JPH10219310A - Capsule powder for producing in-situ composite material and preform body - Google Patents

Capsule powder for producing in-situ composite material and preform body

Info

Publication number
JPH10219310A
JPH10219310A JP9031417A JP3141797A JPH10219310A JP H10219310 A JPH10219310 A JP H10219310A JP 9031417 A JP9031417 A JP 9031417A JP 3141797 A JP3141797 A JP 3141797A JP H10219310 A JPH10219310 A JP H10219310A
Authority
JP
Japan
Prior art keywords
particles
powder
situ
base material
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9031417A
Other languages
Japanese (ja)
Other versions
JP3503390B2 (en
Inventor
Yuichiro Hara
裕一郎 原
Akira Tsujimura
明 辻村
Eiji Shiotani
英爾 塩谷
Asao Koike
朝夫 小池
Masato Motoyoshi
正人 元吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP03141797A priority Critical patent/JP3503390B2/en
Publication of JPH10219310A publication Critical patent/JPH10219310A/en
Application granted granted Critical
Publication of JP3503390B2 publication Critical patent/JP3503390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PROBLEM TO BE SOLVED: To obtain capsule powder for producing an in-situ composite material easily capable of the control of reaction and capable of homogeneously dispersing a reinforcing material by forming additional particles to be brought into in-situ reaction into a base material of capsule powder composed of mother particles and child particles. SOLUTION: This capsule powder 1 for producing an in-situ composite material is the one in which additional particles for reinforcing to be added to a base material for bringing a reinforcing material into reaction into the base material and compositely reinforcing the base material of mother particles 2 and child particles 3 capsuled around each mother particle 2. The mother particles 2 are composed of the powder of metal, nonmetal or compounds thereof. Furthermore, the child particles 3 are composed of the powder of metal same as that of the base material or the powder of metal not to be brought into in-situ reaction in the base material. In this way, local reaction therein at the time of heating can be suppressed and controlled without infuence on the base material or without disturbing the formation of the reinforcing material, so that the homogeneous in-situ composite material free from segregation can be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、in−situ複
合材製造用カプセル粉末及びプリフォーム体に係り、特
に、粒子分散型の耐熱・耐摩耗Al合金におけるin−
situ複合材製造用カプセル粉末及びプリフォーム体
に関するものである。
[0001] The present invention relates to a capsule powder and a preform for producing an in-situ composite material, and more particularly to an in-situ heat- and abrasion-resistant aluminum alloy of a particle dispersion type.
The present invention relates to a capsule powder for producing a situ composite material and a preform.

【0002】[0002]

【従来の技術】Al合金の弱点である耐熱強度および耐
摩耗性の向上を目的として、様々な方法による複合材化
によって強化が行われている。各種の複合材製造プロセ
スは大別して、鋳造法、粉末冶金法、スプレーフォーミ
ング法の3つに分類される。
2. Description of the Related Art For the purpose of improving heat resistance and wear resistance, which are the weak points of Al alloys, reinforcement has been made by using composite materials by various methods. Various composite material manufacturing processes are roughly classified into three types: casting, powder metallurgy, and spray forming.

【0003】中でも、鋳造法は、更に加圧鋳造法、溶湯
添加法、コンポキャスティング法、PRIMEX CA
STTM、in−situ法の5つに細分される。
[0003] Among them, the casting method further includes a pressure casting method, a molten metal addition method, a component casting method, and a PRIMEX CA.
ST and in-situ method.

【0004】特に、in−situ法により作製された
in−situ複合材は、材料内部(母材中)で反応さ
せた強化材(例えば、2B+Ti+Al→TiB2 +A
l)により母材を複合強化するため、熱力学的に安定で
あり、また、母材中で強化材が反応生成するため、母相
と粒子の界面は汚染されておらず、強固な界面強度が得
られる。さらに、微細な粒子(強化材)が母材中に分散
されているため高特性の複合材を、低コストで得ること
ができる。
[0004] In particular, an in-situ composite material produced by an in-situ method uses a reinforcing material (eg, 2B + Ti + Al → TiB 2 + A) reacted inside the material (in the base material).
The composite material strengthens the base material according to 1), so that it is thermodynamically stable. In addition, since the reinforcing material reacts in the base material, the interface between the matrix and the particles is not contaminated, and the solid interface strength is strong. Is obtained. Further, since fine particles (reinforcing material) are dispersed in the base material, a high-performance composite material can be obtained at low cost.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、in−
situ反応の制御が難しく、強化材の偏析が起こり易
いという問題があった。
However, the in-
There is a problem that it is difficult to control the situ reaction and segregation of the reinforcing material easily occurs.

【0006】そこで本発明は、上記課題を解決し、in
−situ反応の制御が容易で、強化材を均質分散する
ことができるin−situ複合材製造用カプセル粉末
及びプリフォーム体を提供することにある。
Therefore, the present invention solves the above-mentioned problems, and
It is an object of the present invention to provide an in-situ composite material-producing capsule powder and a preform that can easily control a -situ reaction and can uniformly disperse a reinforcing material.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に請求項1の発明は、母材中にin−situ反応させ
るべく添加する添加粒子において、上記添加粒子を母粒
子と子粒子とからなるカプセル粉末で形成したものであ
る。
Means for Solving the Problems In order to solve the above-mentioned problems, the invention according to claim 1 is directed to an additive particle added for in-situ reaction in a base material. Formed of capsule powder.

【0008】請求項2の発明は、上記母粒子が金属、非
金属、金属化合物、または非金属化合物からなる粉末で
あり、上記子粒子が上記母材と同じ金属または上記母材
中でin−situ反応しない金属からなる粉末である
請求項1記載のin−situ複合材製造用カプセル粉
末である。
According to a second aspect of the present invention, the base particles are powders composed of a metal, a non-metal, a metal compound, or a non-metal compound, and the child particles are in the same metal as the base material or in-metal in the base material. The capsule powder for producing an in-situ composite material according to claim 1, which is a powder made of a metal that does not react in situ.

【0009】請求項3の発明は、上記母材がAlまたは
Al合金である請求項1記載のin−situ複合材製
造用カプセル粉末である。
The invention according to claim 3 is the capsule powder for producing an in-situ composite material according to claim 1, wherein the base material is Al or an Al alloy.

【0010】請求項4の発明は、母材中に添加された添
加粒子を、in−situ反応させて該母材を複合強化
するプリフォーム体において、上記添加粒子を母粒子と
子粒子とからなるカプセル粉末で形成し、該カプセル粉
末を上記母材粉末と配合し形成したものである。
According to a fourth aspect of the present invention, there is provided a preform in which added particles added to a base material are subjected to in-situ reaction to compositely strengthen the base material, wherein the added particles are formed from base particles and child particles. The capsule powder is formed by mixing the capsule powder with the base material powder.

【0011】請求項5の発明は、上記カプセル粉末にお
ける上記子粒子と上記母粒子の体積比(子粒子/母粒
子)がin−situ反応用加熱源に近付くにつれ増す
ように、該カプセル粉末を上記母材粉末中に傾斜配合し
たものである請求項4記載のin−situ複合材製造
用プリフォーム体である。
[0011] The invention according to claim 5 is that the capsule powder is prepared such that the volume ratio (child particle / base particle) of the child particles and the mother particles in the capsule powder increases as the heating source for the in-situ reaction approaches. The preform body for producing an in-situ composite material according to claim 4, wherein the preform body is inclinedly compounded in the base material powder.

【0012】請求項6の発明は、上記in−situ反
応用加熱源が、レーザ、アークなどである請求項4記載
のin−situ複合材製造用プリフォーム体である。
The invention according to claim 6 is the preform for producing an in-situ composite material according to claim 4, wherein the heating source for the in-situ reaction is a laser, an arc or the like.

【0013】以上の構成によれば、母材中にin−si
tu反応させるべく添加する添加粒子において、上記添
加粒子を母粒子と子粒子とからなるカプセル粉末で形成
したため、in−situ反応の制御が容易で、強化材
を均質分散することができるin−situ複合材製造
用カプセル粉末を得ることができる。
According to the above configuration, in-situ is contained in the base material.
In the additive particles to be added for the tu reaction, the additive particles are formed of capsule powder composed of base particles and child particles, so that the in-situ reaction can be easily controlled and the reinforcing material can be homogeneously dispersed. A capsule powder for producing a composite material can be obtained.

【0014】[0014]

【発明の実施の形態】 以下、本発明の実施の形態を説
明する。
Embodiments of the present invention will be described below.

【0015】本発明のin−situ複合材製造用カプ
セル粉末の模式図を図1に示す。
FIG. 1 is a schematic view of a capsule powder for producing an in-situ composite material of the present invention.

【0016】図1に示すように、本発明のin−sit
u複合材製造用カプセル粉末1は、母材(図示せず)中
に強化材(図示せず)をin−situ反応させて母材
を複合強化すべく、母材中に添加する強化用の添加粒子
を、母粒子2と、各母粒子2の周囲にカプセル化される
子粒子3で形成したものである。
As shown in FIG. 1, the in-situ of the present invention
The u-composite manufacturing capsule powder 1 is used for strengthening to be added to a base material (not shown) in order to cause an in-situ reaction of a reinforcing material (not shown) in the base material (not shown) to compositely strengthen the base material. The additive particles are formed by base particles 2 and child particles 3 encapsulated around each base particle 2.

【0017】母粒子2は、金属、非金属、金属化合物、
または非金属化合物の粉末からなるものであり、子粒子
3は、母材と同じ金属または母材中でin−situ反
応しない金属の粉末からなるものである。
The base particles 2 are made of metal, nonmetal, metal compound,
Alternatively, the child particles 3 are made of a powder of a nonmetallic compound, and the child particles 3 are made of a powder of the same metal as the base material or a metal that does not undergo an in-situ reaction in the base material.

【0018】添加粒子は、単一の母粒子2を用いて(例
えば、SiO2 粉末のみを母粒子として)形成したカプ
セル粉末1に特に限定するものではなく、in−sit
u反応に応じて、異なる母粒子2を用いて(例えば、S
iC粉末とTi粉末をそれぞれ母粒子として)形成した
カプセル粉末であってもよいことは言うまでもない。
The additive particles are not particularly limited to the capsule powder 1 formed by using a single base particle 2 (for example, using only SiO 2 powder as a base particle).
u, using different base particles 2 (for example, S
Needless to say, it may be a capsule powder formed by forming iC powder and Ti powder as base particles.

【0019】本発明のin−situ複合材製造用プリ
フォーム体の模式図を図2に示す。
FIG. 2 is a schematic view of a preform for producing an in-situ composite material of the present invention.

【0020】図2に示すように、in−situ複合材
製造用プリフォーム体11は、図1に示したカプセル粉
末1における子粒子3と母粒子2の体積比(子粒子/母
粒子)が、加熱源(in−situ反応用加熱源)5に
近付くにつれ増すように、カプセル粉末1の子粒子3の
量を加熱源5からの距離に応じて変化させて母材粉末4
中に傾斜配合し、圧粉成形したものである。
As shown in FIG. 2, the preform body 11 for producing an in-situ composite material has a volume ratio (child particle / base particle) of the child particles 3 and the mother particles 2 in the capsule powder 1 shown in FIG. The amount of the child particles 3 of the capsule powder 1 is changed according to the distance from the heating source 5 so as to increase as approaching the heating source (heating source for in-situ reaction) 5.
It is a compound that is graded into and compacted.

【0021】加熱源5としては、特に限定するものでは
ないが、プリフォーム体11全体を溶解するのではな
く、プリフォーム体11を部分溶解することが可能なレ
ーザ、アーク等が好ましい。
The heating source 5 is not particularly limited, but is preferably a laser or an arc capable of partially melting the preform 11 instead of melting the entire preform 11.

【0022】次に、本発明の作用を説明する。Next, the operation of the present invention will be described.

【0023】本発明で言うin−situ複合材とは、
Alを主成分とした粒子分散強化合金において、その分
散粒子が母相Al中で化学反応によって晶出または析出
したものであり、したがって、それらの分散粒子はAl
との濡れ性が良好である。このような反応は、溶融金属
中において溶質元素が熱力学的に安定な状態、即ちギブ
スの標準生成自由エネルギーが低い状態をとることによ
って起こる。
The in-situ composite material referred to in the present invention is:
In a particle-dispersion strengthened alloy containing Al as a main component, the dispersed particles are those crystallized or precipitated by a chemical reaction in the parent phase Al.
With good wettability. Such a reaction occurs when the solute element in the molten metal is thermodynamically stable, that is, the Gibbs standard free energy of formation is low.

【0024】酸化物の標準生成自由エネルギー温度図を
図3に示す。図中における横軸は温度を示し、縦軸はギ
ブスの標準生成自由エネルギーを示している。
FIG. 3 shows a standard free energy temperature diagram of oxide formation. In the figure, the horizontal axis represents temperature, and the vertical axis represents the standard free energy of formation of Gibbs.

【0025】図3に示すように、母相Al中にAl2
3 (図中、標準生成自由エネルギー温度線Bで表され
る)を生成させたい場合には、Al中で溶融し、かつ、
標準生成自由エネルギーがAl2 3 よりも高い添加粒
子(例えば、標準生成自由エネルギー温度線Aで表され
るSiO2 )を母相Al中に添加すると、 2Al+SiO2 →2/3・Al+Si+2/3・Al2 3 +ΔQ… (ΔQ:Al2 3 生成に伴い発生するジュール熱)と
いうようなin−situ反応を起こす。
As shown in FIG. 3, Al 2 O is contained in the matrix Al.
3 (in the figure, represented by a standard free energy temperature line B), it is necessary to melt in Al and
When added particles having a standard free energy of formation higher than that of Al 2 O 3 (for example, SiO 2 represented by a standard free energy temperature line A) are added to the matrix Al, 2Al + SiO 2 → 2/3 · Al + Si + 2/3 An in-situ reaction such as Al 2 O 3 + ΔQ (ΔQ: Joule heat generated with the generation of Al 2 O 3 ) occurs.

【0026】上記した式の場合、先ず、強化材となる
Al2 3 をAl母材中にin−situ反応させるべ
く、Al母材中に添加する添加粒子を母粒子と子粒子と
からなるカプセル粉末とし、SiO2 粉末を母粒子、母
材と同じ金属または母材中でin−situ反応しない
金属の粉末(ここではCu粉末)を子粒子とする。
In the case of the above formula, first, in order for Al 2 O 3 as a reinforcing material to undergo an in-situ reaction in the Al base material, additional particles to be added to the Al base material are composed of base particles and child particles. Capsule powder is used, and SiO 2 powder is used as base particles, and powder of the same metal as the base material or metal (in this case, Cu powder) that does not undergo in-situ reaction in the base material is used as child particles.

【0027】次に、このカプセル粉末を固形化してプリ
フォームを製造する際に、カプセル粉末における子粒子
と母粒子の体積比(子粒子/母粒子)が、加熱源に近付
くにつれ増すように、カプセル粉末の子粒子の量を加熱
源からの距離に応じて変化させて母材粉末中に傾斜配合
する。
Next, when the capsule powder is solidified to produce a preform, the volume ratio (child particle / base particle) of the child particles to the parent particles in the capsule powder is increased so as to approach the heating source. The amount of the child particles of the capsule powder is changed according to the distance from the heating source, and the capsule particles are mixed into the base material powder in a gradient.

【0028】その後、このカプセル粉末と母材粉末を傾
斜配合したものを圧粉成形し、プリフォーム体を作製す
る。
Thereafter, a mixture of the capsule powder and the base material powder in a graded mixture is compacted to produce a preform.

【0029】カプセル粉末と母材粉末を傾斜配合したも
のの圧粉成形方法は特に限定するものではなく、例え
ば、CIPなどに代表される各種の金属粉末成形法が挙
げられる。
The method of compacting the capsule powder and the base material powder in an inclined manner is not particularly limited, and examples thereof include various metal powder molding methods represented by CIP and the like.

【0030】すなわち、本発明のin−situ複合材
製造用カプセル粉末およびプリフォーム体においては、
母材中にin−situ反応させるべく添加する添加粒
子を、母粒子と子粒子とからなるカプセル粉末で形成
し、母粒子の周囲にカプセル化される子粒子として、母
材と同じ金属または母材中でin−situ反応しない
金属の粉末を用いているため、母材に対する影響が無く
または強化材の生成を妨げず、加熱時の局所的な反応を
抑制・制御でき、偏析がなく均質なin−situ複合
材を得ることができる。
That is, in the capsule powder and preform of the present invention for producing an in-situ composite material,
Additive particles to be added to the base material for in-situ reaction are formed of capsule powder composed of base particles and child particles, and the same metal or mother as the base material is used as the child particles encapsulated around the base particles. Since metal powder that does not react in-situ in the material is used, it has no effect on the base material or does not hinder the formation of the reinforcing material, can suppress and control local reactions during heating, and has no homogenization without segregation. An in-situ composite can be obtained.

【0031】また、カプセル粒子と母材粒子を配合した
ものを圧粉成形してなるプリフォーム体において、加熱
源の近くは温度が高く、in−situ反応が進行し易
いため、加熱源から遠いカプセル粉末の子粒子の量より
も加熱源に近いカプセル粉末の子粒子の量を多くするこ
とで、in−situ反応を抑制・制御できると共に、
プリフォーム体全体において均一にin−situ反応
させることができる。
Further, in a preform formed by compacting a mixture of capsule particles and base material particles, the temperature is high near the heating source, and the in-situ reaction easily proceeds, so that the heating source is far from the heating source. By increasing the amount of the capsule particles closer to the heating source than the amount of the capsule particles, the in-situ reaction can be suppressed and controlled,
The in-situ reaction can be uniformly performed in the entire preform body.

【0032】[0032]

【実施例】【Example】

(実施例)マトリックス(母材)として平均粒径が10
0μmのAl粉末、添加粒子として母粒子がTi粉末、
子粒子がAl粉末からなり、かつ、平均粒径が20μm
のTiカプセル粉末および母粒子がSiC粉末、子粒子
がAl粉末からなり、かつ、平均粒径が20μmのSi
Cカプセル粉末を用い、Al粉末:Tiカプセル粉末:
SiCカプセル粉末の配合比が60:20:20となる
ように配合する。
(Example) A matrix (base material) having an average particle size of 10
0 μm Al powder, mother particles as additive particles Ti powder,
Child particles are made of Al powder, and the average particle size is 20 μm
Of Si capsule powder and mother particles of SiC powder and child particles of Al powder, and having an average particle size of 20 μm.
Using C capsule powder, Al powder: Ti capsule powder:
The SiC capsule powder is blended so as to have a blending ratio of 60:20:20.

【0033】この時、加熱源から近い方のTiカプセル
粉末およびSiCカプセル粉末における子粒子と母粒子
の体積比(子粒子/母粒子)が、加熱源から遠い方のT
iカプセル粉末およびSiCカプセル粉末における子粒
子と母粒子の体積比(子粒子/母粒子)よりも大きくな
るように、各カプセル粉末をAl粉末中に傾斜配合す
る。
At this time, the volume ratio (child particle / base particle) of the child particles and the mother particles in the Ti capsule powder and the SiC capsule powder closer to the heating source is smaller than that of the T capsule farther from the heating source.
Each capsule powder is compounded in the Al powder so as to be larger than the volume ratio of the child particles to the mother particles (child particles / base particles) in the i capsule powder and the SiC capsule powder.

【0034】その後、Al粉末、Tiカプセル粉末、お
よびSiCカプセル粉末を配合してなるものを圧粉成形
する。その圧粉体に電流150A、電圧20VのTIG
交流電源により1分間アーク溶解を施すことによって、
Al母材中にTiCがin−situ生成する。
Thereafter, a mixture of Al powder, Ti capsule powder and SiC capsule powder is compacted. A TIG with a current of 150 A and a voltage of 20 V is applied to the compact.
By performing arc melting for 1 minute with an AC power supply,
TiC is generated in-situ in the Al base material.

【0035】(比較例)マトリックス(母材)として平
均粒径が100μmのAl粉末、添加粒子として平均粒
径が20μmのTi粉末および平均粒径が20μmのS
iC粉末を用い、Al粉末:Ti粉末:SiC粉末の配
合比が60:20:20となるように配合する。
(Comparative Example) Al powder having an average particle diameter of 100 μm as a matrix (base material), Ti powder having an average particle diameter of 20 μm, and S having an average particle diameter of 20 μm as added particles.
The iC powder is blended so that the blending ratio of Al powder: Ti powder: SiC powder is 60:20:20.

【0036】その後、Al粉末、Ti粉末、およびSi
C粉末を配合してなるものを圧粉成形する。その圧粉体
に電流150A、電圧20VのTIG交流電源により1
分間通電加熱を施すことによって、Al母材中にTiC
がin−situ生成する。実施例および比較例におけ
るin−situ反応は、 Al+SiC+Ti→Al+TiC+Si+ΔQ… (ΔQ:SiC+Ti→TiC+Siに伴い発生するジ
ュール熱)である。
Thereafter, Al powder, Ti powder and Si powder
A product obtained by blending C powder is compacted. The green compact is supplied with a current of 150 A and a voltage of 20 V by a TIG AC power supply for 1
By applying electric heating for minutes, TiC
Is generated in-situ. The in-situ reaction in Examples and Comparative Examples is Al + SiC + Ti → Al + TiC + Si + ΔQ (ΔQ: Joule heat generated with SiC + Ti → TiC + Si).

【0037】炭化物の標準生成自由エネルギー温度図を
図4に示す。図中における横軸は温度を示し、縦軸はギ
ブスの標準生成自由エネルギーを示し、曲線CはSiC
の標準生成自由エネルギー温度線を示し、曲線DはAl
4 3 の標準生成自由エネルギー温度線を示し、曲線E
はTiCの標準生成自由エネルギー温度線を示してい
る。
FIG. 4 shows a standard free energy temperature diagram for formation of carbides. In the figure, the horizontal axis indicates temperature, the vertical axis indicates the standard free energy of formation of Gibbs, and the curve C indicates SiC.
Shows the standard free energy temperature line of formation, and curve D shows Al
4 shows the standard free energy isothermal line of C 3, curve E
Indicates a standard free energy temperature line of formation of TiC.

【0038】図4に示すように、0℃〜約2,800℃
の温度域に亘って、曲線Cで表されるSiCの標準生成
自由エネルギー温度線よりも曲線Eで表されるTiCの
標準生成自由エネルギー温度線の方が下方に位置してい
ることからわかるように、SiCよりもTiCの方がエ
ネルギー的に安定である。これによって、上記した式
の反応が起こる。
As shown in FIG. 4, 0 ° C. to about 2,800 ° C.
It can be seen from the fact that the standard free energy line of formation energy of TiC represented by the curve E is located lower than the free energy temperature line of formation of SiC represented by the curve C over the temperature range of In addition, TiC is more energetically stable than SiC. This causes the reaction of the above formula.

【0039】ここで、実施例において、子粒子としてA
l粉末を選択したのは、Alマトリックス中に添加して
も影響が無い点、およびin−situ反応によって生
成する強化材であるTiCが、Alの炭化物(Al4
3 )よりもエネルギー的に安定である(0℃〜約2,8
00℃の温度域に亘って、曲線Dで表されるAl4 3
の標準生成自由エネルギー温度線よりも曲線Eで表され
るTiCの標準生成自由エネルギー温度線の方が下方に
位置している)ためである。
Here, in the examples, A was used as a child particle.
1 powder was selected because it had no effect when added into the Al matrix, and TiC, a reinforcing material generated by an in-situ reaction, was found to be a carbide of Al (Al 4 C
3 ) More energetically stable (0 ° C. to about 2.8
Over the temperature range of 00 ° C., Al 4 C 3 represented by curve D
This is because the standard free energy line of formation of TiC represented by the curve E is located lower than the standard free energy temperature line of formation.

【0040】実施例におけるin−situ複合材の金
属組織顕光学微鏡写真を図5に示す。比較例におけるi
n−situ複合材の金属組織光学顕微鏡写真を図6に
示す。ここで、図5および図6の写真の倍率は、ともに
25倍であり、一目盛りの長さは200μmである。
FIG. 5 shows a metallographic microscopic photograph of the in-situ composite material in the example. I in Comparative Example
FIG. 6 shows a metallographic optical micrograph of the n-situ composite. Here, the magnifications of the photographs in FIGS. 5 and 6 are both 25 times, and the length of one scale is 200 μm.

【0041】図5に示すように、本発明のin−sit
u複合材製造用カプセル粉末及びプリフォーム体を用い
て作製した実施例におけるin−situ複合材は、A
l母相6中に強化材であるTiC粒子7が均一に分散し
ており、均質なin−situ複合材が得られる。
As shown in FIG. 5, the in-situ of the present invention
The in-situ composite material in the examples manufactured using the capsule powder for producing the u-composite material and the preform body is A
1 The TiC particles 7 as a reinforcing material are uniformly dispersed in the mother phase 6, and a homogeneous in-situ composite material is obtained.

【0042】これに対して、図6に示すように、比較例
における従来の製造方法によるin−situ複合材
は、Al母相6中に、強化材であるTiC粒子7が偏析
して分散しており、in−situ複合材は不均質とな
っている。
On the other hand, as shown in FIG. 6, in the in-situ composite material according to the conventional manufacturing method in the comparative example, the TiC particles 7 as the reinforcing material are segregated and dispersed in the Al matrix 6. And the in-situ composite is heterogeneous.

【0043】本発明のin−situ複合材製造用カプ
セル粉末及びプリフォーム体を用いて作製したin−s
itu複合材は、ピストン(特に、ピストン燃焼室リッ
プ部、リング溝部など)、コネクティングロッド、スプ
リングリテーナ、シリンダブロック(特に、C/H(シ
リンダヘッド)のバルブポート間、バルブシートな
ど)、ダンパプーリ等の耐熱・耐摩耗性が要求されるA
l合金部品に適用することができる。
In-s prepared using the capsule powder and preform of the present invention for producing an in-situ composite material
Itu composite materials include pistons (particularly, piston combustion chamber lips, ring grooves, etc.), connecting rods, spring retainers, cylinder blocks (particularly, between C / H (cylinder head) valve ports, valve seats, etc.), damper pulleys, etc. A which is required to have heat resistance and wear resistance
It can be applied to 1 alloy parts.

【0044】[0044]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0045】(1) 母材中にin−situ反応させ
るべく添加する添加粒子を、母粒子と子粒子とからなる
カプセル粉末で形成しすることで、in−situ反応
の制御が容易で、強化材が均質分散したin−situ
複合材を得ることができる。
(1) By forming the added particles to be added to the base material to cause an in-situ reaction in the capsule powder composed of the base particles and the child particles, the control of the in-situ reaction is easy and the strengthening is achieved. In-situ with homogeneous dispersion of wood
A composite can be obtained.

【0046】(2) 子粒子として、母材と同じ金属ま
たは母材中でin−situ反応しない金属の粉末を用
いることで、母材に対する影響が無くまたは強化材の生
成を妨げず、加熱時の局所的な反応を抑制・制御でき、
偏析がなく均質なin−situ複合材を得ることがで
きる。
(2) By using the same metal as the base material or a powder of a metal that does not undergo in-situ reaction in the base material as the child particles, there is no influence on the base material or the formation of the reinforcing material is not hindered, Can suppress and control the local reaction of
A homogeneous in-situ composite material without segregation can be obtained.

【0047】(3) カプセル粒子と母材粒子を配合し
たものを圧粉成形してなるプリフォーム体において、加
熱源から遠いカプセル粉末の子粒子の量よりも加熱源に
近いカプセル粉末の子粒子の量を多くした傾斜配合とす
ることで、in−situ反応を抑制・制御できると共
に、プリフォーム体全体において均一にin−situ
反応させることができる。
(3) In a preform formed by compacting a mixture of capsule particles and base material particles, the child particles of the capsule powder closer to the heating source than the amount of the child particles of the capsule powder far from the heating source And the in-situ reaction can be suppressed and controlled, and the in-situ reaction is uniformly performed in the entire preform body.
Can react.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のin−situ複合材製造用カプセル
粉末の模式図である。
FIG. 1 is a schematic view of a capsule powder for producing an in-situ composite material of the present invention.

【図2】本発明のin−situ複合材製造用プリフォ
ーム体の模式図である。
FIG. 2 is a schematic diagram of a preform body for producing an in-situ composite material of the present invention.

【図3】酸化物の標準生成自由エネルギー温度図であ
る。
FIG. 3 is a graph showing a standard free energy of formation temperature of an oxide.

【図4】炭化物の標準生成自由エネルギー温度図であ
る。
FIG. 4 is a standard free energy temperature diagram of formation of carbides.

【図5】実施例におけるin−situ複合材の金属組
織光学顕微鏡写真である。
FIG. 5 is a metallographic optical micrograph of an in-situ composite material in an example.

【図6】比較例におけるin−situ複合材の金属組
織光学顕微鏡写真である。
FIG. 6 is a metallographic optical micrograph of an in-situ composite material in a comparative example.

【符号の説明】 1 カプセル粉末 2 母粒子 3 子粒子 4 母材粉末 5 加熱源(in−situ反応用加熱源)[Description of Signs] 1 Capsule powder 2 Base particle 3 Child particle 4 Base material powder 5 Heating source (heating source for in-situ reaction)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小池 朝夫 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 (72)発明者 元吉 正人 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor, Asao Koike, 8 Dosana, Fujisawa-shi, Kanagawa Prefecture, Isuzu Central Research Institute Co., Ltd. Inside

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 母材中にin−situ反応させるべく
添加する添加粒子において、上記添加粒子を母粒子と子
粒子とからなるカプセル粉末で形成したことを特徴とす
るin−situ複合材製造用カプセル粉末。
1. An in-situ composite material manufacturing method, wherein said additive particles are added to a base material so as to cause an in-situ reaction, wherein said additional particles are formed of a capsule powder composed of base particles and child particles. Capsule powder.
【請求項2】 上記母粒子が金属、非金属、金属化合
物、または非金属化合物からなる粉末であり、上記子粒
子が上記母材と同じ金属または上記母材中でin−si
tu反応しない金属からなる粉末である請求項1記載の
in−situ複合材製造用カプセル粉末。
2. The method according to claim 1, wherein the base particles are powders of a metal, a nonmetal, a metal compound, or a nonmetal compound, and the child particles are in-situ in the same metal as the base material or in the base material.
The capsule powder for producing an in-situ composite material according to claim 1, which is a powder made of a metal that does not react with tu.
【請求項3】 上記母材がAlまたはAl合金である請
求項1記載のin−situ複合材製造用カプセル粉
末。
3. The capsule powder for producing an in-situ composite material according to claim 1, wherein the base material is Al or an Al alloy.
【請求項4】 母材中に添加された添加粒子を、in−
situ反応させて該母材を複合強化するプリフォーム
体において、上記添加粒子を母粒子と子粒子とからなる
カプセル粉末で形成し、該カプセル粉末を上記母材粉末
と配合し形成したことを特徴とするin−situ複合
材製造用プリフォーム体。
4. The method according to claim 1, wherein the added particles added to the base material are in-
In a preform body in which the base material is compositely reinforced by a situ reaction, the additional particles are formed of a capsule powder composed of base particles and child particles, and the capsule powder is formed by blending with the base material powder. A preform for producing an in-situ composite material.
【請求項5】 上記カプセル粉末における上記子粒子と
上記母粒子の体積比(子粒子/母粒子)がin−sit
u反応用加熱源に近付くにつれ増すように、該カプセル
粉末を上記母材粉末中に傾斜配合したものである請求項
4記載のin−situ複合材製造用プリフォーム体。
5. A volume ratio (child particle / base particle) of said child particles and said mother particles in said capsule powder is in-situ.
The preform body for producing an in-situ composite material according to claim 4, wherein said capsule powder is inclinedly blended into said base material powder so as to increase as approaching the heating source for u reaction.
【請求項6】 上記in−situ反応用加熱源が、レ
ーザ、アークなどである請求項4記載のin−situ
複合材製造用プリフォーム体。
6. The in-situ reaction source according to claim 4, wherein the heating source for the in-situ reaction is a laser, an arc or the like.
Preform body for composite material production.
JP03141797A 1997-01-31 1997-01-31 Capsule powder and preform for in-situ composite material production Expired - Fee Related JP3503390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03141797A JP3503390B2 (en) 1997-01-31 1997-01-31 Capsule powder and preform for in-situ composite material production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03141797A JP3503390B2 (en) 1997-01-31 1997-01-31 Capsule powder and preform for in-situ composite material production

Publications (2)

Publication Number Publication Date
JPH10219310A true JPH10219310A (en) 1998-08-18
JP3503390B2 JP3503390B2 (en) 2004-03-02

Family

ID=12330694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03141797A Expired - Fee Related JP3503390B2 (en) 1997-01-31 1997-01-31 Capsule powder and preform for in-situ composite material production

Country Status (1)

Country Link
JP (1) JP3503390B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160143849A (en) * 2014-04-18 2016-12-14 지멘스 에너지, 인코포레이티드 Forming a secondary structure directly onto a turbine blade by additive manufacturing method and a turbine blade having an additively manufactured snubber on its wall

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07502938A (en) * 1990-12-07 1995-03-30 ボード・オブ・リージェンツ,ザ・ユニバーシティ・オブ・テキサス・システム Manufacture of parts by compound formation of precursor powders

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07502938A (en) * 1990-12-07 1995-03-30 ボード・オブ・リージェンツ,ザ・ユニバーシティ・オブ・テキサス・システム Manufacture of parts by compound formation of precursor powders

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160143849A (en) * 2014-04-18 2016-12-14 지멘스 에너지, 인코포레이티드 Forming a secondary structure directly onto a turbine blade by additive manufacturing method and a turbine blade having an additively manufactured snubber on its wall

Also Published As

Publication number Publication date
JP3503390B2 (en) 2004-03-02

Similar Documents

Publication Publication Date Title
KR950014105B1 (en) Process for forming metal-second phase composites and product thereof
Zhou et al. Manufacture of nano-sized particle-reinforced metal matrix composites: a review
CN111957967B (en) Method for preparing multi-scale ceramic phase reinforced metal composite material through 3D printing
US20060065330A1 (en) Porous metallic product and method for making same
CN100392126C (en) Magnetic chemical reaction in-situ synthesizing method for preparing metal base nano composite material
CN110461535A (en) Nanocomposites welding filling material and its production method
US4687511A (en) Metal matrix composite powders and process for producing same
CN1325681C (en) Ceramic granule reinforced aluminium-base composite material and its preparing method
CN100357468C (en) Preparation method of endogenous particle reinforced aluminium-based composite material
CN105458254B (en) Thixotroping formula liquid metal matrix fluid, laminate and its hardware forming method
JP5703272B2 (en) Abrasion resistant material
JP2005330585A (en) Method for preparing metallic article having other additive constituent without any melting
CN104985188A (en) Method for preparing atomized iron powder containing nano ceramic phase
CN102791893A (en) Particulate aluminium matrix nano-composites and a process for producing the same
EP1606426B1 (en) Method for treating tungsten carbide particles
CN108004426A (en) A kind of two-phase in-situ nano enhancing titanium matrix composite and preparation method thereof
CN102712044A (en) Production method and production device for a composite metal powder using the gas spraying method
CN105710380A (en) Aluminum-contained metal printing powder and preparation method thereof
CN108034866B (en) A kind of high-performance aluminium silicon nitride based composites and preparation method thereof
JPH10219310A (en) Capsule powder for producing in-situ composite material and preform body
CN101439407B (en) Method for manufacturing light metal-based nano composite material
US7001443B2 (en) Method for producing a metallic alloy by the oxidation and chemical reduction of gaseous non-oxide precursor compounds
JP2010043297A (en) Method for producing ceramic-particle-reinforced aluminum composite material
Rohit et al. Development of Magnesium Composite Material by the method of Stir Casting for applications in Automotive and Aerospace Industries
JP2007204808A (en) Method for forming metal matrix composite

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees