JPH10215211A - Diversity receiver - Google Patents

Diversity receiver

Info

Publication number
JPH10215211A
JPH10215211A JP9016270A JP1627097A JPH10215211A JP H10215211 A JPH10215211 A JP H10215211A JP 9016270 A JP9016270 A JP 9016270A JP 1627097 A JP1627097 A JP 1627097A JP H10215211 A JPH10215211 A JP H10215211A
Authority
JP
Japan
Prior art keywords
output
sir
demodulator
weighting factor
diversity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9016270A
Other languages
Japanese (ja)
Inventor
Fumiaki Maehara
文明 前原
Osamu Nakamura
修 中村
Hitoshi Takanashi
斉 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9016270A priority Critical patent/JPH10215211A/en
Publication of JPH10215211A publication Critical patent/JPH10215211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radio Transmission System (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the bit error rate by adopting weighted combining in response to a reception-desired signal power to interference wave power ratio(SIR) even when the SIR is high. SOLUTION: Correlation values C1, C2 between specific pattern reception outputs S1, S2 and specific patterns are found (20), square sums K1, K2 of in-phase components and quadrate components of the C1, C2 are found, respectively (22), and an SIR estimate section 23 estimate the SIR based on SIR1(t)=k1(t)/(1-k1(t)) and on SIR2(t)=k2(t)/(1-k2(t)) in the case of synchronization detection and based on SIR1(t)=√k1(t)/(1-√k1(t)) and on SIR2(t)=√k2(t)/(1-√k2(t)) in the case of delay detection respectively and estimated values of the SIR estimate section 23 are used for weight coefficients ω1, ω2 for demodulation outputs S1, S2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は複数の空中線より
の受信信号をそれぞれ復調し、これら復調出力を最大比
合成法で合成するダイバーシチ受信装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diversity receiver for demodulating received signals from a plurality of antennas and combining the demodulated outputs by a maximum ratio combining method.

【0002】[0002]

【従来の技術】図4は従来のダイバーシチ受信装置(前
原文明,中村修,高梨斉,“相関器を用いた最大比合成
ダイバーシチの検討”,1996年電子情報通信学会秋
季大会,B−469)について示した図であり、空中線
11で受信された無線信号は、受信機13で検波され、
その出力R1が復調器15に入力される。また、空中線
12で受信された無線信号は、受信機14で検波され、
その出力R2が復調器16に入力される。復調器15,
16では、それぞれ各受信機からの出力信号R1,R2
をリミッタにより正規化した後、復調し、出力する。
2. Description of the Related Art FIG. 4 shows a conventional diversity receiver (Fumiaki Maehara, Osamu Nakamura, Hitoshi Takanashi, "Examination of maximum ratio combining diversity using a correlator", 1996 IEICE Autumn Conference, B-469). The radio signal received by the antenna 11 is detected by the receiver 13,
The output R1 is input to the demodulator 15. The radio signal received by the antenna 12 is detected by the receiver 14,
The output R2 is input to the demodulator 16. Demodulator 15,
16, the output signals R1, R2 from the respective receivers
Are normalized by a limiter, and then demodulated and output.

【0003】重み係数制御部17は相関器20と重み係
数出力部21から構成され、これらにより、各空中線1
1,12により受信される無線信号に含まれる希望波の
割合を評価し、各復調器15,16の出力S1,S2
(S1,S2は複素信号)に対する重み係数ω1,ω2
を算出する。相関器20では、送信側において特定のパ
ターンの信号、例えばユニークワードが挿入されている
ことを利用して、各復調器15,16の各出力信号S
1,S2と前記特定のパターンの信号との相関をそれぞ
れとり、相関値C1,C2を出力する。具体的には、復
調器の出力S1(S2)の同相成分SI1および直交成
分SQ1と特定のパターンの信号との相関をとることに
より相関値C1(C2)の同相成分CI1および直交成
分CQ1を得る。
The weighting factor control unit 17 comprises a correlator 20 and a weighting factor output unit 21.
The demodulators 15 and 16 evaluate the ratios of the desired signals included in the radio signals received by the demodulators 15 and 16 and output S1 and S2.
(S1, S2 are complex signals) and weight coefficients ω1, ω2
Is calculated. The correlator 20 utilizes the fact that a signal of a specific pattern, for example, a unique word is inserted on the transmission side, and uses the output signal S
1, S2 and the signal of the specific pattern, respectively, and output correlation values C1, C2. More specifically, the correlation between the in-phase component SI1 and the quadrature component SQ1 of the output S1 (S2) of the demodulator and the signal of the specific pattern is performed to obtain the in-phase component CI1 and the quadrature component CQ1 of the correlation value C1 (C2). .

【0004】一方、重み係数出力部21では、相関器2
0の出力信号C1(C2)の同相成分CI1および直交
成分CQ1の2乗和を求めることにより、各復調器の出
力S1,S2に対する重み係数ω1,ω2を得る。ここ
で得られた重み係数ω1,ω2により、各々の空中線系
において受信された信号電力の中で、希望波電力の占め
る割合を知ることができる。
On the other hand, the weighting coefficient output unit 21
By calculating the sum of squares of the in-phase component CI1 and the quadrature component CQ1 of the output signal C1 (C2) of 0, weight coefficients ω1 and ω2 for the outputs S1 and S2 of each demodulator are obtained. From the weight coefficients ω1 and ω2 obtained here, it is possible to know the ratio of the desired wave power to the signal power received in each antenna system.

【0005】ダイバーシチ合成部18では、各復調器1
5,16の各出力S1,S2に重み係数制御部17によ
り得られた重み係数ω1,ω2をそれぞれ乗じ、さらに
これらの乗算値を合成して出力する。復号化器19で
は、ダイバーシチ合成部18により得られた合成信号を
2値のデータに復号化する。
In the diversity combining section 18, each demodulator 1
The outputs S1 and S2 are multiplied by the weighting factors ω1 and ω2 obtained by the weighting factor control unit 17, respectively, and the multiplied values are combined and output. The decoder 19 decodes the combined signal obtained by the diversity combining unit 18 into binary data.

【0006】[0006]

【発明が解決しようとする課題】上述したような相関器
を用いた従来のダイバーシチ受信装置では、重み係数制
御部17において得られる重み係数ω1,ω2が、各々
の空中線系において受信された信号電力の中で、希望波
電力の占める割合となる。したがって、各復調器の出力
S1,S2に対して、受信された信号電力の中で、希望
波電力の占める割合により重み付け合成を行う従来のダ
イバーシチ受信装置では、受信希望信号電力対干渉信号
電力比(受信SIR)が大きい場合、重み係数が1に収
束するために、各復調器の出力S1,S2に対して受信
SIRに比例した重み付けを行うことができず、受信S
IRに比例した重み付けを行った場合のダイバーシチ利
得が得られないという問題点があった。
In the conventional diversity receiving apparatus using the correlator as described above, the weighting factors ω1 and ω2 obtained by the weighting factor control unit 17 are determined by the signal power received in each antenna system. Of the desired wave power. Therefore, in the conventional diversity receiving apparatus that performs weighting synthesis on the outputs S1 and S2 of the respective demodulators based on the ratio of the desired signal power to the received signal power, the reception desired signal power / interference signal power ratio When the (reception SIR) is large, the weighting factors converge to 1, so that the outputs S1 and S2 of each demodulator cannot be weighted in proportion to the reception SIR, and the reception SIR
There is a problem that diversity gain cannot be obtained when weighting is performed in proportion to IR.

【0007】例えば、同一チャネル干渉による干渉信号
が含まれる場合、前記各復調器15,16の出力S1,
S2に対して受信SIRに比例した重み付けを行うため
には、図5の重み付け制御部17において、希望波電力
をD、干渉波電力をU、受信機において生じる雑音をN
としたとき、D/(U+N)を測定するべきである。し
かし、従来のダイバーシチ受信装置では、重み付け制御
部17において、各復調器の出力S1,S2に対して、
受信された信号電力の中で、希望波電力の占める割合に
より重み付け合成を行うために、D/(D+U+N)を
測定することとなる。図5に受信SIRと重み係数の関
係を示す。図5において、従来のダイバーシチ受信装置
の重み付け制御部17において算出される重み係数は、
受信SIRが10dBより大きい場合、1(0dB)に
収束することがわかる。つまり、従来のダイバーシチ受
信装置では、受信SIRが10dBより大きい場合、各
復調器の出力S1,S2に対して受信SIRに比例した
重み付けを行うことができず、受信SIRで重み付けを
行った場合のダイバーシチ利得が得られない。
For example, when an interference signal due to co-channel interference is included, the outputs S1,
In order to perform weighting on S2 in proportion to the received SIR, the weighting control unit 17 shown in FIG. 5 uses D for the desired signal power, U for the interference signal power, and N for the noise generated in the receiver.
Then, D / (U + N) should be measured. However, in the conventional diversity receiving apparatus, the weighting control unit 17 outputs the outputs S1 and S2 of the demodulators,
D / (D + U + N) is to be measured in order to perform weighted synthesis based on the ratio of the desired signal power to the received signal power. FIG. 5 shows the relationship between the reception SIR and the weight coefficient. In FIG. 5, the weighting factor calculated by the weighting control unit 17 of the conventional diversity receiving apparatus is:
It can be seen that when the received SIR is larger than 10 dB, it converges to 1 (0 dB). That is, in the conventional diversity receiving apparatus, when the reception SIR is larger than 10 dB, the outputs S1 and S2 of each demodulator cannot be weighted in proportion to the reception SIR, and the weighting is performed when the reception SIR is used. Diversity gain cannot be obtained.

【0008】この発明は、このような従来の課題に鑑
み、送信側において特定のパターンが挿入された複数の
復調器の出力信号と特定のパターンとの相関値を用いて
受信SIRを推定し、その推定値を重み係数とすること
により、ダイバーシチ合成された信号に対して、受信S
IRの大きい空中線系の復調器の出力の寄与を大きくす
ることを目的としている。
In view of such a conventional problem, the present invention estimates a reception SIR using a correlation value between output signals of a plurality of demodulators in which a specific pattern is inserted and a specific pattern on a transmission side, By using the estimated value as a weighting factor, the reception S
An object of the present invention is to increase the contribution of the output of the antenna demodulator having a large IR.

【0009】[0009]

【課題を解決するための手段】この発明によれば、送信
側で特定パターンが挿入された受信信号に対する各空中
線系の復調器の復調出力と前記特定パターンとの相関値
がそれぞれの相関器で求められ、これら各相関器により
得られた各相関値の同相および直交成分の2乗和から希
望信号電力対干渉信号電力比(SIR)の推定値がSI
R推定手段で算出され、これら算出値が最大比合成にお
いて対応する復号出力に対する重み係数とされる。
According to the present invention, the correlation value between the demodulated output of each antenna-based demodulator and the specific pattern with respect to the received signal in which the specific pattern is inserted on the transmitting side is calculated by each correlator. From the sum of the squares of the in-phase and quadrature components of the correlation values obtained by these correlators, the estimated value of the desired signal power to interference signal power ratio (SIR) is calculated as SI
These are calculated by the R estimating means, and these calculated values are used as weighting factors for the corresponding decoded output in the maximum ratio combining.

【0010】この発明は、重み係数出力部において、各
復調器の出力に対応する重み係数として、相関器により
得られた相関値の同相成分および直交成分の2乗和を出
力するのではなく、相関器により得られた相関値の同相
成分および直交成分の2乗和から希望信号電力対干渉信
号電力比を求め、その値を重み係数として出力する点で
従来技術とは異なる。この差異により、この発明は、ダ
イバーシチ合成された信号に対して、受信SIRの大き
い空中線系の復調器の出力の寄与を大きくすることがで
き、ダイバーシチ受信による伝送特性の改善効果が得ら
れる。
According to the present invention, the weight coefficient output unit does not output the sum of squares of the in-phase component and the quadrature component of the correlation value obtained by the correlator as the weight coefficient corresponding to the output of each demodulator. It differs from the prior art in that a desired signal power to interference signal power ratio is obtained from the sum of squares of the in-phase and quadrature components of the correlation value obtained by the correlator, and that value is output as a weight coefficient. Due to this difference, the present invention can increase the contribution of the output of the antenna demodulator having a large reception SIR to the diversity-combined signal, and obtain the effect of improving the transmission characteristics by the diversity reception.

【0011】[0011]

【発明の実施の形態】図1に、この発明の実施例を示
し、図4と対応する部分に同一符号を付けてある。この
発明においては重み係数制御部17における重み係数出
力部21が2乗算出部22とSIR推定部23より構成
される。相関器20では、従来と同様に送信側において
特定のパターンの信号、例えばユニークワードが挿入さ
れていることを利用して、各復調器の出力信号S1,S
2と前記特定のパターンの信号との相関をとり、相関値
C1(C1は複素信号)の同相成分CI1および直交成
分CQ1、相関値C2(C2は複素信号)の同相成分C
I2および直交成分CQ2を得る。
FIG. 1 shows an embodiment of the present invention, in which parts corresponding to those in FIG. 4 are denoted by the same reference numerals. In the present invention, the weight coefficient output unit 21 in the weight coefficient control unit 17 includes a square calculation unit 22 and an SIR estimation unit 23. The correlator 20 utilizes the fact that a signal of a specific pattern, for example, a unique word is inserted on the transmission side, as in the related art, and uses the output signals S1, S
2 and the signal of the specific pattern, the in-phase component CI1 and quadrature component CQ1 of the correlation value C1 (C1 is a complex signal), and the in-phase component C2 of the correlation value C2 (C2 is a complex signal).
Obtain I2 and orthogonal component CQ2.

【0012】重み係数出力部21では、2乗算出部22
で相関器20の出力信号C1,C2のそれぞれに対し
て、同相成分および直交成分の2乗和k1,k2を得
る。SIR推定部23では、各2乗算出部22の出力信
号k1,k2から各空中線系の受信SIRを算出し、各
復調器の出力S1,S2に対する重み係数ω1,ω2を
得る。ここで得られた重み係数ω1,ω2により、各空
中線系におけるSIRを知ることができる。この重み係
数ω1,ω2を用いるダイバーシチ合成部18での処理
は従来と同様である。
The weighting coefficient output unit 21 includes a square calculating unit 22
Then, for each of the output signals C1 and C2 of the correlator 20, the square sums k1 and k2 of the in-phase component and the quadrature component are obtained. The SIR estimator 23 calculates the reception SIR of each antenna system from the output signals k1 and k2 of each square calculator 22, and obtains weight coefficients ω1 and ω2 for the outputs S1 and S2 of each demodulator. From the weighting coefficients ω1 and ω2 obtained here, the SIR in each antenna system can be known. The processing in the diversity combining unit 18 using the weight coefficients ω1 and ω2 is the same as in the related art.

【0013】以下、実施例の重み係数制御部17の動作
についてさらに詳しく説明する。まず、復調器15,1
6において受信信号を同期検波により検波した場合を採
り上げて説明する。相関器20に入力される各復調器の
出力信号S1(t),S2(t)は、復調器内のリミッ
タにより正規化されており、同一チャネル干渉による干
渉信号が含まれる場合、(1)式のように表すことがで
きる。
Hereinafter, the operation of the weight coefficient control section 17 of the embodiment will be described in more detail. First, the demodulators 15, 1
The case where the received signal is detected by synchronous detection in 6 will be described. Output signals S1 (t) and S2 (t) of each demodulator input to the correlator 20 are normalized by a limiter in the demodulator, and when an interference signal due to co-channel interference is included, (1) It can be expressed as an equation.

【0014】 S1(t) =(D1(t) +U1(t) )/|D1(t) +U1(t) | S2(t) =(D2(t) +U2(t) )/|D2(t) +U2(t) | (1) ただし、S1(t),S2(t),D1(t),U1
(t),D2(t),U2(t)は複素信号であり、D
1(t) およびU1(t) は、それぞれ空中線1の系のリミ
ッタを用いない場合の復調器の出力の希望波成分および
干渉波成分、D2(t),U2(t)は、それぞれ空中
線2の系のリミッタを用いない場合の復調器の出力の希
望波成分および干渉波成分とする。相関器20により、
希望波成分のレベルの比率を知ることができるので、相
関器20の出力を(2)式のように表すことができる。
S1 (t) = (D1 (t) + U1 (t)) / | D1 (t) + U1 (t) | S2 (t) = (D2 (t) + U2 (t)) / | D2 (t) + U2 (t) | (1) where S1 (t), S2 (t), D1 (t), U1
(T), D2 (t) and U2 (t) are complex signals, and D
1 (t) and U1 (t) are the desired wave component and the interference wave component of the output of the demodulator when the limiter of the antenna 1 is not used, and D2 (t) and U2 (t) are the antenna 2 respectively. The desired wave component and the interference wave component of the output of the demodulator when the limiter of the system is not used. By the correlator 20,
Since the ratio of the level of the desired wave component can be known, the output of the correlator 20 can be expressed as in the equation (2).

【0015】 S1(t) =D1(t) /|D1(t) +U1(t) | S2(t) =D2(t) /|D2(t) +U2(t) | (2) 重み係数出力部21内の2乗算出部22では、相関器2
0の出力を2乗して電力のディメンジョンで測定する。
したがって、各復調器の出力信号S1(t),S2
(t)に対応する2乗算出部22の出力信号k1
(t),k2(t)を(3)式で表すことができる。
S1 (t) = D1 (t) / | D1 (t) + U1 (t) | S2 (t) = D2 (t) / | D2 (t) + U2 (t) | (2) Weight coefficient output unit In the square calculating unit 22 in 21, the correlator 2
The output of 0 is squared and measured in the power dimension.
Therefore, the output signals S1 (t), S2 of each demodulator
The output signal k1 of the square calculator 22 corresponding to (t)
(T) and k2 (t) can be expressed by equation (3).

【0016】 k1(t) =|D1(t) |2 /|D1(t) +U1(t) |2 k2(t) =|D2(t) |2 /|D2(t) +U2(t) |2 (3) (3)式より、2乗算出部22の出力信号k1(t),
k2(t)から各々の空中線系において受信された信号
電力の中で、希望波電力の占める割合を知ることができ
る。
[0016] k1 (t) = | D1 ( t) | 2 / | D1 (t) + U1 (t) | 2 k2 (t) = | D2 (t) | 2 / | D2 (t) + U2 (t) | 2 (3) From the equation (3), the output signals k1 (t),
From k2 (t), the ratio of the desired signal power to the signal power received in each antenna system can be known.

【0017】SIR推定部23においては、2乗算出部
22の出力信号k1(t),k2(t)から各枝(空中
線系)におけるSIRの算出を行うが、その手順を以下
に述べる。(3)式において、希望信号および干渉信号
が直交しているとすれば、(3)式は(4)式に変形す
ることができる。
The SIR estimator 23 calculates the SIR of each branch (antenna system) from the output signals k1 (t) and k2 (t) of the square calculator 22, and the procedure will be described below. In equation (3), if the desired signal and the interference signal are orthogonal, equation (3) can be transformed into equation (4).

【0018】 k1(t) =|D1(t) |2 /(|D1(t) |2 +|U1(t) |2 ) k2(t) =|D2(t) |2 /(|D2(t) |2 +|U2(t) |2 ) (4) 各空中線系のSIR(SIR1(t),SIR2
(t))は、(4)式を変形することにより、(5)式
のように表すことができる。 SIR1(t) =|D1(t) |2 /|U1(t) |2 =k1(t) /(1−kl(t) ) SIR2(t) =|D2(t) |2 /|U2(t) |2 =k2(t) /(1−k2(t) ) (5) 以上より、SIR推定部23において2乗算出部22の
出力信号k1(t),k2(t)から各々の空中線系の
SIR(SIR1(t),SIR2(t))を推定する
ことが可能である。
[0018] k1 (t) = | D1 ( t) | 2 / (| D1 (t) | 2 + | U1 (t) | 2) k2 (t) = | D2 (t) | 2 / (| D2 ( t) | 2 + | U2 ( t) | 2) (4) SIR of each antenna system (SIR1 (t), SIR2
(T)) can be expressed as equation (5) by modifying equation (4). SIR1 (t) = | D1 (t) | 2 / U1 (t) | 2 = k1 (t) / (1-k1 (t)) SIR2 (t) = | D2 (t) | 2 / U2 ( t) | 2 = k2 (t) / (1-k2 (t)) (5) As described above, in the SIR estimating unit 23, the respective antennas from the output signals k1 (t) and k2 (t) of the square calculating unit 22 are obtained. It is possible to estimate the SIR of the system (SIR1 (t), SIR2 (t)).

【0019】次に、復調器15,16において受信信号
を遅延検波により検波した場合を採り上げて説明する。
相関器20に入力される各復調器の出力信号S1
(t),S2(t)は、復調器内のリミッタにより正規
化されており、同一チャネル干渉による干渉信号が含ま
れる場合、(6)式のように表すことができる。
Next, the case where the received signal is detected by the demodulators 15 and 16 by delay detection will be described.
Output signal S1 of each demodulator input to correlator 20
(T) and S2 (t) are normalized by a limiter in the demodulator, and when an interference signal due to co-channel interference is included, can be expressed as in equation (6).

【0020】 S1(t) =(D1(t) +U1(t) )・(D1(t-T) +U1(t-T) )/ |(D1(t) +U1(t) )・(D1(t-T) +U1(t-T) )| S2(t) =(D2(t) +U2(t) )・(D2(t-T) +U2(t-T) )/ |(D2(t) +U2(t) )・(D2(t-T) +U2(t-T) )| (6) ただし、S1(t),S2(t),S1(t−T),S
2(t−T),D1(t),U1(t),D1(t−
T),U1(t−T),D2(t),U2(t),D2
(t−T),U2(t−T)は複素信号であり、D1
(t),D1(t−T)およびU1(t),U2(t−
T)は、それぞれ空中線1の系のリミッタを用いない場
合の復調器の出力の希望波成分および干渉波成分、D2
(t),D2(t−T)およびU2(t),U2(t−
T)は、それぞれ空中線2の系のリミッタを用いない場
合の復調器の出力の希望波成分および干渉波成分とす
る。相関器20により、希望波成分のレベルの比率を知
ることができるので、相関器20の出力を(7)式のよ
うに表すことができる。ここで、1シンボル間の希望波
成分および干渉波成分の変化が十分に小さいものとす
る。
S1 (t) = (D1 (t) + U1 (t)) · (D1 (tT) + U1 (tT)) / | (D1 (t) + U1 (t)) · (D1 (tT) + U1 (tT) )) | S2 (t) = (D2 (t) + U2 (t)). (D2 (tT) + U2 (tT)) / | (D2 (t) + U2 (t)). (D2 (tT) + U2 (tT) )) | (6) where S1 (t), S2 (t), S1 (t-T), S1
2 (t−T), D1 (t), U1 (t), D1 (t−
T), U1 (t-T), D2 (t), U2 (t), D2
(T-T) and U2 (t-T) are complex signals, and D1
(T), D1 (t-T) and U1 (t), U2 (t-
T) is a desired wave component and an interference wave component of the output of the demodulator when the limiter of the antenna 1 system is not used, and D2
(T), D2 (t-T) and U2 (t), U2 (t-
T) is a desired wave component and an interference wave component of the output of the demodulator when the limiter of the antenna 2 is not used. Since the level ratio of the desired wave component can be known by the correlator 20, the output of the correlator 20 can be expressed as in equation (7). Here, it is assumed that the change of the desired wave component and the interference wave component between one symbol is sufficiently small.

【0021】 S1(t) ≒D1(t)2/|D1(t) +U1(t) |2 S2(t) ≒D2(t)2/|D2(t) +U2(t) |2 (7) 重み係数出力部22内の2乗算出器22では、相関器2
0の出力を2乗して、測定する。したがって、各復調器
の出力信号S1(t),S2(t)に対応する2乗算出
部22の出力信号k1(t),k2(t)を(8)式で
表すことができる。
[0021] S1 (t) ≒ D1 (t ) 2 / | D1 (t) + U1 (t) | 2 S2 (t) ≒ D2 (t) 2 / | D2 (t) + U2 (t) | 2 (7) In the square calculator 22 in the weight coefficient output unit 22, the correlator 2
The output of 0 is squared and measured. Therefore, the output signals k1 (t) and k2 (t) of the square calculator 22 corresponding to the output signals S1 (t) and S2 (t) of each demodulator can be expressed by the equation (8).

【0022】 k1(t) =(D1(t) )4 /|D1(t) +U1(t) |4 k2(t) =(D2(t) )4 /|D2(t) +U2(t) |4 (8) (8)式より、2乗算出部22の出力信号k1(t),
k2(t)から各々の空中線系において受信された信号
電力の中で、希望波電力の占める割合を知ることができ
る。
K1 (t) = (D1 (t)) 4 / | D1 (t) + U1 (t) | 4 k2 (t) = (D2 (t)) 4 / | D2 (t) + U2 (t) | 4 (8) From equation (8), the output signals k1 (t),
From k2 (t), the ratio of the desired signal power to the signal power received in each antenna system can be known.

【0023】SIR推定部23においては、2乗算出部
22の出力信号k1(t),k2(t)から各枝(空中
線系)におけるSIRの算出を行うが、その手順を以下
に述べる。(8)式において、希望信号および干渉信号
が直交しているとすれば、(8)式は(9)式に変形す
ることができる。
The SIR estimator 23 calculates the SIR of each branch (antenna system) from the output signals k1 (t) and k2 (t) of the square calculator 22, and the procedure will be described below. In equation (8), if the desired signal and the interference signal are orthogonal, equation (8) can be transformed into equation (9).

【0024】 k1(t) =|D1(t) |4 /(|D1(t) |2 +|U1(t) |2 2 k2(t) =|D2(t) |4 /(|D2(t) |2 +|U2(t) |2 2 (9) 各空中線系のSIR(SIR1(t)、SIR2(t)
は、(9)式を変形することにより、(10)式のよう
に表すことができる。
[0024] k1 (t) = | D1 ( t) | 4 / (| D1 (t) | 2 + | U1 (t) | 2) 2 k2 (t) = | D2 (t) | 4 / (| D2 (t) | 2 + | U2 (t) | 2) 2 (9) SIR of each antenna system (SIR1 (t), SIR2 ( t)
Can be expressed as equation (10) by modifying equation (9).

【0025】 SIR1(t) =|D1(t) |2 /|UI(t) |2 =√k1(t) / (1−√k1(t) ) SIR2(t) =|D2(t) |2 /|U2(t) |2 =√k2(t) / (1−√k2(t) ) (10) 以上より、SIR推定部23において2乗算出部22の
出力信号k1,k2から各々の空中線系のSIR(SI
R1(t),SIR2(t))を推定することが可能で
ある。
SIR1 (t) = | D1 (t) | 2 / UI (t) | 2 = k1 (t) / (1-√k1 (t)) SIR2 (t) = | D2 (t) | 2 / | U2 (t) | 2 = √k2 (t) / (1−√k2 (t)) (10) As described above, in the SIR estimating unit 23, each of the output signals k1 and k2 of the square calculating unit 22 is used. Antenna SIR (SI
R1 (t), SIR2 (t)) can be estimated.

【0026】図2は、図1のこの発明装置における重み
係数制御部17の出力の分布のシミュレーション結果
を、図4の従来の装置におけるそれと比較して示す図で
ある。シミュレーションの諸元を以下に述べる。変復調
方式は、π/4−QPSK遅延検波とし、伝送速度は3
84kbps、フェージングはフラットレイリーとし、
ドップラー周波数は10Hzとした。また、ユニークワ
ードとして周期31−M系列を用いた。図2より、図4
の従来装置の重み係数制御部の出力では、SIRを大き
くするとほぼ1(0dB)に収束するが、この発明によ
れば、重み係数制御部17の出力がSIRの出力に比例
することがわかる。
FIG. 2 is a diagram showing a simulation result of the output distribution of the weight coefficient control unit 17 in the apparatus of the present invention shown in FIG. 1 in comparison with that of the conventional apparatus shown in FIG. The specifications of the simulation are described below. The modulation and demodulation method is π / 4-QPSK differential detection, and the transmission speed is 3
84 kbps, fading is flat Rayleigh,
The Doppler frequency was 10 Hz. In addition, a period 31-M sequence was used as a unique word. From FIG. 2, FIG.
In the output of the weighting factor control unit of the conventional device, when the SIR is increased, it converges to approximately 1 (0 dB). However, according to the present invention, it is understood that the output of the weighting factor control unit 17 is proportional to the output of the SIR.

【0027】図3は、図1のこの発明装置のフロア誤り
率のシミュレーション結果を図4の従来装置と比較して
示す図である。なお、空中線系の数は4とした。図3で
は、熱雑音を無視できる場合の計算例を示している。こ
の発明によれば、この図に見られる如く、熱雑音を無視
できる場合において、フロア誤り率1×10-3の点にお
ける所要SIRを1dB改善することができ、SIRが
大きくなるにつれてフロア誤り率の差が大きくなること
がわかる。
FIG. 3 is a diagram showing a simulation result of the floor error rate of the device of the present invention shown in FIG. 1 in comparison with the conventional device of FIG. The number of antenna systems was four. FIG. 3 shows a calculation example when the thermal noise can be ignored. According to the present invention, as shown in this figure, when thermal noise can be neglected, the required SIR at the point of the floor error rate of 1 × 10 −3 can be improved by 1 dB, and as the SIR increases, the floor error rate can be improved. It can be seen that the difference becomes larger.

【0028】[0028]

【発明の効果】以上説明したように、この発明は、送信
側において特定のパターンが挿入されたときの各復調器
の出力信号とその特定パターンとの相関値から各空中線
系のSIRを推定し、それらの推定値を重み係数として
出力する手段を設けたことにより、同一チャネル干渉が
ある場合に、各々の空中線系におけるSIRを知ること
ができる利点がある。
As described above, the present invention estimates the SIR of each antenna system from the correlation value between the output signal of each demodulator and the specific pattern when a specific pattern is inserted on the transmitting side. By providing means for outputting the estimated values as weighting coefficients, there is an advantage that when there is co-channel interference, the SIR in each antenna system can be known.

【0029】さらに、この発明のダイバーシチ受信装置
は、従来のダイバーシチ受信装置に比して、ダイバーシ
チ合成部において合成された信号に対して、各空中線系
の復調器の出力の寄与を前記各空中線系のSIRにした
がって配分することができるために、実施例において示
したように、ビット誤り率を大幅に改善することができ
る利点がある。
Furthermore, the diversity receiving apparatus of the present invention, as compared with the conventional diversity receiving apparatus, makes the contribution of the output of each of the antenna demodulators to the signal synthesized by the diversity synthesizing section different from that of the conventional antenna. , There is an advantage that the bit error rate can be greatly improved as shown in the embodiment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】重み係数特性のシミュレーション結果を示す
図。
FIG. 2 is a diagram showing a simulation result of a weight coefficient characteristic.

【図3】ビット誤り率のシミュレーション結果を示す
図。
FIG. 3 is a diagram showing a simulation result of a bit error rate.

【図4】従来のダイバーシチ受信装置を示すブロック
図。
FIG. 4 is a block diagram showing a conventional diversity receiving apparatus.

【図5】従来のダイバーシチ受信装置の重み係数特性を
示す図。
FIG. 5 is a diagram showing weight coefficient characteristics of a conventional diversity receiving apparatus.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の空中線を介した受信信号を受信す
る複数の受信機と、 これら複数の受信機の各出力をそれぞれ復調する複数の
復調器と、 送信側で特定パターンが挿入された受信信号に対する前
記各復調器の復調出力と前記特定パターンとの相関値を
それぞれ求める複数の相関器と、 これら複数の相関器により得られた各相関値の同相成分
および直交成分の2乗和を用いて前記各復調器の復調出
力に対応する重み係数を出力する重み係数出力部と、 前記各復調器の出力と前記各復調器の出力に対応する前
記重み係数との乗積値を加算合成するダイバーシチ合成
部と、 そのダイバーシチ合成部の出力を復号する復号化器とか
らなるダイバーシチ受信装置において、 前記重み係数出力部は、 前記各2乗和から希望信号電力対干渉信号電力比(SI
R)の推定値をそれぞれ算出し、これら算出値をそれぞ
れ前記重み係数として出力するSIR推定手段を備えた
ことを特徴とするダイバーシチ受信装置。
1. A plurality of receivers for receiving a reception signal via a plurality of antennas, a plurality of demodulators for demodulating respective outputs of the plurality of receivers, and a reception side in which a specific pattern is inserted on a transmission side. A plurality of correlators for respectively obtaining a correlation value between a demodulated output of each of the demodulators and the specific pattern with respect to a signal; and a sum of squares of an in-phase component and a quadrature component of each correlation value obtained by the plurality of correlators. A weighting factor output unit for outputting a weighting factor corresponding to the demodulation output of each demodulator, and a product of the product of the output of each demodulator and the weighting factor corresponding to the output of each demodulator. In a diversity receiving apparatus including a diversity combining unit and a decoder that decodes an output of the diversity combining unit, the weighting factor output unit obtains a desired signal power versus an interference signal power from each of the square sums. (SI
A diversity receiver comprising: SIR estimating means for calculating respective estimated values of R) and outputting the calculated values as the weighting coefficients.
JP9016270A 1997-01-30 1997-01-30 Diversity receiver Pending JPH10215211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9016270A JPH10215211A (en) 1997-01-30 1997-01-30 Diversity receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9016270A JPH10215211A (en) 1997-01-30 1997-01-30 Diversity receiver

Publications (1)

Publication Number Publication Date
JPH10215211A true JPH10215211A (en) 1998-08-11

Family

ID=11911865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9016270A Pending JPH10215211A (en) 1997-01-30 1997-01-30 Diversity receiver

Country Status (1)

Country Link
JP (1) JPH10215211A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6707846B1 (en) 1999-07-12 2004-03-16 Fujitsu Limited Correlation energy detector and radio communication apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6707846B1 (en) 1999-07-12 2004-03-16 Fujitsu Limited Correlation energy detector and radio communication apparatus

Similar Documents

Publication Publication Date Title
US6172970B1 (en) Low-complexity antenna diversity receiver
US7076008B2 (en) Method and apparatus for estimating and correcting gain and phase imbalance in a code division multiple access system
JP3033191B2 (en) Phase combining method and apparatus for diversity receiver
AU714443B2 (en) Method and apparatus for intersymbol interference reduction using array processing of diversity signals
KR100795824B1 (en) Signal Processing Method and Apparatus for Antenna Array System Providing a Diversity Gain
KR20020042918A (en) The Apparatus and Method for Detecting the Signals of Space-Time Coding based Transmit Diversity
WO2009112560A2 (en) Diversity reception
US7221925B2 (en) Broadcast receiver with antenna/frequency diversity
US5487091A (en) Method for determining signal usability in a diversity receiver
CN101689883A (en) Method and apparatus for removing pilot channel amplitude dependencies from rake receiver output
JP4107824B2 (en) Method and apparatus for adjusting antenna direction of OFDM receiver
JP3728116B2 (en) Communication method and apparatus
US7539262B2 (en) Method and apparatus for performing chip level equalization using joint processing
US20050136856A1 (en) Diverse antenna system
JPH09214417A (en) Transmitter and transmission method
US7486751B1 (en) Joint time/frequency domain maximum ratio combining architectures for multi input multi output wireless receivers
US7116999B2 (en) Mobile communications receiving apparatus and method
US6868109B2 (en) Space hopping receiving system and received radio-waves estimation method
JPH10215211A (en) Diversity receiver
JP2006217399A (en) Receiver
JP4095602B2 (en) Receiver
JP3747405B2 (en) Antenna verification method and antenna verification processing apparatus
KR100540170B1 (en) Apparatus and method of digital tv receiver for beam-forming using direction of arrival estimation of main path signal
JP3801940B2 (en) Demodulator
JP4384583B2 (en) Transmission system and demodulator used therefor