft is joined to a TiAl turbine impeller manufactured by precision casting, a structural steel or a martensitic heat-resistant steel is used as a shaft material, and the steel is used for an impeller base and a shaft end. A concave portion (or a convex portion) and a convex portion (or a concave portion) concentric with the contour of (a) are formed, the concave portion and the convex portion are fitted, and a ring-shaped portion outside the concave and convex portions is joined by brazing. TiAl made turbine rotor.
【請求項2】 タービン羽根車を構成するTiAlが、
重量で、Al:31〜35%を含有し残部が実質上Ti
である合金組成を有する請求項1のTiAl製タービン
ローター。
2. TiAl constituting a turbine impeller is:
Al: 31 to 35% by weight, with the balance being substantially Ti
The turbine rotor made of TiAl according to claim 1, having an alloy composition of:
【請求項3】 タービン羽根車を構成するTiAlが、
請求項2に記載の合金成分に加えて、Cr,Mnおよび
Vからえらんだ1種または2種以上(2種以上の場合は
合計で):0.2〜4%を含む合金組成を有する請求項
2のTiAl製タービンローター。
3. TiAl constituting a turbine impeller is:
In addition to the alloy components described in claim 2, one or more of Cr, Mn and V (in the case of two or more, a total of two or more) selected from 0.2, 4%. Item 2. A TiAl turbine rotor according to Item 2.
【請求項4】 タービン羽根車を構成するTiAlが、
請求項2または3に記載の合金成分に加えて、Nb,T
a,WおよびReからえらんだ1種または2種以上(2
種以上の場合は合計で):0.2〜10%を含む合金組
成を有する請求項2または3のTiAl製タービンロー
ター。
4. TiAl constituting a turbine impeller is:
Nb, T in addition to the alloy component according to claim 2 or 3.
a, W and Re selected from one or two or more (2
4. The TiAl turbine rotor according to claim 2 or 3, having an alloy composition containing 0.2 to 10%.
【請求項5】 タービン羽根車を構成するTiAlが、
請求項2ないし4のいずれかに記載の合金成分に加え
て、Si:0.01〜1.00%を含む合金組成を有す
る請求項2ないし4のいずれかのTiAl製タービンロ
ーター。
5. TiAl constituting a turbine impeller is:
The TiAl turbine rotor according to any one of claims 2 to 4, having an alloy composition containing 0.01 to 1.00% of Si in addition to the alloy component according to any one of claims 2 to 4.
【請求項6】 タービン羽根車を構成するTiAlが、
請求項2ないし5のいずれかに記載の合金組成を有し、
Zr:1.0%未満、Fe:1.0%未満、C:0.2
%未満、O:0.2%未満、かつN:0.2%未満であ
る請求項2ないし5のいずれかのTiAl製タービンロ
ーター。
6. TiAl constituting a turbine impeller is:
It has the alloy composition according to any one of claims 2 to 5,
Zr: less than 1.0%, Fe: less than 1.0%, C: 0.2
%, O: less than 0.2% and N: less than 0.2%.
【請求項7】 ロウ材として、Ag,Ni,Cuまたは
Tiを主成分とするものであって、融点が800℃以上
の合金を使用して接合した請求項1のTiAl製タービ
ンローター。
7. The TiAl turbine rotor according to claim 1, wherein the brazing filler metal is composed mainly of Ag, Ni, Cu or Ti and has a melting point of 800 ° C. or more.
【請求項8】 ロウ材とシャフト材との組み合わせを、
ロウ材の液相線温度がシャフト材のオーステナイト化温
度より高くなるようにえらんだ請求項1ないし7のTi
Al製タービンローター。
8. A combination of a brazing material and a shaft material,
8. The Ti according to claim 1, wherein the liquidus temperature of the brazing material is selected to be higher than the austenitizing temperature of the shaft material.
Aluminum turbine rotor.
【請求項9】 ロウ付けされたリング状部分の面積が接
合部の断面積の20%以上を占める請求項1ないし8の
TiAl製タービンローター。
9. The TiAl turbine rotor according to claim 1, wherein an area of the brazed ring-shaped portion occupies at least 20% of a sectional area of the joint.
【請求項10】 凹部の深さが凸部の高さより大きく、
接合部分の内部に空洞が形成されている請求項1ないし
9のTiAl製タービンローター。
10. The depth of the concave portion is larger than the height of the convex portion,
The TiAl turbine rotor according to any one of claims 1 to 9, wherein a cavity is formed inside the joint portion.
【請求項11】 シャフトが焼入れ・焼戻しされ、かつ
表面硬化処理を受けている請求項1ないし10のTiA
l製タービンローター。
11. The TiO according to claim 1, wherein the shaft is quenched and tempered and has undergone a surface hardening treatment.
1 turbine rotor.
JP02763097A 1996-10-18 1997-02-12 TiAl turbine rotor Expired - Lifetime JP3829388B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP02763097A JP3829388B2 (en) 1997-02-12 1997-02-12 TiAl turbine rotor
US08/953,249 US6007301A (en) 1996-10-18 1997-10-17 TiAl turbine rotor and method of manufacturing
DE69724730T DE69724730T2 (en) 1996-10-18 1997-10-17 Turbine rotor made of Ti-Al and process for producing this rotor
AT97118046T ATE249571T1 (en) 1996-10-18 1997-10-17 TI-AL TURBINE ROTOR AND METHOD FOR PRODUCING SUCH ROTOR
EP97118046A EP0837221B1 (en) 1996-10-18 1997-10-17 Ti-Al turbine rotor and method of manufacturing said rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02763097A JP3829388B2 (en) 1997-02-12 1997-02-12 TiAl turbine rotor

Publications (2)

Publication Number Publication Date
JPH10220236A true JPH10220236A (en) 1998-08-18
JP3829388B2 JP3829388B2 (en) 2006-10-04

Family

ID=12226285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02763097A Expired - Lifetime JP3829388B2 (en) 1996-10-18 1997-02-12 TiAl turbine rotor

Country Status (1)

Country Link
JP (1) JP3829388B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097213A (en) * 2001-09-25 2003-04-03 Kyocera Corp Ceramic turbine rotor
JP2005060829A (en) * 2003-08-12 2005-03-10 Borgwarner Inc Metal injection molded turbine rotor and jointing of metal shaft to the rotor
JP2006037952A (en) * 2004-07-28 2006-02-09 Borgwarner Inc Titanium aluminide impeller and connection of steel shaft to the impeller
EP1961915A2 (en) * 2007-02-21 2008-08-27 Mitsubishi Heavy Industries, Ltd. Method of manufacturing a rotor and exhaust turbocharger incorporating the rotor
JP2009131905A (en) * 2001-06-06 2009-06-18 Borgwarner Inc Cast titanium compressor wheel
JP2009144633A (en) * 2007-12-17 2009-07-02 Toyota Motor Corp Turbine heat-shielding device
WO2010036588A2 (en) * 2008-09-25 2010-04-01 Borgwarner Inc. Turbocharger and holding disk therefor
JP2011196256A (en) * 2010-03-19 2011-10-06 Ihi Corp Rotor and supercharger
JP2011202575A (en) * 2010-03-25 2011-10-13 Ihi Corp Method for manufacturing rotor
JP2013194528A (en) * 2012-03-16 2013-09-30 Ihi Corp Turbocharger
JP2017505230A (en) * 2013-12-04 2017-02-16 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Method for forming brazing joint gap and method for brazing or soldering
US9790577B2 (en) 2013-05-20 2017-10-17 Korea Institute Of Machinery & Materials Ti—Al-based alloy ingot having ductility at room temperature
JP2019210502A (en) * 2018-06-01 2019-12-12 大同特殊鋼株式会社 PREFORM, AND MANUFACTURING METHOD OF TiAl-BASED TURBINE WHEEL

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131905A (en) * 2001-06-06 2009-06-18 Borgwarner Inc Cast titanium compressor wheel
JP2003097213A (en) * 2001-09-25 2003-04-03 Kyocera Corp Ceramic turbine rotor
JP4698979B2 (en) * 2003-08-12 2011-06-08 ボーグワーナー・インコーポレーテッド Metal injection-molded turbine rotor and connection of metal shaft to the rotor
JP2005060829A (en) * 2003-08-12 2005-03-10 Borgwarner Inc Metal injection molded turbine rotor and jointing of metal shaft to the rotor
JP2006037952A (en) * 2004-07-28 2006-02-09 Borgwarner Inc Titanium aluminide impeller and connection of steel shaft to the impeller
EP1961915A2 (en) * 2007-02-21 2008-08-27 Mitsubishi Heavy Industries, Ltd. Method of manufacturing a rotor and exhaust turbocharger incorporating the rotor
JP2008202544A (en) * 2007-02-21 2008-09-04 Mitsubishi Heavy Ind Ltd Manufacturing method of rotor, and exhaust turbocharger having the rotor
EP1961915A3 (en) * 2007-02-21 2013-07-03 Mitsubishi Heavy Industries, Ltd. Method of manufacturing a rotor and exhaust turbocharger incorporating the rotor
JP2009144633A (en) * 2007-12-17 2009-07-02 Toyota Motor Corp Turbine heat-shielding device
WO2010036588A3 (en) * 2008-09-25 2010-07-01 Borgwarner Inc. Turbocharger and holding disk therefor
JP2012503743A (en) * 2008-09-25 2012-02-09 ボーグワーナー インコーポレーテッド Turbocharger and retaining disk for turbocharger
WO2010036588A2 (en) * 2008-09-25 2010-04-01 Borgwarner Inc. Turbocharger and holding disk therefor
JP2011196256A (en) * 2010-03-19 2011-10-06 Ihi Corp Rotor and supercharger
JP2011202575A (en) * 2010-03-25 2011-10-13 Ihi Corp Method for manufacturing rotor
JP2013194528A (en) * 2012-03-16 2013-09-30 Ihi Corp Turbocharger
US9790577B2 (en) 2013-05-20 2017-10-17 Korea Institute Of Machinery & Materials Ti—Al-based alloy ingot having ductility at room temperature
JP2017505230A (en) * 2013-12-04 2017-02-16 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Method for forming brazing joint gap and method for brazing or soldering
JP2019210502A (en) * 2018-06-01 2019-12-12 大同特殊鋼株式会社 PREFORM, AND MANUFACTURING METHOD OF TiAl-BASED TURBINE WHEEL

Also Published As

Publication number Publication date
JP3829388B2 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
EP0837221B1 (en) Ti-Al turbine rotor and method of manufacturing said rotor
EP0368642B1 (en) Method of forming a joint between a ti-al alloy member and a steel structural member
US7287960B2 (en) Titanium aluminide wheel and steel shaft connection thereto
US7407715B2 (en) Method of brazing and article made therefrom
US4778345A (en) Turbine rotor
US5431752A (en) Friction welding of γ titanium aluminide to steel body with nickel alloy connecting piece there between
JPH10220236A (en) Tial made turbine rotor
JP3355586B2 (en) Structural component and method of making the structural component
JPH10193087A (en) Manufacture of titanium-aluminum-made turbine rotor
US5106434A (en) Method for producing a metal and ceramic heat-connected body
JPH05202706A (en) Engine valve and manufacture thereof
JP2006297474A (en) JOINED BODY OF Ti-Al ALLOY AND STEEL, AND JOINING METHOD
JPH10118764A (en) Method for joining tial turbine impeller with rotor shaft
JP3132602B2 (en) Manufacturing method of friction welding valve
JP3534633B2 (en) Joint member and turbine member
JP4538878B2 (en) Joining method between steel and titanium
JP3179928B2 (en) Bonded body, bonded body thereof and ceramics, and methods of manufacturing them
JPH108924A (en) Manufacture of valve for large diesel engine
JP3132603B2 (en) Method for manufacturing friction-welded hollow valve
JPH0494889A (en) Ti-al series alloy-made engine valve
JP2619216B2 (en) Combined ceramic and metal
KR100300207B1 (en) Components consisting of alloys, rigid bodies and connecting pieces, and methods for manufacturing the same
JPH108904A (en) Gas turbine disk, and gas turbine
JPH04308302A (en) Turbine blade
JPH01211606A (en) Locker arm

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

EXPY Cancellation because of completion of term