JPH10214930A - Coaxial laminate cooling structure for flat semiconductor device - Google Patents

Coaxial laminate cooling structure for flat semiconductor device

Info

Publication number
JPH10214930A
JPH10214930A JP3116797A JP3116797A JPH10214930A JP H10214930 A JPH10214930 A JP H10214930A JP 3116797 A JP3116797 A JP 3116797A JP 3116797 A JP3116797 A JP 3116797A JP H10214930 A JPH10214930 A JP H10214930A
Authority
JP
Japan
Prior art keywords
flat semiconductor
conductor
semiconductor element
liquid cooling
cooling block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3116797A
Other languages
Japanese (ja)
Inventor
Kinji Yoshioka
忻治 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP3116797A priority Critical patent/JPH10214930A/en
Publication of JPH10214930A publication Critical patent/JPH10214930A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact stacked structure of a flat semiconductor device and a liquid-cooling block with high utility. SOLUTION: A laminate of flat semiconductor device 1 is constituted by using liquid-cooling block fins for the element formed to open an inlet of an introducing tube 4 and a discharge port of a discharge tube 5 in the same rotating direction by providing a refrigerant passage in a liquid-cooling block 2 and disposing the tube 4 at a refrigerant introducing side and the tube 5 at the exhaust side at rotary symmetrical position, a cylindrical conductor 3 connected to one main electrode of the entire laminate is concentrically disposed at a central axis of the laminate, the conductor 3 is divided to the central axis symmetrically and connected. The conductor 3 is constituted by the structure divided at the central axis symmetry, the structure covered on a surface of the part except the connecting part of the conductor 3 with an insulator, and the conductor 3 is provided with through holes at positions corresponding to terminals of the device 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、平形半導体素子の
冷却構造に係わり、特に通電パスに存在する配線インダ
クタンスを低減する平形半導体素子の同軸積層冷却構造
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling structure for a flat semiconductor device, and more particularly to a coaxial stacked cooling structure for a flat semiconductor device for reducing wiring inductance existing in a current path.

【0002】[0002]

【従来の技術】一般に、高圧用の多直列接続を目的とし
た平形半導体素子の圧接と冷却は、複数の平形半導体素
子と交互に積層されるブロックとの積層体全体に圧接力
を加え、例えば液冷されるブロックからの放熱で冷却を
行う方式が採用される。この場合、平形半導体素子群の
積層体全体の主電極は積層体の両端部に位置する構造で
ある。
2. Description of the Related Art In general, pressure contact and cooling of a flat semiconductor element for the purpose of multi-series connection for high voltage are performed by applying a press contact force to an entire laminate of a plurality of flat semiconductor elements and blocks alternately stacked. A method of cooling by heat radiation from a liquid-cooled block is adopted. In this case, the main electrodes of the entire stack of the flat semiconductor element group are located at both ends of the stack.

【0003】この平形半導体素子群の積層体の電気的な
絶縁は一体的に積層される半導体素子群や主電極などと
半導体素子に所定の圧接力を加えるための加圧機構との
電気的絶縁およびブロックに導入する冷媒との電気的な
絶縁スペースが必要となる。更に、半導体素子の周辺に
は半導体素子の駆動回路や保護を目的としたスナバ回路
部品などの半導体素子に近接して配置する必要性のある
周辺部品類があり、高圧回路に適用するための電気絶縁
スペースは増加する。
[0003] The electrical insulation of the stacked body of flat semiconductor element groups is performed by electrically insulating the semiconductor element groups and main electrodes, etc., which are integrally stacked, and a pressurizing mechanism for applying a predetermined pressing force to the semiconductor elements. In addition, an electrically insulating space for the refrigerant introduced into the block is required. Further, there are peripheral components that need to be arranged close to the semiconductor device, such as a driving circuit for the semiconductor device and a snubber circuit component for protection, around the semiconductor device. The insulation space increases.

【0004】以下、この従来技術による液冷ブロックの
一例について、図6および図7により説明する。この図
6に示す液冷ブロック211は、銅製の液冷ブロックに
2つの伝熱孔hを設け、銅管で形成したU字状の伝熱管
171を伝熱孔hに挿入してある。また、貫通孔aは複
数の液冷ブロック211と平形半導体素子を所定の圧接
力で圧接して使用する場合の圧接クランプの挿入孔とな
る。
Hereinafter, an example of the liquid cooling block according to the prior art will be described with reference to FIGS. 6 and 7. FIG. In the liquid cooling block 211 shown in FIG. 6, two heat transfer holes h are provided in a liquid cooling block made of copper, and a U-shaped heat transfer tube 171 formed of a copper tube is inserted into the heat transfer hole h. Further, the through hole a is an insertion hole for a pressure contact clamp when the plurality of liquid cooling blocks 211 and the flat semiconductor element are pressed against each other with a predetermined pressure.

【0005】この従来構造の液冷ブロックで平形半導体
素子を冷却する場合、例えば図7のように組み立てて使
用される。すなわち、図7において、3つの平形半導体
素子1は4つの液冷ブロック211の間に挟まれ1つの
積層体として、積層体全体を圧接クランプ111で一体
に圧接している。この一体に積層された平形半導体素子
1を冷却する方法は、冷媒を同図外に設けられた冷媒導
入装置より冷媒輸送管121を締め付け具141で締め
付け配管し、最上部の液冷ブロック211の伝熱管17
1の導入口171aより導入し、排出口171bより排
出する。この排出口171bからの冷媒を下部に設けた
次段の液冷ブロック211の導入口171aに導く絶縁
材料よりなる連絡管131に、締め付け具141を用い
て連結し、以下同様な配管により、平形半導体素子1間
に印加される電圧に耐える電気的絶縁を確保しながら、
最上段の液冷ブロック211の排出口171bを経て冷
媒排出側の冷媒輸送管121から図7外の冷媒導入装置
に戻る閉ループ配管系統を形成することによりなされ
る。なお、冷媒が水等の安価で安全なものである場合、
前述の閉ループ配管系を開管として冷媒の使い捨てとす
ることも行われる。
When a flat semiconductor element is cooled by the liquid cooling block having the conventional structure, it is assembled and used, for example, as shown in FIG. That is, in FIG. 7, the three flat semiconductor elements 1 are sandwiched between four liquid cooling blocks 211 to form a single stacked body, and the entire stacked body is integrally pressed by the press-contact clamp 111. The method of cooling the integrally laminated flat semiconductor element 1 is as follows. A refrigerant is introduced from a refrigerant introduction device provided outside the figure by clamping a refrigerant transport pipe 121 with a clamp 141, and a liquid cooling block 211 at the uppermost part is cooled. Heat transfer tube 17
1 is introduced through the inlet 171a and discharged through the outlet 171b. A connecting pipe 131 made of an insulating material for guiding the refrigerant from the outlet 171b to the inlet 171a of the next liquid cooling block 211 provided at the lower portion is connected using a fastener 141. While securing electrical insulation that can withstand the voltage applied between the semiconductor elements 1,
This is achieved by forming a closed loop piping system that returns from the refrigerant discharge pipe 121 on the refrigerant discharge side to the refrigerant introduction device outside FIG. 7 through the discharge port 171b of the liquid cooling block 211 at the uppermost stage. If the refrigerant is inexpensive and safe, such as water,
The above-mentioned closed loop piping system may be opened to make the refrigerant disposable.

【0006】以上の機構から明確なように、一体化した
積層体の液冷ブロック211は1つの配管系を構成して
いるところから、平形半導体素子に対する放熱特性、熱
抵抗を一定値とした場合、冷媒経路となる各配管の冷媒
流量と圧力損失の機械的な特性と、各平形半導体素子1
間に印加される電気的特性とが本構造の大きさを決める
大きな要素となっている。一方、高圧回路用の素子群を
形成するために、一体に積層した平形半導体素子と液冷
ブロックを一群の多直列積層体とすれば、一平形半導体
素子の耐圧に対して直列数倍だけ一群全体の素子耐圧を
上げて使用することができる。そこで、図7を一つの平
形半導体素子の多直列積層体として使用すると、同図の
最上部と最下部の銅製の液冷ブロック211をスイッチ
全体の二つの各主電極として作用させ使用する。この
時、両主電極から適用装置の回路構成のための結線は、
前述の加圧圧接機構、液冷ブロック、各配管系など素子
周辺の構造体を避け、かつ、電気的絶縁を確保するため
のスペースをとることになる。この他、特に図示してい
ないが、一般的に、各平形半導体素子に近接して並列接
続するゲート回路やバランサ抵抗およびスナバ回路を設
けて使用するため、必然的に配線長は長く、また広がる
ことになる。
As is clear from the above mechanism, since the integrated liquid cooling block 211 constitutes a single piping system, the heat dissipation characteristics and the thermal resistance of the flat semiconductor element are set to be constant. , The mechanical characteristics of the refrigerant flow rate and pressure loss of each pipe serving as the refrigerant path, and the
The electrical characteristics applied in between are major factors that determine the size of the structure. On the other hand, if a flat semiconductor element and a liquid-cooled block that are integrally laminated are formed as a group of multi-series laminates to form a group of elements for a high-voltage circuit, the number of groups in a series is several times the withstand voltage of the flat semiconductor element. The device can be used with an increased withstand voltage of the entire device. Therefore, when FIG. 7 is used as a multi-series laminate of one flat semiconductor element, the liquid cooling blocks 211 made of copper at the uppermost and lowermost portions in FIG. 7 are used as two main electrodes of the entire switch. At this time, the connection for the circuit configuration of the application device from both main electrodes,
The space around the element such as the above-described press-contact mechanism, liquid cooling block, and each piping system is avoided, and a space for securing electrical insulation is required. In addition, although not particularly shown, generally, a gate circuit or a balancer resistor and a snubber circuit which are connected in parallel close to each flat semiconductor element are used, so that the wiring length is inevitably long and wide. Will be.

【0007】[0007]

【発明が解決しようとする課題】従って、以上説明した
ようにこの従来技術による積層体構造では、両端の主電
極と外部回路(ゲート回路やバランサ抵抗およびスナバ
回路を含む)との接続を行う場合、前述の圧接機構や冷
媒経路を形成する各配管および周辺部品の配置を避けて
電気的絶縁距離を確保した上、平形半導体素子の積層体
と外部回路との接続を行う必要があるため、外部回路と
の接続ループは広がる。その結果、平形半導体素子と液
冷ブロックの積層体を適用装置の回路内に組込む際の配
線ルートが長くなり、配線インダクタンスが大きくな
る。ことにパルス電源応用などのように外部回路に含ま
れる静電容量との共振回路の振動周期を極く狭く、か
つ、ピーク値の大きい電流パルスを生成する必要のある
用途に適用することは難しかった。そこで、従来のパル
ス電源用途では、半導体素子によるスイッチング回路の
後段に、磁気圧縮回路と称す補助回路を2〜3段設置し
て、パルス幅を狭く圧縮する技術により目的を達してい
た。
Therefore, as described above, in the laminated structure according to the prior art, when the main electrodes at both ends are connected to an external circuit (including a gate circuit, a balancer resistor and a snubber circuit). In addition, it is necessary to secure the electrical insulation distance by avoiding the arrangement of the piping and peripheral parts forming the above-described press-contact mechanism and the refrigerant path, and to connect the laminate of the flat semiconductor elements to the external circuit. The connection loop with the circuit expands. As a result, the wiring route when the stacked body of the flat semiconductor element and the liquid cooling block is incorporated into the circuit of the application device becomes longer, and the wiring inductance increases. In particular, it is difficult to apply the present invention to applications in which the oscillation cycle of the resonance circuit with the capacitance included in the external circuit is extremely narrow and a current pulse having a large peak value needs to be generated, such as a pulse power supply application. Was. Therefore, in the conventional pulse power supply application, the purpose has been achieved by a technique of installing two to three auxiliary circuits called a magnetic compression circuit at the subsequent stage of a switching circuit using a semiconductor element to compress the pulse width narrowly.

【0008】一般の電力変換装置等の場合も同様であ
り、前述の平形半導体素子群で形成した積層体を複数使
用し、電力変換装置を形成することになるため、実装ス
ペースや高圧絶縁のための距離が増加し、装置の大形化
を伴ったり、無用な配線インダクタンスの増加で半導体
素子の耐圧を上げる必要があるなど問題を有していた。
本発明の目的はこの従来構造の欠点を改良し、コンパク
トで実用性の高い平形半導体素子と液冷ブロックとのス
タック構造を提供するものである。
[0008] The same applies to a general power conversion device and the like. A power conversion device is formed by using a plurality of stacked bodies formed of the above-described flat semiconductor element groups, and thus, a mounting space and high-voltage insulation are required. However, there has been a problem that the distance between the semiconductor devices has increased, the size of the device has been increased, and the withstand voltage of the semiconductor element has to be increased due to an unnecessary increase in wiring inductance.
An object of the present invention is to improve the disadvantages of the conventional structure and to provide a compact and highly practical stack structure of a flat semiconductor element and a liquid cooling block.

【0009】[0009]

【課題を解決するための手段】本発明のその目的を達成
する手段は、 (1)請求項1において、液冷ブロックの内部に冷媒の
通路を設け、冷媒の導入側には導入管、排出側には排出
管を互いに回転対象位置となるように配設し、導入管の
導入口と排出管の排出口が互いに同一回転方向に開口す
る液冷ブロックを用い、平形半導体素子と液冷ブロック
との積層体の中心軸に同心状に配置し、該積層体の一主
電極と接続する筒状の導体を設けたことにある。
Means for achieving the object of the present invention are as follows: (1) In the first aspect, a refrigerant passage is provided inside the liquid cooling block, and an inlet pipe and a discharge pipe are provided on the refrigerant introduction side. On the side, the discharge pipes are arranged so as to be rotated relative to each other, and a liquid cooling block in which the introduction port of the introduction pipe and the discharge port of the discharge pipe open in the same rotation direction is used. And a cylindrical conductor connected concentrically to the central axis of the laminate and connected to one main electrode of the laminate.

【0010】(2)請求項2において、平形半導体素子
と液冷ブロックの積層体との接続部と他方の主電極部を
除き、筒状の導体の内外周部に渡り表面全体を絶縁体で
覆ったことにある。
(2) In claim 2, the entire surface is covered with an insulator over the inner and outer peripheral portions of the cylindrical conductor, except for the connection portion between the flat semiconductor element and the liquid cooling block laminate and the other main electrode portion. I covered it.

【0011】(3)請求項3において、筒状の導体を中
心軸対称の複数の導体片に分割して、接続部分を除く部
分を絶縁体で覆い、該各導体片相互に所定の間隔を設け
たことにある。
(3) In the third aspect, the cylindrical conductor is divided into a plurality of conductor pieces symmetrical with respect to the central axis, and portions other than the connection portion are covered with an insulator, and a predetermined interval is provided between the respective conductor pieces. It has been provided.

【0012】(4)請求項4において、筒状の導体の筒
部には積層した平形半導体素子の補助電極に対向した位
置に貫通穴を設け、平形半導体素子の同軸積層体の外部
に設けた半導体素子の周辺回路要素との接続用貫通穴を
具備したことにある。
(4) In claim 4, a through hole is provided in the cylindrical portion of the cylindrical conductor at a position facing the auxiliary electrode of the laminated flat semiconductor element, and the through hole is provided outside the coaxial laminated body of the flat semiconductor element. It has a through hole for connection with a peripheral circuit element of a semiconductor element.

【0013】次に、その作用を説明する。冷媒の導入管
と排出管とが互いに回転対象位置にあり、互いに連絡管
との接続上の干渉が生じない液冷ブロックを用いて、平
形半導体素子と液冷ブロックの冷却配管系が回転対称的
でコンパクトにまとまるので、平形半導体素子と液冷ブ
ロックとの積層体の中心軸に同心状に配置し、該積層体
の一主電極と接続する筒状の導体を容易に設置できると
ともに、配線経路の往復導体化ができる。すなわち、平
形半導体素子と液冷ブロックとの積層体で形成する導通
経路の主電流の方向と筒状の導体に流れる主電流の方向
は互いに逆の関係となる。従って、平形半導体素子と液
冷ブロックによる積層体全体と筒状の導体との往復導体
化された相互間の配線形態によって生じる配線インダク
タンスは小さくできる。
Next, the operation will be described. The cooling pipe system of the flat semiconductor element and the liquid cooling block is rotationally symmetric, using a liquid cooling block in which the refrigerant inlet pipe and the discharge pipe are at the positions to be rotated with each other and does not cause interference in connection with the communication pipe. , So that it is arranged concentrically with the central axis of the laminate of the flat semiconductor element and the liquid cooling block, and a cylindrical conductor connected to one main electrode of the laminate can be easily installed, and the wiring path Can be made a reciprocating conductor. That is, the direction of the main current in the conduction path formed by the stacked body of the flat semiconductor element and the liquid-cooled block and the direction of the main current flowing in the cylindrical conductor have a relationship opposite to each other. Therefore, the wiring inductance caused by the reciprocating wiring configuration between the entire stack and the tubular conductor formed by the flat semiconductor element and the liquid cooling block can be reduced.

【0014】平形半導体素子と液冷ブロックの積層体と
の接続部と他方の主電極部を除き、筒状の導体の内外周
部に渡り表面全体を絶縁体で覆うことにより、平形半導
体素子や液冷ブロックの各部および配管系等の各導電部
との電気的な絶縁が容易となり、絶縁距離を最小限度に
することができ、小形な装置とすることができる。筒状
の導体を中心軸対称に複数の導体片に分割して、接続部
分を除く部分を絶縁体で覆い、該各導体片相互に所定の
間隔を設けたことにより、個々に絶縁した各導体片間の
間隙を利用して平形半導体素子のゲート回路やバランサ
抵抗およびスナバ回路の接続ができ、電気的絶縁距離を
増すことなく、また、配線インダクタンスを増加するこ
となく、近接して容易に外部回路との接続ができる。な
お、筒状の導体を中心軸対称に複数の導体片に分割する
ことにより、平形半導体素子と液冷ブロックフィンの積
層、圧接の組み立て作業後に該複数の導体片を実装する
ことができ、組み立てが容易である。以下、本発明の実
施例を図面に基ずき詳述する。
Except for the connection between the flat semiconductor element and the liquid-cooled block laminate and the other main electrode, the entire surface is covered with an insulator over the inner and outer peripheral parts of the cylindrical conductor, so that the flat semiconductor element and Electrical insulation between each part of the liquid cooling block and each conductive part such as a piping system becomes easy, the insulation distance can be minimized, and a compact device can be obtained. The cylindrical conductor is divided into a plurality of conductor pieces symmetrically with respect to the central axis, and the portions other than the connection portions are covered with an insulator, and the conductor pieces are individually insulated by providing predetermined intervals between the conductor pieces. The gate circuit, balancer resistor and snubber circuit of a flat semiconductor element can be connected using the gap between the pieces, and it can be easily placed close to the outside without increasing the electrical insulation distance and without increasing the wiring inductance. Can be connected to a circuit. By dividing the cylindrical conductor into a plurality of conductor pieces symmetrically with respect to the central axis, it is possible to mount the plurality of conductor pieces after laminating the flat semiconductor element and the liquid cooling block fins and assembling the pressure welding. Is easy. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0015】[0015]

【発明の実施の形態】図1は本発明の一実施例を示す平
形半導体素子の同軸積層冷却構造を説明する一部断面側
面図、図2は本発明の図1を90度回転した側面図、図
3は筒状導体の断面図、図4は分割した筒状の導体の斜
視図、図5は図4の筒状の導体を組み立て、電気的な絶
縁関係を説明する断面図である。図1および図2におい
て、図の中央部には平形半導体素子1、液冷ブロック2
には液冷ブロックへの冷媒導入を行う導入管4と冷媒排
出のための排出管5、平形半導体素子1と液冷ブロック
2等を一体に圧接する圧接クランプ11、又本発明の筒
状の導体3が備えられている。ここで、6は絶縁座、7
は絶縁板、8は一方の主電極の絶縁部、9は一方の主電
極の導体部、10は他方の主電極の導体部、13は連絡
管、14は締め付け具、15は他方の主電極の絶縁部で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a partially sectional side view illustrating a coaxial laminated cooling structure of a flat semiconductor device according to one embodiment of the present invention, and FIG. 2 is a side view of FIG. 3 is a cross-sectional view of a cylindrical conductor, FIG. 4 is a perspective view of a divided cylindrical conductor, and FIG. 5 is a cross-sectional view for assembling the cylindrical conductor of FIG. 1 and 2, a flat semiconductor device 1 and a liquid cooling block 2 are provided at the center of the drawing.
In addition, an inlet pipe 4 for introducing refrigerant into the liquid cooling block and a discharge pipe 5 for discharging refrigerant, a pressure contact clamp 11 for integrally pressing the flat semiconductor element 1 and the liquid cooling block 2 and the like, and a cylindrical tube of the present invention. A conductor 3 is provided. Here, 6 is an insulating seat, 7
Is an insulating plate, 8 is an insulating portion of one main electrode, 9 is a conductor portion of one main electrode, 10 is a conductor portion of the other main electrode, 13 is a communication tube, 14 is a fastening tool, and 15 is another main electrode. It is an insulating part.

【0016】すなわち、複数の平形半導体素子1と複数
の液冷ブロック2との積層体を構成し、冷媒の導入によ
り各液冷ブロック2の冷却をカスケードに行う平形半導
体素子1の間接的な冷却構造において、液冷ブロック2
の内部に冷媒の通路を設け、この液冷ブロック2は冷媒
の導入側には導入管4、排出側には排出管5を概ね互い
に回転対象となるように配設し、導入管4の導入口と排
出管5の排出口が互いに同一回転方向に開口する液冷ブ
ロック2を構成し、平形半導体素子1と液冷ブロック2
との一対を複数組みに積層した積層体を形成し、これら
積層体の外周に筒状の導体3で覆うと共に、この導体3
と積層体の他方の主電極(絶縁部15,導体部10)と
接続するよう構成したものである。
That is, a laminated body of a plurality of flat semiconductor elements 1 and a plurality of liquid cooling blocks 2 is formed, and the cooling of each liquid cooling block 2 is performed in a cascade by introducing a cooling medium. In structure, liquid cooling block 2
The liquid cooling block 2 has an inlet pipe 4 on the refrigerant inlet side and an outlet pipe 5 on the outlet side so as to be substantially rotatable relative to each other. A liquid cooling block 2 in which the opening and the discharge port of the discharge pipe 5 are opened in the same rotation direction, and the flat semiconductor element 1 and the liquid cooling block 2 are formed.
Are formed in a plurality of sets, and the outer periphery of the stacked body is covered with a tubular conductor 3 and the conductor 3
And the other main electrode (insulating part 15, conductor part 10) of the laminate.

【0017】筒状の導体3は、図3に示すように、表面
を絶縁被覆した筒状導体の絶縁部3A、筒状の導体部3
B、上部筒状導体3C、筒状導体の貫通穴H、筒状の導
体3にロー付けした他方の主電極の導体部10から構成
されたものである。なお、筒状導体の貫通穴Hは平形半
導体素子1の補助電極等に対応した位置に設けられてお
り、ゲート回路、スナバ回路等の接続用および冷媒輸送
管12の取り出し口としている。また、図1に示す最上
部の液冷ブロック2には、一方の主電極の絶縁部8を表
面被覆した一方の主電極の導体部9をロー付けしてい
る。
As shown in FIG. 3, the cylindrical conductor 3 includes an insulating portion 3A of a cylindrical conductor whose surface is insulated and coated, and a cylindrical conductor portion 3A.
B, upper cylindrical conductor 3C, through-hole H of the cylindrical conductor, and conductor part 10 of the other main electrode brazed to cylindrical conductor 3. In addition, the through hole H of the cylindrical conductor is provided at a position corresponding to the auxiliary electrode and the like of the flat semiconductor element 1 and serves as an outlet for connecting a gate circuit, a snubber circuit, and the like and for taking out the refrigerant transport pipe 12. Further, the conductor section 9 of one main electrode whose surface is covered with the insulating section 8 of one main electrode is brazed to the uppermost liquid cooling block 2 shown in FIG.

【0018】以上のように構成された装置において、中
心部に配置する平形半導体素子1の上部をアノード、下
部をカソードとする方向の多直列体を構成し、最下部の
液冷ブロック2の底部と底部筒状導体3Dを互いの面で
圧接接触させた構造として、最上部の平形半導体素子1
から最下部の平形半導体素子1に至る電流の流れに対
し、筒状の導体3を流れる電流は前述の平形半導体素子
1の電流の方向と逆の方向となる。従って、平形半導体
素子1に流れる電流と筒状の導体3に流れる電流は互い
にその発生する磁束を打ち消し合うことにより、装置全
体のインダクタンスを最小とすることができる。
In the apparatus constructed as described above, a multi-series body is formed in which the upper part of the flat semiconductor element 1 arranged at the center is the anode and the lower part is the cathode, and the bottom of the lowermost liquid cooling block 2 is formed. And the bottom cylindrical conductor 3D are brought into pressure contact with each other on the upper surface of the flat semiconductor element 1
The current flowing through the cylindrical conductor 3 is in a direction opposite to the current direction of the flat semiconductor element 1 with respect to the current flowing from the flat semiconductor element 1 to the bottom. Therefore, the current flowing through the flat semiconductor element 1 and the current flowing through the cylindrical conductor 3 cancel each other's magnetic flux, thereby minimizing the inductance of the entire device.

【0019】次に、本発明の筒状の導体の他の実施例を
図4及び図5に基づいて説明する。図4はその斜視図
で、図3に示す筒状の導体3を分割して形成した構造の
導体31であり、底部筒状導体31A、上部筒状導体3
1B、複数の分割筒状導体31Cの絶縁部31Dとを組
み立てて構成している。各分割筒状導体31Cの絶縁部
31Dは底部筒状導体31Aと上部筒状導体31Bにそ
れぞれネジ止めで組み立てているが、ロー付け等の手段
によっても同様に構成できる。このようにして得られた
筒状の導体31を、図1の筒状の導体3に置き換えれ
ば、若干の磁束の漏れは生ずるが、図1と全く同様に作
用するとともに、分割筒状導体相互の間隙は平形半導体
素子1へのゲート回路やスナバ回路等の補助回路の接
続、冷媒輸送管12の引き出し口として利用できる。
Next, another embodiment of the cylindrical conductor of the present invention will be described with reference to FIGS. FIG. 4 is a perspective view showing a conductor 31 having a structure formed by dividing the cylindrical conductor 3 shown in FIG.
1B and an insulating portion 31D of a plurality of divided tubular conductors 31C. The insulating portion 31D of each of the divided tubular conductors 31C is assembled to the bottom tubular conductor 31A and the upper tubular conductor 31B by screwing, respectively, but can be similarly configured by means such as brazing. If the tubular conductor 31 obtained in this way is replaced with the tubular conductor 3 of FIG. 1, a slight leakage of magnetic flux will occur, but it acts exactly as in FIG. The gap can be used as a connection of an auxiliary circuit such as a gate circuit and a snubber circuit to the flat semiconductor element 1 and as an outlet of the refrigerant transport pipe 12.

【0020】また図5は図2に示す他方の主電極の導体
部10と一方の主電極の導体部9等との絶縁を目的とす
る絶縁キャップ16を設けた断面図であると共に、図4
の導体31である場合も兼ねた断面図であり、高電圧に
対して絶縁保護を行っている。なお、下部の分割筒状導
体3Eも絶縁キャップ16と同様な絶縁保護ができる
が、同図では省略した例を示す。以上説明したように、
本発明は平形半導体素子1と液冷ブロック2の積層体構
造と筒状の導体3,31を巧みに組み合わせたことによ
り得られる低インダクタンスの平形半導体素子の同軸積
層冷却構造を提供するものである。
FIG. 5 is a cross-sectional view in which an insulating cap 16 for insulating the conductor portion 10 of the other main electrode and the conductor portion 9 of one main electrode shown in FIG. 2 is provided.
FIG. 3 is a cross-sectional view which also serves as a conductor 31 of the first embodiment, and performs insulation protection against high voltage. In addition, the lower divided tubular conductor 3E can also perform insulation protection in the same manner as the insulation cap 16, but FIG. As explained above,
The present invention provides a coaxial laminated cooling structure of a flat semiconductor element having a low inductance, which is obtained by skillfully combining the laminated structure of the flat semiconductor element 1 and the liquid cooling block 2 with the cylindrical conductors 3 and 31. .

【0021】[0021]

【発明の効果】以上説明したように本発明によれば、平
形半導体素子と液冷ブロックの積層体構造と筒状の導体
を巧みに組み合わせたことにより、高圧回路向きで配線
インダクタンスが極く小さく、放熱効率、実装密度が高
く、全体として小形な平形半導体素子の積層冷却構造と
することができる。また、筒状の導体は平形半導体素子
や液冷ブロックの積層圧接後に装着、組み立てができ、
その構造から平形半導体素子の周辺に設置するゲート回
路、スナバ回路部品類との接続も容易な平形半導体素子
の積層冷却構造を得ることが出来、実用上、極めて有用
性の高いものである。
As described above, according to the present invention, the wiring structure is extremely small for a high voltage circuit by skillfully combining the laminated structure of the flat semiconductor element and the liquid cooling block and the cylindrical conductor. In addition, the heat dissipation efficiency and the mounting density are high, and a compact cooling structure of a flat semiconductor element as a whole can be obtained. In addition, the cylindrical conductor can be mounted and assembled after lamination pressure welding of flat semiconductor elements and liquid cooling blocks,
From this structure, it is possible to obtain a laminated cooling structure of a flat semiconductor element which can be easily connected to gate circuits and snubber circuit components installed around the flat semiconductor element, and is extremely useful in practical use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す一部断面側面図であ
る。
FIG. 1 is a partial cross-sectional side view showing one embodiment of the present invention.

【図2】本発明の図1の一実施例を90度回転した側面
図である。
FIG. 2 is a side view of the embodiment of FIG. 1 of the present invention rotated 90 degrees.

【図3】本発明の筒状の導体を示す断面図である。FIG. 3 is a sectional view showing a cylindrical conductor of the present invention.

【図4】本発明の他の実施例を示す斜視図である。FIG. 4 is a perspective view showing another embodiment of the present invention.

【図5】本発明の分割した筒状の導体を組み立てた斜視
図である。
FIG. 5 is a perspective view of the assembled cylindrical conductor of the present invention.

【図6】従来の液冷ブロックフィンの斜視図である。FIG. 6 is a perspective view of a conventional liquid cooling block fin.

【図7】従来の1例を示す説明図である。FIG. 7 is an explanatory diagram showing one example of the related art.

【符号の説明】[Explanation of symbols]

1 平形半導体素子 2,211 液冷ブロック 3,31 導体 4 導入管 5 排出管 6 絶縁座 7 絶縁板 8,15 主電極の絶縁部 9,10 主電極の導体部 11,111 圧接クランプ 12 冷媒輸送管 13,131 連絡管 14,141 締め付け具 16 絶縁キャップ 171 伝熱管 DESCRIPTION OF SYMBOLS 1 Flat semiconductor element 2,211 Liquid cooling block 3,31 Conductor 4 Inlet pipe 5 Discharge pipe 6 Insulation seat 7 Insulating plate 8,15 Main electrode insulating part 9,10 Main electrode conductor part 11,111 Pressure contact clamp 12 Refrigerant transportation Pipes 13,131 Connecting pipes 14,141 Clamping tool 16 Insulating cap 171 Heat transfer pipe

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数の平形半導体素子と複数の液冷ブロ
ックとの積層体を構成し、冷媒の導入により各液冷ブロ
ックの冷却をカスケードに行う平形半導体素子の間接的
な冷却構造において、液冷ブロックの内部に冷媒の通路
を設け、この液冷ブロックは冷媒の導入側には導入管、
排出側には排出管を概ね互いに回転対象となるように配
設し、導入管の導入口と排出管の排出口が互いに同一回
転方向に開口する液冷ブロックを構成し、前記平形半導
体素子と液冷ブロックとの一対を複数組みに積層した積
層体を形成し、これら積層体の外周に筒状の導体で覆う
と共に、この導体と積層体の一主電極と接続する構成と
したことを特徴とする平形半導体素子の同軸積層構造。
An indirect cooling structure of a flat semiconductor element, comprising a stacked body of a plurality of flat semiconductor elements and a plurality of liquid cooling blocks, wherein the cooling of each liquid cooling block is performed in a cascade by introducing a refrigerant. A coolant passage is provided inside the cold block, and the liquid cooling block has an inlet pipe on the coolant inlet side,
On the discharge side, the discharge pipes are arranged so as to be substantially rotatable with each other, and a liquid cooling block in which the inlet of the inlet pipe and the outlet of the discharge pipe open in the same rotation direction with each other is formed. A laminated body is formed by laminating a plurality of pairs of liquid-cooling blocks in pairs, and the outer periphery of the laminated body is covered with a cylindrical conductor, and the conductor is connected to one main electrode of the laminated body. Coaxial laminated structure of a flat semiconductor element.
【請求項2】 平形半導体素子と液冷ブロックの積層体
との接続部と他方の主電極部を除き、筒状の導体の内外
周部に渡り、表面全体を絶縁体で覆った構造としたこと
を特徴とする請求項1記載の平形半導体素子の同軸積層
冷却構造。
2. A structure in which the entire surface is covered with an insulator over the inner and outer peripheral portions of a cylindrical conductor, except for a connection portion between the flat semiconductor element and the liquid cooling block laminate and the other main electrode portion. 2. A coaxial laminated cooling structure for a flat semiconductor device according to claim 1, wherein:
【請求項3】 筒状の導体を中心軸対称に複数の導体片
に分割して、接続部分を除く部分を絶縁体で覆い、前記
各導体片相互に所定の間隔を設けたことを特徴とする請
求項1の平形半導体素子の同軸積層冷却構造。
3. The method according to claim 1, wherein the cylindrical conductor is divided into a plurality of conductor pieces symmetrically with respect to the central axis, a portion excluding a connection portion is covered with an insulator, and a predetermined interval is provided between the conductor pieces. 2. The coaxial laminated cooling structure for a flat semiconductor device according to claim 1.
【請求項4】 筒状の導体の筒部には、積層した平形半
導体素子の補助電極に対向した位置とに貫通穴を設け、
平形半導体素子の同軸積層体の外部に設けた半導体素子
の周辺回路要素との接続用貫通穴を具備したことを特徴
とする請求項1又は2又は3項記載の平形半導体素子の
同軸積層冷却構造。
4. A through hole is provided in the cylindrical portion of the cylindrical conductor at a position facing the auxiliary electrode of the stacked flat semiconductor element,
4. The cooling structure according to claim 1, further comprising a through hole for connection to a peripheral circuit element of the semiconductor element provided outside the coaxial stacked body of the flat semiconductor element. .
JP3116797A 1997-01-30 1997-01-30 Coaxial laminate cooling structure for flat semiconductor device Pending JPH10214930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3116797A JPH10214930A (en) 1997-01-30 1997-01-30 Coaxial laminate cooling structure for flat semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3116797A JPH10214930A (en) 1997-01-30 1997-01-30 Coaxial laminate cooling structure for flat semiconductor device

Publications (1)

Publication Number Publication Date
JPH10214930A true JPH10214930A (en) 1998-08-11

Family

ID=12323887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3116797A Pending JPH10214930A (en) 1997-01-30 1997-01-30 Coaxial laminate cooling structure for flat semiconductor device

Country Status (1)

Country Link
JP (1) JPH10214930A (en)

Similar Documents

Publication Publication Date Title
US5349498A (en) Integral extended surface cooling of power modules
US5495889A (en) Cooling device for power electronic components
US7068507B2 (en) Compact liquid converter assembly
US3573574A (en) Controlled rectifier mounting assembly
US7081671B2 (en) Power module
US6181231B1 (en) Diamond-based transformers and power convertors
US6721181B1 (en) Elongated heat sink for use in converter assemblies
US6278353B1 (en) Planar magnetics with integrated cooling
US6166903A (en) Electronic power module, and electronic power system comprising a plurality of said modules
JPS62502929A (en) Cooling stack of electrically insulated semiconductors
US3955122A (en) Heat sink mounting for controlled rectifiers
JPH088397A (en) Low inductance power semiconductor module
JP2001320005A (en) Double-sided cooling semiconductor device by means of coolant
JPH053143B2 (en)
JPH08294266A (en) Power module and power converter
JPH11121668A (en) Liquid-cooled flat semiconductor device
US20040060689A1 (en) Compact liquid cooled heat sink
JP4480266B2 (en) Low-inductance, gate-controlled thyristor
JPH10214930A (en) Coaxial laminate cooling structure for flat semiconductor device
EP0613179A1 (en) Heat sink
CA1305777C (en) Circuit arrangement having a plurality of electrical elements to be cooled
JP2000060106A (en) Power converter
JP2004158489A (en) Pressure contact semiconductor device
WO2019159666A1 (en) Electronic component with cooler, and inverter
JPH06507044A (en) Arrangement structure of heat generators in liquid-cooled equipment