JPH10215022A - Semiconductor laser and generation of single polarized mode light - Google Patents

Semiconductor laser and generation of single polarized mode light

Info

Publication number
JPH10215022A
JPH10215022A JP1809297A JP1809297A JPH10215022A JP H10215022 A JPH10215022 A JP H10215022A JP 1809297 A JP1809297 A JP 1809297A JP 1809297 A JP1809297 A JP 1809297A JP H10215022 A JPH10215022 A JP H10215022A
Authority
JP
Japan
Prior art keywords
semiconductor laser
active layer
thermal expansion
mode light
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1809297A
Other languages
Japanese (ja)
Inventor
Akiyoshi Watanabe
明佳 渡邉
Hirobumi Suga
博文 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagaku Gijutsu Shinko Jigyodan
Original Assignee
Kagaku Gijutsu Shinko Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagaku Gijutsu Shinko Jigyodan filed Critical Kagaku Gijutsu Shinko Jigyodan
Priority to JP1809297A priority Critical patent/JPH10215022A/en
Publication of JPH10215022A publication Critical patent/JPH10215022A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/14Semiconductor lasers with special structural design for lasing in a specific polarisation mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3201Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures incorporating bulkstrain effects, e.g. strain compensation, strain related to polarisation

Abstract

PROBLEM TO BE SOLVED: To make it possible to obtain the single polarization characteristic by utilizing the difference of the thermal expansion coefficients of a mounting member and a semiconductor laser element, generating the single polarization- mode light, and intentionally generating the non-strain state or compression/ tensile strain in a semiconductor laser. SOLUTION: A ridge-type semiconductor laser element 10 sequentially has an SiN insulating film 11, a P-side Au electrode 12, a P-type GaAs cap layer 13, a P-type AlGaAs clad layer 14, an AlGaAs barrier layer 15, a GaAs active layer 16, an AlGaAs barrier layer 17, an N-type AlGaAs clad layer 18, an N- type AlGaAs buffer layer 19, an N-type GaAs substrate 20 and an N-type Au electrode 21 from the lower side. The single quantum well laser without strain having the GaAs active layer 16 of 200Å in this ridge-type semiconductor element 10 is assembled by using the mounting member of SiC, GaAs and Cu. By using the mounting member such as this, the low-noise laser is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体レーザー及
び単一偏光モード光の発生方法に係り、特に、半導体レ
ーザーの組立における、半導体レーザーとそのマウント
材との熱膨張特性の違いを用いることによる半導体レー
ザー及びその低雑音な単一偏光モード光の発生方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser and a method for generating single polarization mode light, and more particularly to a method for assembling a semiconductor laser by using a difference in thermal expansion characteristics between the semiconductor laser and a mounting material thereof. The present invention relates to a semiconductor laser and a method for generating low-noise single polarization mode light.

【0002】[0002]

【従来の技術】通常の半導体レーザー素子は、熱伝導率
の大きいマウント材料の上に組み立てられ、動作時のレ
ーザー自体の発熱を抑制するように構成されている。
2. Description of the Related Art An ordinary semiconductor laser device is assembled on a mount material having a high thermal conductivity, and is configured to suppress heat generation of the laser itself during operation.

【0003】[0003]

【発明が解決しようとする課題】その場合、半導体レー
ザー素子とそのマウント材との諸特性の違いにより、半
導体レーザーの発光特性が影響を受けることは知られて
いる。例えば〔参考文献1:P.W.Epperlei
n,G.Hunziker,K.Gatwyler,
U.Deutsch,H.P.Dietrich an
d D.J.Webb:“Mechanical st
ress in AlGaAs ridge lase
rs: its measurement and e
ffect on the optical near
field”,Inst.Symp.Compoun
d Semicond.,San Diego,18−
22 September.1994,pp483−4
88〕; 〔参考文献2:K.Shigihara,Y.Naga
i,S.Karakida,M.Aiga,M.Ots
ubo and K.Ikeda:“Estimati
on of strain arising from
the assembling process a
nd influence of assemblin
g materials on performanc
e oflaser diodes”,J.Appl.
Phys.78(3),1995,pp1419−14
23〕に記載されている。
In such a case, it is known that the emission characteristics of the semiconductor laser are affected by differences in various characteristics between the semiconductor laser element and its mounting material. For example, [Ref. W. Epperlei
n, G. Hunziker, K .; Gatwyler,
U. Deutsch, H .; P. Dietrich an
d D. J. Webb: “Mechanical st
Less in AlGaAs lid case
rs: it's measurements and e
effect on the optical near
field ", Inst. Symp.
d Semicond. , San Diego, 18-
22 September. 1994, pp 483-4
[Reference document 2: K. 88]; Shigihara, Y .; Naga
i, S. Karakida, M .; Aiga, M .; Ots
ubo and K. Ikeda: “Estimati
on of strain arising from
the assembling process a
second influence of assemblin
g materials on performance
eoflaser diodes ", J. Appl.
Phys. 78 (3), 1995, pp1419-14
23].

【0004】特に、半導体レーザー素子とそのマウント
材の熱膨張係数の違いは、半導体レーザー中に歪みを発
生させ、発振波長や閾値電流の変化、さらに、偏光特性
に大きな影響を与える。例えば、半導体レーザーにある
力以上の2次元引っ張り歪みがかかった場合、発振は、
TEモードからTMモードへと変化し、レーザー光の偏
波競合雑音が生じる。
In particular, the difference in the coefficient of thermal expansion between the semiconductor laser element and its mounting material causes distortion in the semiconductor laser, which has a large effect on the oscillation wavelength, threshold current, and polarization characteristics. For example, when a semiconductor laser is subjected to a two-dimensional tensile strain exceeding a certain force, oscillation
The mode changes from the TE mode to the TM mode, and polarization competition noise of the laser light occurs.

【0005】このことについては、〔参考文献3:H.
Tanaka:“780 nm BAND TM−MO
DE LASER OPERATION OF GaA
sP/AlGaAs TENSILE−STRAINE
D QUANTUM−WELL LASERS”,EL
ECTRONICS LETTERS 1993,2
9,18,pp1611−1613〕 〔参考文献4:K.Magari,M.Okamot
o,H.Yasaka,K.Sato,Y.Noguc
hi and O.Mikami:“Polariza
tion insensitive travelin
g wave type amplifier usi
ng strained multiple quan
tum well structure”,IEEE
Photonics Technol.Lett.,1
990,2,pp556−558〕に記載されている。
[0005] This is described in [Ref.
TANAKA: "780 nm BAND TM-MO
DE LASER OPERATION OF GaAs
sP / AlGaAs TENSILE-STRAIN
D QUANTUM-WELL LASERS ", EL
ECTRONICS LETTERS 1993, 2
9, 18, pp 1611-1613] [Reference 4: K.I. Magari, M .; Okamot
o, H .; Yasaka, K .; Sato, Y .; Noguc
hi and O.M. Mikami: "Polariza
Tion Insensitive Travelin
g wave type amplifier enhancer usi
ng strained multiple quan
tun well structure ”, IEEE
Photonics Technology. Lett. , 1
990, 2, pp 556-558].

【0006】本発明は、適切なマウント材を選択するこ
とにより、半導体レーザー中の無歪み化、あるいは圧縮
・引っ張り歪みを故意に発生させ、単一の偏光特性を得
ることができる機械歪みにより制御された半導体レーザ
ー及び単一偏光モード光の発生方法を提供することを目
的とする。
According to the present invention, by selecting an appropriate mounting material, distortion is prevented from occurring in a semiconductor laser, or compression / tensile distortion is intentionally generated, and control is performed by mechanical distortion which can obtain a single polarization characteristic. It is an object of the present invention to provide a semiconductor laser and a method of generating single polarization mode light.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕半導体レーザーにおいて、マウント材と、このマ
ウント材上に形成される半導体レーザー素子と、前記マ
ウント材及び前記半導体レーザー素子に機械歪みを加え
る手段とを備え、前記マウント材と前記半導体レーザー
素子の熱膨張係数差を利用し、単一の偏光モード光を発
生させるようにしたものである。
In order to achieve the above object, the present invention provides: [1] a semiconductor laser, a mounting material, a semiconductor laser element formed on the mounting material; Means for applying mechanical strain to the semiconductor laser element, wherein a single polarization mode light is generated by utilizing a difference in thermal expansion coefficient between the mounting material and the semiconductor laser element.

【0008】〔2〕単一偏光モード光の発生方法におい
て、半導体レーザー素子とマウント材との熱膨張係数差
を利用しレーザーの無歪み化、あるいは圧縮・引っ張り
歪みを故意に発生させることにより、レーザーの動作条
件に関係なく単一の偏光モード光を発生させ、低雑音で
あるようにしたものである。 〔3〕上記〔2〕記載の単一偏光モード光の発生方法に
おいて、活性層がバルクかそれに近く、価電子帯のサブ
バンドが縮退しているか、その分離の小さい半導体レー
ザー素子において、マウント材の熱膨張係数が半導体レ
ーザー素子の主材料の熱膨張係数以上であり、レーザー
動作時において半導体レーザ素子の活性層が無歪みか2
次元圧縮歪みを受けるようにして、TM偏波光を抑制
し、TE偏波モード光を発生させ、低雑音であるように
したものである。
[2] In the method of generating a single polarization mode light, by making use of a difference in thermal expansion coefficient between the semiconductor laser element and the mounting material, the laser is made to have no distortion, or a compression / tensile distortion is intentionally generated. A single polarization mode light is generated irrespective of the operating conditions of the laser so as to have low noise. [3] The method for generating single polarization mode light according to [2], wherein the active layer is at or near the bulk, and the subband of the valence band is degenerated or the separation is small. The thermal expansion coefficient of the semiconductor laser device is greater than or equal to the thermal expansion coefficient of the main material of the semiconductor laser device.
It is designed to receive the dimensional compression distortion, suppress the TM polarized light, generate the TE polarized mode light, and have low noise.

【0009】〔4〕上記〔2〕記載の単一偏光モード光
の発生方法において、活性層が量子井戸構造をもつ半導
体レーザー素子において、マウント材の熱膨張係数が半
導体レーザー素子の主材料の熱膨張係数に近いかそれ以
上であり、レーザー動作時において、半導体レーザー素
子の活性層が無歪みか2次元圧縮歪みを受け、活性層の
価電子帯サブバンド構造を変化させないようにして、T
M偏波光を抑制し、TE偏波モード光を発生させ、低雑
音であるようにしたものである。
[4] In the method for generating single polarization mode light according to the above [2], in a semiconductor laser device having an active layer having a quantum well structure, a thermal expansion coefficient of a mount material is set to a thermal expansion coefficient of a main material of the semiconductor laser device. The coefficient of expansion is close to or higher than the coefficient of expansion. During the operation of the laser, the active layer of the semiconductor laser element is subjected to no distortion or two-dimensional compressive distortion so that the valence band sub-band structure of the active layer is not changed.
M polarization light is suppressed, TE polarization mode light is generated, and low noise is achieved.

【0010】〔5〕上記〔2〕記載の単一偏光モード光
の発生方法において、活性層がバルクかそれに近く、価
電子帯のサブバンドが縮退しているか、その分離の小さ
い半導体レーザー素子において、マウント材の熱膨張係
数が半導体レーザー素子の主材料の熱膨張係数より小さ
く、レーザー動作時において半導体レーザー素子の2次
元引っ張り歪みを受けるようにして、TE偏波光を抑制
し、TM偏波モード光を発生させ、低雑音であるように
したものである。
[5] In the method for generating single polarization mode light according to the above [2], the active layer may be in the bulk or close to the bulk, and the valence band sub-band may be degenerated or the separation thereof may be small. The thermal expansion coefficient of the mounting material is smaller than the thermal expansion coefficient of the main material of the semiconductor laser element, so that the semiconductor laser element is subjected to two-dimensional tensile strain during laser operation to suppress TE polarized light, Light is generated and low noise is generated.

【0011】〔6〕上記〔2〕記載の単一偏光モード光
の発生方法において、活性層が量子井戸構造をもつ半導
体レーザー素子において、マウント材の熱膨張係数が半
導体レーザー素子の主材料の熱膨張係数に比べて小さ
く、レーザー動作時において、半導体レーザー素子の活
性層が2次元引っ張り歪みを受け、活性層の価電子帯サ
ブバンド構造を変化させるようにして、TE偏波光を抑
制し、TM偏波モード光を発生させ、低雑音であるよう
にしたものである。
[6] In the method for generating single polarization mode light according to the above [2], in a semiconductor laser device having an active layer having a quantum well structure, the thermal expansion coefficient of a mount material is set to the thermal expansion coefficient of the main material of the semiconductor laser device. Smaller than the expansion coefficient, the active layer of the semiconductor laser device is subjected to two-dimensional tensile strain during laser operation, and changes the valence band sub-band structure of the active layer to suppress TE polarized light, The polarization mode light is generated so as to have low noise.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しながら詳細に説明する。図1は本発明の実施例
を示す半導体レーザーの構成を示す断面図である。この
図において、1はヒートシンクマウント材であり、この
ヒートシンクマウント材1上にフェースダウンで、リッ
ジ型半導体レーザー素子10が搭載される。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a sectional view showing a configuration of a semiconductor laser according to an embodiment of the present invention. In this figure, reference numeral 1 denotes a heat sink mounting material, on which a ridge type semiconductor laser element 10 is mounted face down on the heat sink mounting material 1.

【0013】つまり、このリッジ型半導体レーザー素子
10は、下方から順次、SiN絶縁膜11、p側Au電
極12、p型GaAsキャップ層13、p型AlGaA
sクラッド層14、AlGaAsバリア層15、GaA
s活性層(200Å)16、AlGaAsバリア層1
7、n型AlGaAsクラッド層18、n型AlGaA
sバッファ層19、n型GaAs基板20、n側Au電
極21を有する。
That is, the ridge type semiconductor laser device 10 includes a SiN insulating film 11, a p-side Au electrode 12, a p-type GaAs cap layer 13, and a p-type AlGaAs
s cladding layer 14, AlGaAs barrier layer 15, GaAs
s active layer (200 °) 16, AlGaAs barrier layer 1
7, n-type AlGaAs cladding layer 18, n-type AlGaAs
It has an s buffer layer 19, an n-type GaAs substrate 20, and an n-side Au electrode 21.

【0014】このような、リッジ型半導体レーザー素子
の200ÅのGaAs活性層16を持つ無歪みの単一量
子井戸レーザーを、図3に示すように、SiC、GaA
s、Cuのマウント材を用いて組み立てた(詳細は後
述)。図2はこの半導体レーザーの電流閾値の2倍の電
流注入時におけるTEとTMモード偏光強度比の温度依
存性を示す。
Such a strain-free single quantum well laser having a 200 ° GaAs active layer 16 of a ridge-type semiconductor laser device is fabricated by using SiC, GaAs as shown in FIG.
Assembling was performed using s and Cu mounting materials (details will be described later). FIG. 2 shows the temperature dependence of the TE and TM mode polarization intensity ratios at the time of current injection twice the current threshold of this semiconductor laser.

【0015】図3(c)に示すようなSiCにマウント
したレーザーでは、150K付近においてTEとTMモ
ード比が逆転している。また、GaAs及びCuをマウ
ント材として用いた場合、偏光モードの強度比の逆転は
生じていない。それぞれのマウント材の熱膨張係数を比
較すると、SiC、GaAs、Cuはそれぞれ3.7、
6.5、17.0(10-6/℃)である。半導体レーザ
ー素子は、ハンダ材の融点でヒートシンクマウント材上
に接着されるため、動作温度は当然これより低くなる。
レーザーの熱膨張係数をGaAsと等しいと仮定し、こ
れを低温に冷やすと、図3(c)に示すように、SiC
マウントでは引っ張り歪み、図3(b)に示すように、
GaAsマウントは無歪み、図3(a)に示すように、
Cuマウントでは圧縮歪みがレーザーに生じる。
In the laser mounted on SiC as shown in FIG. 3 (c), the TE and TM mode ratios are inverted at around 150K. In addition, when GaAs and Cu are used as the mounting material, the inversion of the polarization mode intensity ratio does not occur. Comparing the coefficients of thermal expansion of the respective mounting materials, SiC, GaAs, and Cu were 3.7, respectively.
6.5 and 17.0 (10 −6 / ° C.). Since the semiconductor laser element is bonded onto the heat sink mount material at the melting point of the solder material, the operating temperature is naturally lower than this.
Assuming that the thermal expansion coefficient of the laser is equal to GaAs, and this is cooled to a low temperature, as shown in FIG.
In the mount, tensile strain, as shown in FIG.
The GaAs mount has no distortion, and as shown in FIG.
In Cu mount, compressive strain is generated in the laser.

【0016】量子井戸構造の無歪みのGaAs活性層の
バンド構造においては、価電子帯の重いホールを持つバ
ンド(hh)が、軽いホールを持つバンド(lh)より
伝導帯側に存在し、伝導帯の電子とhhバンドの正孔が
優先的に遷移し、レーザー発光に寄与するが、この時の
放出光の偏波モードはレーザー端面の反射率との関係か
ら、TEモードとなりTMモード発振は禁止される。こ
の量子井戸構造に2次元圧縮歪みが生じた場合も同様の
バンド間で遷移が生じ、TEモードの発振が支配的とな
る。
In the band structure of an unstrained GaAs active layer having a quantum well structure, a band (hh) having a heavy hole in the valence band exists on the conduction band side from a band (lh) having a light hole, and the conduction band is higher. The electrons in the band and the holes in the hh band transition preferentially and contribute to laser emission. At this time, the polarization mode of the emitted light becomes TE mode from the relationship with the reflectivity of the laser end face, and the TM mode oscillation becomes It is forbidden. When two-dimensional compressive strain occurs in this quantum well structure, a similar transition occurs between bands, and TE mode oscillation becomes dominant.

【0017】ところが、ある一定以上の2次元引っ張り
歪みが生じた場合、価電子帯のlhバンドがhhバンド
よりも伝導帯側に位置するようになる〔参考文献5:伊
賀健一編著:“半導体レーザー”1994,pp113
(オーム社)〕;〔参考文献6:T.Ikegami:
“Reflectivety of Mode atF
acet and Oscillation Mode
in Double−Heterostructur
e Injection Lasers”,IEEE
Quantum Electron.1972,QE−
8,6,pp470−476〕。
However, when a two-dimensional tensile strain exceeding a certain level occurs, the lh band of the valence band is located closer to the conduction band than the hh band [Ref. 5: Kenichi Iga, "Semiconductor Laser""1994, pp113
(Ohmsha)]; [Ref. Ikegami:
“Reflectivity of Mode atF
acet and Oscillation Mode
in Double-Heterostructure
e Injection Lasers ", IEEE
Quantum Electron. 1972, QE-
8, 6, pp 470-476].

【0018】上述の200Åの量子井戸レーザーをSi
Cのような低温で引っ張り歪みの生じる材料にマウント
した場合の、バルク時の価電子帯の上端とlh及びhh
バンド間のエネルギー差の温度変化と、その時の価電子
帯バンド構造の説明図を図4に示す。ある温度以下で
は、lhバンドがhhバンドよりも伝導帯側に位置する
ようになり、この時には伝導帯の電子とlhバンドの正
孔の遷移が優先的となる。この時の遷移における偏波は
TEモードとTMモードのどちらも許容される。しか
し、レーザー内の導波路や反射面におけるTMモードの
利得がTEモードの利得を上回るために、TMモードが
発振する。
The above-described 200 ° quantum well laser is replaced with Si.
When mounted on a material that generates tensile strain at low temperature such as C, the upper end of the valence band in bulk and lh and hh
FIG. 4 is an explanatory diagram of the temperature change of the energy difference between the bands and the valence band structure at that time. Below a certain temperature, the lh band is located closer to the conduction band than the hh band, and at this time, the transition between the electrons in the conduction band and the holes in the lh band has priority. Polarization in the transition at this time is allowed in both the TE mode and the TM mode. However, the TM mode oscillates because the gain of the TM mode in the waveguide and the reflection surface in the laser exceeds the gain of the TE mode.

【0019】このように元々無歪みのレーザーでもマウ
ント材料によっては、ある動作条件下においてTMモー
ドで発振し、レーザー光源の単一なTE偏光モードが維
持できなくなる。従って、TM発振を制御し、単一偏光
モードで、偏波競合のない低雑音のレーザーを得るため
には、レーザーとマウント材との熱膨張係数を考慮し、
マウント材を選択する必要がある。
As described above, even the originally distortion-free laser oscillates in the TM mode under certain operating conditions depending on the mounting material, and the laser light source cannot maintain a single TE polarization mode. Therefore, in order to control the TM oscillation and obtain a low-noise laser with no polarization competition in the single polarization mode, the thermal expansion coefficient between the laser and the mounting material is taken into consideration,
It is necessary to select a mounting material.

【0020】表1に、各レーザーの約100Kにおける
TE/TM強度比と雑音測定結果を示す。
Table 1 shows the TE / TM intensity ratio and the noise measurement results of each laser at about 100K.

【0021】[0021]

【表1】 雑音はショットノイズレベルを基準にしたときの最小値
である。図2に示した200Åの活性層を持つレーザー
と同様に、600Å厚の活性層を持つレーザーも、マウ
ント材にSiCを用いた時はTM偏光モードが強く、C
uを用いた時はTE偏光モードが強くなる。この時の雑
音は、SiCマウントを用いた場合は、2.5dBであ
るのに対し、Cuマウントを用いた場合は1.3dBと
なり、雑音が減少していた。
[Table 1] The noise is a minimum value based on the shot noise level. Similar to the laser having an active layer of 200 ° shown in FIG. 2, the laser having an active layer of 600 ° thick also has a strong TM polarization mode when SiC is used as a mounting material, and the C polarization mode is high.
When u is used, the TE polarization mode becomes strong. The noise at this time was 2.5 dB when the SiC mount was used, whereas it was 1.3 dB when the Cu mount was used, and the noise was reduced.

【0022】このことから、マウント材が半導体レーザ
ー素子に生じさせる2次元圧縮歪みがTMモード偏光を
抑制し、偏波競合雑音が抑えられ、低雑音のレーザーが
得られることが分かった。また、表1中、下段は60Å
の量子井戸活性層厚を持つレーザーをSiCマウント材
上にマウントしたもので、雑音が強く抑制されていた。
これは、価電子帯のlh、hhバンドが強く量子化され
ることにより分離しており、バルクのようなバンド構造
の変化が生じなかったことによる。
From this, it was found that the two-dimensional compressive strain caused by the mounting material on the semiconductor laser element suppressed the TM mode polarization, the polarization competitive noise was suppressed, and a low-noise laser was obtained. In Table 1, the lower row is 60 °
A laser having a quantum well active layer thickness of was mounted on a SiC mount material, and noise was strongly suppressed.
This is because the lh and hh bands of the valence band are separated by being strongly quantized, and the band structure such as bulk does not change.

【0023】以上のことから、動作時に過剰な引っ張り
歪みがレーザーに生じるような、TM偏波光が抑制され
るマウント材を使用することにより、低雑音のレーザー
が得られることが分かった。AlGaAs系のレーザー
に対して引っ張り歪みの生じないマウント材料として
は、GaAsに比べ熱膨張係数の大きいW−Cu、Mo
−Cu、Al−Si合金やAl2 3 、BeO、Cu等
が考えられる。
From the above, it has been found that a low-noise laser can be obtained by using a mount material in which TM polarized light is suppressed such that excessive tensile strain occurs in the laser during operation. As a mounting material which does not generate tensile strain with respect to an AlGaAs-based laser, W-Cu or Mo having a larger thermal expansion coefficient than GaAs is used.
-Cu, Al-Si alloy or Al 2 O 3, BeO, Cu or the like.

【0024】これらのマウント材を適切に選択すること
によって、レーザー光の偏光競合雑音が抑えられ、低雑
音のレーザーが得られる。本発明により期待される産業
への影響として、半導体レーザーの低雑音化にとってマ
ウント材の適切な選択は有効な手段であり、光ファイバ
通信用半導体レーザーへの応用や、更に、低温において
偏光競合雑音が抑制されるため、スクイズド光の光源と
なるレーザーの組立法として有効である。
By appropriately selecting these mounting materials, polarization competition noise of laser light is suppressed, and a low-noise laser can be obtained. As an effect on the industry expected from the present invention, appropriate selection of a mount material is an effective means for reducing the noise of a semiconductor laser, and is effective for application to a semiconductor laser for optical fiber communication, and furthermore, at low temperatures, polarization competition noise. Is suppressed, which is effective as a method of assembling a laser serving as a light source of squeezed light.

【0025】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
It should be noted that the present invention is not limited to the above-described embodiment, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

【0026】[0026]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、適切なマウント材を選択することにより、半導
体レーザー中の歪みの低減や、圧縮や引っ張り歪みを故
意に発生させ、単一の偏光特性を得ることができる。高
信頼性を持つ光ファイバ通信用半導体レーザーへの応用
や、特に、低温において偏光競合雑音が抑制されるた
め、スクイズド光の光源となるレーザーの組立法として
有効である。
As described in detail above, according to the present invention, by selecting an appropriate mounting material, it is possible to reduce the distortion in the semiconductor laser and to intentionally generate compression and tensile strain, One polarization characteristic can be obtained. It is effective as a method for assembling a laser serving as a light source of squeezed light, because it is applied to a semiconductor laser for optical fiber communication having high reliability, and in particular, polarization competition noise is suppressed at low temperatures.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す半導体レーザーの構成を
示す断面図である。
FIG. 1 is a cross-sectional view illustrating a configuration of a semiconductor laser according to an embodiment of the present invention.

【図2】本発明の半導体レーザー光源の電流閾値の2倍
の電流注入時におけるTEとTMモード偏光強度比の温
度依存性を示す図である。
FIG. 2 is a diagram showing the temperature dependence of the ratio of polarization intensity between TE and TM modes at the time of injecting current twice the current threshold of the semiconductor laser light source of the present invention.

【図3】本発明の実施例を示す各種のマウント材を示す
図である。
FIG. 3 is a view showing various mount materials showing an embodiment of the present invention.

【図4】量子井戸レーザーをSiCのような低温で引っ
張り歪みの生じる材料にマウントした場合の、バルク時
の価電子帯上端とlh,hhサブバンド間のエネルギー
差の温度依存性の計算結果と、その時の価電子帯バンド
構造の説明図である。
FIG. 4 shows the calculation results of the temperature dependence of the energy difference between the upper end of the valence band and the lh and hh subbands when the quantum well laser is mounted on a material that generates tensile strain at a low temperature such as SiC. FIG. 4 is an explanatory diagram of a valence band structure at that time.

【符号の説明】[Explanation of symbols]

1 ヒートシンクマウント材 10 リッジ型半導体レーザー素子 11 SiN絶縁膜 12 p側Au電極 13 p型GaAsキャップ層 14 p型AlGaAsクラッド層 15,17 AlGaAsバリア層 16 GaAs活性層(200Å) 18 n型AlGaAsクラッド層 19 n型AlGaAsバッファ層 20 n型GaAs基板 21 n側Au電極 DESCRIPTION OF SYMBOLS 1 Heat sink mount material 10 Ridge type semiconductor laser element 11 SiN insulating film 12 p-side Au electrode 13 p-type GaAs cap layer 14 p-type AlGaAs cladding layer 15, 17 AlGaAs barrier layer 16 GaAs active layer (200 °) 18 n-type AlGaAs cladding layer 19 n-type AlGaAs buffer layer 20 n-type GaAs substrate 21 n-side Au electrode

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】(a)マウント材と、(b)該マウント材
上に形成される半導体レーザー素子と、(c)前記マウ
ント材及び前記半導体レーザー素子に機械歪みを加える
手段とを備え、(d)前記マウント材と前記半導体レー
ザー素子の熱膨張係数差を利用し、単一の偏光モード光
を発生させることを特徴とする半導体レーザー。
1. A semiconductor laser device comprising: (a) a mounting material; (b) a semiconductor laser device formed on the mounting material; and (c) means for applying mechanical strain to the mounting material and the semiconductor laser device. d) A semiconductor laser, wherein a single polarization mode light is generated by utilizing a difference in thermal expansion coefficient between the mounting material and the semiconductor laser element.
【請求項2】 半導体レーザー素子とマウント材との熱
膨張係数差を利用しレーザーの無歪み化、あるいは圧縮
・引っ張り歪みを故意に発生させることにより、レーザ
ーの動作条件に関係なく単一の偏光モード光を発生さ
せ、低雑音であることを特徴とする単一偏光モード光の
発生方法。
2. A single polarized light regardless of the operating conditions of the laser, by using the difference in thermal expansion coefficient between the semiconductor laser element and the mounting material to de-strain the laser or deliberately generate compressive / tensile strain. A method for generating single polarization mode light, characterized by generating mode light and having low noise.
【請求項3】 請求項2記載の単一偏光モード光の発生
方法において、活性層がバルクかそれに近く、マウント
材の熱膨張係数が半導体レーザー素子の主材料の熱膨張
係数以上であり、動作温度において半導体レーザ素子の
活性層にかかる歪みがTM偏波光を抑制し、TE偏波モ
ード光を発生させ、低雑音であることを特徴とする単一
偏光モード光の発生方法。
3. The method for generating single polarization mode light according to claim 2, wherein the active layer is at or near the bulk, the thermal expansion coefficient of the mount material is equal to or greater than the thermal expansion coefficient of the main material of the semiconductor laser device, and A method for generating single polarization mode light, wherein distortion applied to an active layer of a semiconductor laser element at a temperature suppresses TM polarization light, generates TE polarization mode light, and has low noise.
【請求項4】 請求項2記載の単一偏光モード光の発生
方法において、活性層が量子井戸構造をもつ半導体レー
ザー素子において、マウント材の熱膨張係数が半導体レ
ーザー素子の主材料の熱膨張係数に近いかそれ以上であ
り、半導体レーザー素子の活性層にかかる歪みがTM偏
波光を抑制し、TE偏波モード光を発生させ低雑音であ
ることを特徴とする単一偏光モード光の発生方法。
4. The semiconductor laser device according to claim 2, wherein the active layer has a quantum well structure, and the mount member has a thermal expansion coefficient of a main material of the semiconductor laser device. Characterized in that the strain applied to the active layer of the semiconductor laser device suppresses the TM polarized light, generates the TE polarized mode light, and is low noise. .
【請求項5】 請求項2記載の単一偏光モード光の発生
方法において、活性層がバルクかそれに近く、マウント
材の熱膨張係数が半導体レーザー素子の主材料の熱膨張
係数より小さく、動作温度において半導体レーザー素子
の活性層にかかる歪みがTE偏波光を抑制し、TM偏波
モード光を発生させ、低雑音であることを特徴とする単
一偏光モード光の発生方法。
5. The method according to claim 2, wherein the active layer is at or near the bulk, the thermal expansion coefficient of the mounting material is smaller than the thermal expansion coefficient of the main material of the semiconductor laser device, and the operating temperature is lower. Wherein the strain applied to the active layer of the semiconductor laser element suppresses TE polarized light, generates TM polarized mode light, and has low noise.
【請求項6】 請求項2記載の単一偏光モード光の発生
方法において、活性層が量子井戸構造をもつ半導体レー
ザー素子において、マウント材の熱膨張係数が半導体レ
ーザー素子の主材料の熱膨張係数に比べて小さく、半導
体レーザー素子の活性層にかかる歪みがTE偏波光を抑
制し、TM偏波モード光を発生させ、低雑音であること
を特徴とする単一偏光モード光の発生方法。
6. The semiconductor laser device according to claim 2, wherein the active layer has a quantum well structure, wherein the mount material has a thermal expansion coefficient of a main material of the semiconductor laser device. A method for generating single polarization mode light, wherein the distortion applied to the active layer of the semiconductor laser element is smaller than that of the first embodiment, and the TE polarization light is suppressed, the TM polarization mode light is generated, and the noise is low.
JP1809297A 1997-01-31 1997-01-31 Semiconductor laser and generation of single polarized mode light Pending JPH10215022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1809297A JPH10215022A (en) 1997-01-31 1997-01-31 Semiconductor laser and generation of single polarized mode light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1809297A JPH10215022A (en) 1997-01-31 1997-01-31 Semiconductor laser and generation of single polarized mode light

Publications (1)

Publication Number Publication Date
JPH10215022A true JPH10215022A (en) 1998-08-11

Family

ID=11961999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1809297A Pending JPH10215022A (en) 1997-01-31 1997-01-31 Semiconductor laser and generation of single polarized mode light

Country Status (1)

Country Link
JP (1) JPH10215022A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002017452A1 (en) * 2000-08-22 2002-02-28 Alcatel Optical amplifier device
WO2008142755A1 (en) * 2007-05-18 2008-11-27 Mitsubishi Electric Corporation Optical semiconductor device
WO2013175697A1 (en) * 2012-05-22 2013-11-28 パナソニック株式会社 Nitride semiconductor light emitting device
WO2018203466A1 (en) * 2017-05-01 2018-11-08 パナソニックIpマネジメント株式会社 Nitride-based light emitting device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002017452A1 (en) * 2000-08-22 2002-02-28 Alcatel Optical amplifier device
FR2813449A1 (en) * 2000-08-22 2002-03-01 Cit Alcatel AMPLIFIER OPTICAL DEVICE
WO2008142755A1 (en) * 2007-05-18 2008-11-27 Mitsubishi Electric Corporation Optical semiconductor device
JPWO2008142755A1 (en) * 2007-05-18 2010-08-05 三菱電機株式会社 Optical semiconductor device
WO2013175697A1 (en) * 2012-05-22 2013-11-28 パナソニック株式会社 Nitride semiconductor light emitting device
JP5796181B2 (en) * 2012-05-22 2015-10-21 パナソニックIpマネジメント株式会社 Nitride semiconductor light emitting device
US9385277B2 (en) 2012-05-22 2016-07-05 Panasonic Intellectual Property Management Co., Ltd. Nitride semiconductor light emitting device
US9735314B2 (en) 2012-05-22 2017-08-15 Panasonic Intellectual Property Management Co., Ltd. Nitride semiconductor light emitting device
WO2018203466A1 (en) * 2017-05-01 2018-11-08 パナソニックIpマネジメント株式会社 Nitride-based light emitting device

Similar Documents

Publication Publication Date Title
JP3467153B2 (en) Semiconductor element
JP3251386B2 (en) Polarization switchable quantum well laser
JP3052552B2 (en) Surface emitting semiconductor laser
US5260959A (en) Narrow beam divergence laser diode
JP2820140B2 (en) Gallium nitride based semiconductor laser
US5559819A (en) Semiconductor laser device
US5212704A (en) Article comprising a strained layer quantum well laser
Qian et al. 1.3-μm vertical-cavity surface-emitting lasers with double-bonded GaAs-AlAs bragg mirrors
US6160829A (en) Self-sustained pulsation semiconductor laser
JPH09219557A (en) Semiconductor laser element
US5644587A (en) Semiconductor laser device
JP4641230B2 (en) Optical semiconductor device
JP2002190649A (en) Semiconductor laser and method of manufacturing it
US5586136A (en) Semiconductor laser device with a misoriented substrate
JPH10215022A (en) Semiconductor laser and generation of single polarized mode light
JP2002232068A (en) Semiconductor light emitting device
JP2812273B2 (en) Semiconductor laser
US7843984B2 (en) Semiconductor laser device
JPH10294533A (en) Nitride compound semiconductor laser and its manufacture
US6738405B1 (en) Semiconductor laser
JPH05136526A (en) Semiconductor laser and manufacture thereof
JP3784483B2 (en) Semiconductor laser and its TE / TM polarization mode switching method
JP2000286508A (en) Semiconductor device and manufacture thereof
JP2001332816A (en) Semiconductor laser element
JP2556270B2 (en) Strained quantum well semiconductor laser

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Effective date: 20050607

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20051213

Free format text: JAPANESE INTERMEDIATE CODE: A02