JPH10216526A - Catalyst composition for fluid catalytic cracking of hydrocarbon - Google Patents

Catalyst composition for fluid catalytic cracking of hydrocarbon

Info

Publication number
JPH10216526A
JPH10216526A JP9037157A JP3715797A JPH10216526A JP H10216526 A JPH10216526 A JP H10216526A JP 9037157 A JP9037157 A JP 9037157A JP 3715797 A JP3715797 A JP 3715797A JP H10216526 A JPH10216526 A JP H10216526A
Authority
JP
Japan
Prior art keywords
catalytic cracking
catalyst composition
catalyst
fluid catalytic
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9037157A
Other languages
Japanese (ja)
Other versions
JP3563910B2 (en
Inventor
Takahisa Horie
隆久 堀江
Seiji Arakawa
誠治 荒川
Morio Fukuda
盛男 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP03715797A priority Critical patent/JP3563910B2/en
Publication of JPH10216526A publication Critical patent/JPH10216526A/en
Application granted granted Critical
Publication of JP3563910B2 publication Critical patent/JP3563910B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a catalyst composition for fluid catalytic cracking of hydrocarbon and which is highly active and has high gasoline-selectivity and produces gasoline with low octane number decrease by dispersing crystalline aluminosilicate zeolite and lithium aluminosilicate in an inorganic oxide matrix. SOLUTION: A catalyst composition for fluid catalytic cracking of hydrocarbon to be used for fluid catalytic cracking of heavy hydrocarbons containing metal contaminants and sulfur compounds is produced by mixing, for example, 5-50wt.% of crystalline aluminosilicate zeolite, for example, 0.1-50wt.% of lithium aluminosilicate, and for example, 20-94.9wt.% of an inorganic oxide matrix except the former compounds. The lithium aluminosilicate is an inorganic oxide containing lithium, and silicon as main components and preferably has the formula Li2 O.xAl2 O3 .ySiO2 wherein x=0.8-1.5 and y=1.0-20, and a particular lithium aluminosilicate with 60μm or smaller average particle size is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、炭化水素流動接触分解
用触媒組成物に関し、さらに詳しくは、炭化水素、特に
ニッケル、バナジウムなどの金属汚染物と硫黄化合物を
含有する重質炭化水素の流動接触分解に使用して、耐メ
タル性、硫黄酸化物捕捉能に優れ、高活性でガソリン選
択性に優れ、しかもオクタン価(RON)の低下の少な
い炭化水素流動接触分解用触媒組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst composition for fluid catalytic cracking of hydrocarbons, and more particularly, to the flow of hydrocarbons, especially heavy hydrocarbons containing metal contaminants such as nickel and vanadium and sulfur compounds. The present invention relates to a catalyst composition for hydrocarbon fluid catalytic cracking, which is used for catalytic cracking, has excellent metal resistance and sulfur oxide trapping ability, is highly active, has excellent gasoline selectivity, and has a small decrease in octane number (RON).

【0002】[0002]

【従来技術およびその問題点】従来、ニッケル、バナジ
ウムなどの金属汚染物を含有する重質炭化水素の接触分
解では、触媒上に沈着したバナジウムが活性成分である
結晶性アルミノシリケートゼオライトの結晶構造を破壊
し、触媒の著しい活性低下をもたらすことが知られてお
り、そして、触媒上に沈着したバナジウムなどの金属汚
染物を不活性化するために、種々の化合物を金属捕捉剤
として含有させ、耐メタル性を向上させた触媒も種々提
案されている(例えば、特開昭61−149241号、
特開昭62−38242号)。
2. Description of the Related Art Conventionally, in the catalytic cracking of heavy hydrocarbons containing metal contaminants such as nickel and vanadium, the crystal structure of crystalline aluminosilicate zeolite in which vanadium deposited on a catalyst is an active component is used. Various compounds are included as metal scavengers to destroy and deactivate metal contaminants such as vanadium deposited on the catalyst, which are known to cause a significant decrease in the activity of the catalyst. Various catalysts having improved metal properties have also been proposed (for example, JP-A-61-149241,
JP-A-62-38242).

【0003】しかし、アルカリ土類金属化合物は金属汚
染物を不活性化する優れた効果を有するものの、これを
金属捕捉剤として無機酸化物マトリックス中に分散させ
た触媒組成物では、アルカリ土類金属が接触分解反応使
用中に移動して、結晶アルミノシリケートゼオライトの
熱安定性を低下させ、結晶構造を破壊するため触媒の活
性が低下したり、あるいは、結晶性アルミノシリケート
ゼオライトにアルカリ土類金属がイオン交換して組込ま
れるため、接触分解反応で得られるガソリン生成物のオ
クタン価(RON)が低下する、などの問題があった。
[0003] However, although the alkaline earth metal compound has an excellent effect of inactivating metal contaminants, a catalyst composition in which this is dispersed in an inorganic oxide matrix as a metal scavenger has been used. Moves during use of the catalytic cracking reaction, lowering the thermal stability of the crystalline aluminosilicate zeolite, destroying the crystal structure and reducing the activity of the catalyst, or adding an alkaline earth metal to the crystalline aluminosilicate zeolite. Since it is incorporated by ion exchange, there is a problem that the octane value (RON) of the gasoline product obtained by the catalytic cracking reaction is reduced.

【0004】さらに、金属捕捉剤のアルカリ土類金属の
種類によっては、これを無機酸化物マトリックス前駆物
質と混合した際にそのアルカリ土類金属が溶出して、結
晶性アルミノシリケートゼオライトにイオン交換した
り、あるいは無機酸化物マトリックス前駆物質と反応す
る、などして、得られる触媒組成物の性状に悪影響を及
ぼす問題があった。
Further, depending on the kind of alkaline earth metal as a metal scavenger, when the alkaline earth metal is mixed with an inorganic oxide matrix precursor, the alkaline earth metal is eluted and ion-exchanged into a crystalline aluminosilicate zeolite. There is a problem that the properties of the obtained catalyst composition are adversely affected by, for example, reacting with the inorganic oxide matrix precursor.

【0005】本出願人は、これらの問題点を解消するた
め、触媒内にアルミナをブロック状に存在させたり(特
開昭61−227843号公報)、触媒製造時に触媒を
リン酸イオン含有水溶液で処理する(特開平4−200
744号公報)ことにより、金属捕捉剤としてのアルカ
リ土類金属のもつ長所をそこなうことなく、アルカリ土
類金属のもつ欠点を改良した炭化水素接触分解用触媒組
成物の製造方法を提案している。また触媒内に粒子状の
マンガン化合物を分散させた炭化水素接触分解用触媒組
成物を提案している(特開平7−323229)。
In order to solve these problems, the present applicant has proposed that alumina is present in a block form in the catalyst (Japanese Patent Application Laid-Open No. 61-227843), or that the catalyst is prepared using an aqueous solution containing phosphate ions during the production of the catalyst. Processing (JP-A-4-200)
No. 744) proposes a method for producing a catalyst composition for catalytic cracking of hydrocarbons, which does not impair the advantages of alkaline earth metals as metal scavengers and improves the disadvantages of alkaline earth metals. . In addition, a catalyst composition for catalytic cracking of hydrocarbons in which a particulate manganese compound is dispersed in a catalyst has been proposed (JP-A-7-323229).

【0006】一方、硫黄化合物を含有する炭化水素を接
触分解するに際し、流動接触分解(FCC)装置の再生
塔から排出される燃焼ガス中のSOx成分を減少する方
法(特公昭56−9196号公報)および、触媒組成物
(特開昭56−111047号公報)についても提案さ
れている。
On the other hand, when catalytically cracking a hydrocarbon containing a sulfur compound, a method for reducing the SOx component in the combustion gas discharged from a regeneration tower of a fluid catalytic cracking (FCC) apparatus (Japanese Patent Publication No. 56-9196) ) And a catalyst composition (JP-A-56-111047).

【0007】重質炭化水素中の硫黄化合物は、コークと
共に触媒に付着し、FCC装置の再生塔では次の反応に
より、SOxとなり、ついで金属酸化物と反応して触媒
中に捕捉される。
[0007] The sulfur compound in the heavy hydrocarbons adheres to the catalyst together with coke, and becomes SOx by the following reaction in the regeneration tower of the FCC unit, and then reacts with the metal oxide to be captured in the catalyst.

【化1】コーク中のS+O2 → SO2+SO3 2SO2+O2 → 2SO3 金属酸化物(MO)+SO3 → MSO4 Embedded image S + O 2 in coke → SO 2 + SO 3 2SO 2 + O 2 → 2SO 3 metal oxide (MO) + SO 3 → MSO 4

【0008】反応塔においては、次の反応により[0008] In the reaction tower, the following reaction

【化2】 2MSO4+8H2 → MS+MO+H2S+7H2O ストリッパーにおいては、次の反応によりEmbedded image In a 2MSO 4 + 8H 2 → MS + MO + H 2 S + 7H 2 O stripper, the following reaction is carried out.

【化3】MS+H2O → MO+H2S いずれも硫化水素に変換して分離回収し、燃焼ガス中の
SOx成分を減少させている。
MS + H 2 O → MO + H 2 S All are converted to hydrogen sulfide, separated and recovered, and the SOx component in the combustion gas is reduced.

【0009】従来、アルカリ金属、アルカリ土類金属
は、硫黄酸化物捕捉能を有することは知られているが、
アルカリ金属成分、アルカリ土類金属成分を含有する溶
液と触媒とを接触(含浸あるいはイオン交換を含む)さ
せる方法で触媒中に担持した触媒組成物では、アルカリ
金属やアルカリ土類金属が触媒組成物の接触分解反応使
用中あるいは触媒調製中にゼオライトの細孔などに移動
して、結晶性アルミノシリケートゼオライトにイオン交
換して組込まれるため接触分解反応で得られるガソリン
生成物のオクタン価(RON)が低下するなどの問題が
あった。
Conventionally, it has been known that alkali metals and alkaline earth metals have a sulfur oxide trapping ability.
In a catalyst composition supported in a catalyst by a method of contacting (including impregnation or ion exchange) a solution containing an alkali metal component and an alkaline earth metal component with a catalyst, the alkali metal or the alkaline earth metal contains the catalyst composition. During the catalytic cracking reaction during use or during catalyst preparation, it migrates to the pores of the zeolite and is ion-exchanged into the crystalline aluminosilicate zeolite to reduce the octane number (RON) of the gasoline product obtained by the catalytic cracking reaction There were problems such as doing.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、耐メ
タル性に優れ、高活性でガソリン選択性が高く、しかも
生成ガソリンのオクタン価(RON)の低下が少なく、
さらに硫黄酸化物捕捉能に優れた炭化水素流動接触分解
用触媒組成物を提供する点にある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a gasoline with excellent metal resistance, high activity, high gasoline selectivity, and low decrease in octane number (RON) of gasoline produced.
It is still another object of the present invention to provide a catalyst composition for fluid catalytic cracking of hydrocarbons having excellent sulfur oxide trapping ability.

【0011】[0011]

【課題を解決するための手段】本発明は、結晶性アルミ
ノシリケートゼオライトおよびリチウムアルミノシリケ
ートが無機酸化物マトリックス中に分散していることを
特徴とする炭化水素流動接触分解用触媒組成物に関す
る。
SUMMARY OF THE INVENTION The present invention relates to a catalyst composition for fluid catalytic cracking of hydrocarbons, comprising crystalline aluminosilicate zeolite and lithium aluminosilicate dispersed in an inorganic oxide matrix.

【0012】[0012]

【発明の具体的説明】以下に本発明について具体的に説
明する。本発明に係る炭化水素流動接触分解用触媒組成
物は、結晶性アルミノシリケートゼオライトを5〜50
重量%、好ましくは5〜40重量%、リチウムアルミノ
シリケートを0.1〜50重量%、好ましくは0.5〜
20重量%、およびこれら以外の無機酸化物マトリック
スを20〜94.9重量%。好ましくは30〜90重量
%の範囲で含有することが望ましい。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be specifically described below. The catalyst composition for fluid catalytic cracking of hydrocarbons according to the present invention comprises a crystalline aluminosilicate zeolite in an amount of 5 to 50.
%, Preferably 5 to 40% by weight, lithium aluminosilicate 0.1 to 50% by weight, preferably 0.5 to 50% by weight.
20% by weight, and 20 to 94.9% by weight of the other inorganic oxide matrix. Preferably, it is contained in the range of 30 to 90% by weight.

【0013】リチウムアルミノシリケートの含有量が
0.1重量%未満では所望の効果が得られないことがあ
り、また50重量%を越えて高くなると耐摩耗性(At
t.Res.)が低下する傾向にあるので好ましくな
い。
If the content of lithium aluminosilicate is less than 0.1% by weight, the desired effect may not be obtained, and if it exceeds 50% by weight, the abrasion resistance (At)
t. Res. ) Is not preferred because it tends to decrease.

【0014】本発明におけるリチウムアルミノシリケー
トとはリチウム、アルミニウム、ケイ素を主成分とする
無機酸化物を言い、リチウムアルミノシリケートとして
は、通常Li2O・xAl23・ySiO2の形で表した
時のxが0.8〜1.5、yが1.0〜20の範囲にあ
るものが好ましい。xが0.8未満または1.5を越え
て高い場合はリチウムアルミノシリケートの熱的安定性
が低くメタル捕捉能が低下して耐メタル性に対する効果
が充分発現しないことがあるので好ましくない。yが
1.0未満の場合も同様にリチウムアルミノシリケート
の熱的安定性が低くメタル捕捉能が低下するため耐メタ
ル性に対する効果が充分発現しないことがあるので好ま
しくなく、20を越えて高い場合はリチウムアルミノシ
リケートの量を増やす必要が生じ触媒の耐摩耗性が低下
することがあるので好ましくない。
In the present invention, the lithium aluminosilicate refers to an inorganic oxide containing lithium, aluminum and silicon as main components, and the lithium aluminosilicate is usually expressed in the form of Li 2 O.xAl 2 O 3 .ySiO 2 . It is preferable that x is in the range of 0.8 to 1.5 and y is in the range of 1.0 to 20. When x is less than 0.8 or higher than 1.5, the thermal stability of lithium aluminosilicate is low, and the metal-capturing ability is reduced, so that the effect on the metal resistance may not be sufficiently exhibited. Similarly, when y is less than 1.0, the thermal stability of lithium aluminosilicate is low, and the metal-capturing ability is lowered, so that the effect on metal resistance may not be sufficiently exhibited. Is not preferable because the amount of lithium aluminosilicate needs to be increased and the wear resistance of the catalyst may decrease.

【0015】また、本発明におけるリチウムアルミノシ
リケートとしては、該リチウムアルミノシリケートに含
まれるリチウムが強固に保持されていること、すなわ
ち、触媒内でリチウムがゼオライトに移動しないことが
好ましく、触媒製造時の水性スラリー中あるいは高温固
相(本発明触媒を用いる反応は400〜600℃である
が、触媒再生工程においては800℃を超える場合があ
り、とくにその場合H2Oが存在するので、一層リチウ
ムが移動しやすい条件になる)中でリチウムが容易に脱
離したり、他のカチオンと容易にイオン交換するような
リチウムアルミノシリケート、例えばリチウム交換した
結晶性アルミノシリケートゼオライト等はオクタン価が
低下することがあるので好ましくない。
The lithium aluminosilicate used in the present invention is preferably one in which lithium contained in the lithium aluminosilicate is firmly retained, that is, lithium does not move to the zeolite in the catalyst. In an aqueous slurry or a high-temperature solid phase (the reaction using the catalyst of the present invention is at 400 to 600 ° C., but in the catalyst regeneration step, the temperature may exceed 800 ° C. In particular, in this case, since H 2 O is present, lithium is further reduced. The octane number of lithium aluminosilicate, which easily desorbs lithium or easily exchanges ions with other cations in such a condition that the lithium is exchanged, for example, lithium-exchanged crystalline aluminosilicate zeolite may be reduced. It is not preferable.

【0016】典型的なリチウムアルミノシリケートの例
としては、Li2O・Al23・2SiO2(LiAlS
iO4と標記されることもある)、Li2O・Al23
4SiO2(LiAlSi26と標記されることもあ
る)、Li2O・Al23・8SiO2(LiAlSi4
10と標記されることもある)などのように近似的に表
される無機酸化物粒子を挙げることができる。特にX線
的に検知可能なリチウムアルミノシリケートは触媒性能
面で優れた効果を示し好適である。なかでも天然に産す
るペタライト鉱(ペタル石とも呼ばれる)を粉砕して得
られる粒子状のリチウムアルミノシリケートは安価な点
においても好ましい。
[0016] Examples of typical lithium aluminosilicate, Li 2 O · Al 2 O 3 · 2SiO 2 (LiAlS
iO 4 ), Li 2 O.Al 2 O 3.
4SiO 2 (sometimes be labeled as LiAlSi 2 O 6), Li 2 O · Al 2 O 3 · 8SiO 2 (LiAlSi 4
Inorganic oxide particles approximately represented as O 10 ). In particular, lithium aluminosilicate which can be detected by X-ray is preferable because it shows an excellent effect in terms of catalytic performance. Among them, particulate lithium aluminosilicate obtained by pulverizing naturally occurring petalite ore (also referred to as petalite) is preferable in that it is inexpensive.

【0017】本発明のリチウムアルミノシリケートは、
粒子状であることが好ましい。リチウムアルミノシリケ
ートが粒子状の場合は、リチウムアルミノシリケートが
触媒粒子内にプロック状に存在するために結晶性アルミ
ノシリケートゼオライトに悪影響を及ぼすことなくメタ
ル捕捉能、脱SOx能を高めることが出来るので好まし
い。
The lithium aluminosilicate of the present invention comprises
It is preferably in the form of particles. In the case where the lithium aluminosilicate is in the form of particles, the lithium aluminosilicate is present in the form of a block in the catalyst particles, so that the metal capturing ability and the SOx removal ability can be increased without adversely affecting the crystalline aluminosilicate zeolite. .

【0018】粒子状のリチウムアルミノシリケートの平
均粒子径は60μm以下であることが好ましい。さらに
好ましい平均粒子径の範囲は0.1〜30μmである。
平均粒子径が小さすぎる場合は捕捉されるバナジウム等
の金属汚染物が触媒粒子内に分散するため、金属汚染物
の不活性化が充分されないことがある。また平均粒子径
が60μmを上廻ると、最終的に得られる触媒組成物の
平均粒子径との関係で、流動床用の触媒としては望まし
くない。
The average particle size of the particulate lithium aluminosilicate is preferably 60 μm or less. A more preferable range of the average particle diameter is 0.1 to 30 μm.
If the average particle diameter is too small, trapped metal contaminants such as vanadium disperse in the catalyst particles, and thus the metal contaminants may not be sufficiently deactivated. On the other hand, if the average particle size exceeds 60 μm, it is not desirable as a catalyst for a fluidized bed because of the relationship with the average particle size of the finally obtained catalyst composition.

【0019】本発明で使用する結晶性アルミノシリケー
トゼオライトには、X型ゼオライト、Y型ゼオライト、
モルデナイト、ZSM型ゼオライトおよび天然ゼオライ
トなどを使用することができ、これは通常の接触分解用
触媒組成物の場合と同様、水素、アンモニウム及び多価
金属から選ばれるカチオンでイオン交換された形で使用
される。Y型ゼオライトはガソリン選択性が高く、特に
超安定性Y型ゼオライトは耐水熱安定性にも優れている
ので好適である。
The crystalline aluminosilicate zeolite used in the present invention includes X-type zeolite, Y-type zeolite,
Mordenite, ZSM-type zeolite, natural zeolite, and the like can be used, which are used in the form of ion-exchanged with cations selected from hydrogen, ammonium and polyvalent metals, as in the case of ordinary catalytic cracking catalyst compositions. Is done. Y-type zeolites are preferred because they have high gasoline selectivity, and particularly ultra-stable Y-type zeolites have excellent hydrothermal stability.

【0020】使用する結晶性アルミノシリケートゼオラ
イトの量は5〜50重量%の範囲が好ましい。5重量%
未満では活性が低くガソリン収率が低いことがある。ま
た50重量%を越えて高い場合は活性が高すぎてガス、
コークの生成量が増加するためにガソリン収率が低いこ
とがある。
The amount of the crystalline aluminosilicate zeolite used is preferably in the range of 5 to 50% by weight. 5% by weight
If it is less than the above, the activity may be low and the gasoline yield may be low. If the content is higher than 50% by weight, the activity is too high and the gas,
Gasoline yield may be low due to increased coke production.

【0021】また、本発明の無機酸化物マトリックスと
しては、シリカ、シリカ−アルミナ、アルミナ、シリカ
−マグネシア、アルミナ−マグネシア、リン−アルミ
ナ、シリカ−ジルコニア、シリカ−マグネシア−アルミ
ナなど結合剤としても作用する通常の接触分解用触媒に
使用されるマトリックス成分が使用可能である。このよ
うなマトリックス成分には、リチウムアルミノシリケー
ト以外の無機酸化物、例えば、カオリン、ハロイサイ
ト、モンモリロナイトなどをも使用することができる。
The inorganic oxide matrix of the present invention also acts as a binder such as silica, silica-alumina, alumina, silica-magnesia, alumina-magnesia, phosphorus-alumina, silica-zirconia, silica-magnesia-alumina. Matrix components used in conventional catalytic cracking catalysts can be used. As such a matrix component, inorganic oxides other than lithium aluminosilicate, for example, kaolin, halloysite, montmorillonite and the like can also be used.

【0022】前記無機酸化物マトリックスの成分中に
は、とくにアルミナ粒子を含有させておくことが好まし
い(この場合は、本出願人の出願にかかる特開昭61−
227843号公報記載の機能も発揮する)。アルミナ
粒子を含有させることにより、つぎのような効果がさら
に増大される。脱SOx能力が向上する。活性を高
める。耐水熱性が向上する。金属捕捉能が向上す
る。前記〜の効果を有するので、選択性が向上
し、ガソリン収率などが高まる。
It is preferred that alumina particles are particularly contained in the components of the inorganic oxide matrix (in this case, Japanese Patent Application Laid-Open No. Sho 61-61 filed by the present applicant).
No. 227843). By including alumina particles, the following effects are further enhanced. The ability to remove SO x is improved. Increase activity. Hydrothermal resistance is improved. The metal capturing ability is improved. With the above-mentioned effects, selectivity is improved, and gasoline yield and the like are increased.

【0023】また、本発明の炭化水素流動接触分解用触
媒組成物は、従来のメタル捕捉剤を併用して含有せしめ
ることもできる。
Further, the catalyst composition for fluid catalytic cracking of hydrocarbons of the present invention can be contained in combination with a conventional metal scavenger.

【0024】本発明の触媒組成物は、結晶性アルミノシ
リケートゼオライトおよびリチウムアルミノシリケート
を無機酸化物マトリックス前駆物質と混合し、噴霧乾燥
することによって製造することができる。
The catalyst composition of the present invention can be produced by mixing a crystalline aluminosilicate zeolite and a lithium aluminosilicate with an inorganic oxide matrix precursor and spray drying.

【0025】さらに具体的に説明すると、本発明の触媒
組成物は前述の無機酸化物マトリックスの前駆物質、例
えばシリカヒドロゾル、シリカ−アルミナヒドロゲルな
どに結晶性アルミノシリケートゼオライトおよびリチウ
ムアルミノシリケートを加えて均一に分散させ、得られ
た混合物スラリーを常法通り噴霧乾燥することによって
製造することができる。そして、噴霧乾燥された粒子は
必要に応じて洗浄され、洗浄後は再び乾燥又は乾燥、焼
成される。
More specifically, the catalyst composition of the present invention is obtained by adding a crystalline aluminosilicate zeolite and a lithium aluminosilicate to a precursor of the above-mentioned inorganic oxide matrix, for example, silica hydrosol, silica-alumina hydrogel or the like. It can be manufactured by uniformly dispersing and spray-drying the resulting mixture slurry as usual. Then, the spray-dried particles are washed as necessary, and after the washing, they are dried or dried and fired again.

【0026】本発明の触媒組成物は、硫黄化合物および
ニッケル、バナジウムなどの金属汚染物含有重質炭化水
素の接触分解で使用するのに特に好適であるが、金属汚
染物を含有しない炭化水素の接触分解にも使用可能であ
り、該触媒組成物を使用した接触分解は、通常の接触分
解条件が採用される。
The catalyst composition of the present invention is particularly suitable for use in the catalytic cracking of sulfur compounds and heavy hydrocarbons containing metal contaminants such as nickel, vanadium, etc. The catalyst can be used for catalytic cracking, and the catalytic cracking using the catalyst composition employs ordinary catalytic cracking conditions.

【0027】本発明の触媒組成物は、灯・軽油から高沸
点の脱れき油にいたるまでの広範囲の石油留分の接触分
解に利用することができる。
The catalyst composition of the present invention can be used for the catalytic cracking of a wide range of petroleum fractions from kerosene / light oil to high boiling deoiled oil.

【0028】[0028]

【実施例】以下に実施例を示して本発明を説明するが、
本発明はこれにより何ら限定されるものではない。
The present invention will be described below with reference to examples.
The present invention is not limited thereby.

【0029】参考例:リチウムアルミノシリケートの性
状 以下の実施例には市販のリチウムアルミノシリケート
(ペタライト粉)を使用した。このペタライト粉はリチ
ウムをLi2Oとして4.1重量%、アルミニウムをA
23として16.5重量%、ケイ素をSiO2として
76.5重量%と他に少量のNa2OとK2Oを含有して
おり、その組成式はLi2O・1.2Al2O・9.3S
iO2であり、その平均粒子径は9μmであった。また
このペタライト粉のX線回折パターンを図1に示した。
Reference Example: Properties of lithium aluminosilicate A commercially available lithium aluminosilicate (petalite powder) was used in the following examples. This petalite powder contains 4.1% by weight of lithium as Li 2 O and aluminum as A
It contains 16.5% by weight as l 2 O 3 and 76.5% by weight as silicon as SiO 2 and a small amount of Na 2 O and K 2 O. Its composition formula is Li 2 O · 1.2Al 2 O ・ 9.3S
iO 2 and the average particle size was 9 μm. FIG. 1 shows the X-ray diffraction pattern of this petalite powder.

【0030】実施例1 水硝子を硫酸に加えて調製した12.5重量%のSiO
2を含むシリカヒドロゾル4000gにカオリンクレー
1000g(乾燥基準)、活性アルミナ100g(乾燥
基準)、交換率90%でアンモニウムイオン交換された
Y型結晶性アルミノシリケート(NH4Yゼオライト)
825g(乾燥基準)、および参考例のリチウムアルミ
ノシリケート(ペタライト粉)75g(乾燥基準)を加
えて混合スラリーを調製し、この混合スラリーを噴霧乾
燥して微小球状粒子を得た。ついでこの微小球状粒子を
洗浄し、乾燥して本発明の接触分解用触媒組成物を得
た。この接触分解用触媒組成物は、活性アルミナ4重量
%、NH4Yゼオライト33重量%、リチウムアルミノ
シリケート3重量%を含有し、その平均粒子径は64μ
mであった。この接触分解用触媒組成物をAとする。触
媒の性状は表1に示した。
Example 1 12.5% by weight SiO 2 prepared by adding water glass to sulfuric acid
1000 g (dry basis) of kaolin clay and 100 g (dry basis) of activated alumina in 4000 g of silica hydrosol containing 2 , Y-type crystalline aluminosilicate (NH 4 Y zeolite) exchanged with ammonium ion at an exchange rate of 90%
825 g (dry basis) and 75 g (dry basis) of lithium aluminosilicate (Petalite powder) of Reference Example were added to prepare a mixed slurry, and this mixed slurry was spray-dried to obtain fine spherical particles. Then, the fine spherical particles were washed and dried to obtain a catalytic cracking catalyst composition of the present invention. The catalytic cracking catalyst composition contains 4% by weight of activated alumina, 33% by weight of NH 4 Y zeolite, and 3% by weight of lithium aluminosilicate, and has an average particle diameter of 64 μm.
m. This catalytic cracking catalyst composition is designated as A. The properties of the catalyst are shown in Table 1.

【0031】実施例2 水硝子を硫酸に加えて調製した12.5重量%のSiO
2を含むシリカヒドロゾル4000gにカオリンクレー
825g(乾燥基準)、活性アルミナ100g(乾燥基
準)、交換率90%でアンモニウムイオン交換されたY
型結晶性アルミノシリケート(NH4Yゼオライト)8
25g(乾燥基準)、および参考例のリチウムアルミノ
シリケート(ペタライト粉)250g(乾燥基準)を加
えて混合スラリーを調製し、この混合スラリーを噴霧乾
燥して微小球状粒子を得た。ついでこの微小球状粒子を
洗浄し、乾燥して本発明の接触分解用触媒組成物を得
た。この接触分解用触媒組成物は、活性アルミナ4重量
%、NH4Yゼオライト33重量%、リチウムアルミノ
シリケート10重量%を含有し、その平均粒子径は64
μmであった。この接触分解用触媒組成物をBとする。
触媒の性状は表1に示した。
Example 2 12.5% by weight SiO 2 prepared by adding water glass to sulfuric acid
825 g of kaolin clay (dry basis), 100 g of activated alumina (dry basis), and ammonium ion-exchanged Y at an exchange rate of 90% are added to 4000 g of silica hydrosol containing 2
-Type crystalline aluminosilicate (NH 4 Y zeolite) 8
A mixed slurry was prepared by adding 25 g (dry basis) and 250 g (dry basis) of lithium aluminosilicate (petalite powder) of Reference Example, and the mixed slurry was spray-dried to obtain fine spherical particles. Then, the fine spherical particles were washed and dried to obtain a catalytic cracking catalyst composition of the present invention. The catalytic cracking catalyst composition contains 4% by weight of activated alumina, 33% by weight of NH 4 Y zeolite, and 10% by weight of lithium aluminosilicate, and has an average particle diameter of 64%.
μm. This catalytic composition for catalytic cracking is referred to as B.
The properties of the catalyst are shown in Table 1.

【0032】比較例1 水硝子を硫酸に加えて調製した12.5重量%のSiO
2を含むシリカヒドロゾル4000gにカオリンクレー
1075g(乾燥基準)、活性アルミナ100g(乾燥
基準)、交換率90%でアンモニウムイオン交換された
Y型結晶性アルミノシリケート(NH4Yゼオライト)
825g(乾燥基準)を加えて混合スラリーを調製し、
この混合スラリーを噴霧乾燥して微小球状粒子を得た。
ついでこの微小球状粒子を洗浄し、乾燥して接触分解用
触媒組成物を得た。この接触分解用触媒組成物は、活性
アルミナを4重量%、NH4Yゼオライトを33重量%
含有し、その平均粒子径は64μmであった。この接触
分解用触媒組成物をCとする。触媒の性状は表1に示し
た。
Comparative Example 1 12.5% by weight of SiO 2 prepared by adding water glass to sulfuric acid
1075 g (dry basis) of kaolin clay, 100 g (dry basis) of activated alumina, and Y-type crystalline aluminosilicate (NH 4 Y zeolite) exchanged with ammonium at a conversion rate of 90% in 4000 g of silica hydrosol containing 2
825 g (dry basis) was added to prepare a mixed slurry,
This mixed slurry was spray-dried to obtain fine spherical particles.
Then, the fine spherical particles were washed and dried to obtain a catalytic cracking catalyst composition. This catalytic cracking catalyst composition comprises 4% by weight of activated alumina and 33% by weight of NH 4 Y zeolite.
Contained, and the average particle size was 64 μm. This catalytic cracking catalyst composition is designated as C. The properties of the catalyst are shown in Table 1.

【0033】[0033]

【表1】 a):見掛比重 b):比表面積[Table 1] a) : apparent specific gravity b) : specific surface area

【0034】実施例3〈性能試験〉 実施例および比較例で調製した触媒A、B、Cについ
て、触媒循環再生方式のMidget−2パイロットプ
ラントを用いて性能評価した。Midget−2パイロ
ットプラントは図2にその概略図を示した。図中1は反
応器、2はストリッパー、3は触媒再生装置、4はコン
デンサー、5はフラクショネーター、6はレシーバー、
7はキャットトラップ、8は分離器、9は可動式管、1
0は空冷管、11はN2導入口、12は原料油導入口、
13はN2,H2O排出口、14はN2導入口、15は空
気導入口、16は移送管、17は煙導ガス排出口であ
る。
Example 3 <Performance Test> The catalysts A, B, and C prepared in Examples and Comparative Examples were evaluated for performance using a Midget-2 pilot plant of a catalyst circulation regeneration system. The Midget-2 pilot plant is shown schematically in FIG. In the figure, 1 is a reactor, 2 is a stripper, 3 is a catalyst regenerator, 4 is a condenser, 5 is a fractionator, 6 is a receiver,
7 is a cat trap, 8 is a separator, 9 is a movable tube, 1
0 air cooling tube, 11 N 2 inlet, 12 a raw material oil introduction port,
Reference numeral 13 denotes an N 2 and H 2 O outlet, 14 denotes an N 2 inlet, 15 denotes an air inlet, 16 denotes a transfer pipe, and 17 denotes a smoke gas outlet.

【0035】1の反応器における反応は、The reaction in one reactor is:

【化4】2MSO4+8H2O → MS+MO+H2
+7H2O 2のストリッパーにおける反応は、
Embedded image 2MSO 4 + 8H 2 O → MS + MO + H 2 S
The reaction in the + 7H 2 O 2 stripper is:

【化5】MS+H2O → MO+H2S 3の触媒再生装置における反応は、The reaction of MS + H 2 O → MO + H 2 S 3 in the catalyst regeneration unit is as follows:

【化6】コーク中のS+O2 → SO2+SO3 2SO2+O2 → 2SO3 金属酸化物(MO)+SO3 → MSO4 である。Embedded image In the coke, S + O 2 → SO 2 + SO 3 2SO 2 + O 2 → 2SO 3 metal oxide (MO) + SO 3 → MSO 4 .

【0036】運転条件は下記の通りである。 原料油 :脱硫減圧軽油(60%)と脱硫常圧残渣
油(40%)の混合油 原料油S分 :0.26wt% 重量空間速度:25 hr-1 触媒/油 :7 重量比 反応温度 :530 ℃ リジェネレーター温度:680℃ ストリッピング温度 :500℃ 再生触媒上のコーク :0.05wt%
The operating conditions are as follows. Feedstock: Mixed oil of desulfurized vacuum gas oil (60%) and desulfurized atmospheric residue (40%) Feedstock S content: 0.26 wt% Weight hourly space velocity: 25 hr -1 Catalyst / oil: 7 Weight ratio Reaction temperature: 530 ° C Regenerator temperature: 680 ° C Stripping temperature: 500 ° C Coke on regenerated catalyst: 0.05 wt%

【0037】性能を評価するにあたり、各触媒にはバナ
ジウム、ニッケルを各々4000ppm、2000pp
m沈着させ、ついでスチーミングして擬平衡化処理(こ
の擬平衡化処理は、触媒内でリチウムや他のアルカリ金
属、アルカリ土類金属などが移動してオクタン価活性を
低下させる環境を充分与えて、触媒の優劣がはっきり表
われるような処理をするためのものである)を行った。
具体的には、各触媒を予め600℃で1時間焼成した
後、所定量のナフテン酸バナジウム、ナフテン酸ニッケ
ルのトルエン溶液を吸収させ、次いで、110℃で乾燥
後、600℃で1.5時間焼成し、次いで810℃で6
時間スチーム処理した後、図2の装置を用い、重質油の
分解性能を評価した。測定結果を表2に示した。また運
転が定常状態に達した後に、再生装置における煙導ガス
排出口17から放出されたガスについてSO2、COお
よびCO2を分析した結果を表2に示した。
In evaluating the performance, vanadium and nickel were added to each catalyst at 4000 ppm and 2000 pp, respectively.
m, and then steaming to give a pseudo-equilibrium treatment (this pseudo-equilibrium treatment provides a sufficient environment in which lithium, other alkali metals, alkaline earth metals, etc. move in the catalyst to lower the octane number activity. In order to clearly show the superiority of the catalyst).
Specifically, after each catalyst was previously calcined at 600 ° C. for 1 hour, a predetermined amount of a vanadium naphthenate and nickel naphthenate toluene solution was absorbed, and then dried at 110 ° C. and then at 600 ° C. for 1.5 hours. Firing and then 6 hours at 810 ° C
After the time steam treatment, the cracking performance of heavy oil was evaluated using the apparatus of FIG. Table 2 shows the measurement results. Further, Table 2 shows the results of analysis of SO 2 , CO and CO 2 for the gas discharged from the flue gas discharge port 17 in the regenerator after the operation reached a steady state.

【0038】[0038]

【表2】 1)転化率:100−(LCO+HCO) 2)ガソリン沸点範囲:C5〜216℃ 3)LCO沸点範囲:216℃〜343℃ 4)HCO沸点範囲:343℃以上 5)K(二次反応速度定数)=転化率/(100−転化率) 6)水素選択性を表す 7)コーク選択性を表す[Table 2] 1) conversion: 100- (LCO + HCO) 2 ) gasoline boiling range: C 5 ~216 ℃ 3) LCO boiling range: 216 ℃ ~343 ℃ 4) HCO boiling range: 343 ° C. or higher 5) K (secondary reaction rate constant ) = Conversion / (100-conversion) 6) Represents hydrogen selectivity 7) Represents coke selectivity

【0039】本発明の粒子状のリチウムアルミノシリケ
ート含有触媒AおよびBは、ニッケルおよびバナジウム
を高濃度で含有するにもかかわらず、さらに高温で水熱
処理して擬平衡化を行ったにもかかわらず高い転化率
(活性)を示した。このことは本発明の触媒が通常の触
媒Cに比べて耐メタル性と耐水熱性に優れていることを
示している。さらに転化率が高いにもかかわらず水素収
率およびコーク収率は低く、一方ガソリン収率およびガ
ソリンとライトサイクルオイル(LCO)を含めた液収
率が高いという結果が得られた。特に粒子状のリチウム
アルミノシリケート含有量の高い触媒Bはその傾向が顕
著である。また生成したガソリンのオクタン価は実質的
にほぼ同程度であった。以上のことは粒子状のリチウム
アルミノシリケートがメタルを効果的に捕捉して不動態
化し、メタルの悪影響すなわちゼオライトの破壊による
活性低下、脱水素活性による水素およびコークの生成等
を抑制した結果である。なお、上記をさらに理解するた
めに補足的に付言すると、転化率が高くなるとガス、コ
ーク生成量が増加し、ガソリン、LCO収率は増加する
が転化率が高くなりすぎると減少に転じ、またオクタン
価は転化率に比例して高くなるのが本技術分野の常識で
あるが、本発明は、この常識を超える効果を発揮してい
る。
Although the particulate lithium aluminosilicate-containing catalysts A and B of the present invention contain nickel and vanadium at a high concentration, they are subjected to hydrothermal treatment at a high temperature to perform pseudo-equilibration. High conversion (activity) was shown. This indicates that the catalyst of the present invention is superior to ordinary catalyst C in metal resistance and hydrothermal resistance. Furthermore, despite the high conversion, the hydrogen yield and coke yield were low, while the gasoline yield and the liquid yield including gasoline and light cycle oil (LCO) were high. In particular, the tendency is remarkable for the catalyst B having a high content of the particulate lithium aluminosilicate. The octane number of the produced gasoline was substantially the same. The above results are the result of the particulate lithium aluminosilicate effectively trapping and passivating the metal, suppressing the adverse effects of the metal, namely, the reduction in activity due to zeolite destruction and the generation of hydrogen and coke due to dehydrogenation activity. . In order to further understand the above, it is additionally added that, when the conversion is high, the amount of gas and coke generated is increased, and the gasoline and LCO yields are increased, but when the conversion is too high, the conversion is reduced, and It is common knowledge in the technical field that the octane number increases in proportion to the conversion, but the present invention has an effect exceeding this common sense.

【0040】本発明の実施態様を以下に列記する。 (1)結晶性アルミノシリケートゼオライトおよびリチ
ウムアルミノシリケートが無機酸化物マトリックス中に
分散していることを特徴とする炭化水素流動接触分解用
触媒組成物。 (2)前記リチウムアルミノシリケートが粒子状であ
り、その平均粒子径が60μm以下である前項(1)記
載の炭化水素流動接触分解用触媒組成物。 (3)前記リチウムアルミノシリケートが粒子状であ
り、その平均粒子径が0.1〜30μmの範囲にある前
項(1)記載の炭化水素流動接触分解用触媒組成物。 (4)前記リチウムアルミノシリケートがLi2O・x
Al23・ySiO2として表した時、xが0.8〜
1.5、yが1.0〜20の範囲にある無機酸化物であ
る前項(1)、(2)または(3)記載の炭化水素流動
接触分解用触媒組成物。 (5)前記リチウムアルミノシリケートがX線的に検知
可能な無機酸化物粒子である前項(1)、(2)、
(3)または(4)記載の炭化水素流動接触分解用触媒
組成物。 (6)前記X線的に検知可能な無機酸化物粒子がペタラ
イトである前項(5)記載の炭化水素流動接触分解用触
媒組成物。 (7)前記各成分の配合割合が 結晶性アルミノシリケートゼオライト 5〜50重量% リチウムアルミノシリケート 0.1〜50重量% 無機酸化物マトリックス 20〜94.9重量% である前項(1)、(2)、(3)、(4)、(5)ま
たは(6)記載の炭化水素流動接触分解用触媒組成物。 (8)前記無機酸化物マトリックス成分の1つとしてア
ルミナ粒子を使用するものである前項(7)記載の炭化
水素流動接触分解用触媒組成物。 (9)前記各成分の配合割合において、リチウムアルミ
ノシリケートが0.5〜20重量%である前項(7)ま
たは(8)記載の炭化水素流動接触分解用触媒組成物。 (10)前記各成分の配合割合において、結晶性アルミ
ノシリケートゼオライトが5〜40重量%である前項
(7)、(8)または(9)記載の炭化水素流動接触分
解用触媒組成物。 (11)前記各成分の配合割合において、無機酸化物マ
トリックスが30〜90重量%である前項(7)、
(8)、(9)または(10)記載の炭化水素流動接触
分解用触媒組成物。
The embodiments of the present invention are listed below. (1) A catalyst composition for fluid catalytic cracking of hydrocarbons, wherein crystalline aluminosilicate zeolite and lithium aluminosilicate are dispersed in an inorganic oxide matrix. (2) The catalyst composition for fluid catalytic cracking of hydrocarbons according to the above (1), wherein the lithium aluminosilicate is in the form of particles and has an average particle diameter of 60 μm or less. (3) The catalyst composition for hydrocarbon fluid catalytic cracking according to the above (1), wherein the lithium aluminosilicate is in the form of particles and the average particle diameter is in the range of 0.1 to 30 µm. (4) The lithium aluminosilicate is Li 2 O · x
When expressed as Al 2 O 3 .ySiO 2 , x is 0.8 to
1.5. The catalyst composition for hydrocarbon fluid catalytic cracking according to the above (1), (2) or (3), wherein y is an inorganic oxide in the range of 1.0 to 20. (5) The above items (1), (2), wherein the lithium aluminosilicate is an inorganic oxide particle detectable X-ray.
(3) The catalyst composition for fluid catalytic cracking according to (4) or (4). (6) The catalyst composition for hydrocarbon fluid catalytic cracking according to the above (5), wherein the inorganic oxide particles detectable by X-ray are petalite. (7) The above items (1), (2), wherein the mixing ratio of each component is 5 to 50% by weight of crystalline aluminosilicate zeolite, 0.1 to 50% by weight of lithium aluminosilicate, and 20 to 94.9% by weight of inorganic oxide matrix. ), (3), (4), (5) or (6). (8) The catalyst composition for fluid catalytic cracking of hydrocarbons according to the above (7), wherein alumina particles are used as one of the inorganic oxide matrix components. (9) The catalyst composition for fluid catalytic cracking of a hydrocarbon according to the above (7) or (8), wherein the content of the lithium aluminosilicate is 0.5 to 20% by weight based on the mixing ratio of each component. (10) The catalyst composition for fluid catalytic cracking of hydrocarbons according to the above (7), (8) or (9), wherein the content of the crystalline aluminosilicate zeolite is 5 to 40% by weight in the mixing ratio of the above components. (11) In the compounding ratio of each of the above components, the inorganic oxide matrix is 30 to 90% by weight (7),
(8) The catalyst composition for fluid catalytic cracking according to (9) or (10).

【0041】[0041]

【効果】【effect】

(1)本発明の触媒は耐メタル性および水熱安定性が高
く、高活性でかつ活性低下が小さい。また生成ガソリン
のオクタン価をほとんど低下させることがない。 (2)本発明の触媒を用いると、水素、コーク、ドライ
ガスの生成量が少なくガソリンおよびライトサイクルオ
イル(LCO)等の液収率が高い。 (3)本発明の触媒は脱SOx能が高く、排ガス中のS
Ox量を低減できる。
(1) The catalyst of the present invention has high metal resistance and high hydrothermal stability, high activity, and a small decrease in activity. Further, the octane number of the produced gasoline is hardly reduced. (2) When the catalyst of the present invention is used, the production amount of hydrogen, coke, and dry gas is small, and the liquid yield of gasoline and light cycle oil (LCO) is high. (3) The catalyst of the present invention has a high ability to remove SOx,
Ox amount can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で使用した市販のペタライト粉のX線回
折パターンである。
FIG. 1 is an X-ray diffraction pattern of a commercially available petalite powder used in Examples.

【図2】本発明触媒の評価試験に用いたミゼット−2パ
イロットプラントの概略図である。
FIG. 2 is a schematic diagram of a Midget-2 pilot plant used for an evaluation test of the catalyst of the present invention.

【符号の説明】[Explanation of symbols]

1 反応器 2 ストリッパー 3 触媒再生装置 4 コンデンサー 5 フラクショネーター 6 レシーバー 7 キャットトラップ 8 分離器 9 可導式管 10 空冷管 11 N2導入口 12 原料油導入口 13 N2,H2O排出口 14 N2導入口 15 空気導入口 16 移送管 17 煙導ガス排出口1 reactor 2 stripper 3 catalyst regeneration apparatus 4 condenser 5 fractionator 6 Receiver 7 Cat trap 8 separator 9 Kashirubeshiki tube 10 cooling tubes 11 N 2 inlet 12 feed oil inlet 13 N 2, H 2 O outlet 14 N 2 inlet 15 Air inlet 16 Transfer pipe 17 Smoke gas outlet

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 結晶性アルミノシリケートゼオライトお
よびリチウムアルミノシリケートが無機酸化物マトリッ
クス中に分散していることを特徴とする炭化水素流動接
触分解用触媒組成物。
1. A catalyst composition for fluid catalytic cracking of hydrocarbons, comprising crystalline aluminosilicate zeolite and lithium aluminosilicate dispersed in an inorganic oxide matrix.
【請求項2】 前記リチウムアルミノシリケートが粒子
状であり、その平均粒子径が60μm以下である請求項
1記載の炭化水素流動接触分解用触媒組成物。
2. The catalyst composition for fluid catalytic cracking of hydrocarbons according to claim 1, wherein the lithium aluminosilicate is in the form of particles and has an average particle diameter of 60 μm or less.
【請求項3】 前記リチウムアルミノシリケートがLi
2O・xAl23・ySiO2として表した時、xが0.
8〜1.5、yが1.0〜20の範囲にある無機酸化物
粒子である請求項1または2記載の炭化水素流動接触分
解用触媒組成物。
3. The method according to claim 1, wherein the lithium aluminosilicate is Li
When expressed as 2 O.xAl 2 O 3 .ySiO 2 , x is 0.
The catalyst composition for fluid catalytic cracking of hydrocarbons according to claim 1 or 2, wherein the catalyst composition is an inorganic oxide particle having a particle size of from 8 to 1.5 and y of from 1.0 to 20.
【請求項4】 前記リチウムアルミノシリケートがX線
的に検知可能な無機酸化物粒子である請求項1、2また
は3記載の炭化水素流動接触分解用触媒組成物。
4. The catalyst composition for fluid catalytic cracking of hydrocarbons according to claim 1, wherein the lithium aluminosilicate is an inorganic oxide particle that can be detected by X-ray.
【請求項5】 前記記載のX線的に検知可能な無機酸化
物粒子がペタライトである請求項4記載の炭化水素流動
接触分解用触媒組成物。
5. The catalyst composition for fluid catalytic cracking of hydrocarbons according to claim 4, wherein the inorganic oxide particles detectable in X-rays are petalite.
JP03715797A 1997-02-05 1997-02-05 Catalyst composition for fluid catalytic cracking of hydrocarbons Expired - Lifetime JP3563910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03715797A JP3563910B2 (en) 1997-02-05 1997-02-05 Catalyst composition for fluid catalytic cracking of hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03715797A JP3563910B2 (en) 1997-02-05 1997-02-05 Catalyst composition for fluid catalytic cracking of hydrocarbons

Publications (2)

Publication Number Publication Date
JPH10216526A true JPH10216526A (en) 1998-08-18
JP3563910B2 JP3563910B2 (en) 2004-09-08

Family

ID=12489773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03715797A Expired - Lifetime JP3563910B2 (en) 1997-02-05 1997-02-05 Catalyst composition for fluid catalytic cracking of hydrocarbons

Country Status (1)

Country Link
JP (1) JP3563910B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205141A (en) * 2005-01-25 2006-08-10 Catalysts & Chem Ind Co Ltd Catalyst composition for hydrogenating hydrocarbon oil and method for hydrogenating hydrocarbon oil by using the catalyst composition
JP2013255902A (en) * 2012-06-14 2013-12-26 Jgc Catalysts & Chemicals Ltd Fluid catalytic cracking catalyst and method of producing the same
JP2020520798A (en) * 2017-05-17 2020-07-16 ビーエーエスエフ コーポレーション Bottom-up grading and low coke fluid catalytic cracking catalyst

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205141A (en) * 2005-01-25 2006-08-10 Catalysts & Chem Ind Co Ltd Catalyst composition for hydrogenating hydrocarbon oil and method for hydrogenating hydrocarbon oil by using the catalyst composition
JP2013255902A (en) * 2012-06-14 2013-12-26 Jgc Catalysts & Chemicals Ltd Fluid catalytic cracking catalyst and method of producing the same
JP2020520798A (en) * 2017-05-17 2020-07-16 ビーエーエスエフ コーポレーション Bottom-up grading and low coke fluid catalytic cracking catalyst
US11471862B2 (en) 2017-05-17 2022-10-18 Basf Corporation Bottoms upgrading and low coke fluid catalytic cracking catalyst
US11904302B2 (en) 2017-05-17 2024-02-20 Basf Corporation Bottoms upgrading and low coke fluid catalytic cracking catalyst

Also Published As

Publication number Publication date
JP3563910B2 (en) 2004-09-08

Similar Documents

Publication Publication Date Title
RU2540859C2 (en) Improved cocatalyst for catchment of heavy metals in fluid-catalytic cracking process
JPH0513708B2 (en)
WO2003064036A1 (en) Catalyst for fluid catalytic cracking of heavy hydrocarbon oil and method of fluid catalytic cracking
JP2000514863A (en) Catalysts for optimal resid cracking of heavy feedstocks.
GB2138314A (en) Catalytic cracking catalyst and process
CN116212937B (en) Preparation method of catalytic cracking catalyst for producing diesel oil in large quantity
JP3563910B2 (en) Catalyst composition for fluid catalytic cracking of hydrocarbons
JPH06170233A (en) Catalyst composition for fluidized bed catalytic cracking of hydrocarbon
JP3200072B2 (en) Binary cracking catalysts showing vanadium passivation and improved sulfur resistance and methods of use thereof
JP2014231034A (en) Catalyst for fluid catalytic cracking and method for producing the same
JP4067171B2 (en) Catalyst composition for fluid catalytic cracking of hydrocarbons
JP4916320B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP5283745B2 (en) Process for producing desulfurization catalyst for catalytic cracking gasoline
JPH04200641A (en) Production of hydrocarbon converting catalyst
JPS61204042A (en) Vanadium resistant zeolite fluidized cracking catalyst
JP3782137B2 (en) Hydrocarbon catalytic cracking catalyst composition and catalytic cracking method using the same
AU602163B2 (en) Catalytic cracking of metal contaminated feedstock
EP0208868A1 (en) Catalytic cracking catalyst and process
JP5868698B2 (en) Fluid catalytic cracking catalyst and method for producing the same
JP3333047B2 (en) Catalyst composition for fluid catalytic cracking of hydrocarbons
JP4479869B2 (en) Hydrocarbon catalytic catalytic cracking catalyst and catalytic cracking method using the same
JPH07251076A (en) Fluidizing and contact-decomposing catalyst for heavy hydrocarbon oil and fluidizing and contact-decomposing method using the same
JP3333063B2 (en) Catalytic cracking catalyst for reducing SOx emissions in FCC unit and catalytic cracking method using the same
JP2004130193A (en) Catalyst composition for cracking hydrocarbon catalytically and catalytic cracking method using the same
JP2740800B2 (en) Catalyst composition for catalytic cracking of hydrocarbons

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term